
Won the third place in 2004 ACM SIGPLAN Student Research Competition at OOPSLA 04.
Appears in Proceedings of the 19th Annual ACM SIGPLAN OOPSLA Companion 04, Vancouver, Canada

Automatic Identification of Common and Special
Object-Oriented Unit Tests

Tao Xie
Department of Computer Science & Engineering

University of Washington, Seattle, WA 98195, USA

taoxie@cs.washington.edu

ABSTRACT
Common and special test inputs can be created to exer-
cise some common and special behavior of the class under
test, respectively. Although manually created tests are valu-
able, programmers often overlook some special test inputs.
If programmers write down specifications, special or com-
mon tests can be automatically generated and selected by
tools. However, specifications are not commonly written in
practice. This research develops a novel approach for au-
tomatically identifying common and special unit tests for a
class without requiring any specification. Given a class, our
approach automatically generates test inputs and identifies
common and special tests among the generated tests. Pro-
grammers can inspect these identified tests and use them to
augment existing (manual) tests. Our approach is based on
statistical algebraic abstractions, program properties (in the
form of algebraic specifications) dynamically inferred from
test executions. We use statistical algebraic abstractions to
characterize program behavior. A test is identified to be
common if the test exercises a behavior that is universally
or commonly exercised by generated tests, or to be special
if the test violates a behavior that is commonly exercised by
generated tests.

Categories and Subject Descriptors: D.2.5 [Testing
and Debugging]: Testing tools

General Terms: Reliability.

Keywords: Test Selection, Dynamic Inference.

1. INTRODUCTION
In unit testing, the class under test might exhibit com-

mon and special program behavior when it is exercised by
different test inputs. For example, intuitively a bounded-
stack class exhibits common behavior when the stack is nei-
ther empty nor full, but might exhibit some special behavior
when the stack is empty or full. Common and special test
inputs can be created to exercise some common and spe-
cial behavior of the class under test, respectively. Although
manually written unit tests for classes play an important
role in software development, they are often insufficient to
exercise some important common or special behavior of the
class: programmers often overlook some special or bound-
ary values and sometimes even fail to include some common
cases. The main complementary approach is to use one of

Copyright is held by the author/owner.
OOPSLA’04, Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
ACM 1-58113-833-4/04/0010.

public class BStack {
public BStack() { ... }

public void push(int i) { ... }
public void pop(){ ... }

public int top() { ... }
public boolean isMember(int i) { ... }

public boolean isEmpty(){ ... }
public boolean equals(Object s) { ... }

}

Figure 1: The interface of a bounded stack class

the automatic unit test generation tools to generate a large
number of test inputs to exercise a variety of behaviors of
the class. With a priori specifications, the executions of
these test inputs can be automatically verified. In addi-
tion, among generated tests, common and special tests can
be identified based on specifications and then these iden-
tified tests can be used to augment existing manual tests.
However, in practice, specifications are often not written by
programmers. Without a priori specifications, it is imprac-
tical for programmers to manually inspect and verify the
outputs of such a large number of test executions. Conse-
quently programmers do not have an efficient way to iden-
tify common and special tests. In this paper, we present
a new approach for automatically identifying common and
special tests from automatically generated tests without re-
quiring specifications. Programmers can inspect these iden-
tified tests for correctness and use them to augment existing
manual tests. To illustrate the approach, in this paper we
use a bounded stack class BStack whose public methods are
shown in Figure 1. The capacity of the stack is hardcoded
as three for simplicity.

2. APPROACH
Our new approach is based on statistical algebraic ab-

stractions. An algebraic abstraction is an equation that ab-
stracts a program’s runtime behavior. It is syntactically
identical to an axiom in algebraic specifications. For exam-
ple, two algebraic abstractions of BStack are

isMember(BStack().state, i2).retval == false and
isEmpty(push(S, i1).state).retval == false

where the receiver of a method call is treated as the first
method argument (but the constructor BStack() does not
have a receiver) and the .state and .retval expressions de-
note the state of the receiver after the invocation and the
result of the invocation, respectively. We adopt the notation
following Henkel and Diwan [2].

An instance of an algebraic abstraction is a test that is
able to instantiate the left-hand side and right-hand side
of the equation in the algebraic abstraction. A satisfying
instance of an algebraic abstraction is an instance that sat-



isfies the equation in the algebraic abstraction. A violating
instance of an algebraic abstraction is an instance that vi-
olates the equation in the algebraic abstraction. A statisti-

cal algebraic abstraction is an algebraic abstraction that is
associated with the counts of its satisfying and violating in-
stances. We dynamically infer statistical algebraic abstrac-
tions from test executions.

A common property is a statistical algebraic abstraction
whose instances are mostly satisfying instances (by default,
our approach sets the percentage threshold of satisfying in-
stances as 80%, which can be configured by the user). A uni-

versal property is a statistical algebraic abstraction whose
instances are all satisfying instances. A special test is a vi-
olating instance of a common property and a common test

is a satisfying instance of a common or universal property.
For each common property, we sample and select a special
test and a common test. For each universal property, we
also sample and select a common test.

Our statistical inference differs from previous work on
specification inference (axiomatic-specification inference [1]
and algebraic-specification inference [2]) in that the abstrac-
tions inferred by our approach are not required to be uni-
versally true among all test executions.

Figure 2 shows an overview of our approach. The input
to our approach is the bytecode of the (Java) class under
test and a set of algebraic abstraction templates pre-defined
by us; these templates encode common forms of axioms in
algebraic specifications: equality relationships among two
neighboring method calls and single method calls. The out-
puts of the approach are a set of common and special tests
and their corresponding properties. The approach comprises
four steps: test generation, method-call composition, sta-
tistical inference, and test identification. The step of test
generation first generates different representative argument
values for each public method of the class, and then dynam-
ically and iteratively invokes different method arguments
on each non-equivalent receiver-object state (our previous
work [3] develops techniques for determining object-state
equivalence). The step of method-call composition monitors
and collects method executions to compose two method calls
m1 and m2 forming a method-call pair if m1’s receiver-object
state after invoking m1 is equivalent to m2’s receiver-object
state before invoking m2. The composed method-call pair is
used in the step of statistical inference as if the two method
calls in the pair were invoked in a row on the same receiver.
The step of statistical inference uses method-call pairs and
single method calls to instantiate and check against the ab-
straction templates. This step produces a set of common or
universal properties. The step of test identification identifies
common and special tests based on these properties.

3. PRELIMINARY RESULTS
We have implemented the approach and performed pre-

liminary experiments on several data structures, including
the BStack class and some nontrivial classes experimented in
our previous work [3]. This section illustrates some results
for BStack

1. Our approach identifies 19 common tests and
10 special tests (4 tests are both common and special) out
of 361 automatically generated tests. Our approach infers 9
universal properties and 20 common properties. Universal
properties include the two abstractions shown in Section 2.

1Full details of the experimental results are described in
http://www.cs.washington.edu/homes/taoxie/sabicu/

Figure 2: An overview of common and special test

identification
Common properties include the following one:
isMember(push(S, i1).state, i2).retval==true where i1==i2

This property has 96 satisfying instances and 24 violating
instances. Henkel and Diwan’s approach [2] cannot infer
such a property because this property is not universally true
among test executions. Intuitively this property states that
if we push an element into the stack and then query the stack
with the same element using isMember, the return value of
isMember is true. It seems to be the correct behavior to us.
But there are a small percentage of special tests violating
them, one of them is:

uniqueBoundedStack u1 = new uniqueBoundedStack();

u1.push(-1);

u1.push(-1);

u1.push(-1);

u1.push(0);

u1.isMember(0);

After inspecting this special test, we could understand that
after pushing three -1 into the stack, the stack is already
full. So push(0) does not allow 0 to be in the stack and then
invoking isMember(0) does not return true. This special test
exercises a special case: a full stack. Other special tests
also exercise other special cases such as empty stacks and
one-element stacks.

4. CONCLUSION
This research proposes a novel approach of automatically

identifying common and special object-oriented unit tests.
The approach formalizes the notion of common and special
behavior by using inferred statistical algebraic abstractions
and provides an operational way for defining and identify-
ing common and special tests. Our preliminary results show
that the approach is promising to achieve the goal of iden-
tifying interesting tests. In ongoing work, we are improving
the implementation and conducting more experiments.

5. REFERENCES
[1] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.

Dynamically discovering likely program invariants to support
program evolution. IEEE Trans. Softw. Eng., 27(2):99–123,
2001.

[2] J. Henkel and A. Diwan. Discovering algebraic specifications
from Java classes. In Proc. 17th European Conference on
Object-Oriented Programming, pages 431–456, 2003.

[3] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for
detecting redundant object-oriented unit tests. In Proc. 19th

IEEE International Conference on Automated Software
Engineering, Sept. 2004.


