
Aladdin: Automating Release of Deep-Link APIs on Android

Yun Ma
12
, Ziniu Hu

1
, Yunxin Liu

3
, Tao Xie

4
, Xuanzhe Liu

1∗

1
Key Lab of High-Confidence Software Technology, MoE (Peking University)

2
Tsinghua University

3
Microsoft Research

4
University of Illinois at Urbana-Champaign

{mayun,bull}@pku.edu.cn,yunxin.liu@microsoft.com,taoxie@illinois.edu,xzl@pku.edu.cn

ABSTRACT
Compared to the Web where each web page has a global URL for ex-

ternal access, a specific “page” inside a mobile app cannot be easily

accessed unless the user performs several steps from the landing

page of this app. Recently, the concept of “deep link” is expected to

be a promising solution and has been advocated by major service

providers to enable targeting and opening a specific page of an app

externally with an accessible uniform resource identifier. In this

paper, we present a large-scale empirical study to investigate how

deep links are really adopted, over 25,000 Android apps. To our

surprise, we find that deep links have quite low coverage, e.g., more

than 70% and 90% of the apps do not have deep links on app stores

Wandoujia and Google Play, respectively. One underlying reason is

the mandatory and non-trivial manual efforts of app developers to

provide APIs for deep links. We then propose the Aladdin approach

along with its supporting tool to help developers practically auto-

mate the release of deep-link APIs to access locations inside their

apps. Aladdin includes a novel cooperative framework by synthesi-

zing the static analysis and the dynamic analysis while minimally

engaging developers’ inputs and configurations, without requiring

any coding efforts or additional deployment efforts. We evaluate

Aladdin with 579 popular apps and demonstrate its effectiveness

and performance.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools;

KEYWORDS
Deep link; Android apps; program analysis

ACM Reference Format:
Yun Ma

12
, Ziniu Hu

1
, Yunxin Liu

3
, Tao Xie

4
, Xuanzhe Liu

1
. 2018. Aladdin:

Automating Release of Deep-Link APIs on Android. In WWW 2018: The
2018 Web Conference, April 23–27, 2018, Lyon, France. ACM, New York, NY,

USA, 10 pages. https://doi.org/10.1145/3178876.3186059

1 INTRODUCTION
One key factor leading to the great success of the Web is that there

are hyperlinks to access web pages and even to specific pieces of

“deep” web contents. For example, the hyperlink https:// en.wikipedia.
org/wiki/World_Wide_Web#History points to the “history” section
of the “WorldWideWeb” wiki page. Indeed, the hyperlinks play a

∗
Corresponding author: xzl@pku.edu.cn.

This paper is published under the Creative Commons Attribution 4.0 International

(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW 2018, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC BY 4.0 License.

ACM ISBN 978-1-4503-5639-8/18/04.

https://doi.org/10.1145/3178876.3186059

fundamental role on the Web in various aspects, e.g., enabling users

to navigate among web pages and add bookmarks to interested

contents, and making search engines capable of crawling the web

contents [18].

In the current era of mobile computing, mobile applications

(a.k.a., apps) have become the dominant entrance to access the

Internet [11, 41]. However, compared to the Web, the support for

“hyperlinks” is inherently missing in mobile apps so that users have

to perform tedious and trivial actions to access a specific in-app

content. Other advantages from traditional Web hyperlinks are

naturally missing as well.

After such limitation is realized, the concept of “Deep Link” has
been proposed to enable directly opening a specific page/location

inside an app from outside of this app by means of a uniform re-

source identifier (URI) [9]. Intuitively, deep links are “hyperlinks”

for mobile apps. For example, with the deep link “android-app:// org.
wikipedia/http/en.m.wikipedia.org/wiki/World_Wide_Web”, users
can directly open the page of “WorldWideWeb” in the Wikipedia

app. Currently, various major service providers such as Google [7],

Facebook [6], Baidu [3], and Microsoft [4] have strongly advocated

deep links, and major mobile OS platforms such as iOS [16] and

Android [2] have encouraged their developers to release deep links

in their apps. Indeed, deep links bring various benefits to current

stakeholders in the ecosystem of mobile computing. Mobile users

can have better experiences of consuming in-app contents by di-

rectly navigating to the target app pages. App developers can make

their deep links open to others who are interested in the content,

data, or functionality of their apps, so that the app developers can

find potential collaborators to realize the “composition” of apps.

However, it is unclear how deep links have been supported so

far in the state of the broad practice. To address such issue, in this

paper, we first conduct an empirical study on popular Android apps

and uncover the following findings:

• An increasing number of deep links with app-version
evolution. When the first version and latest version of the

top 200 apps on Wandoujia
1
are compared, the percentage

of apps that support deep links increases from 30% to 80%;

• Low coverage of deep links of current apps. Among the

top 20,000 and 5,000 popular apps on Wandoujia and Google

Play, more than 70% and 90% do not have deep links, respecti-

vely. For apps with deep-link support, only 4% of activities

actually have deep links;

• Non-trivial efforts from developer. Based on our study

of open-source Android apps from GitHub, developers need

to manually modify 45–411 lines of code to implement one

deep-link API for one activity.

In order to reduce the developer efforts of supporting deep

links, we propose Aladdin, a novel approach that helps develo-

pers automate release of Android app’s deep-link APIs based on

1
Wandoujia (http://www.wandoujia.com) is a leading Android app store in China.

https://doi.org/10.1145/3178876.3186059
https://en.wikipedia.org/wiki/World_Wide_Web#History
https://en.wikipedia.org/wiki/World_Wide_Web#History
https://doi.org/10.1145/3178876.3186059
android-app://org.wikipedia/http/en.m.wikipedia.org/wiki/World_Wide_Web
android-app://org.wikipedia/http/en.m.wikipedia.org/wiki/World_Wide_Web
http://www.wandoujia.com

a cooperative framework. Our cooperative framework combines

static analysis and dynamic analysis as well as engaging minimal

human efforts to provide inputs to the framework for automation.

In particular, given an Android app, Aladdin first uses static ana-

lysis to find how to reach activities (each of which is the basic UI

component of Android apps) inside the app most efficiently from

the entrance of the app. After developers select activities of which

the dynamic locations need to be deep linked, Aladdin then per-

forms dynamic analysis to find how to reach fragments (each of

which is a part of a UI component) inside each activity. Finally,

Aladdin synthesizes the analysis results and generates the templa-

tes that record the scripts of how to reach a location inside the app.

Aladdin provides a deep-link proxy integrated with the app code to

take over the deep-link processing, and thus does not instrument

the original business logic of the app. Such a proxy can accept the

access via released deep-link APIs from third-party apps or services.

We evaluate Aladdin on 579 popular Android apps. The evaluation

results show that deep-link APIs released by Aladdin can cover a

large portion of an app, and the runtime performance is desirable.

To the best of our knowledge, Aladdin is the first work to auto-

mate the release of deep-link APIs of Android apps without any

obtrusion of their normal functionality, and thus establishes the

foundation of “web-like” user experiences for Android apps. More

specifically, this paper makes the following major contributions.

• We conduct an extensive empirical study of current deep

links based on 25,000 popular Android apps, uncovering

the current status of deep links and the developer efforts to

implement deep links.

• We propose an approach to helping developers practically au-

tomate the release of deep-link APIs based on a cooperative

framework, with developers’ only very minimal configura-

tion efforts and no interference of the normal functionalities

of an app.

• We evaluate the effectiveness of our approach on popular

Android apps.

2 BACKGROUND
In this section, we present some background knowledge of Android

apps and deep links.

2.1 A Conceptual Analogy
An Android app, identified by its package name, usually consists

of multiple Activities that are loosely bound to each other. An

activity is a component that provides a user interface for users to

interact with, such as dialing phones, watching videos, or reading

news. Each activity is assigned a window to draw its graphical user

interface. One activity in an app is specified as the “main” activity,

which is first presented to users when the app is launched.

For ease of understanding, we can draw an analogy between

Android apps and the Web, as compared in Table 1. An Android app

can be regarded as a website where the package name of the app is

like the domain of the website. Therefore, activities can be regarded

as web pages because both of them are basic blocks for apps and

websites, respectively, providing user interfaces. The main activity

is just like the home page of a website.

An activity has several view components to display its user inter-

face, such as TextView, ButtonView, and ListView. View com-

ponents are similar to web elements consisting of a web page, such

as <p>, <button>, and . When a web page is complex, frames

Table 1: Conceptual comparison between Android apps and
the Web.

Concepts of Android Apps Concepts of Web
app website

package name domain

activity web page

main activity home page

view component web element

fragment frame

are often used to embed some web elements for better organization.

Frames are subpages of a web page. Similarly, since the screen size

of mobile devices is rather limited, Android provides Fragment as

a portion of user interfaces to enclose some view components in

an activity. An activity could have one or more fragments, forming

subpages of the activity.

Activities and fragments hold the contents inside apps, just like

web pages and frames, which encapsulate contents on the Web.

In the rest of this paper, we use the term “page” and “activity”

exchangeably, as well as “subpage” and “fragment” exchangeably,

for ease of presentation.

Transitions between activities are executed through Intents.
An intent is a messaging object used to request an action from

another component, and thus essentially supports Inter-Process

Communication (IPC) at the OS level. Note that intents can be

used to transit between activities from both the same apps and two

different apps. There are two types of intents: (1) explicit intents,
which specify the target activity by its class name; (2) implicit
intents, which declare action, category, and/or data that can

be handled by another activity. Messages are encapsulated in the

extra field of an intent. When an activity P sends out an intent I ,
the Android system finds the target activity Q that can handle I ,
and then loads Q , achieving the transition from P to Q .

2.2 Deep Links
The idea of deep links for mobile apps originates from the pre-

valence of hyperlinks on the Web. Every single web page has a

globally unique identifier, namely URL. In this way, web pages are

accessible directly from anywhere by means of URLs. Typically,

web users can enter the URL of a web page in the address bar of

web browsers, and click the “Go” button to open the target web

page. The web users can also click through hyperlinks on one web

page to navigate directly to other web pages.

Compared to web pages, the mechanism of hyperlinks is his-

torically missing for mobile apps. To address the problem, deep

links are proposed to enable directly opening a specific page inside

an app from outside of this app with a uniform resource identifier

(URI). The biggest benefit of deep links is not limited in enabling

users to directly navigate to specific locations of an app, but further

supports other apps or services (e.g., search engines) to be capable

of accessing the internal data of an app and thus enables “commu-

nication" of apps to explore more features, user experiences, and

even revenues. Below are some usage scenarios of deep links.

• In-App Search. In-app search [7] enables mobile users to

search contents inside apps and enter directly into the app

page containing the information from search results.

• Bookmarking. Mobile users can create bookmarks to the

information or functionalities inside apps for later use [18].

• Content Sharing. With deep links, mobile users can share

pages from one app to friends in social networking apps [6].

0 1 2 3 4 5 6 7 8 9 10
Number of Deep Links

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F

First Version
Latest Version

(a) Trend of apps with deep links

0 10 20 30 40 50
Percentage of Activities with Deep Links(%)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F

First Version
Latest Version

(b) Trend of deep-linked activities in deep-

link supported apps

0 2 4 6 8 10
Number of Deep Links

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F

Google Play
Wandoujia

(c) Distribution of the number of deep links

0 10 20 30 40 50
Percentage of Activities with Deep Links(%)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F

Google Play
Wandoujia

(d) Distribution of the percentage of deep-

linked activities

Figure 1: The trend and status of deep links among Android apps.

• AppMashup. Other than simple content sharing, deep links

can further act as the support for realizing “app mashup” [35]
to integrate services from different apps, such as IFTTT [8].

3 EMPIRICAL STUDY
Given the benefits of deep links for mobile apps, in this section, we

present an empirical study to understand the state of practice of

deep links in current Android apps. We focus on three aspects: (1)
the trend of deep links with version evolution of apps; (2) the number
of deep links in popular apps; (3) how deep links are realized in current
Android apps.

In practice, there is no standard way of measuring how many

deep links an app has. However, according to Android’s develo-

per guide [1], we can infer an essential condition, i.e., activities
that support deep links MUST have a special kind of intent
filters declared in the AndroidManifest.xml file. Such kind of

intent filters should use the android.intent.action.VIEW with
the android.intent.category.BROWSABLE category. We denote

these intent filters as deep-link related. If an activity has deep-link

related intent filters, then we say that the activity is registered

with deep links. Therefore, we can take the number of activities

registered with deep links as an indicator to estimate the number

of deep links for an Android app. We should mention that activities

without deep-link related intent filters may still support deep links

because developers can register a single activity with deep links

and forward the link request to other activities. As a result, our

estimation of deep links may be below the actual number. However,

such case usually exists in apps that have only one activity registe-

red with deep links. So our results are still able to reveal the status

of deep links in practice.

3.1 Evolution of Deep Links with Versions
We first validate that the support of deep links is really desired.

To this end, we investigate the trend of deep links along with the

version evolution. We choose top 200 apps (as of Jan. 2017) ranked

by Wandoujia, a leading Android app store in China, which was

studied in our previous work [31, 34]. To make comparison, we

manually download each app’s first version that could be publicly

found on the Internet and its latest version published onWandoujia

as of Jan. 2017. We compare the number of deep links in the two

versions of each app. Figure 1(a) shows the distribution of the

number of deep links among all the apps in each version. Generally,

it is observed that when first released, only 30% of apps have deep

links. In contrast, more than 80% of these apps have supported

deep links in their latest versions. More specifically, the maximum

number of deep links is 35 in the first version and it increases to 81

in the latest version. Such a change indicates that the popularity of

deep links keeps increasing in the past few years.

3.2 Coverage of Deep Links
Although the number of deep-link supported apps increases, the

percentage of activities that have deep links in deep-link supported

apps is still rather low. We compute the ratio of activities with deep

links to the total number of activities. As shown in Figure 1(b). It is

surprising to find that the percentage of activities with deep links

becomes smaller from the first to the latest version. For the first

version, there are more than 20% of apps of which the percentage

of activities with deep links is above 10%, but the number of apps

decreases to 15% for the latest version. The reason is that developers

addmore activities when upgrading their apps but they release deep

links to only fixed activities.

Aiming to expand the investigation to a wide scope, we study

the latest version of 20,000 popular apps on Wandoujia, and 5,000

popular apps on Google Play as of Jan. 2017. Figure 1(c) shows the

distribution of the number of deep links among apps in the two

app stores. Similar to the preceding results, more than 70% and 90%

of the apps do not have deep links on Wandoujia and Google Play,

respectively. Such a result indicates that deep links are not well

supported in a large scope of current Android apps, especially the

international apps on Google Play.

Considering the percentage of activities with deep links, Fi-

gure 1(d) shows that the median percentage is just about 4%, im-

plying that a very small fraction of the locations inside apps can

be actually accessed via deep links. About only 10% of apps have

more than 20% of activities with deep links. There is no significant

difference between the distribution on Wandoujia and Google Play,

meaning that the low coverage of deep links is common for the

Android ecosystem.

In summary, our study result shows the low coverage of deep

links in current Android apps. Such a result is a bit out of our expec-

tation, since deep links are widely encouraged in industry. There

are four possible reasons leading to the low coverage of deep links.

First, as deep link is a relatively new concept, it may take some time

to be adopted by Android developers. Second, due to commercial

or security considerations, developers may not be willing to expose

their apps to third parties through deep links. Third, developers

may not have clear motivation to determine which part of their

apps needs to be exposed by deep links. Fourth, as we show later,

implementing deep links requires non-trivial developer efforts so

that developers may not be proactive to introduce deep links in their

apps. However, deep link is still promising in the mobile ecosystem

given major Internet companies being strong advocates as well as

Table 2: LoC changeswhen adding deep links of open-source
apps on GitHub.

Repository Name LoC Changes
stm-sdk-android 45

mobiledeeplinking-android 62

WordPress-Android 73

mopub-android-sdk 78

ello-android 87

bachamada 179

sakai 237

SafetyPongAndroid 411

the potential revenue brought by opening data and cooperating

with other apps.

3.3 Developer Efforts
Supporting deep links requires the developers to provide deep-link

APIs that implement the processing logics for deep-link requests,

not just by declaring the intent filter in the AndroidManifest.xml file.

Although there have already been some SDKs for deep links [5, 10],

providing deep-link APIs exactly requires the modifications or even

refactoring of the original implementation of the apps. We then

study the actual developer efforts when supporting deep links for

an Android app.

For simplicity, we study the code evolution history of open-

source apps on GitHub. We search on GitHub with the key word

“deep link” among all the code-merging requests in the Java language.

There are totally 4,514 results returned. After manually examining

all the results, we find 8 projects that actually add deep links in

their code-commit history. We carefully check the code changes in

the commits related to deep links. Table 2 shows the LoC (lines of

code) changes in each project when implementing a deep-link API

to just one activity in the corresponding code commit. The changes

include the addition, modification, and deletion of the code. We can

observe that the smallest number of the LoC change is 45 and the

largest number can reach 411. Take the app SafetyPongAndroid2

as an example. We find that a large number of changes attribute

to the refactoring of app logics to enable an activity to be directly

launched without relying on other activities. Several objects that

are previously initialized in other activities need to be initialized in

the activity to be deep linked. Such an observation can provide us

the preliminary findings that developers need to invest non-trivial

manual efforts on existing apps to support deep links. Such a factor

could be one of the potential reasons why deep links are of low

coverage.

4 ALADDIN: IN A NUTSHELL
The findings of our empirical study demonstrate the low coverage
and non-trivial developer efforts of supporting deep links in

current Android apps. To make deep links practically and broadly

supported by existing apps, we propose the Aladdin approach to

automating release of Android app’s deep-link APIs that enable

apps to reach the target locations with deep-link requests. The

design goals of Aladdin are four aspects:

Maximal deep-link coverage. Aladdin should release deep-link

APIs to as many activities as possible for developers to choose the

desirable locations to actually expose deep links.

2
https://github.com/SafetyMarcus/SafetyPongAndroid

APK

A1:
A2: A1A2; p1
A3: A1A3; p2
A4: A1A2A4; p1

1

2 34

navigation graph

Analyze
navigation

Analyze
shortcuts

shortcuts to each activity

F1

F2

F3

F4

activity instance

Open an
instance of

each selected
activity

F1: click v1; #review
F2: click v2; #tip
F3: click v3; #photo
F4: click v4; #mark Analyze

actions to
fragmentsactions to each

fragment

deep link proxy

deep link
templates

app
code

deep-link enabled app

Figure 2: Approach overview.

Supporting fine-grained deep links. Current deep links point

to only activities. However, it becomes popular that activities have

multiple fragments for different features. Aladdin should release

deep-link APIs not only to activities, but also to fragments for better

user experience.

Minimal developer efforts. Aladdin should automate the process

of releasing deep-link APIs and require few or zero coding efforts.

Minimal runtime overhead. The performance of requesting deep

links via the APIs generated by Aladdin should be efficient enough

to ensure good user experience.

Figure 2 shows the overview of Aladdin. Aladdin achieves the

preceding goals via designing a cooperative framework of program

analysis and a proxy architecture of deep-link execution. More spe-

cifically, Aladdin’s cooperative framework combines static program

analysis and dynamic program analysis while minimally engaging

developers to provide inputs to obtain the app’s execution paths

that can be re-executed afterwards given the parameter values.

Each path represents a deep-link API pointing to a specific kind

of locations inside the app. Leveraging the Android testing frame-

work, Aladdin’s proxy architecture can enable deep-link execution

without having to modify the app code. We next present the details

of our approach.

4.1 Analyzing Execution Paths to Activities
Essentially, reaching an activity with a deep link is to issue one

intent that could launch the target activity. However, the complexity

of activity communications in Android apps makes it not easy to use

a single intent to reach an activity for existing apps. For example,

a target activity may rely on internal objects that are created by

previous activities in the path from the main activity to the target

activity. To address the issue, for each activity, Aladdin analyzes an

intent sequence from the main activity of the app to the activity.

Therefore, the activity dependency can be resolved because we

actually follow the original logic of activity communications.

4.1.1 Navigation Analysis. Since activities are loosely coupled,

communicating through intents, there is no explicit control flow

between activities. Therefore, we design a Navigation Graph to

abstract the activity transitions. Here we give the formal definitions

of activity transition and navigation graph.

Definition 1 (Activity Transition). An activity transition
t(L) is triggered by an intent, where L is the combination of all the
fields of the intent including action, category, data, and objects of
basic types from the extra field.

Since an intent essentially encapsulates several messages passed

between two activities, we use a label set L to abstract an intent.

https://github.com/SafetyMarcus/SafetyPongAndroid

Two intents are equivalent if and only if the label sets are the

same. Note that from the extra field, which is the major place to

encapsulate messages, we take into account only the objects of

basic types including int, double, String, etc. The reason is that

objects of app-specific classes are usually internally created but

cannot be populated from outside of the app. As a result, this kind

of intents cannot be re-executed at runtime.

Definition 2 (Navigation Graph). A Navigation Graph G is
a directed graph with a start vertex. It is denoted as a 3-tuple, G <
V ,E, r >, where V is the set of vertices, representing all the activities
of an app; E is the set of directed edges, and every single e(v1,v2)
represents an activity transition t(L); r is the start vertex.

In such a navigation graph, the start vertex r refers to the main

activity of the app. We assume that each node inV could be reacha-

ble from the start vertex r . The navigation graph can have multi-

edges, i.e., ∃e1, e2 ∈ E,vstar t (e1) = vstar t (e2) and vend (e1) =
vend (e2), indicating that there can be more than one transition

between two activities. In addition, it should be noted that the

navigation graph can be cyclic.

4.1.2 Shortcut Analysis. After constructing the navigation graph,
we analyze the paths to each activity.

Definition 3 (Path). A path to an activity Pa is an ordered list
of activity transitions {t1, t2, . . . , tk } starting from the main activity,
where k is the length of the path.

According to the path definition, the activity transition t1 is

always the app-launching intent that opens the main activity. The

path Pa can ensure that all the internal dependencies are properly

initialized before reaching the activity a.
In practice, there can be various paths to reach a specific activity.

Since our approach uses the activity transitions to reach activities

by deep links, the path should be as short as possible to reduce the

execution time at the system level. Therefore, for each activity, we

compute the shortest path, denoted as the shortcut, and the combi-

nation of labels in the activity transitions of the path constitutes

the label set of the shortcut.

Definition 4 (Shortcut). A Shortcut T(L) of an activity a is
the shortest path Pa = {ti }, and L = ∪Lti .

4.2 Analyzing Execution Paths to Fragments
As shown in Section 2, there are different fragments in an activity

for serving as user interface, just like the frames in a web page.

In order to reach a specific fragment directly with a deep link, we

should further analyze how to transfer to fragments of an activity.

Contrary to activity transitions where intents can be sent to

invoke the transition, the fragment transitions often occur after

users perform an action on the interface such as clicking a view

component, then the app gets the user action and executes the

transition. Due to the dynamics of activities, fragments of activities

may be dynamically generated, just like AJAX on the Web. To the

best of our knowledge, it is currently not possible to find out frag-

ments by static analysis. Thus, we choose to use dynamic analysis,

traversing the activity by clicking all the view components on the

page in order to identify all the fragments and their corresponding

triggering actions.

4.2.1 Fragment Identification. Unlike activities where the class
name is the identifier of an activity, fragments usually do not have

ALGORITHM 1: Computing structure hash of view tree.

Input: View component r
Output: Structure Hash h

1 function TreeHash(r)
2 str ← r .viewTaд
3 if r .hashChildren() then
4 children ← r .дetChildren()
5 foreach c ∈ children do
6 c .hash ← T reeHash(c)
7 end
8 children ← sor t_by_hash(r .дetChildren())
9 foreach c ∈ children do

10 str+ = c .hash
11 end
12 end
13 return hash(str)

explicit identifiers. To determine whether we have switched frag-

ments after clicking a view component, we use the view structure

to identify a certain fragment. In Android, all the view components

are organized in a hierarchy view tree. We get the view tree at

runtime and design Algorithm 1 to calculate the structure hash of

this tree, and use the hash to identify the fragments. The algorithm

is recursive with a view component r as input. If r does not have
children, the result is only the string hash of r ’s view tag (Line 2).

If r has children (Line 3), then we use the algorithm to calculate all

the hash values of its children recursively (Lines 5-7). Then, we sort

r ’s children based on their hash values to ensure the consistency

of the structure hash, because a view component’s children do not

keep the same order every time (Line 8). Next, we add the children’s

hash values together with the view tag forming a new string (Line

10), and finally return the string hash (Line 13). When inputting

the root view component of the tree to the algorithm, we could

get a structure hash of the view tree. The hash can be used as an

identifier of a fragment.

4.2.2 Fragment Transition Graph. In order to retrieve all the

fragments as well as triggering actions to each fragment, we define a

fragment transition graph to represent how fragments are switched

in an activity.

Definition 5 (Fragment Transition Graph). A Fragment
Transition Graph is a directed graph with a start vertex. It is denoted
by a 3-tuple, FTG < V ,E, r >.V is the set of vertices, representing all
the fragments of an activity, identified by the structure hash. E is the
set of directed edges. Each edge e is a 3-tuple, e < S,T , I >. S and T
are source and target fragments where I represents the resource id of
the view component that invokes the transition. r is the start vertex.

The dynamic analysis is performed on an instance of a given acti-

vity. Therefore, after developers select this given activity to support

deep links to fragments, a simulator is launched and developers

are asked to transfer to an instance page of this activity. From this

page, the simulator traverses view components from the activity in

the depth-first order. For each traversed view component, we try to

click it and make sure that the UI stays in the same given activity

(if not, then we use the system method doback() to directly return

to the given activity, and traverse the next view component). Then,

we check whether the clicking has caused the view component’s en-

closing fragment to transit to a new fragment, determined based on

the fragments’ structure hash values. If a new fragment is reached,

we add the fragment transition (from the previous fragment to the

new fragment) to the edge set. The dynamic analysis is similar to

the web crawlers that need to traverse every web page, except that

http://anki.ichi2.com/CardTemplateEditor?CALLER=3&modelId=1472031370433

http://anki.ichi2.com/NoteEditor?CALLER=3#tags

{"com.ichi2.anki.CardTemplateEditor":{
"intents":[

{
"component":"com.ichi2.anki/.NoteEditor",
"extra":[{"name":"CALLER","type":"int"}]

},
{
"component":"com.ichi2.anki/.Statistics",
"extra":[{"name":"modelId","type":"long"}]

}],
"fragments":[]}
}

{"com.ichi2.anki.NoteEditor":{
"intents":[

{
"component":"com.ichi2.anki/.NoteEditor",
"extra":[{"name":"CALLER","type":"int"}]

}],
"fragments":[{"name":"tags","actions":["CardEditorTagButton"]}]}
}

(a) Deep link template for CardTemplateEditor Activity

Activity name

Intent sequence
with parameters

Fragments with
action sequence

(b) Deep link template for NoteEditor activity

Deep link for tags fragment
in NoteEditor activity

Figure 3: Example of deep link templates.
Android provides only the doback() method for returning to the

previous activity, but not to the previous fragment. So to implement

backtrace after fragment transitions, we have to restart the app and

recover to the previous fragment.

After finishing the traversal, we get the fragment transition

graph and a list of fragments. To get the action path toward a

certain fragment, we simply combine all the edges from the start

vertex to the fragment.

4.3 Releasing Deep-Link Supported Apps
After we compute the shortcuts to activities and action paths to

fragments, the last step is to create the target APK file that supports

the deep-link APIs. Note that developers may want to create deep

links to only some locations inside their apps. Therefore, Aladdin

allows developers to configure the locations to release deep-link

APIs, including the activities and fragments inside activities. Then

for each selected location, Aladdin generates the API schema repre-

sented by an abstract URI, and the API implementation represented

by a deep-link template.

For the API schema, in order to conform to the latest deep link

specification starting from Android 6 [2], we employ the format of

“http://host/target?parameter#fragment”. We use the reverse string

of the packageName (usually the domain of the corresponding web-

site) for the host field and the className of the activity for the

target field. The parameter fields are just the labels in the acti-

vity’s shortcut. For deep links to fragments, the name of the target

fragment is after a #.

A deep-link template consists of the shortcut of the correspon-

ding activity and the action path of the corresponding fragment.

Figure 3 shows two deep link templates of the Anki app for the

CardTemplateEditor and NoteEditor activities, respectively. Two
intents with two parameters CALLER and modeId have to be issued

before reaching CardTemplateEditor. Therefore, the deep link to

CardTemplateEditor should explicitly specify the values of the

two parameters. NoteEditor has a fragment naming “tags”. The
action to the fragment is clicking the view component whose re-

source id is CardEditorTagButton. Therefore, to reach the tags

fragment, not only should the value of intents be assigned (CALLER =
3), but the fragment should be specified as well (#taдs).

We leverage a proxy architecture to realize minimal refactorings

to the original app. Figure 4 depicts the structure of the created

App Code

Execution
Engine

Default

Schema1

Scheman

Proxy A
ctivity

…
…

Default
Execution

Deep Link
Execution

TransitionD
eep Link

Tem
plates

Deep-Link Proxy

Figure 4: Structure of the app with deep link enabled.

APK. A Proxy Activity is used to handle all the incoming requests.

For each deep-link API, we generate an intent filter according to

the API’s schema and attach the intent filter to the Proxy Activity
in the AndroidManifest.xml file. When an intent is passed to the

Proxy Activity, if the intent matches one of the schemas of deep-link

APIs, the Proxy Activity informs the Execution Engine to execute

the deep link. If the incoming intent cannot match to any of the

schemas, it is then forwarded directly to the original App Code for
default execution.

When a deep link is requested via the API, the corresponding

deep-link template is instantiated with concrete values to create

an execution script. Then the Execution Engine communicates with

the original App Code and instructs the app to transit through

activities and perform actions on view components according to

the script. For example, in Figure 3(b), when the deep link http://

anki.ichi2.com/NoteEditor?CALLER=3#tags is requested, it implies

that the user wants to reach the tags fragment of NoteEditor in
the Anki app. So the Execution Engine first issues the intent with
the parameter CALLER as 3, and then performs a click on the view

component whose resource id is CardEditorTagButton, reaching
the target location.

5 IMPLEMENTATION
To construct the Navigation Graph, we first use the IC3 tool [38]
to extract all the activities and intents from the APK file of an

Android app. Then we apply the PRIMO tool [37] to compute the

links among activities. For each link computed by PRIMO, we add
the corresponding activity as a node to the Navigation Graph and

connect the two nodes with an edge. The labels on the edge are

retrieved from the output of IC3. In particular, some edges have

only a sink activity, indicating that this activity can be directly

opened from outside of the app. For these edges, we add an edge

from the main activity node, to make all the nodes reachable from

the main activity.

We use the instrumentation test framework provided by the

Android SDK to implement the dynamic analysis. The framework

can load both a test package and the App-Under-Test (AUT) into

the same process. Therefore, we are able to inspect and change

the runtime of an app, such as retrieving view components of an

activity and triggering user actions.

To generate the APK file with deep link enabled, the Execution
Engine is actually implemented as a test case of the instrumentation

test to execute the deep-link templates with parameter values. The

deep-link proxy is implemented as a normal Android activity and

the corresponding schemas are regularly configured as intent filters

in the AndroidManifest.xml file.When the proxy activity receives

a deep-link request, it launches the instrumentation test to run the

Execution Engine. The Execution Engine uses the instrumentation

http://anki.ichi2.com/NoteEditor?CALLER=3#tags
http://anki.ichi2.com/NoteEditor?CALLER=3#tags

0.0 0.2 0.4 0.6 0.8 1.0

Coverage Rate

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

original

Aladdin

Figure 5: Distribution of the percen-
tage of deep-linked activities before
and after applying Aladdin.

0.0 0.2 0.4 0.6 0.8 1.0

Activity Coverage

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Figure 6: Distribution of the percen-
tage of reached activities with Alad-
din released deep-link APIs.

0.6 0.7 0.8 0.9 1.0
Precision

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Re
ca

ll

Figure 7: The recall and precision of
identifying fragments by Aladdin’s
dynamic analysis.

object provided by the framework to send intents in the app process,

reaching the target activity. Then it sends action events to finally

reach the target fragment.

6 EVALUATIONS
In this section, we evaluate Aladdin from four aspects, i.e., the

coverage improvement of deep links to activities, the effectiveness

of deep links to fragments, the performance of executing deep links,

and the overhead incurred by Aladdin.

6.1 Deep Link Coverage of Activities
We first investigate to what extent Aladdin can help support deep

links to activities. We collect a representative dataset by choosing

top 50 apps from each of the 14 categories (without Game) on

Wandoujia. Then we perform Aladdin’s static analysis to all the

apps in our dataset, and calculate the percentage of activities that

can be released with deep-link APIs after applying Aladdin. Due

to the bytecode obfuscation and proguard, some of the apps fail

to be analyzed by Aladdin. Such failures are due to the limitation

of the static analysis tool that we use to implement Aladdin, not

the Aladdin approach itself. We finally get results from 579 apps.

Figure 5 shows the distribution of the percentage of “deep-linked”

activities before and after applying Aladdin. The current coverage

of deep links in these apps is very low (the median coverage is 0).

In contrast, Aladdin can release deep-link APIs for more than 90%

of these apps (the median coverage reaches 60%). In particular, 55

apps (about 9%) have more than 90% of deep linked activities after

Aladdin is applied. Such an observation indicates that Aladdin can

effectively support deep links to most activities, thus improving

the coverage of deep links. Note that the coverage does not reach

100% after applying Aladdin because Aladdin handles the intents

whose parameters are all basic types, but intents to some activities

actually have complex objects of app-specific classes.

To evaluate whether the released deep-link APIs can be executed

correctly, we further run every single app in the dataset to collect a

set of concrete deep links. For each app, we use the popular Mon-

key tool [12] to randomly generate 1,000 events every 60 ms, and

retrieve the intents from ADB when activities are switched. We

record all the reached activities as well as the corresponding intents.

Then we filter out those activities where deep-link APIs have been

released by Aladdin, extract parameter values from the intents, and

assign the values to the corresponding API to instantiate concrete

deep links. Then we request each concrete deep link to check whet-

her the same activity instance as the recorded one can be reached.

If the requested activity can be accessed, we can confirm that the

derived deep link is correct. The results show that all the deep links

can be correctly executed to the target activity instance, indicating
that the correctness of the released deep-link APIs is well assured.

Additionally, the collected activities could represent the com-

monly used features in an app. For each app, we calculate the

percentage of activities with Aladdin-released deep-link APIs over

all the reached activities. Figure 6 shows the distribution of the per-

centage among all the apps. It is observed that for more than 90%

of the apps, all the reached activities are released with deep-link

APIs by Aladdin. Such a result indicates that Aladdin can support

deep links to most of the commonly used features in an app.

6.2 Deep Link Effectiveness of Fragments
We then evaluate how Aladdin’s dynamic analysis can effectively

support deep links to fragments. From the 579 apps described in

Section 6.1, we select 30 apps whose main activity has at least 5

fragments. Then we apply Aladdin’s dynamic analysis to identify

fragments for the main activity in each app. The number of frag-

ments found by the dynamic analysis is denoted as N . We also

manually explore the main activity in each app to examine the

number of desired fragments (denoted as D) as the ground truth for

comparison. Next, we manually compare the screenshots between

the fragments identified by Aladdin and the manually examined

fragments, and the number of the same fragments in both sets is

denoted as C . Therefore, we can use the recall (which is C/D) and
precision (which is C/N) to measure the effectiveness of Aladdin’s

dynamic analysis.

Figure 7 shows the scatter diagram of the recall and precision

for the 30 apps. Each cross in the diagram represents the apps with

the same recall and precision value. We can see that for 9 out of the

30 apps, both the precision and recall can reach 100% (represented

by the biggest cross in the top right corner), indicating that our

dynamic analysis has just found all the fragments as desired and

no redundant fragments are identified.

For 10 apps, the precision reaches 100% but the recall does not,

indicating that all the identified fragments are desired but some

desired fragments are omitted. The reason is that the view compo-

nent triggering the fragment transition does not have an explicit

resource ID and thus cannot be found by the dynamic analysis. To

address this issue, we can use the relative location in the view tree

that we build at runtime to identify every single view component

rather than relying on only the resource ID.

For 3 apps, the recall reaches 100% but the precision does not,

indicating that Aladdin has identified all the desired fragments but

there exist some redundant results, i.e., more than two identified

fragments are actually mapped to one desired fragment. The reason

is the limitation of the structure hash calculated by Algorithm 1. At

Aladdin uLink UI
0.5

1.0

2.0

4.0

8.0

16.0

32.0

ti
m

e
 (

s)

(a) Execution time

Aladdin uLink UI
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

C
P
U

 U
sa

g
e

(b) CPU usage

Aladdin uLink UI
0.05

0.10

0.15

0.20

0.25

0.30

M
e
m

o
ry

 U
sa

g
e

(c) Memory usage

Figure 8: Performance of executing deep links.

Size of Deep Link Templates (B)
0 100 200 300 400

CD
F

0

0.2

0.4

0.6

0.8

1

Figure 9: Distribution of the size
of the deep-link templates.

runtime, some pop-up messages and other trivial changes to the

original view tree can result in a totally different hash value. As a

result, the dynamic analysis process treats the same fragment as a

new one. Therefore, taking into account only a single hash value

can cause some mistakes. One possible solution is to record the

whole view tree, and design an efficient algorithm to calculate the

differences of the view tree after the action is performed.

For other apps, neither recall nor precision can reach 100%. Ho-

wever, the lowest recall and precision are about 70% and 55%, re-

spectively. Such results indicate that more than 70% of the desired

fragments can be identified and no more than half of the identified

results are redundant. Therefore, Aladdin’s dynamic analysis is

effective for developers to use in practice.

6.3 Performance of Executing Deep Links
We compare the performance of executing deep links via APIs rele-

ased by Aladdin with two alternative solutions: one is uLink [18],

which enables user-defined deep links to Android apps; the other

is UI operation, which represents the case where users manually

interact with the app to reach the target location. Different from

Aladdin, uLink employs a program-by-demonstration philosophy

to retrieve deep links when users are using the app. It uses a record-

and-replay technique for deep-link execution where all the recorded

intents are replayed one by one. For the case of UI operation, we

use it as a baseline to investigate the benefits brought by deep links.

Based on the concrete deep links collected in Section 6.1, we

select 20 activities from 20 apps. Each activity can be launched via

shortcuts, and the length of the original intent path is more than

three. We use a Nexus 5 smartphone (2.3GHz CPU, 2GB RAM)

equipped with Android 5.1 to deploy the three alternative solutions.

For Aladdin, we just deploy the output APK of each app and execute

the corresponding deep link to each selected activity. For uLink,

since it is not open source, we just remove the computation of

the shortest path from the implementation of Aladdin to simulate

the behaviors of uLink. For UI operation, we re-send the captured

UI events. To simulate the real user behaviors, after sending one

event, we ensure that the screen is fully rendered before we send

the successive event. We record the time spent on executing the

deep link for each solution. During the execution, we also record

the CPU and memory usage information via ADB. We repeat each

case three times.

Figure 8 shows the results. Both Aladdin and uLink save signifi-

cant amount of time to reach the target activity compared with UI

operation, while the CPU and memory usages are not significantly

different. Such result indicates that deep links can efficiently reach

deeper locations inside apps, and our implementation of Aladdin

does not cause noticeable overhead. The execution time of Alad-

din is two times faster than uLink, demonstrating the benefits of

shortcuts. In addition, Aladdin’s CPU usage is smaller than uLink’s

while the memory usage is almost the same. The reason may be that

Aladdin passes a smaller number of activities before reaching the

target than uLink does, requiring more CPU resources to execute

the transition activity’s logic. In summary, Aladdin performs better

than uLink in terms of execution time and resource consumption.

6.4 Overhead of Aladdin
Aladdin packages the app code of the original app together with the

code of deep-link proxy and deep-link templates when releasing the

APK file. The core logic of the deep-link proxy is 2,319 lines of Java

code and its size is only 489KB including some third-party libraries.

In other words, the proxy’s size is rather small compared to that of

the original app. We compute the size of the deep-link templates

for all the 579 apps in our dataset from Section 6.1. Figure 9 shows

the distribution of the template size among all the templates. The

median size is 123B, the smallest is 93B, and the largest is 423B.

For the 25,000 most popular apps in Section 3.2, we find that the

median number of activities in an app is 160, so the total code size

of templates on average is no more than 70KB. Overall, Aladdin

introduces very tiny volume compared to the original app.

7 DISCUSSION
As the first effort of deep-link automation up to date, we realize that

there are some issues worth discussing to improve the real-world

applicability of Aladdin.

• Access to arbitrary locations. Due to the complexity of mobile

apps, some special cases have not been handled by Aladdin so that

Aladdin’s coverage does not reach 100%. First, Aladdin could not

release deep-link APIs to activities that are launched by intents with

complex object messages. Second, some activities can be launched

only in specific states of the app, e.g., after logging in. So far, Aladdin

has not considered the app state. But most apps have implemented

complementary logics when the state is not expected. For example,

when a user enters an activity that requires a user account but

she does not log in, the app may ask the user to log in first and

afterwards return back to the previous activity. Therefore, this

limitation could be alleviated. Third, there may be pop-up views

that have to be closed before performing actions on the activity.

Currently, Aladdin does not consider such a condition so that the

fragment may not be correctly reached. In future work, we plan to

enhance Aladdin to address complex conditions of app executions.

• Instantiation of deep links. Aladdin releases deep-link APIs

that provide the infrastructural support of wider usage scenarios

of deep links. An orthogonal issue is how to retrieve the values of

parameters to execute a concrete deep link. Indeed, such an issue

is dependent on the exact context where deep links are used. For

example, search engines such as Google and Bing can crawl every

single page of the app, and thus can get all the possible values for

the crawled page.

• Security and privacy. Indeed, importing deep links to apps may

lead to security and privacy issues. Currently, Aladdin relies on the

developers to decide which activities to support deep links or not.

For simplicity, we assume that all the instances are permitted to

be deep linked. However, there might be some potential risks to

be exploited by attackers via deep links [33]. Addressing security

threats of deep links is out of the scope of this paper, left for future

work, e.g., via the WHYPER technique [40].

• Support of out-of-date contents. Similar to a web hyperlink,

it is argued that a deep link can be out of date and unavailable if

the app-content providers remove the content that the deep link

refers to [18]. As mentioned earlier, Aladdin generates deep-link

APIs for the locations that the developers desire to be “linked”,

the instantiation of deep links is made at runtime. Hence, Aladdin-

generated deep links inherently are not affected with respect to the

updated or removed content. When the developers decide to add,

update, or remove the support of deep links for a location inside

their latest released app version, they just need to apply Aladdin to

the new version and configure the desirable deep links.

• Generalizability. Aladdin facilitates the developers who are

willing to release deep links. Although the techniques in Aladdin are

for Android apps implemented in Java, the idea and basic principle

itself can be extended and applied to other platforms such as iOS,

e.g., by replacing the underlying static/dynamic analysis techniques.

8 RELATEDWORK
In this section, we summarize the related work.

•Deep Link. Deep link [9] is an emerging concept for mobile apps.

Recently, some major companies, especially search engine ones,

havemademany efforts on deep links and proposed their criteria for

deep links. Google App Indexing [7] allows people to click from lis-

tings in Google’s search results into apps on their Android and iOS

devices. Bing App Linking [4] associates apps with Bing’s search

results on Windows devices. Facebook App Links [6] is an open

cross platform solution for deep linking to content in mobile apps.

However, these state-of-the-art solutions all require the need-to-be-

deep-linked apps to have corresponding webpages, narrowing their

application scope. The research community is at the early stage of

studying deep links and very few efforts have been proposed. Azim

et al. [18] designed and implemented uLink, a lightweight approach

to generating user-defined deep links. uLink is implemented as an

Android library with which developers can refactor their apps. At

runtime, uLink captures intents to pages and actions on each page,

and then generates a deep link dynamically, just as bookmarking.

Compared to uLink, Aladdin releases deep-link APIs that are the

underlying support for deep links, and requires zero coding efforts

and no obtrusion to apps’ original code. Besides, Aladdin computes

the shortest path to each activity in order to open a page more

quickly than uLink, as shown in Section 6.3.

Other possible solutions to implement deep links are to leverage

the record-and-replay techniques on mobile devices [26, 29]. Ho-

wever, these tools are too heavy-weight [25] and require either

a rooted phone or changes to the mobile OS. Aladdin provides a

developer tool to refactor the apps, achieving both non-obtrusion

and lightweight execution.

• Analysis of Inter-Component Communication. Executing a
deep link is highly related to Inter-Component Communication

(ICC) of apps. Paulo et al. [19] presented static analysis for two ty-

pes of implicit control flow that frequently appear in Android apps:

Java reflection and Android intents. Bastani et al. [20] proposed a

process for producing apps certified to be free of malicious explicit

information flows. Li et al. [32] proposed IccTA to improve the

precision of the ICC analysis by propagating context information

between components. Damien et al. [38, 39] developed a tool to

analyze the intents as well as entry and exist points among An-

droid apps. Their more recent work [37] showed how to overlay

a probabilistic model, trained using domain knowledge, on top of

static analysis results to triage static analysis results. Our recent

work [42] analyzed the collusion behaviors among Android apps.

• Automated App Testing. Aladdin essentially draws lessons

from existing app testing efforts [14, 15, 22, 23, 30, 43–46], and com-

bines the test generation methodology for dynamic analysis. The

Google Android development kit provides two testing tools, Mon-

key [12] and MonkeyRunner [13]. Hu and Neamtiu [28] developed

a bug finding and tracing tool based on Monkey. Shauvik et al. [24]

presented a comparative study of existing major test generation

techniques and corresponding tools for Android. Ravi et al. [21]

presented an app automation tool called Brahmastra to the problem

of third-party component integration testing at scale. Machiry et

al. [36] presented the Dynodroid tool for generating relevant inputs

to Android apps. Azim et al. [17] presented A3E, an approach and

tool for allowing substantial Android apps to be explored systema-

tically while running on actual phones. Hao et al. [27] designed

PUMA, a programmable UI automation framework for conducting

dynamic analyses of mobile apps at scale. Different from these pre-

vious tools or frameworks, the goal of Aladdin’s dynamic analysis

is to identify fragments or sub-screens of activities that are internal

states of apps. So we design UI-tree-based fragment identification

and fragment transition graph to address such issue.

9 CONCLUSION
In this paper, we have presented an empirical study of deep links

on 25,000 Android apps and proposed the Aladdin approach to help

developers automatically release deep-link APIs. The evaluations

on 579 apps have demonstrated that the coverage of deep links can

be increased by 60% on average while incurring minimal developer

efforts. Some ongoing efforts are making Aladdin more practical.

First, we are enhancing the static analysis of activities to resolve the

objects of app-specific classes encapsulated in the intents to further

improve the coverage. Second, we are optimizing the algorithm

of dynamic analysis to improve the precision and recall of the

fragment coverage. Finally, we are applying Aladdin to more apps

to get feedback from app developers for further evaluation.

ACKNOWLEDGMENT
This work was supported by the National Key Research and Deve-

lopment Program under the grant numbers 2016YFB1000105 and

2017YFB1003000, the National Natural Science Foundation of China

under grant numbers 61725201, 61528201, 61529201, and in part by

National Science Foundation under grants no. CCF-1409423, CNS-

1513939, CNS-1564274. Xuanzhe Liu is the corresponding author of

this paper.

REFERENCES
[1] Android guide. http://developer.android.com/guide/components/index.html.

[2] App links in Android 6. https://developer.android.com/training/app-links/index.

html.

[3] Baidu app link. http://applink.baidu.com.

[4] Bing app linking. https://msdn.microsoft.com/en-us/library/dn614167.

[5] Deeplinkdispatch. https://github.com/airbnb/DeepLinkDispatch.

[6] Facebook app links. https://developers.facebook.com/docs/applinks.

[7] Google app indexing. https://developers.google.com/app-indexing/.

[8] IFTTT. https://ifttt.com/.

[9] Mobile deep linking. https://en.wikipedia.org/wiki/Mobile_deep_linking.

[10] Mobile deep linking. http://mobiledeeplinking.org/.

[11] Mobile Internet use passes desktop. https://techcrunch.com/2016/11/01/

mobile-internet-use-passes-desktop-for-the-first-time-study-finds.

[12] Monkey. http://developer.android.com/tools/help/monkey.html.

[13] MonkeyRunner. http://developer.android.com/tools/help/MonkeyRunner.html.

[14] Ranorex. http://www.ranorex.com/.

[15] Robotium. https://github.com/RobotiumTech/robotium.

[16] Universal links in iOS 9. https://developer.apple.com/library/ios/documentation/

General/Conceptual/AppSearch/UniversalLinks.html.

[17] T. Azim and I. Neamtiu. Targeted and depth-first exploration for systematic

testing of Android apps. In Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages and Applications,
OOPSLA 2013, pages 641–660, 2013.

[18] T. Azim, O. Riva, and S. Nath. uLink: Enabling user-defined deep linking to app

content. In Proceedings of the 14th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys 2016, pages 305–318, 2016.

[19] P. Barros, R. Just, S. Millstein, P. Vines, W. Dietl, M. dAmorim, and M. D. Ernst.

Static analysis of implicit control flow: Resolving Java reflection and Android in-

tents. In Proceedings of the 30th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2015, pages 669–679, 2015.

[20] O. Bastani, S. Anand, and A. Aiken. Interactively verifying absence of explicit

information flows in Android apps. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2015, pages 299–315, 2015.

[21] R. Bhoraskar, S. Han, J. Jeon, T. Azim, S. Chen, J. Jung, S. Nath, R. Wang, and

D. Wetherall. Brahmastra: Driving apps to test the security of third-party com-

ponents. In Proceedings of the 23rd USENIX Security Symposium, USENIX Security
2014, pages 1021–1036, 2014.

[22] N. Boushehrinejadmoradi, V. Ganapathy, S. Nagarakatte, and L. Iftode. Testing

cross-platform mobile app development frameworks. In Proceedings of the 30th
IEEE/ACM International Conference on Automated Software Engineering, ASE 2015,
pages 441–451, 2015.

[23] W. Choi, G. Necula, and K. Sen. Guided GUI testing of Android apps with minimal

restart and approximate learning. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages and
Applications, OOPSLA 2013, pages 623–640, 2013.

[24] S. R. Choudhary, A. Gorla, and A. Orso. Automated test input generation for

Android: Are we there yet? In Proceedings of the 30th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2015, pages 429–440, 2015.

[25] J. Flinn and Z. M. Mao. Can deterministic replay be an enabling tool for mobile

computing? In Proceedings of the 12th Workshop on Mobile Computing Systems
and Applications, HotMobile 2011, pages 84–89, 2011.

[26] L. Gomez, I. Neamtiu, T. Azim, and T. D. Millstein. RERAN: timing- and touch-

sensitive record and replay for Android. In Proceedings of the 35th International
Conference on Software Engineering, ICSE 2013, pages 72–81, 2013.

[27] S. Hao, B. Liu, S. Nath, W. G. J. Halfond, and R. Govindan. PUMA: programmable

ui-automation for large-scale dynamic analysis of mobile apps. In Proceedings
of the 12th Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys 2014, pages 204–217, 2014.

[28] C. Hu and I. Neamtiu. A GUI bug finding framework for Android applications. In

Proceedings of the 2011 ACM Symposium on Applied Computing, SAC 2011, pages
1490–1491, 2011.

[29] Y. Hu, T. Azim, and I. Neamtiu. Versatile yet lightweight record-and-replay for

Android. In Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2015, pages 349–366, 2015.

[30] W. Lam, Z. Wu, D. Li, W. Wang, H. Zheng, H. Luo, P. Yan, Y. Deng, and T. Xie.

Record and replay for Android: are we there yet in industrial cases? In Proceedings
of the 11th Joint Meeting on the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering, ESEC/FSE
2017, pages 854–859, 2017.

[31] H. Li, X. Lu, X. Liu, T. Xie, K. Bian, F. X. Lin, Q. Mei, and F. Feng. Characterizing

smartphone usage patterns from millions of Android users. In Proceedings of the
ACM SIGCOMM Conference on Internet Measurement, IMC 2015, pages 459–472,
2015.

[32] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. L. Traon, S. Arzt, S. Rasthofer, E. Bodden,

D. Octeau, and P. McDaniel. IccTA: Detecting inter-component privacy leaks

in Android apps. In Proceedings of the 37th International Conference on Software
Engineering, ICSE 2015, pages 280–291, 2015.

[33] F. Liu, C. Wang, A. Pico, D. Yao, and G. Wang. Measuring the insecurity of mobile

deep links of Android. In Proceedings of the 26th USENIX Security Symposium,
USENIX Security 2017, pages 953–969, 2017.

[34] X. Lu, X. Liu, H. Li, T. Xie, Q. Mei, G. Huang, and F. Feng. PRADA: Prioritizing

Android devices for apps by mining large-scale usage data. In Proceedings of
the 38th International Conference on Software Engineering, ICSE 2016, pages 3–13,
2016.

[35] Y. Ma, X. Liu, M. Yu, Y. Liu, Q. Mei, and F. Feng. Mash Droid: An approach to

mobile-oriented dynamic services discovery and composition by in-app search.

In Proceedings of 2015 IEEE International Conference on Web Services, ICWS 2015,
pages 725–730, 2015.

[36] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An input generation system

for Android apps. In Proceedings of the 9th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ESEC/FSE 2013, pages 224–234, 2013.

[37] D. Octeau, S. Jha, M. Dering, P. McDaniel, A. Bartel, L. Li, J. Klein, and Y. Le Traon.

Combining static analysis with probabilistic models to enable market-scale An-

droid inter-component analysis. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016, pages
469–484, 2016.

[38] D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel. Composite constant

propagation: Application to Android inter-component communication analy-

sis. In Proceedings of the 37th IEEE/ACM International Conference on Software
Engineering, ICSE 2015, pages 77–88, 2015.

[39] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and Y. L. Traon.

Effective inter-component communication mapping in Android: An essential

step towards holistic security analysis. In Proceedings of the 22th USENIX Security
Symposium, USENIX Security 2013, pages 543–558, 2013.

[40] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie. WHYPER: Towards automating

risk assessment of mobile applications. In Proceedings of the 22th USENIX Security
Symposium, USENIX Security 2013, pages 527–542, 2013.

[41] H. Wang, Z. Liu, Y. Guo, X. Chen, M. Zhang, G. Xu, and J. Hong. An explorative

study of the mobile app ecosystem from app developers’ perspective. In Procee-
dings of the 26th International Conference on World Wide Web, WWW 2017, pages
163–172, 2017.

[42] M. Xu, Y. Ma, X. Liu, F. X. Lin, and Y. Liu. AppHolmes: Detecting and characteri-

zing app collusion among third-party Android markets. In Proceedings of the 26th
International Conference on World Wide Web, WWW 2017, pages 143–152, 2017.

[43] W. Yang, M. R. Prasad, and T. Xie. A grey-box approach for automated GUI-

model generation of mobile applications. In Proceedings of the 16th International
Conference on Fundamental Approaches to Software Engineering, FASE 2013, pages
250–265, 2013.

[44] X. Zeng, D. Li, W. Zheng, F. Xia, Y. Deng, W. Lam, W. Yang, and T. Xie. Automated

test input generation for Android: Are we really there yet in an industrial case?

In Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2016, pages 987–992, 2016.

[45] B. Zhang, E. Hill, and J. Clause. Automatically generating test templates from

test names. In Proceedings of the 30th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2015, pages 506–511, 2015.

[46] H. Zheng, D. Li, B. Liang, X. Zeng, W. Zheng, Y. Deng, W. Lam, W. Yang, and

T. Xie. Automated test input generation for Android: Towards getting there in

an industrial case. In Proceedings of the 39th International Conference on Software
Engineering: Software Engineering in Practice Track, ICSE-SEIP 2017, pages 253–262,
2017.

http://developer.android.com/guide/components/index.html
https://developer.android.com/training/app-links/index.html
https://developer.android.com/training/app-links/index.html
http://applink.baidu.com
https://msdn.microsoft.com/en-us/library/dn614167
https://github.com/airbnb/DeepLinkDispatch
https://developers.facebook.com/docs/applinks
https://developers.google.com/app-indexing/
https://ifttt.com/
https://en.wikipedia.org/wiki/Mobile_deep_linking
http://mobiledeeplinking.org/
https://techcrunch.com/2016/11/01/mobile-internet-use-passes-desktop-for-the-first-time-study-finds
https://techcrunch.com/2016/11/01/mobile-internet-use-passes-desktop-for-the-first-time-study-finds
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/MonkeyRunner.html
http://www.ranorex.com/
https://github.com/RobotiumTech/robotium
https://developer.apple.com/library/ios/documentation/General/Conceptual/AppSearch/UniversalLinks.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/AppSearch/UniversalLinks.html

	Abstract
	1 Introduction
	2 Background
	2.1 A Conceptual Analogy
	2.2 Deep Links

	3 Empirical Study
	3.1 Evolution of Deep Links with Versions
	3.2 Coverage of Deep Links
	3.3 Developer Efforts

	4 Aladdin: In a Nutshell
	4.1 Analyzing Execution Paths to Activities
	4.2 Analyzing Execution Paths to Fragments
	4.3 Releasing Deep-Link Supported Apps

	5 Implementation
	6 Evaluations
	6.1 Deep Link Coverage of Activities
	6.2 Deep Link Effectiveness of Fragments
	6.3 Performance of Executing Deep Links
	6.4 Overhead of Aladdin

	7 Discussion
	8 Related Work
	9 Conclusion
	References

