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ABSTRACT 

Recently many popular websites such as Twitter and Flickr ex-
pose their data through web service APIs, enabling third-party 
organizations to develop client applications that provide function-
alities beyond what the original websites offer. These client appli-
cations should follow certain constraints in order to correctly in-
teract with the web services. One common type of such con-
straints is Dependency Constraints on Parameters. Given a web 
service operation O and its parameters Pi, Pj,…, these constraints 
describe the requirement on one parameter Pi that is dependent on 
the conditions of some other parameter(s) Pj. For example, when 
requesting the Twitter operation “GET statuses/user_timeline”, a 
user_id parameter must be provided if a screen_name parameter is 
not provided. Violations of such constraints can cause fatal errors 
or incorrect results in the client applications. However, these con-
straints are often not formally specified and thus not available for 
automatic verification of client applications. To address this issue, 
we propose a novel approach, called INDICATOR, to automatically 
infer dependency constraints on parameters for web services, via a 
hybrid analysis of heterogeneous web service artifacts, including 
the service documentation, the service SDKs, and the web ser-
vices themselves. To evaluate our approach, we applied INDICA-
TOR to infer dependency constraints for four popular web services. 
The results showed that INDICATOR effectively infers constraints 
with an average precision of 94.4% and recall of 95.5%.  

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification—
Programming by contract; D.2.5 [Software Engineering]: Test-
ing and Debugging; H.3.5 [Information Storage and Retrieval]: 
Online Information Services—Web-based services 

Keywords 
Web service; Constraints; Parameters; Testing; Service SDK; 
Documentation Analysis 

1. INTRODUCTION 
In recent years, many popular websites expose their data through 
web service APIs, enabling third-party organizations to develop 
client applications that provide functionalities beyond what the 
original websites offer. For example, by making requests to Twit-
ter web services, third-party applications allow users to share 

movie tastes with their friends, check the comments on a particu-
lar restaurant and so on.  

These third-party client applications should follow certain con-
straints in order to correctly interact with the web services. For 
example, when requesting the Twitter operation 1 “GET status-
es/user_timeline”, client applications are required to specify either 
a user_id or a screen_name parameter. Violations of such con-
straints can cause fatal errors or incorrect results in the client ap-
plications.  

These constraints are mainly expressed in natural language in the 
service documentation. A widely-adopted strategy [7] by develop-
ers to build correct client applications is to first read through the 
service documentation, trying to memorize the constraints, and 
then develop client applications accordingly. However, conform-
ance to constraints cannot be assured. In fact, a recent study [14] 
showed that developers may still make mistakes even when they 
have been rather familiar with the documentation.  

Therefore, it is desirable that client applications are formally veri-
fied against these constraints, and violations of each constraint are 
detected as bugs. However, these verification techniques [8, 9, 14] 
require formally specified constraints, which are often not readily 
available, due to the large amount of effort needed to manually 
specify them. For example, it took one of the authors more than 
10 hours to only browse the documentation of the Ebay2 web 
service operation “AddFixedPriceItem”, let alone the time needed 
to extract and formalize the constraints.  

To address the issue, in this paper, we propose a novel approach 
to automatically infer formal usage constraints for web services. 
In particular, we focus on one type of constraints that commonly 
exists in web services, and we call these constraints Dependency 
Constraints on Parameters. We refer to such constraints as de-
pendency constraints in short in the rest of this paper. Given a 
web-service operation O and its parameters Pi, Pj,…, these con-
straints describe the dependency relationships between parameters: 
the requirement on the occurrence or the valid value of one pa-
rameter Pi depends on the occurrence or the current value of some 
other parameter(s) Pj. For example, the aforementioned constraint 
“either a user_id or a screen_name must be specified” can be inter-
preted as “when user_id is not specified, screen_name must be 
specified, and vice versa”. These constraints are beyond type def-
initions (i.e., requirements on the structure and format of the re-
quest message, which are specified in WSDL files for SOAP-
                                                                 
1 Twitter Web Service: available at https://dev.twitter.com/docs/api/1. 
2 Ebay Services: an online retailing service, available at 

https://www.x.com/ developers/ebay/products/trading-api. 
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based web services), and are currently expressed in only natural 
language in service documentation. We manually investigated the 
documentation of four popular web services (Twitter, Flickr, 
Lastfm3, and Amazon Product Advertising API (APAA)4) and 
found that an average of 21.9% of their service operations have 
dependency constraints on their parameters.  

Most existing approaches infer usage constraints for web services 
by testing these web services [2, 5]. These approaches first use the 
type definitions of the service operations to generate test cases, 
then execute the test cases by submitting web service requests, 
and finally infer constraints by observing the responses. A con-
straint is produced if and only if its satisfying test cases pass and 
its violating test cases fail. However, two challenges remain un-
addressed by these existing approaches. 

First, relying on information from only the type definitions would 
cause an explosion in the number of generated test cases, while 
very few of them would lead to discovery of real constraints. For 
example, to find the constraint “either a user_id or a screen_name 
must be specified” for the Twitter operation “GET status-
es/user_timeline” with totally ten parameters, all combinations of 
every two parameters must be tested, while 44/45 (97.8%) of the 
test cases contribute to no discovery of constraints. In addition, to 
save bandwidth and CPU time on the server side, service provid-
ers typically limit the rate of clients’ requests, making testing web 
services expensive in either monetary or time cost. For example, 
the Flickr5 method “flickr.activity.userComments” can be invoked 
only once an hour by each authenticated user. Therefore, running 
a large number of generated test cases would not be feasible. 

Second, test results may be affected by multiple constraints for 
one operation, leading to false negatives and false positives. In 
particular, for a real constraint P, its satisfying test cases could fail 
due to violations of another constraint Q, which has not been in-
ferred and is unknown to the approach, thus hindering P from 
being discovered. For example, a Flickr operation “flickr.places. 
placesForContacts” has a constraint that “either woe_id or place_id 
must be provided”, and the test cases would not pass unless they 
conform to not only this constraint but also all the other con-
straints, such as “either place_type or place_type_id must be pro-
vided”. Failing to fulfill these latter constraints would prevent the 
discovery of the former one. If we modify the criterion of produc-
ing a constraint to consider only whether its violating test cases 
fail, a false-positive problem occurs. For a false constraint P, its 
violating test cases may fail, but due to only violating constraint Q, 
thus making P a false positive. Taking the same Flickr operation 
as an example: many false constraints concerning the other op-
tional parameters would be produced, such as “either threshold or 
contact must be specified”, because all the satisfying and violating 
test cases fail due to violating the aforementioned two constraints.   

To address the preceding two challenges, our approach, called 
INDICATOR (INference of Dependency ConstrAinTs On parame-
teRs), infers dependency constraints using a hybrid analysis of 
heterogeneous web service artifacts, including the service docu-
mentation, the service SDKs, and the web services themselves. 
INDICATOR consists of two stages: constraint-candidate generation 
and constraint-candidate validation. In the candidate-generation 

                                                                 
3 Lastfm: available at http://www.last.fm/api. 
4 Amazon Product Advertising API: available at https://affiliate-program. 

amazon.com/gp/advertising/api/detail/main.html.  API Version: 2011-
08-01. 

5 Flickr Service: available at http://www.flickr.com/services/api/. 

stage, INDICATOR analyzes the service documentation and service 
SDKs to generate constraint candidates. In the candidate-
validation stage, INDICATOR validates the candidates through 
testing: INDICATOR invokes the web services with requests satis-
fying/violating a constraint candidate, and observes the results to 
determine whether the candidate is a real constraint. 

Thanks to the hybrid analysis of heterogeneous artifacts, INDICA-
TOR offers two main advantages. First, the candidate-generation 
stage benefits the candidate-validation stage by not only narrow-
ing down the search space for real constraints, but also reducing 
the false positives and false negatives of candidate validation. The 
candidate-generation stage produces multiple constraint candi-
dates for each operation. With these constraint candidates, the 
candidate-validation stage generates test cases each of which is 
guaranteed to violate no more than one constraint candidate. Such 
guided test-case generation enables our approach to validate a 
constraint candidate without being influenced by any other con-
straint candidate for the same operation. Second, the candidate-
validation stage benefits the candidate-generation stage by refin-
ing the generated constraint candidates to reduce false positives. 

To evaluate our approach, we applied INDICATOR to infer depend-
ency constraints for four popular web services (Twitter, Flickr, 
Lastfm, and APAA). The results show that INDICATOR infers 
constraints with an average precision of 94.4% and recall of 
95.5%. Compared with existing approaches based on only web 
services themselves, INDICATOR improves the precision by 39.4% 
and recall by 10.3%, while saving 84.7% of the efforts. 

In summary, this paper makes the following main contributions: 

 An empirical investigation of web service documentation to 
show the non-trivial presence of dependency constraints on 
parameters in web services, along with their further classifica-
tion. We also discuss possible reasons leading to the non-
trivial presence of such constraints in web services. 

 An effective and efficient approach to inferring dependency 
constraints of using web services via a hybrid analysis of het-
erogeneous artifacts, including the service documentation, the 
service SDKs, and the web services themselves. 

The rest of this paper is organized as follows. Section 2 presents 
the results of the empirical investigation of the distribution and 
classification of dependency constraints in popular web services. 
Section 3 gives an overview of our approach. Section 4 describes 
our approach in detail. Section 5 presents the evaluation results. 
Section 6 discusses the related work and Section 7 concludes. 

2. DEPENDENCY CONSTRAINTS IN WEB 
SERVICES 
In this section, we first show the results of our empirical investi-
gation of dependency constraints in popular web services, and 
next discuss reasons leading to the non-trivial presence of such 
constraints in web services. 

2.1 Empirical Investigation 
We manually investigated the service documentation of four pop-
ular web services, and the results are listed in Table 1 (more de-
tails of the investigation can be found at http://sa.seforge.org/ 
indicator/). In particular, column “Mashups” lists the number of 
applications known to be built on each web service (according to 
the statistics from http://www.programmableweb.com); column 
“OP” lists the number of operations provided by each web service; 
column “DC” lists the percentage of operations with dependency 
constraints. From the statistics, we could observe that a non-trivial 



percentage (an average of 21.9%) of web service operations have 
dependency constraints. In addition, hundreds of client applica-
tions would benefit from the constraints inferred for a web service. 

We further divided these constraints into six categories, as shown 
in Figure 1. We use “A” and “B” to denote two different parame-
ters in one operation, and use “p” and “q” to denote parameter 
values. The first three categories restrict parameter occurrences. 
For example, the first category requires “either A or B (at least one 
of A and B) should be specified”, which is the most prevalent cat-
egory. The second category requires “when A is included, B 
should (not) be included in the same request”. The fourth and fifth 
categories restrict parameter values. For example, the fourth cate-
gory requires that “when B is specified, A must (not) be set to p in 
the same request”. Note that the categories shown in Figure 1 are 
only the most basic constraint categories, from which complex 
constraints could be composed by using conjunctive or disjunctive 
connections.  

 

2.2 Reasons of Dependency Constraints 
We found empirically that the dependency constraints are much 
more common in web services, than in local API libraries. We 
next discuss two main reasons for such phenomenon. 

First, parameter values in web services are passed in a much more 
flexible way. Normally, in local API libraries, the number and 
order of the parameters for a method are strictly stipulated. In 
contrast, in web services, parameter values are indexed by only 
their parameter names, allowing values of any number of parame-
ters being passed in any order. For example, a typical RESTful 
service request would look like “https://api.twitter.com/1/status-
es/user_timeline.json?screen_name=twitterapi&count=2”. Such a 
flexible way of passing parameters thus demands additional con-
straints to restrict whether a parameter should be present.  

Second, most web services support parameters only of primitive 
types. In object-oriented local API libraries, parameters are encap-
sulated in objects based on their internal relationships, and a prop-

er design could have enforced the constraints between parameters. 
In contrast, in order to maintain good interoperability, currently 
most web services (especially RESTful ones) support parameters 
only of primitive types; in other words, all the parameters hidden 
in objects for API libraries are flattened to primitive parameters 
for web services. As a result, to carry the same amount of infor-
mation as their counterparts in local API libraries, web-service 
operations require a much larger number of parameters. Mean-
while, the internal relationships between parameters hidden in 
objects for API libraries have turned into constraints across multi-
ple parameters for web services. For example, the Twitter opera-
tion “POST statuses/update” requires that the parameters latitude 
and longitude should be paired. The code snippet in Figure 2 
shows a likely design of encapsulating these two parameters in a 
GeoLocation object in Java local API libraries.  It can be observed 
that this constraint no longer exists in this snippet, because client 
applications are always enforced to pass both parameters when 
calling the constructor in Line 4 to create a GeoLocation object. 

  

In general, in order to achieve good interoperability, web services 
are designed to throw away characteristics that are specific to 
certain programming languages, such as information hiding via 
encapsulation in object-oriented languages. Therefore, additional 
dependency constraints are entailed in order to ensure the correct 
interaction between client applications and the web services. 

3. APPROACH OVERVIEW 
In this section, we provide an overview of our general approach 
through a series of examples. 

As Figure 3 shows, our INDICATOR approach infers dependency 
constraints for web services via a hybrid analysis of three infor-
mation sources: the service documentation, the service SDK, and 
the web services themselves. INDICATOR starts with a preparatory 
analysis, which collects necessary information from the service 
documentation for subsequent main stages, e.g., type definitions 
of service operations, descriptions of parameters. The main ap-
proach then proceeds in two stages. In the candidate-generation 
stage, INDICATOR analyzes the service documentation and service 
SDKs to generate constraint candidates. In the candidate-
validation stage, INDICATOR validates the candidates through 
testing, and outputs only the constraint candidates that have been 
validated. 

In particular, to extract constraint candidates from the service 
documentation, INDICATOR includes two strategies: the “rigid” 
and “loose” strategies, to find a potential matching between de-
scriptions in the documentation and predefined constraint tem-
plates, e.g., “either parameter A or B is required”. The “rigid” 
strategy intends to find constraint candidates described by similar 
words as the templates. While leading to relatively precise results, 
this strategy is fragile to the word choices of a constraint’s de-
scription. In other words, false negatives would be produced when 
a semantically equivalent constraint is described in words not 

1.public class GeoLocation{
2.   private double longitude; 
3.   private double latitude; 
4.   public GeoLocation(double latitude,double longitude){
5.      this.latitude = latitude; 
6.      this.longitude = longitude; 
7.   } 
8.   public double getLatitude(){return latitude;} 
9.   public double getLongitude() {return longitude;} 
10.} 
 

Figure 2. Example code snippet showing the encapsulation of 
the parameters latitude and longitude in OO API libraries.

 
Figure 1. Categories and distribution of dependency con-

straints in popular web services. 

(1)A∨B, 38.3%
(2)A→B(or A→¬B), 22.8%(3)A=p (or A≠p)→B, 8.3%

(4)B→A=p (or A≠p), 14.8%

(5)A=p (or A≠p)→ B=q(or B≠q), 8.3%
(6)Others, 7.5%

Table 1. Results of empirical investigation of dependency 
constraints in popular web services. 

Subject Description #Mashups #OP %DC

Twitter micro-blogging  748 105 38.1

Flickr photo-sharing 615 186 10.2

Lastfm online radio 225 130 23.1

APAA online retailing 416 9 55.6

Total --- --- 430 21.9



covered by the templates. To alleviate this limitation, INDICATOR 
includes the “loose” strategy, which generates a constraint candi-
date when the number of distinct parameters appearing in its de-
scribing sentence matches with the number of parameters in a 
template. Our insight here is that rather than trying very hard to 
extract the semantics out of sentences, we use only simple and 
reliable information from the sentences and then rely on testing 
(to be conducted in the subsequent stage) to figure out the con-
straint, reflecting a benefit from integrating heterogeneous infor-
mation sources.   

In addition to service documentation, INDICATOR also exploits 
information from service SDKs. For most popular web services, 
there are SDKs available in various programming languages. Such 
SDKs wrap interactions with web services, allowing client-
application developers to invoke web services as if invoking 
methods from local API libraries. INDICATOR includes a novel 
technique to infer constraint candidates from service SDKs, based 
on our insight that SDKs demonstrate legal ways of invoking web 
services. For example, the code snippet in Figure 4 shows the API 
method in the Java SDK of the Lastfm web service. Such API 
method wraps the invocation of the “artist.getInfo” operation. The 
statements in Lines 2-9 collect the parameters, and the statement 
in Lines 11-12 makes the remote call. As shown in the code snip-
pet, it is ensured that “either an mbid or an artist is specified”, 
which is actually the constraint for this operation. Our main idea 
is to identify all possible combinations of parameters included by 
the SDK to invoke each service operation, and then apply a simple 
statistical analysis to learn constraints. For the method in Figure 4, 
there are four distinct paths, making four possible combinations of 
parameters: {mbid, lang}, {artist, lang}, {mbid}, and {artist}. 
Then by analyzing the combinations, we notice that either mbid or 
artist is present in the set of included parameters, thus leading us 
to infer the constraint. 

Finally, INDICATOR validates each constraint candidate through 
testing. For each candidate, INDICATOR generates both satisfying 
and violating test cases, all of which are ensured to conform to all 
the other constraint candidates in the same operation. INDICATOR 
considers a constraint candidate to be real, if (1) all its violating 
test cases fail and at least one of its satisfying test cases passes, or 
(2) all test cases fail, and the error messages of the violating test 
cases look alike to the candidate’s description. Using these criteria, 
INDICATOR intends to find constraints that are required by correct 
interactions with the web services. INDICATOR reduces false nega-
tives by accommodating occasions when test cases conforming to 
the constraint candidate fail due to violating other constraints. 
Meanwhile, INDICATOR reduces false positives by exploiting in-
formation from the error messages of violating test cases, so that 
INDICATOR confirms that the failure was indeed caused by violat-

ing the constraint candidate under validation, but not some other 
constraints. 

 

4. APPROACH DETAIL 
We next describe the details of our INDICATOR approach. In par-
ticular, we present the preparatory analysis in Section 4.1. We 
next present the candidate generation from documentation and 
SDK in Section 4.2 and Section 4.3, respectively. We finally pre-
sent the candidate validation through testing in Section 4.4. 

4.1 Preparatory Analysis 
In preparatory analysis, INDICATOR collects various types of in-
formation needed by subsequent steps, including (1) the service 
type definitions, e.g., the available operations names, the list of 
mandatory and optional parameter names for each operation, and 
available values for parameters of enumeration types, (2) descrip-
tions for operations and parameters, which might contain usage 
constraints, and (3) other technical details required to enable au-
tomatic invocation of the service operations, e.g., the URL ad-
dress of the service, the HTTP method to make the request. Un-
like SOAP-based web services (most of whose preceding infor-
mation is available in formal WSDL files), for most currently 
popular RESTful web services, all the preceding information 
could be extracted from only the service documents in the form of 
HTML files. Fortunately, all the information is easy to locate, 
given user-defined XPath6 expressions to specify the paths of their 
corresponding nodes in the HTML files. Only very little manual 
effort is needed to write the XPath expressions, since documents 
of different operations in a web service share the same style and 
structure.  

                                                                 
6 XPath: http://www.w3.org/TR/xpath20/. 

1. public Artist getInfo(String artistOrMbid, Locale loc) {
2.    Map<String, String> params = new HashMap<String, 
3. String>(); 
4.    if(StringUtilities.isMbid(artistOrMbid)){ 
5.   params.put("mbid", artistOrMbid);}  
6.    else{ 
7.   params.put("artist", artistOrMbid);} 
8.    if(loc!=null) 
9.         params.put("lang",loc.getLanguage()); 
10.   ...... 
11.   Result result = Caller.getInstance().call( 
12. "artist.getInfo", params); 
13.   return ResponseBuilder.buildItem(result,  
14. Artist.class); 
15.} 

Figure 4. Code snippet of the API method de.umass.lastfm. Art-
ist.getInfo from the Java SDK of Lastfm web service. 

 

Figure 3. Architecture of INDICATOR. 
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4.2 Candidate Extraction from Service Doc-
umentation 
The basic idea to extract constraint candidates from service doc-
umentation is to find potential matchings between the descriptions 
in documentation and the predefined constraint templates. Table 2 
shows some typical template sentences, in which “A” and “B” 
denote two different parameter names, and “p” and “q” denote 
parameter values. In particular, the first column presents their 
correspondence with the constraint categories shown in Figure 1. 
According to our manual investigation, parameter values incorpo-
rated in such constraints always belong to enumeration types, and 
note that all parameter names and available values are already 
extracted in advance by the preparatory analysis.  

INDICATOR includes two strategies to locate the candidate-
describing sentences in documentation. The “loose” strategy 
marks a sentence as describing a constraint candidate when the 
number of distinct parameters and values appearing in the sen-
tence matches with that in a template. This strategy could identify 
candidate-describing sentences, even those using completely dif-
ferent words from the templates. However, the number of gener-
ated sentences might grow quickly with only a small portion de-
scribing real constraints, causing a potential waste of effort in 
subsequent steps. 

The “rigid” strategy  marks a sentence as describing a constraint 
candidate when the sentence uses similar words as the template 
sentences. This strategy computes a Jaccard Similarity7 between 
the bag of words used in the candidate-describing sentence and a 
template sentence. Some standard Natural Language Processing 
(NLP) procedures should be conducted in advance, such as stop-
word removing, word stemming, and synonym replacement. In 
addition, parameter names are also excluded in the similarity 
computation. Compared with the “loose” strategy, this strategy 
produces more precise results, but it is sensitive to the word 
choices of a candidate’s description: false negatives would be 
produced when a real constraint is described in words not covered 
by the templates. For example, using the first sentence in Table 2 
without using the second one would cause the approach to miss 
constraints described in the second sentence in Table 2, which use 
different words but share the same semantics. 

Our approach provides a way to flexibly choose between the two 
strategies. It first adopts the “loose” strategy to generate candi-
date-describing sentences. If the number of the generated sentenc-
es is overwhelmingly too many (e.g., beyond a user-defined 
threshold), it then adopts the “rigid” strategy to further refine the 
sentences. In this way, INDICATOR could be adaptive to any in-
coming web services, while maintaining a balance between recall 
and efficiency. 

                                                                 
,SimilarityሺA ݀ݎܽܿܿܽܬ 7 Bሻ = |஺∩஻||஺∪஻|, where in our approach, A and B repre-

sent two sets of words. 

Finally, for each candidate-describing sentence, INDICATOR gen-
erates the constraint candidate by filling the matched template 
with the relevant parameter names and values. For templates in 
which the order of the parameters matters (e.g., the last three tem-
plates in Table 2), if the templates contain parameter values, IN-
DICATOR then determines the order of parameters by first identify-
ing the parameter to which the value belongs; otherwise, it simply 
fills the templates with all possible parameter sequences. 

Thanks to integrating information from heterogeneous artifacts, 
our approach could use only simple information from the docu-
mentation, rather than adopting sophisticated NLP techniques: all 
the constraint candidates are to be (in)validated by means of test-
ing web services in the subsequent stage. 

4.3 Candidate Inference from SDK 
INDICATOR infers constraint candidates from SDKs based on the 
observation that the code of the SDK demonstrates legal ways of 
invoking web services. The main idea of this technique is to iden-
tify all combinations of parameters and their values (only values 
of enumeration types are considered) included by the SDK to 
invoke each service operation, and then apply a simple statistical 
analysis to learn the constraints. The technique takes as input the 
code of the service SDK and the service type definitions (includ-
ing the operation names and the list of parameter names and val-
ues for each operation, which are extracted in advance by the 
preparatory analysis presented in Section 4.1), and produces as 
output the inferred constraint candidates.  

This technique proceeds in four steps. (1) As a preparatory step, 
INDICATOR applies a constant propagation [1] to the code of the 
SDK to replace each String variable with the actual String literal, 
so that INDICATOR could identify parameter names and values 
without tracking into the content of their holding variables. In 
addition, INDICATOR performs an inter-procedural analysis to 
build the call graph for the whole program. (2) For each operation, 
INDICATOR searches in the SDK for all the public methods that 
wrap its invocation, by searching for methods that directly or 
indirectly access its operation name. For example, for the Lastfm 
operation “artist.getInfo”, INDICATOR first locates the method 
“getInfo(String, Locale)”, which accesses the operation name in 
Line 12 as shown in Figure 4, and then searches for all callers of 
this method based on the call graph. (3) For each SDK method 
found by Step 2, INDICATOR applies a forward Data Flow Analy-
sis Algorithm [1] to compute all the combinations of parameter 
names and values included in the method. The formal algorithm 
of this step is shown in Figure 5, which is explained later. (4) 
Finally, INDICATOR gathers all the available sets of parameter 
names and values for each operation, and applies a statistical 
analysis to learn the constraints.   

We next use the SDK method “artist.getInfo” as an example to 
illustrate the algorithm shown in Figure 5. For simplicity, the 
shown algorithm deals with only parameter names, but the same 
algorithm could be easily adapted to compute all the encountered 
parameter-value combinations in each method. Intuitively, this 
algorithm computes the sets of already encountered parameters by 
propagating such information from the method entry point along 
each path of the Control Flow Graph (CFG) to the method exit 
point. There are three key variables in the propagation process. 
For each node n (a block of consecutive statements) of the CFG, 
IN[n] and OUT[n] denote the set of data at the program point be-
fore and after the execution of statements in this node, respective-
ly. In particular, each element of IN[n] and OUT[n] is a set of pa-
rameter names already encountered along some path leading from 
the entry point to their corresponding program point. The execu-

Table 2. Example templates of dependency constraints. 

Category ID Template Sentences 

(1) Either A or B must be specified. 

(1) One of A or B is required. 

(2) If providing A, B is also required. 

(3) A is required, when B is set to p. 

(5) When A is set to p, B cannot be set to q.



tion of the statements in the node changes IN[n] to OUT[n] by 
including parameter names, which are all recorded in GEN[n]. 
Figure 6 depicts the CFG for the method “artist.getInfo”, tagged 
with the computed information at each program point. 

As Figure 5 shows, INDICATOR starts the algorithm by building a 
CFG for the given method (Line 1 in Figure 5). In the process, all 
paths leading to exception-throwing statements are pruned; these 
paths demonstrate illegal ways of invoking the method or the 
wrapped operation. After properly initializing the variables (Lines 
2-5), INDICATOR iteratively computes the concerned data for each 
program point until all data converge (Lines 7-22). Once the data 
OUT for a node n has been updated, all the IN (and hence OUT) 
data for all n’s successor nodes must also be recomputed (Lines 
20-22). INDICATOR records all the nodes requiring re-computation 
in the variable Changed. In each iteration, INDICATOR randomly 
selects a node that requires re-computation and computes its IN 
and OUT data (Lines 11-22). INDICATOR computes the IN data of 
each node by doing a union of the OUT data of all its predecessors 
(Lines 11-13), so as to gather all possible combinations of param-
eters encountered so far along each path.  For example, for Node 6 
in Figure 6, by doing a union of OUT[4] and OUT[5], the IN[6] is 
computed as {{mbid}, {artist}, {mbid, lang}, {artist, lang}}, 
while each element corresponds to the paths (1-2-4-6), (1-3-4-6), 
(1-2-4-5-6), and (1-3-4-5-6), respectively. INDICATOR next com-
putes the OUT data of each node n by adding the set of parameter 
names visited by statements in n (Line 15) to each element of the 
IN data (Lines 16-18). Note that the size of OUT[n] is equal to that 
of IN[n], which represents the number of feasible paths leading 
from the entry to the corresponding point. For example, for Node 
5, by adding the parameter name “lang” to each element of IN[5], 

we arrive at OUT[5], which is {{mbid, lang}, {artist, lang}}, each 
element corresponding to the paths (1-2-4-5) and (1-3-4-5), re-
spectively. Finally, INDICATOR returns the OUT data of the exit 
point as the final sets of all combinations of parameter names 
included by the method (Line 24). 

Due to space limit, we omit from Figure 5 the details of dealing 
with method-invocation statements. In fact, for each such state-
ment, the technique would apply an inter-procedural analysis to 
track the sets of parameters encountered by statements inside the 
invoked method, and then add all the tracked data into that of the 
caller method.  

 
Finally, for each operation OP, the technique gathers the computed 
sets of parameter names and values from all its public wrapping 
methods in the SDK, and applies a simple statistical analysis to 
derive the constraints. For example, for the operation “art-
ist.getInfo”, we found two other public wrapping methods in the 
SDK, contributing the additional sets of encountered parameter 
names as follows:  {{mbid, username}, {artist, username}, {mbid, 
lang, username}, {artist, lang, username}}. From the total of the  
eight sets of parameter names, we could learn that each set in-
cludes either “mbid” or “artist”, thus leading us to infer the con-
straint: “either mbid or artist is required”. 

4.4 Constraint-Candidate Validation through 
Testing  
The candidate-validation stage determines whether a constraint 
candidate is real or not via testing.  

We consider a constraint as real, if it is required to ensure correct 
interactions with web services. While we cannot prove a con-
straint to be real, we could observe whether a constraint candidate 
causes the same consequences on the execution of test cases as a 
real constraint does. A real constraint typically demonstrates cer-
tain observable characteristics: (a) all test cases that violate the 
constraint would fail (determining test-case failing or passing is 

Figure 6. CFG for method “artist.getInfo”in Figure 4 along 
with the OUT[n] and IN[n] data for each node n. 

Algorithm computeParamCombinations 
Input m the public SDK method wrapping the invocation of OP; 
          NOP the list of parameter names for OP; 
Output NS {N | N is a set of parameter names included on each 
path} 
Begin 
1.     Build a control-flow-graph CFG for m; 
2.     foreach node n in CFG do 
3.         OUT[n] = Ø; 
4.     OUT[Entry] = IN[Entry] = Ø; 
5.     Changed = {All nodes in CFG} – Entry; 
6. 
7.     while Changed ≠ Ø do 
8.           choose a node n from Changed; 
9.          Changed = Changed \ {n}; 
10. 
11.        IN[n] =Ø; 
12.        foreach predecessor node p of n do 
13.             IN[n] = IN[n] ∪ OUT[p]; 
14.         
15.        GEN[n] = {param | param ∈ NOP ∧ param visited in n} 
16.        OUT[n] = Ø; 
17.        foreach element eleIn in IN[n] do 
18.             OUT[n] = OUT[n] ∪ {GEN[n] ∩ eleIn}; 
19.              
20.        if (OUT[n] changed) then 
21.              foreach successor node s of n do 
22.         Changed = Changed ∪ {s}; 
23. 
24.        return OUT[Exit];      
End 
Figure 5. The algorithm in Step 3 for extracting all the combi-

nations of parameter names for an SDK method. 



elaborated in the end of this section); meanwhile, (b) all test cases 
that conform to the constraint as well as all the other constraints 
would pass. Thus the task of candidate validation becomes to first 
generate test cases according to the requirements in (a) and (b), 
and to then determine the candidate’s likelihood of being real 
based on the execution outcomes of the test cases. Unfortunately, 
requirements in (b) may not be fulfilled due to the lack of com-
plete constraints (their presence would obviate the need to infer 
them in the first place). As a result, false positives/negatives 
would be produced when test cases violate constraints other than 
the one under validation, as discussed earlier in Section 1. 

Our approach addresses the preceding issue in two ways, attempt-
ing to validate a constraint candidate appropriately without the 
knowledge of complete constraints.  

First, INDICATOR improves the quality of generated test cases to 
reduce the possibility of violating other constraints. In the context 
of web services, the quality of test cases depends on mostly the 
quality of parameter values. INDICATOR collects parameter values 
from four sources. (1) INDICATOR extracts parameter values of 
enumeration types from the service documentation, as was done 
by the preparatory analysis. (2) INDICATOR caches the responses 
of executed test cases, in order to provide values for parameters 
whose values are returned by other operations. For example, in 
APAA, the only valid value of parameter CartID in operation Car-
tAdd is returned by operation CartCreate. INDICATOR identifies 
such producer-consumer relationships through name and type 
matching between input and output parameters of different opera-
tions. Then INDICATOR prioritizes the test cases of operations, so 
that a parameter is always produced before it is consumed. In this 
way, errors such as “the cart specified does not belong to you” or 
“no data found” could be avoided. (3) INDICATOR extracts the 
available example values from service documentation, and these 
values typically adhere to the syntax requirements and are within 
the valid range. (4) INDICATOR solicits parameter values from 
users for the remaining parameters if it is feasible to do so.  

In addition, with the knowledge of constraint candidates provided 
by previous steps, our INDICATOR approach ensures that each 
generated test case for one candidate must also conform to all the 
other constraint candidates of the same operation in a non-
conflicting way. The conformance of constraint A conflicts with 
constraint B, when the conformance of A influences the conform-
ance or violation of B. Table 3 shows sample test cases satisfying 
or violating the constraint “either A or B must be specified”. Note 
that there is only one way (i.e., including parameter A and not B) 
to conform to this constraint without conflicting with another 
constraint “either B or C must be specified”, because including 
parameter B would coincidentally cause a conformance with the 
latter constraint. 

Second, we adjust the criteria of determining real constraints. 
INDICATOR considers a constraint candidate as real, if 

a) all the violating test cases fail and at least one of the satisfy-
ing test cases passes; or 

b) all the test cases fail, and the error messages of the violating 
test cases look alike to the description of the constraint can-
didate. 

Therefore, INDICATOR first invalidates a candidate, if some of its 
violating test cases pass. INDICATOR next attempts to validate a 
candidate by checking whether the execution outcomes of the test 
cases conform to either of the preceding criteria. Based on the 
criteria, on one hand, INDICATOR reduces false negatives by ac-
commodating occasions when a satisfying test case fails due to 
violating other constraints. On the other hand, INDICATOR reduces 
false positives by comparing the error messages of the violating 
test cases with the candidate’s description, ensuring to some ex-
tent that the failure was indeed caused by violating the candidate 
under validation, rather than some other constraints. In our eval-
uation, of the final constraints produced by INDICATOR, 86.5% 
were validated using criterion a, while 13.5% were validated us-
ing criterion b. 

In particular, INDICATOR determines whether the error messages 
and the candidate’s description are alike, by computing the high-
est similarity between each pair of the error message and the can-
didate’s description. The same similarity-computation technique 
presented in Section 4.2 is applicable here. Specifically, for con-
straint candidates that do not have descriptions (i.e., those gener-
ated from SDKs or by the loose strategy from documents), INDI-
CATOR uses the template sentences of the relevant constraint cate-
gory as the candidates’ possible descriptions.  

In our implementation, we consider a test case to pass or fail 
based on whether the response is legal or illegal. Such classifica-
tion is straightforward, since an illegal response would normally 
contain indications such as an error code or an error message. We 
did not further examine whether the data contained in a legal re-
sponse matches with a predefined golden oracle, which would be 
difficult to specify in the context of web services [10]. The re-
sponse data for an operation might be changing from time to time. 
For example, the Twitter operation “GET statuses/user_timeline” 
queries for the recent statuses of a user, for which the response 
data would change once the user posts new statuses. 

4.5 Limitations 
We next discuss limitations of our approach in terms of potential 
false negatives and false positives. 

False negatives are produced when a real constraint cannot be 
generated from either the documentation or the SDK, or its gener-
ated candidate cannot be validated by testing. In the step of candi-
date extraction from documentation, INDICATOR would miss real 
constraints described in words not covered by the given templates, 
when the rigid strategy is adopted. We have sought to alleviate 
this issue by introducing the loose strategy. However, the ap-
proach is still subject to the quality of the documentation: con-
straints might be actually missing in the documentation. INDICA-
TOR mitigates these issues by including the service SDK as a 
complement. In the step of candidate inference from SDK, real 
candidates might not be inferred due to noises in un-pruned infea-
sible paths. Finally, in the step of candidate validation, INDICA-
TOR might not be able to validate a real candidate, when all the 
test cases fail due to violating some other constraints, and the 
error messages do not convey similar information as the candi-
date’s description. INDICATOR alleviates this issue by ensuring 
that test cases of a candidate conform to all the other candidates in 
the same operation.   

Table 3. Sample test cases that conform to or violate a given 
constraint. 

Constraint: Either A or B must be specified. 

Conformance Violation

Given A, no B Given B, no A Given A and B no A no B



False positives are produced when a false candidate is mistakenly 
validated through testing. Such case happens when the conform-
ance or violation of a candidate causes unintended side effect, 
which coincidentally leads to the conformance or violation of 
some other constraints. INDICATOR mitigates this issue by making 
sure that test cases for one candidate are generated without con-
flicting with the other candidates in the same operation. 

Concrete examples of false negatives and false positives observed 
from our evaluations are further discussed in Section 5. 

5. EVALUATION 
To evaluate the effectiveness of our INDICATOR approach, we 
applied INDICATOR to infer dependency constraints for four web 
services, i.e., Twitter, Flickr, Lastfm, and APAA. Specifically, 
this section shows the evaluation results of inferring the most 
prevalent category of dependency constraints among various cate-
gories, i.e., “either parameter A or parameter B must be specified” 
(we refer to constraints of this category as (A, B)either-or in this 
section). We applied INDICATOR to infer constraint candidates 
from Java SDKs, namely twitter4j8 for Twitter, flickrj9 for Flickr, 
and lastfm API10 for Lastfm; there is no Java SDK available for 
the APAA web service. We solicited parameter values from one 
researcher in the Institute of Software at Peking University, for 
only 28 (1.7%) of the involved parameters, while values for all the 
remaining parameters were collected automatically by INDICATOR. 
We spent two weeks to prepare a golden standard for the web 
services. We first ran test cases concerning all combinations in-
volving every two parameters for each operation, and then invited 
two researchers from the institute to manually inspect the results. 
The golden standard and details of our evaluation results are 
available at http://sa.seforge.org /indicator/. 

Our evaluation addresses the following research questions:  

• RQ1: How effectively and efficiently can INDICATOR infer 
constraints?  

• RQ2: How well can information in documentation and SDKs 
complement each other?  

• RQ3: How much can the candidate-validation stage benefit 
the candidate-generation stage?  

• RQ4: How much can the candidate-generation stage benefit 
the candidate-validation stage?  

The first research question concerns the overall effectiveness and 
performance of our approach, while the next three ones concern 
the benefits of integrating information from heterogeneous arti-
facts. We answer the first three questions in Section 5.1. To an-

                                                                 
8 twitter4j-2.2.5: http://twitter4j.org/. 
9 flickrj-1.2: http://flickrj.sourceforge.net/. 
10 lastfm API: http://www.u-mass.de/lastfm. 

swer the last question, we conducted an additional evaluation and 
present the results in Section 5.2. 

5.1 Effectiveness and Efficiency of Constraint 
Inference 
We measure the effectiveness of INDICATOR using both precision 
and recall metrics. We measure the efficiency of INDICATOR using 
the number of executed test cases as the metric, rather than the 
exact time that INDICATOR spent on the web services. The reason 
is that most (over 95%) of the time was spent on running test cas-
es, and we must control the rate of making requests to avoid ex-
ceeding the rate limits imposed by the service providers, e.g., 
INDICATOR slept for 10 seconds after making each authenticated 
request to Twitter.  

The evaluation results are listed in Table 4. Column “Real” lists 
the number of real constraints used as the golden standard for 
each web service. For statistics concerning the final output of 
INDICATOR, column “Ttl” lists the total number of constraints 
produced by INDICATOR; and columns “Pre” and “Rec” list the 
precision and recall, respectively. For statistics concerning the 
constraint candidates, column “Doc” lists the number of candi-
dates generated from documentation using the loose strategy (we 
also applied the rigid strategy of extracting candidates from doc-
umentation, but the detailed results are omitted due to space limit, 
instead we will compare their results briefly in the end of this 
section). Columns “DP” and “DR” list the precision and recall of 
the candidates generated from documentation, respectively. Col-
umn “SDK” lists the number of candidates generated from SDK. 
Columns “SP” and “SR” list the precision and recall of the candi-
dates generated from SDK, respectively. Column “Flt” lists the 
percentage of candidates that are filtered (i.e., have not been vali-
dated) by testing, and are considered as false candidates by INDI-
CATOR. Column “Exced TC” lists the number of distinct test cases 
executed by INDICATOR. Column “Svd TC” lists the percentage of 
test cases that are exempted from being executed by INDICATOR, 
compared with a brute-force approach of finding the concerned 
constraints; such brute-force approach tests all combinations in-
volving every two parameters in each operation.  

From the results in Table 4, we have the following observations. 
First, INDICATOR achieved high precisions and recalls on these 
web services, with an average precision of 94.4% and recall of 
95.5%. We will later show examples of the false positives and 
negatives, and analyze the reasons for producing them. Second, 
compared with documentation, INDICATOR inferred much fewer 
constraint candidates from SDKs, but with much higher precisions. 
We further depict the percentages of the real constraints covered 
by each source in Figure 7. In general, 28.4% of the constraints 
are covered by both sources, while 54.5% come from only docu-
mentation, and 12.5% come from only SDKs, indicating that doc-
umentation and SDKs complement each other. Third, most 
(75.1%) of the constraint candidates are filtered in the candidate-
validation stage through testing, indicating that testing plays an 

Table 4. Evaluation results of INDICATOR. 

Subject #Real Final Output Constraint Candidates #Exced 
TC 

% Svd 
TC 

#Ttl %Pre %Rec #Doc %DP %DR #SDK %SP %SR %Flt 

Twitter 40 38 97.4 92.5 113 27.4 77.5 12 100.0 30.0 68.1 221 79.2

Flickr 12 11 100.0 91.7 101 9.9 83.3 1 100.0 8.33 89.2 174 87.3

Lastfm 34 37 91.9 100.0 128 23.4 88.2 23 100.0 67.7 71.1 147 56.0

APAA 2 3 66.7 100.0 9 22.2 100.0 0 100.0 0.0 66.7 12 98.2

Ttl/Avg 88 89 94.4 95.5 351 20.8 82.9 36 100.0 40.9 75.1 554 84.7



important role in improving the quality of the produced con-
straints. Finally, by integrating information from documentation 
and SDKs, INDICATOR greatly (84.7%) reduced the test cases 
needed to be executed, compared with a constraint-inference ap-
proach in a brute-force manner, which is actually the adopted 
manner by existing approaches to generate test cases based on 
only type definitions. 

We next analyze reasons for producing false positives and nega-
tives. All the five false positives for the four services are caused 
by coincidental violations and satisfactions of constraints belong-
ing to categories other than the “Either-Or” category. For example, 
a false positive for Twitter operation “GET geo/search” is (accu-
racy, lat)either-or, which was caused by violating/satisfying the con-
straint that “lat and long must be paired” (which is described ex-
plicitly in the documentation). INDICATOR first generated two 
constraint candidates for this operation, (accuracy, lat)either-or and 
(lat, long)either-or. To test the former one, INDICATOR avoided vio-
lation and conflict of the latter one by including a long parameter 
in all test cases. INDICATOR finally considered the former one as a 
real constraint according to criterion a in Section 4.4: all the vio-
lating test case failed due to providing long but no lat, and some 
of the satisfying test cases passed due to providing both lat and 
long. 

Another false positive example is (keywords, title)either-or for Ama-
zon operation “ItemSearch”, caused by violating/satisfying the 
constraint “at least one of its twenty search parameters must be 
provided”. INDICATOR first generated (keywords, title)either-or as 
the only candidate for the operation, because no sentences include 
any two of the other parameters. INDICATOR finally considered 
the candidate as real, because all the violating test case failed due 
to providing none of the search parameters, and all the satisfying 
test cases passed due to providing at least one of keywords and 
title.  

These false positives could be reduced by considering more con-
straint categories. In theory, they are still unavoidable due to the 
lack of knowledge of what constraint categories exist in one ser-
vice. Another way to alleviate the false-positive problem is to 
apply stricter criteria of validating constraints by additionally 
requiring the error messages of the violating test cases to be con-
sistent with the candidates’ descriptions. However, the stricter 
criteria would result in a high precision in the price of a low recall: 
error messages might use different words from the constraint’s 
description to describe the constraint’s violation. For example, the 
error message for violating “lat and long must be paired” is “Inva-
lid Coordinates”. 

All the four false negatives of INDICATOR are due to that the doc-
umentation does not even mention the two parameters in one sen-
tence, indicating inconsistencies between documentation and ser-
vice implementation: either the documents missed describing 

some constraints, or the service implemented some requirements 
that are not necessary.  

In addition, seven constraints stated explicitly in the documenta-
tion were invalidated by testing, indicating potential bugs in ser-
vice implementation. For example, the document for Flickr opera-
tion “flickr.places.placesForUser” states that “you must pass either 
a place_id or a woe_id”, whereas test cases without neither pa-
rameters passed. 

Note that all the preceding results were obtained adopting the 
loose strategy to extract constraint candidates from documentation. 
To adopt the rigid strategy, INDICATOR used the constraint-
describing sentences from the other three web services as the tem-
plate sentences for one web service. Compared with the preceding 
results, INDICATOR produced results with a slightly higher preci-
sion (an average of 98.7%) but a lower recall (an average of 
84.1%). In addition, the rigid strategy greatly saved the cost of the 
approach, by producing only 22.9% of the candidates produced by 
the loose strategy. The lower recall was not only due to that con-
straints’ descriptions use words not covered by the templates, but 
also due to missing constraints in the documentation. For example, 
using the loose strategy, INDICATOR discovered the real constraint 
(user_id, screen_name)either-or for the Twitter operation “GET 
lists/all”, mentioned by the sentence “The user is specified using 
the user_id, or screen_name parameters”. This sentence is clearly 
not a constraint-describing sentence, and thus resulted in a false 
negative for our rigid-strategy-based approach. Details of evalua-
tion results of the rigid strategy are omitted due to space limit. 

5.2 Benefit to Candidate Validation from 
Candidate Generation 
The candidate-generation stage from documentation and SDKs 
benefits the candidate-validation stage in two ways. First, it great-
ly narrows down the search space for real constraints. INDICATOR 
saved 84.7% of the test cases from being executed, compared with 
approaches based on only type definitions to generate test cases. 
Second, it reduces the false positives and negatives for candidate 
validation, by providing guidance for test-case generation, and 
ensuring that each test case violates no more than one constraint 
candidate.  

To evaluate the latter benefit, we modified our approach to gener-
ate test cases without considering the other constraint candidates 
in the same operation, and compared the results with those of 
INDICATOR, as shown in Figure 8. In particular, the results for 
APAA are omitted, for which the modified results remain the 
same with those of INDICATOR. It can be observed that the modi-
fied approach resulted in a non-trivial degradation in precision 
(from the average of 94.4% to 55.1%) and recall (from the aver-
age of 95.5% to 85.2%). 

Most false positives introduced by the modified approach (not by 
INDICATOR) were due to coincidental violation and satisfaction of 
another real constraint candidate in the same operation. For exam-
ple, for the Twitter operation “GET statuses/oembed”, the modi-
fied approach produced three false constraints, (maxwidth, id)either-

or, (align, id)either-or, (omit_script, id)either-or, due to violating/satisfy-
ing the real constraint candidate, (url, id)either-or. These false con-
straints were produced according to criterion a in Section 4.4, 
because all violating test cases failed, due to providing neither url 
nor id, and some of the satisfying test cases passed, due to provid-
ing id. 

All false negatives introduced by the modified approach (not by 
INDICATOR) were due to violation of the other real constraint 
candidates in the same operation, which contains multiple real 

Figure 7. Percentages of the either-or constraints covered by 
different information sources. 
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constraint candidates. For example, for the Flickr operation 
“flickr.places.placesForContacts”, a false negative (place_type, pla-
ce_type_id)either-or was produced, because all the test cases failed 
due to violating the other real candidate (place_id, woe_id)either-or, 
with only vague error messages “missing required parameters”. 

 

6. RELATED WORK 
To the best of our knowledge, there are only two existing ap-
proaches to automatically inferring formal constraints of interact-
ing with web services. Bertolino et al. [2] proposed an approach to 
synthesize temporal constraints, such as “a CartCreate operation 
should be invoked before a CartAdd operation”. Their approach 
first derives these constraints from service type definitions based 
on data type analysis, and then checks the conformance between 
the derived constraints and the service implementation by means 
of testing. Fisher et al. [5] presented an approach also based on 
testing to discover simple constraints involving single parameters, 
such as whether a parameter is required. They further applied the 
discovered constraints to detect imprecision errors in WSDL files, 
such as declaring a required parameter to be optional. Compared 
with these two approaches, INDICATOR infers a new and important 
type of constraints, Dependency Constraints on Parameters. In 
addition to testing web services, INDICATOR also integrates in-
formation from natural-language service documentation and ser-
vice SDKs to infer constraints effectively and efficiently, address-
ing the two challenges faced by these approaches, as discussed 
earlier in Section 1. 

All these constraints of interacting with web services could be 
formally described using service modeling languages such as 
WSML [3] or OWL-S [11]. To facilitate the automation of service 
discovering, composing, and invoking, researchers and developers 
proposed such languages to conceptually model web services. 
However, according to our investigation, such conceptual descrip-
tions for most popular web services are not readily available. IN-
DICATOR could automatically discover these constraints, and 
might help to build the conceptual models for web services. 

Our work is also related to program verification approaches [7-9, 
14] that use formally described constraints to detect violations of 
constraints as bugs in client applications. In particular, Rubinger 
and Bultan [14] presented their experience on applying the Mi-
crosoft Code Contract system to the Facebook API. They provid-
ed the system with formal contracts (which are called constraints 
in this paper) that were manually created according to the Face-
book API documentation. The system verified API client applica-
tions for contract violations. Their experience indicates that pro-
gram verification based on contracts enables to build more robust 
client applications with less effort spent on debugging. Similarly, 
Hallé et al. [7] conducted a case study on APAA of verifying 
client applications at runtime against formally described con-

straints. Both these pieces of work demonstrate the importance of 
our approach: INDICATOR automatically infers formal constraints, 
thus making these constraint-based verification approaches practi-
cal and usable. 

We finally present some technically related approaches concern-
ing the constraint inference for local API libraries. According to 
their inference-data sources, these approaches fall into three cate-
gories. The first category of approaches [4, 15] analyzes the 
source code of API client applications, and infers the frequent API 
usage patterns as constraints. Although there are also plenty of 
open source client applications for web services, inferring con-
straints from these client applications is unlikely to achieve desir-
able results. The main issue is the low coverage of web service 
operations: our manual investigation shows that only the several 
most popular operations are invoked in the available client appli-
cations. However, we plan to explore in future work to include 
client applications as a complementary information source. The 
second category of approaches [12, 16-18] extracts constraints 
from API library documentation. In particular, Zhong et al. [18] 
proposed an approach to infer resource-manipulation constraints 
from Javadocs. Pandita et al. [12] proposed an approach to infer 
pre-conditions and post-conditions for invocations of API meth-
ods from their method descriptions. Both the two approaches infer 
constraints by combining sophisticated NLP and machine-learning 
techniques. In contrast, thanks to integrating heterogeneous in-
formation sources, INDICATOR uses only simple and reliable in-
formation from documentation, and then relies on testing to refine 
the results. The third category of approaches [6, 13] infers con-
straints by testing. In particular, Gabel and Su [6] described a 
framework to automatically validate temporal constraints inferred 
from client applications by testing. Their framework validates a 
constraint if all its violating test cases fail. As we earlier discussed 
in Section 1, using only this criterion would lead to many false 
positives, when the test cases failed in consequence of violating 
some other constraints rather than the one under validation. INDI-
CATOR avoids these false positives by additionally requiring either 
that some of the satisfying test cases pass, or that the error mes-
sages of the violating test cases are consistent with the constraint’s 
description. 

7. CONCLUSION 
In this paper, we have proposed a novel approach called INDICA-
TOR to automatically inferring Dependency Constraints on Param-
eters for web services. INDICATOR infers dependency constraints 
effectively and efficiently via a hybrid analysis of heterogeneous 
web service artifacts, including the service documentation, the 
service SDKs, and the web services themselves. To evaluate our 
approach, we applied INDICATOR to infer dependency constraints 
for four popular web services. The results show that INDICATOR 
infers constraints with an average precision of 94.4% and recall of 
95.5%. Compared with existing approaches based on only web 
services themselves, INDICATOR improves the precision by 39.4% 
and recall by 10.3%, while saving 84.7% of the efforts. 
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Figure 8. Precisions and recalls of INDICATOR and the modi-
fied approach. 

0%20%40%60%80%100%

Precision Recall

Twitter

0%20%40%60%80%100%

Precision Recall

Flickr

0%20%40%60%80%100%

Precision Recall

Lastfm

0%

20%

40%

60%

80%

100%

Precision Recall

Average

Indicator

Modified



9. REFERENCES 
[1] Aho, A. V., Lam, M. S., Sethi, R. and Ullman, J. D. 1986. 

Compilers: Principles, Techniques, and Tools. Addison Wes-
ley. 

[2] Bertolino, A., Inverardi, P., Pelliccione, P. and Tivoli, M. 
2009. Automatic synthesis of behavior protocols for compos-
able web-services. In Proceedings of the 7th Joint Meeting of 
the European Software Engineering Conference and the 
ACM SIGSOFT Symposium on the Foundations of Software 
Engineering (Amsterdam, The Netherlands, August 24-28, 
2009). ESEC/FSE '09. ACM, New York, NY, 141-150.  

[3] Bruijn, J. D., Fensel, D., Keller, U., Kifer, M., Lausen, H., 
Krummenacher, R., Polleres, A. and Predoiu, L. 2005. Web 
Service Modeling Language (WSML). Available at 
http://www.w3.org/Submission/WSML/. 

[4] Engler, D., Chen, D. Y., Hallem, S., Chou, A. and Chelf, B. 
2001. Bugs as deviant behavior: a general approach to infer-
ring errors in systems code. In Proceedings of the 18th ACM 
symposium on Operating systems principles (Chateau Lake 
Louise, Banff, Canada, October 21-24, 2001). SOSP '01. 
ACM, New York, NY, 57-72.  

[5] Fisher, M., Elbaum, S. and Rothermel, G. 2007. Automated 
Refinement and Augmentation of Web Service Description 
Files.  Technical Report. University of Nebraska - Lincoln. 

[6] Gabel, M. and Su, Z. D. 2010. Testing mined specifications. 
In Proceedings of the 20th International Symposium on the 
Foundations of Software Engineering (Cary, North Carolina, 
November 11-16, 2012). FSE '12. ACM, New York, NY.  

[7] Hallé, S., Bultan, T. , Hughes, G., Alkhalaf, M., Villemaire, 
R. 2010. Runtime verification of web service interface con-
tracts. Computer. 43, 3 (March 2010), 59-66.   

[8] Havelund, K. and Pressburger, T. 1999. Java PathFinder, a 
translator from Java to Promela. In Proceedings of the 5th 
and 6th International SPIN Workshops on Theoretical and 
Practical Aspects of SPIN Model Checking (Trento, Italy, Ju-
ly 5, 1999, Toulouse, France, September 21 and 24, 1999). 
Springer-Verlag London, UK, 152. 

[9] Hovemeyer, D. and Pugh, W. 2004. Finding bugs is easy. 
ACM SIGPLAN Notices. 39, 12 (December 2004), 92-106.  

[10] Martin, E., Basu, S. and Xie, T. 2007. Automated testing and 
response analysis of web services.  In Proceedings of the 
IEEE International Conference on Web Services, Application 
Services and Industry Track (Salt Lake City, Utah, USA, Ju-
ly 9-13, 2007). ICWS '07. 647-654.  

[11] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, 
D., McIlraith, S., Narayanan, S., Paolucci, M., Parsia, B., 
Payne, T., Sirin, E., Srinivasan, N. and Sycara, K. 2004. 
OWL-S: Semantic Markup for Web Services. Available at 
http://www.w3.org/Submission/OWL-S/. 

[12] Pandita, R., Xiao, X. S., Zhong, H., Xie, T., Oney, S. and 
Paradkar, A. 2012. Inferring method specifications from nat-
ural language API descriptions. In Proceedings of the 34th 
International Conference on Software Engineering (Zurich, 
Switzerland, June 2-9, 2012). ICSE '12. IEEE Press Pisca-
taway, NJ, USA, 815-825.  

[13] Pradel, M. and Gross, T. R. 2012. Leveraging test generation 
and specification mining for automated bug detection with-
out false positives. In Proceedings of the 34th 2012 Interna-
tional Conference on Software Engineering (Zurich, Switzer-
land, June 2-9, 2012). ICSE '12. IEEE Press Piscataway, NJ, 
USA, 288-298. 

[14] Rubinger, B. and Bultan, T. 2010. Contracting the Facebook 
API. In Proceedings Fourth International Workshop on Test-
ing, Analysis and Verification of Web Software (Antwerp, 
Belgium, September 20-24, 2010). TAV-WEB '10. 63-74.  

[15] Weimer, W. and Necula, G. C. 2005. Mining temporal speci-
fications for error detection. In Proceedings of the 11th In-
ternational Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (Edinburgh, U.K., April 4-
8, 2005). TACAS '05. Springer-Verlag, Edinburgh, UK, 461-
476.  

[16] Wu, Q., Liang, G. T., Wang, Q. X. and Mei, H. 2011. Mining 
effective temporal specifications from heterogeneous API da-
ta. Journal of Computer Science and Technology. 26, 6 (No-
vember 2011), 1061-1075.  

[17] Wu, Q., Liang, G. T., Wang, Q. X., Xie, T. and Mei, H. 2011. 
Iterative mining of resource-releasing specifications. In Pro-
ceedings of the 26th IEEE/ACM International Conference on 
Automated Software Engineering (Lawrence, Kansas, No-
vember 6-12, 2011). ASE '11. IEEE Computer Society 
Washington, DC, USA, 233-242.  

[18] Zhong, H., Zhang, L., Xie, T. and Mei, H. 2009. Inferring 
resource specifications from natural language API documen-
tation. In Proceedings of the 24th IEEE/ACM International 
Conference on Automated Software Engineering (Auckland, 
New Zealand, November 16-20, 2009). ASE '09. IEEE Com-
puter Society Washington, DC, USA, 307-318. 

 


