
Inferring Dependency Constraints on Parameters for Web
Services

Qian Wu1, Ling Wu1, Guangtai Liang1, Qianxiang Wang1, Tao Xie2, Hong Mei1
1Institute of Software, School of Electronics Engineering and Computer Science

Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education
Peking University, Beijing, 100871, China

{wuqian08, wuling07, lianggt08, wqx, meih}@sei.pku.edu.cn
2Department of Computer Science, North Carolina State University, Raleigh, NC 27695, USA

xie@csc.ncsu.edu

ABSTRACT

Recently many popular websites such as Twitter and Flickr ex-
pose their data through web service APIs, enabling third-party
organizations to develop client applications that provide function-
alities beyond what the original websites offer. These client appli-
cations should follow certain constraints in order to correctly in-
teract with the web services. One common type of such con-
straints is Dependency Constraints on Parameters. Given a web
service operation O and its parameters Pi, Pj,…, these constraints
describe the requirement on one parameter Pi that is dependent on
the conditions of some other parameter(s) Pj. For example, when
requesting the Twitter operation “GET statuses/user_timeline”, a
user_id parameter must be provided if a screen_name parameter is
not provided. Violations of such constraints can cause fatal errors
or incorrect results in the client applications. However, these con-
straints are often not formally specified and thus not available for
automatic verification of client applications. To address this issue,
we propose a novel approach, called INDICATOR, to automatically
infer dependency constraints on parameters for web services, via a
hybrid analysis of heterogeneous web service artifacts, including
the service documentation, the service SDKs, and the web ser-
vices themselves. To evaluate our approach, we applied INDICA-
TOR to infer dependency constraints for four popular web services.
The results showed that INDICATOR effectively infers constraints
with an average precision of 94.4% and recall of 95.5%.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
Programming by contract; D.2.5 [Software Engineering]: Test-
ing and Debugging; H.3.5 [Information Storage and Retrieval]:
Online Information Services—Web-based services

Keywords
Web service; Constraints; Parameters; Testing; Service SDK;
Documentation Analysis

1. INTRODUCTION
In recent years, many popular websites expose their data through
web service APIs, enabling third-party organizations to develop
client applications that provide functionalities beyond what the
original websites offer. For example, by making requests to Twit-
ter web services, third-party applications allow users to share

movie tastes with their friends, check the comments on a particu-
lar restaurant and so on.

These third-party client applications should follow certain con-
straints in order to correctly interact with the web services. For
example, when requesting the Twitter operation 1 “GET status-
es/user_timeline”, client applications are required to specify either
a user_id or a screen_name parameter. Violations of such con-
straints can cause fatal errors or incorrect results in the client ap-
plications.

These constraints are mainly expressed in natural language in the
service documentation. A widely-adopted strategy [7] by develop-
ers to build correct client applications is to first read through the
service documentation, trying to memorize the constraints, and
then develop client applications accordingly. However, conform-
ance to constraints cannot be assured. In fact, a recent study [14]
showed that developers may still make mistakes even when they
have been rather familiar with the documentation.

Therefore, it is desirable that client applications are formally veri-
fied against these constraints, and violations of each constraint are
detected as bugs. However, these verification techniques [8, 9, 14]
require formally specified constraints, which are often not readily
available, due to the large amount of effort needed to manually
specify them. For example, it took one of the authors more than
10 hours to only browse the documentation of the Ebay2 web
service operation “AddFixedPriceItem”, let alone the time needed
to extract and formalize the constraints.

To address the issue, in this paper, we propose a novel approach
to automatically infer formal usage constraints for web services.
In particular, we focus on one type of constraints that commonly
exists in web services, and we call these constraints Dependency
Constraints on Parameters. We refer to such constraints as de-
pendency constraints in short in the rest of this paper. Given a
web-service operation O and its parameters Pi, Pj,…, these con-
straints describe the dependency relationships between parameters:
the requirement on the occurrence or the valid value of one pa-
rameter Pi depends on the occurrence or the current value of some
other parameter(s) Pj. For example, the aforementioned constraint
“either a user_id or a screen_name must be specified” can be inter-
preted as “when user_id is not specified, screen_name must be
specified, and vice versa”. These constraints are beyond type def-
initions (i.e., requirements on the structure and format of the re-
quest message, which are specified in WSDL files for SOAP-

1 Twitter Web Service: available at https://dev.twitter.com/docs/api/1.
2 Ebay Services: an online retailing service, available at

https://www.x.com/ developers/ebay/products/trading-api.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.
WWW 2013, May 13-17, 2013, Rio de Janiero, Brazil.
ACM 978-1-4503-2035-1/13/05.

based web services), and are currently expressed in only natural
language in service documentation. We manually investigated the
documentation of four popular web services (Twitter, Flickr,
Lastfm3, and Amazon Product Advertising API (APAA)4) and
found that an average of 21.9% of their service operations have
dependency constraints on their parameters.

Most existing approaches infer usage constraints for web services
by testing these web services [2, 5]. These approaches first use the
type definitions of the service operations to generate test cases,
then execute the test cases by submitting web service requests,
and finally infer constraints by observing the responses. A con-
straint is produced if and only if its satisfying test cases pass and
its violating test cases fail. However, two challenges remain un-
addressed by these existing approaches.

First, relying on information from only the type definitions would
cause an explosion in the number of generated test cases, while
very few of them would lead to discovery of real constraints. For
example, to find the constraint “either a user_id or a screen_name
must be specified” for the Twitter operation “GET status-
es/user_timeline” with totally ten parameters, all combinations of
every two parameters must be tested, while 44/45 (97.8%) of the
test cases contribute to no discovery of constraints. In addition, to
save bandwidth and CPU time on the server side, service provid-
ers typically limit the rate of clients’ requests, making testing web
services expensive in either monetary or time cost. For example,
the Flickr5 method “flickr.activity.userComments” can be invoked
only once an hour by each authenticated user. Therefore, running
a large number of generated test cases would not be feasible.

Second, test results may be affected by multiple constraints for
one operation, leading to false negatives and false positives. In
particular, for a real constraint P, its satisfying test cases could fail
due to violations of another constraint Q, which has not been in-
ferred and is unknown to the approach, thus hindering P from
being discovered. For example, a Flickr operation “flickr.places.
placesForContacts” has a constraint that “either woe_id or place_id
must be provided”, and the test cases would not pass unless they
conform to not only this constraint but also all the other con-
straints, such as “either place_type or place_type_id must be pro-
vided”. Failing to fulfill these latter constraints would prevent the
discovery of the former one. If we modify the criterion of produc-
ing a constraint to consider only whether its violating test cases
fail, a false-positive problem occurs. For a false constraint P, its
violating test cases may fail, but due to only violating constraint Q,
thus making P a false positive. Taking the same Flickr operation
as an example: many false constraints concerning the other op-
tional parameters would be produced, such as “either threshold or
contact must be specified”, because all the satisfying and violating
test cases fail due to violating the aforementioned two constraints.

To address the preceding two challenges, our approach, called
INDICATOR (INference of Dependency ConstrAinTs On parame-
teRs), infers dependency constraints using a hybrid analysis of
heterogeneous web service artifacts, including the service docu-
mentation, the service SDKs, and the web services themselves.
INDICATOR consists of two stages: constraint-candidate generation
and constraint-candidate validation. In the candidate-generation

3 Lastfm: available at http://www.last.fm/api.
4 Amazon Product Advertising API: available at https://affiliate-program.

amazon.com/gp/advertising/api/detail/main.html. API Version: 2011-
08-01.

5 Flickr Service: available at http://www.flickr.com/services/api/.

stage, INDICATOR analyzes the service documentation and service
SDKs to generate constraint candidates. In the candidate-
validation stage, INDICATOR validates the candidates through
testing: INDICATOR invokes the web services with requests satis-
fying/violating a constraint candidate, and observes the results to
determine whether the candidate is a real constraint.

Thanks to the hybrid analysis of heterogeneous artifacts, INDICA-
TOR offers two main advantages. First, the candidate-generation
stage benefits the candidate-validation stage by not only narrow-
ing down the search space for real constraints, but also reducing
the false positives and false negatives of candidate validation. The
candidate-generation stage produces multiple constraint candi-
dates for each operation. With these constraint candidates, the
candidate-validation stage generates test cases each of which is
guaranteed to violate no more than one constraint candidate. Such
guided test-case generation enables our approach to validate a
constraint candidate without being influenced by any other con-
straint candidate for the same operation. Second, the candidate-
validation stage benefits the candidate-generation stage by refin-
ing the generated constraint candidates to reduce false positives.

To evaluate our approach, we applied INDICATOR to infer depend-
ency constraints for four popular web services (Twitter, Flickr,
Lastfm, and APAA). The results show that INDICATOR infers
constraints with an average precision of 94.4% and recall of
95.5%. Compared with existing approaches based on only web
services themselves, INDICATOR improves the precision by 39.4%
and recall by 10.3%, while saving 84.7% of the efforts.

In summary, this paper makes the following main contributions:

 An empirical investigation of web service documentation to
show the non-trivial presence of dependency constraints on
parameters in web services, along with their further classifica-
tion. We also discuss possible reasons leading to the non-
trivial presence of such constraints in web services.

 An effective and efficient approach to inferring dependency
constraints of using web services via a hybrid analysis of het-
erogeneous artifacts, including the service documentation, the
service SDKs, and the web services themselves.

The rest of this paper is organized as follows. Section 2 presents
the results of the empirical investigation of the distribution and
classification of dependency constraints in popular web services.
Section 3 gives an overview of our approach. Section 4 describes
our approach in detail. Section 5 presents the evaluation results.
Section 6 discusses the related work and Section 7 concludes.

2. DEPENDENCY CONSTRAINTS IN WEB
SERVICES
In this section, we first show the results of our empirical investi-
gation of dependency constraints in popular web services, and
next discuss reasons leading to the non-trivial presence of such
constraints in web services.

2.1 Empirical Investigation
We manually investigated the service documentation of four pop-
ular web services, and the results are listed in Table 1 (more de-
tails of the investigation can be found at http://sa.seforge.org/
indicator/). In particular, column “Mashups” lists the number of
applications known to be built on each web service (according to
the statistics from http://www.programmableweb.com); column
“OP” lists the number of operations provided by each web service;
column “DC” lists the percentage of operations with dependency
constraints. From the statistics, we could observe that a non-trivial

percentage (an average of 21.9%) of web service operations have
dependency constraints. In addition, hundreds of client applica-
tions would benefit from the constraints inferred for a web service.

We further divided these constraints into six categories, as shown
in Figure 1. We use “A” and “B” to denote two different parame-
ters in one operation, and use “p” and “q” to denote parameter
values. The first three categories restrict parameter occurrences.
For example, the first category requires “either A or B (at least one
of A and B) should be specified”, which is the most prevalent cat-
egory. The second category requires “when A is included, B
should (not) be included in the same request”. The fourth and fifth
categories restrict parameter values. For example, the fourth cate-
gory requires that “when B is specified, A must (not) be set to p in
the same request”. Note that the categories shown in Figure 1 are
only the most basic constraint categories, from which complex
constraints could be composed by using conjunctive or disjunctive
connections.

2.2 Reasons of Dependency Constraints
We found empirically that the dependency constraints are much
more common in web services, than in local API libraries. We
next discuss two main reasons for such phenomenon.

First, parameter values in web services are passed in a much more
flexible way. Normally, in local API libraries, the number and
order of the parameters for a method are strictly stipulated. In
contrast, in web services, parameter values are indexed by only
their parameter names, allowing values of any number of parame-
ters being passed in any order. For example, a typical RESTful
service request would look like “https://api.twitter.com/1/status-
es/user_timeline.json?screen_name=twitterapi&count=2”. Such a
flexible way of passing parameters thus demands additional con-
straints to restrict whether a parameter should be present.

Second, most web services support parameters only of primitive
types. In object-oriented local API libraries, parameters are encap-
sulated in objects based on their internal relationships, and a prop-

er design could have enforced the constraints between parameters.
In contrast, in order to maintain good interoperability, currently
most web services (especially RESTful ones) support parameters
only of primitive types; in other words, all the parameters hidden
in objects for API libraries are flattened to primitive parameters
for web services. As a result, to carry the same amount of infor-
mation as their counterparts in local API libraries, web-service
operations require a much larger number of parameters. Mean-
while, the internal relationships between parameters hidden in
objects for API libraries have turned into constraints across multi-
ple parameters for web services. For example, the Twitter opera-
tion “POST statuses/update” requires that the parameters latitude
and longitude should be paired. The code snippet in Figure 2
shows a likely design of encapsulating these two parameters in a
GeoLocation object in Java local API libraries. It can be observed
that this constraint no longer exists in this snippet, because client
applications are always enforced to pass both parameters when
calling the constructor in Line 4 to create a GeoLocation object.

In general, in order to achieve good interoperability, web services
are designed to throw away characteristics that are specific to
certain programming languages, such as information hiding via
encapsulation in object-oriented languages. Therefore, additional
dependency constraints are entailed in order to ensure the correct
interaction between client applications and the web services.

3. APPROACH OVERVIEW
In this section, we provide an overview of our general approach
through a series of examples.

As Figure 3 shows, our INDICATOR approach infers dependency
constraints for web services via a hybrid analysis of three infor-
mation sources: the service documentation, the service SDK, and
the web services themselves. INDICATOR starts with a preparatory
analysis, which collects necessary information from the service
documentation for subsequent main stages, e.g., type definitions
of service operations, descriptions of parameters. The main ap-
proach then proceeds in two stages. In the candidate-generation
stage, INDICATOR analyzes the service documentation and service
SDKs to generate constraint candidates. In the candidate-
validation stage, INDICATOR validates the candidates through
testing, and outputs only the constraint candidates that have been
validated.

In particular, to extract constraint candidates from the service
documentation, INDICATOR includes two strategies: the “rigid”
and “loose” strategies, to find a potential matching between de-
scriptions in the documentation and predefined constraint tem-
plates, e.g., “either parameter A or B is required”. The “rigid”
strategy intends to find constraint candidates described by similar
words as the templates. While leading to relatively precise results,
this strategy is fragile to the word choices of a constraint’s de-
scription. In other words, false negatives would be produced when
a semantically equivalent constraint is described in words not

1.public class GeoLocation{
2. private double longitude;
3. private double latitude;
4. public GeoLocation(double latitude,double longitude){
5. this.latitude = latitude;
6. this.longitude = longitude;
7. }
8. public double getLatitude(){return latitude;}
9. public double getLongitude() {return longitude;}
10.}

Figure 2. Example code snippet showing the encapsulation of
the parameters latitude and longitude in OO API libraries.

Figure 1. Categories and distribution of dependency con-

straints in popular web services.

(1)A∨B, 38.3%
(2)A→B(or A→¬B), 22.8%(3)A=p (or A≠p)→B, 8.3%

(4)B→A=p (or A≠p), 14.8%

(5)A=p (or A≠p)→ B=q(or B≠q), 8.3%
(6)Others, 7.5%

Table 1. Results of empirical investigation of dependency
constraints in popular web services.

Subject Description #Mashups #OP %DC

Twitter micro-blogging 748 105 38.1

Flickr photo-sharing 615 186 10.2

Lastfm online radio 225 130 23.1

APAA online retailing 416 9 55.6

Total --- --- 430 21.9

covered by the templates. To alleviate this limitation, INDICATOR
includes the “loose” strategy, which generates a constraint candi-
date when the number of distinct parameters appearing in its de-
scribing sentence matches with the number of parameters in a
template. Our insight here is that rather than trying very hard to
extract the semantics out of sentences, we use only simple and
reliable information from the sentences and then rely on testing
(to be conducted in the subsequent stage) to figure out the con-
straint, reflecting a benefit from integrating heterogeneous infor-
mation sources.

In addition to service documentation, INDICATOR also exploits
information from service SDKs. For most popular web services,
there are SDKs available in various programming languages. Such
SDKs wrap interactions with web services, allowing client-
application developers to invoke web services as if invoking
methods from local API libraries. INDICATOR includes a novel
technique to infer constraint candidates from service SDKs, based
on our insight that SDKs demonstrate legal ways of invoking web
services. For example, the code snippet in Figure 4 shows the API
method in the Java SDK of the Lastfm web service. Such API
method wraps the invocation of the “artist.getInfo” operation. The
statements in Lines 2-9 collect the parameters, and the statement
in Lines 11-12 makes the remote call. As shown in the code snip-
pet, it is ensured that “either an mbid or an artist is specified”,
which is actually the constraint for this operation. Our main idea
is to identify all possible combinations of parameters included by
the SDK to invoke each service operation, and then apply a simple
statistical analysis to learn constraints. For the method in Figure 4,
there are four distinct paths, making four possible combinations of
parameters: {mbid, lang}, {artist, lang}, {mbid}, and {artist}.
Then by analyzing the combinations, we notice that either mbid or
artist is present in the set of included parameters, thus leading us
to infer the constraint.

Finally, INDICATOR validates each constraint candidate through
testing. For each candidate, INDICATOR generates both satisfying
and violating test cases, all of which are ensured to conform to all
the other constraint candidates in the same operation. INDICATOR
considers a constraint candidate to be real, if (1) all its violating
test cases fail and at least one of its satisfying test cases passes, or
(2) all test cases fail, and the error messages of the violating test
cases look alike to the candidate’s description. Using these criteria,
INDICATOR intends to find constraints that are required by correct
interactions with the web services. INDICATOR reduces false nega-
tives by accommodating occasions when test cases conforming to
the constraint candidate fail due to violating other constraints.
Meanwhile, INDICATOR reduces false positives by exploiting in-
formation from the error messages of violating test cases, so that
INDICATOR confirms that the failure was indeed caused by violat-

ing the constraint candidate under validation, but not some other
constraints.

4. APPROACH DETAIL
We next describe the details of our INDICATOR approach. In par-
ticular, we present the preparatory analysis in Section 4.1. We
next present the candidate generation from documentation and
SDK in Section 4.2 and Section 4.3, respectively. We finally pre-
sent the candidate validation through testing in Section 4.4.

4.1 Preparatory Analysis
In preparatory analysis, INDICATOR collects various types of in-
formation needed by subsequent steps, including (1) the service
type definitions, e.g., the available operations names, the list of
mandatory and optional parameter names for each operation, and
available values for parameters of enumeration types, (2) descrip-
tions for operations and parameters, which might contain usage
constraints, and (3) other technical details required to enable au-
tomatic invocation of the service operations, e.g., the URL ad-
dress of the service, the HTTP method to make the request. Un-
like SOAP-based web services (most of whose preceding infor-
mation is available in formal WSDL files), for most currently
popular RESTful web services, all the preceding information
could be extracted from only the service documents in the form of
HTML files. Fortunately, all the information is easy to locate,
given user-defined XPath6 expressions to specify the paths of their
corresponding nodes in the HTML files. Only very little manual
effort is needed to write the XPath expressions, since documents
of different operations in a web service share the same style and
structure.

6 XPath: http://www.w3.org/TR/xpath20/.

1. public Artist getInfo(String artistOrMbid, Locale loc) {
2. Map<String, String> params = new HashMap<String,
3. String>();
4. if(StringUtilities.isMbid(artistOrMbid)){
5. params.put("mbid", artistOrMbid);}
6. else{
7. params.put("artist", artistOrMbid);}
8. if(loc!=null)
9. params.put("lang",loc.getLanguage());
10.
11. Result result = Caller.getInstance().call(
12. "artist.getInfo", params);
13. return ResponseBuilder.buildItem(result,
14. Artist.class);
15.}

Figure 4. Code snippet of the API method de.umass.lastfm. Art-
ist.getInfo from the Java SDK of Lastfm web service.

Figure 3. Architecture of INDICATOR.

Stage 2

Service
Documentation

Service SDK

Web Service

Preparatory
Analysis

Formal
Constraints

Stage 1

Candidate Extraction
from Doc

Candidate Inference
from SDK

Candidate Validation
via Testing

Type
Definitions, etc.

Constraint
Candidates

4.2 Candidate Extraction from Service Doc-
umentation
The basic idea to extract constraint candidates from service doc-
umentation is to find potential matchings between the descriptions
in documentation and the predefined constraint templates. Table 2
shows some typical template sentences, in which “A” and “B”
denote two different parameter names, and “p” and “q” denote
parameter values. In particular, the first column presents their
correspondence with the constraint categories shown in Figure 1.
According to our manual investigation, parameter values incorpo-
rated in such constraints always belong to enumeration types, and
note that all parameter names and available values are already
extracted in advance by the preparatory analysis.

INDICATOR includes two strategies to locate the candidate-
describing sentences in documentation. The “loose” strategy
marks a sentence as describing a constraint candidate when the
number of distinct parameters and values appearing in the sen-
tence matches with that in a template. This strategy could identify
candidate-describing sentences, even those using completely dif-
ferent words from the templates. However, the number of gener-
ated sentences might grow quickly with only a small portion de-
scribing real constraints, causing a potential waste of effort in
subsequent steps.

The “rigid” strategy marks a sentence as describing a constraint
candidate when the sentence uses similar words as the template
sentences. This strategy computes a Jaccard Similarity7 between
the bag of words used in the candidate-describing sentence and a
template sentence. Some standard Natural Language Processing
(NLP) procedures should be conducted in advance, such as stop-
word removing, word stemming, and synonym replacement. In
addition, parameter names are also excluded in the similarity
computation. Compared with the “loose” strategy, this strategy
produces more precise results, but it is sensitive to the word
choices of a candidate’s description: false negatives would be
produced when a real constraint is described in words not covered
by the templates. For example, using the first sentence in Table 2
without using the second one would cause the approach to miss
constraints described in the second sentence in Table 2, which use
different words but share the same semantics.

Our approach provides a way to flexibly choose between the two
strategies. It first adopts the “loose” strategy to generate candi-
date-describing sentences. If the number of the generated sentenc-
es is overwhelmingly too many (e.g., beyond a user-defined
threshold), it then adopts the “rigid” strategy to further refine the
sentences. In this way, INDICATOR could be adaptive to any in-
coming web services, while maintaining a balance between recall
and efficiency.

,SimilarityሺA ݀ݎܽܿܿܽܬ 7 Bሻ = |஺∩஻||஺∪஻|, where in our approach, A and B repre-

sent two sets of words.

Finally, for each candidate-describing sentence, INDICATOR gen-
erates the constraint candidate by filling the matched template
with the relevant parameter names and values. For templates in
which the order of the parameters matters (e.g., the last three tem-
plates in Table 2), if the templates contain parameter values, IN-
DICATOR then determines the order of parameters by first identify-
ing the parameter to which the value belongs; otherwise, it simply
fills the templates with all possible parameter sequences.

Thanks to integrating information from heterogeneous artifacts,
our approach could use only simple information from the docu-
mentation, rather than adopting sophisticated NLP techniques: all
the constraint candidates are to be (in)validated by means of test-
ing web services in the subsequent stage.

4.3 Candidate Inference from SDK
INDICATOR infers constraint candidates from SDKs based on the
observation that the code of the SDK demonstrates legal ways of
invoking web services. The main idea of this technique is to iden-
tify all combinations of parameters and their values (only values
of enumeration types are considered) included by the SDK to
invoke each service operation, and then apply a simple statistical
analysis to learn the constraints. The technique takes as input the
code of the service SDK and the service type definitions (includ-
ing the operation names and the list of parameter names and val-
ues for each operation, which are extracted in advance by the
preparatory analysis presented in Section 4.1), and produces as
output the inferred constraint candidates.

This technique proceeds in four steps. (1) As a preparatory step,
INDICATOR applies a constant propagation [1] to the code of the
SDK to replace each String variable with the actual String literal,
so that INDICATOR could identify parameter names and values
without tracking into the content of their holding variables. In
addition, INDICATOR performs an inter-procedural analysis to
build the call graph for the whole program. (2) For each operation,
INDICATOR searches in the SDK for all the public methods that
wrap its invocation, by searching for methods that directly or
indirectly access its operation name. For example, for the Lastfm
operation “artist.getInfo”, INDICATOR first locates the method
“getInfo(String, Locale)”, which accesses the operation name in
Line 12 as shown in Figure 4, and then searches for all callers of
this method based on the call graph. (3) For each SDK method
found by Step 2, INDICATOR applies a forward Data Flow Analy-
sis Algorithm [1] to compute all the combinations of parameter
names and values included in the method. The formal algorithm
of this step is shown in Figure 5, which is explained later. (4)
Finally, INDICATOR gathers all the available sets of parameter
names and values for each operation, and applies a statistical
analysis to learn the constraints.

We next use the SDK method “artist.getInfo” as an example to
illustrate the algorithm shown in Figure 5. For simplicity, the
shown algorithm deals with only parameter names, but the same
algorithm could be easily adapted to compute all the encountered
parameter-value combinations in each method. Intuitively, this
algorithm computes the sets of already encountered parameters by
propagating such information from the method entry point along
each path of the Control Flow Graph (CFG) to the method exit
point. There are three key variables in the propagation process.
For each node n (a block of consecutive statements) of the CFG,
IN[n] and OUT[n] denote the set of data at the program point be-
fore and after the execution of statements in this node, respective-
ly. In particular, each element of IN[n] and OUT[n] is a set of pa-
rameter names already encountered along some path leading from
the entry point to their corresponding program point. The execu-

Table 2. Example templates of dependency constraints.

Category ID Template Sentences

(1) Either A or B must be specified.

(1) One of A or B is required.

(2) If providing A, B is also required.

(3) A is required, when B is set to p.

(5) When A is set to p, B cannot be set to q.

tion of the statements in the node changes IN[n] to OUT[n] by
including parameter names, which are all recorded in GEN[n].
Figure 6 depicts the CFG for the method “artist.getInfo”, tagged
with the computed information at each program point.

As Figure 5 shows, INDICATOR starts the algorithm by building a
CFG for the given method (Line 1 in Figure 5). In the process, all
paths leading to exception-throwing statements are pruned; these
paths demonstrate illegal ways of invoking the method or the
wrapped operation. After properly initializing the variables (Lines
2-5), INDICATOR iteratively computes the concerned data for each
program point until all data converge (Lines 7-22). Once the data
OUT for a node n has been updated, all the IN (and hence OUT)
data for all n’s successor nodes must also be recomputed (Lines
20-22). INDICATOR records all the nodes requiring re-computation
in the variable Changed. In each iteration, INDICATOR randomly
selects a node that requires re-computation and computes its IN
and OUT data (Lines 11-22). INDICATOR computes the IN data of
each node by doing a union of the OUT data of all its predecessors
(Lines 11-13), so as to gather all possible combinations of param-
eters encountered so far along each path. For example, for Node 6
in Figure 6, by doing a union of OUT[4] and OUT[5], the IN[6] is
computed as {{mbid}, {artist}, {mbid, lang}, {artist, lang}},
while each element corresponds to the paths (1-2-4-6), (1-3-4-6),
(1-2-4-5-6), and (1-3-4-5-6), respectively. INDICATOR next com-
putes the OUT data of each node n by adding the set of parameter
names visited by statements in n (Line 15) to each element of the
IN data (Lines 16-18). Note that the size of OUT[n] is equal to that
of IN[n], which represents the number of feasible paths leading
from the entry to the corresponding point. For example, for Node
5, by adding the parameter name “lang” to each element of IN[5],

we arrive at OUT[5], which is {{mbid, lang}, {artist, lang}}, each
element corresponding to the paths (1-2-4-5) and (1-3-4-5), re-
spectively. Finally, INDICATOR returns the OUT data of the exit
point as the final sets of all combinations of parameter names
included by the method (Line 24).

Due to space limit, we omit from Figure 5 the details of dealing
with method-invocation statements. In fact, for each such state-
ment, the technique would apply an inter-procedural analysis to
track the sets of parameters encountered by statements inside the
invoked method, and then add all the tracked data into that of the
caller method.

Finally, for each operation OP, the technique gathers the computed
sets of parameter names and values from all its public wrapping
methods in the SDK, and applies a simple statistical analysis to
derive the constraints. For example, for the operation “art-
ist.getInfo”, we found two other public wrapping methods in the
SDK, contributing the additional sets of encountered parameter
names as follows: {{mbid, username}, {artist, username}, {mbid,
lang, username}, {artist, lang, username}}. From the total of the
eight sets of parameter names, we could learn that each set in-
cludes either “mbid” or “artist”, thus leading us to infer the con-
straint: “either mbid or artist is required”.

4.4 Constraint-Candidate Validation through
Testing
The candidate-validation stage determines whether a constraint
candidate is real or not via testing.

We consider a constraint as real, if it is required to ensure correct
interactions with web services. While we cannot prove a con-
straint to be real, we could observe whether a constraint candidate
causes the same consequences on the execution of test cases as a
real constraint does. A real constraint typically demonstrates cer-
tain observable characteristics: (a) all test cases that violate the
constraint would fail (determining test-case failing or passing is

Figure 6. CFG for method “artist.getInfo”in Figure 4 along
with the OUT[n] and IN[n] data for each node n.

Algorithm computeParamCombinations
Input m the public SDK method wrapping the invocation of OP;
 NOP the list of parameter names for OP;
Output NS {N | N is a set of parameter names included on each
path}
Begin
1. Build a control-flow-graph CFG for m;
2. foreach node n in CFG do
3. OUT[n] = Ø;
4. OUT[Entry] = IN[Entry] = Ø;
5. Changed = {All nodes in CFG} – Entry;
6.
7. while Changed ≠ Ø do
8. choose a node n from Changed;
9. Changed = Changed \ {n};
10.
11. IN[n] =Ø;
12. foreach predecessor node p of n do
13. IN[n] = IN[n] ∪ OUT[p];
14.
15. GEN[n] = {param | param ∈ NOP ∧ param visited in n}
16. OUT[n] = Ø;
17. foreach element eleIn in IN[n] do
18. OUT[n] = OUT[n] ∪ {GEN[n] ∩ eleIn};
19.
20. if (OUT[n] changed) then
21. foreach successor node s of n do
22. Changed = Changed ∪ {s};
23.
24. return OUT[Exit];
End
Figure 5. The algorithm in Step 3 for extracting all the combi-

nations of parameter names for an SDK method.

elaborated in the end of this section); meanwhile, (b) all test cases
that conform to the constraint as well as all the other constraints
would pass. Thus the task of candidate validation becomes to first
generate test cases according to the requirements in (a) and (b),
and to then determine the candidate’s likelihood of being real
based on the execution outcomes of the test cases. Unfortunately,
requirements in (b) may not be fulfilled due to the lack of com-
plete constraints (their presence would obviate the need to infer
them in the first place). As a result, false positives/negatives
would be produced when test cases violate constraints other than
the one under validation, as discussed earlier in Section 1.

Our approach addresses the preceding issue in two ways, attempt-
ing to validate a constraint candidate appropriately without the
knowledge of complete constraints.

First, INDICATOR improves the quality of generated test cases to
reduce the possibility of violating other constraints. In the context
of web services, the quality of test cases depends on mostly the
quality of parameter values. INDICATOR collects parameter values
from four sources. (1) INDICATOR extracts parameter values of
enumeration types from the service documentation, as was done
by the preparatory analysis. (2) INDICATOR caches the responses
of executed test cases, in order to provide values for parameters
whose values are returned by other operations. For example, in
APAA, the only valid value of parameter CartID in operation Car-
tAdd is returned by operation CartCreate. INDICATOR identifies
such producer-consumer relationships through name and type
matching between input and output parameters of different opera-
tions. Then INDICATOR prioritizes the test cases of operations, so
that a parameter is always produced before it is consumed. In this
way, errors such as “the cart specified does not belong to you” or
“no data found” could be avoided. (3) INDICATOR extracts the
available example values from service documentation, and these
values typically adhere to the syntax requirements and are within
the valid range. (4) INDICATOR solicits parameter values from
users for the remaining parameters if it is feasible to do so.

In addition, with the knowledge of constraint candidates provided
by previous steps, our INDICATOR approach ensures that each
generated test case for one candidate must also conform to all the
other constraint candidates of the same operation in a non-
conflicting way. The conformance of constraint A conflicts with
constraint B, when the conformance of A influences the conform-
ance or violation of B. Table 3 shows sample test cases satisfying
or violating the constraint “either A or B must be specified”. Note
that there is only one way (i.e., including parameter A and not B)
to conform to this constraint without conflicting with another
constraint “either B or C must be specified”, because including
parameter B would coincidentally cause a conformance with the
latter constraint.

Second, we adjust the criteria of determining real constraints.
INDICATOR considers a constraint candidate as real, if

a) all the violating test cases fail and at least one of the satisfy-
ing test cases passes; or

b) all the test cases fail, and the error messages of the violating
test cases look alike to the description of the constraint can-
didate.

Therefore, INDICATOR first invalidates a candidate, if some of its
violating test cases pass. INDICATOR next attempts to validate a
candidate by checking whether the execution outcomes of the test
cases conform to either of the preceding criteria. Based on the
criteria, on one hand, INDICATOR reduces false negatives by ac-
commodating occasions when a satisfying test case fails due to
violating other constraints. On the other hand, INDICATOR reduces
false positives by comparing the error messages of the violating
test cases with the candidate’s description, ensuring to some ex-
tent that the failure was indeed caused by violating the candidate
under validation, rather than some other constraints. In our eval-
uation, of the final constraints produced by INDICATOR, 86.5%
were validated using criterion a, while 13.5% were validated us-
ing criterion b.

In particular, INDICATOR determines whether the error messages
and the candidate’s description are alike, by computing the high-
est similarity between each pair of the error message and the can-
didate’s description. The same similarity-computation technique
presented in Section 4.2 is applicable here. Specifically, for con-
straint candidates that do not have descriptions (i.e., those gener-
ated from SDKs or by the loose strategy from documents), INDI-
CATOR uses the template sentences of the relevant constraint cate-
gory as the candidates’ possible descriptions.

In our implementation, we consider a test case to pass or fail
based on whether the response is legal or illegal. Such classifica-
tion is straightforward, since an illegal response would normally
contain indications such as an error code or an error message. We
did not further examine whether the data contained in a legal re-
sponse matches with a predefined golden oracle, which would be
difficult to specify in the context of web services [10]. The re-
sponse data for an operation might be changing from time to time.
For example, the Twitter operation “GET statuses/user_timeline”
queries for the recent statuses of a user, for which the response
data would change once the user posts new statuses.

4.5 Limitations
We next discuss limitations of our approach in terms of potential
false negatives and false positives.

False negatives are produced when a real constraint cannot be
generated from either the documentation or the SDK, or its gener-
ated candidate cannot be validated by testing. In the step of candi-
date extraction from documentation, INDICATOR would miss real
constraints described in words not covered by the given templates,
when the rigid strategy is adopted. We have sought to alleviate
this issue by introducing the loose strategy. However, the ap-
proach is still subject to the quality of the documentation: con-
straints might be actually missing in the documentation. INDICA-
TOR mitigates these issues by including the service SDK as a
complement. In the step of candidate inference from SDK, real
candidates might not be inferred due to noises in un-pruned infea-
sible paths. Finally, in the step of candidate validation, INDICA-
TOR might not be able to validate a real candidate, when all the
test cases fail due to violating some other constraints, and the
error messages do not convey similar information as the candi-
date’s description. INDICATOR alleviates this issue by ensuring
that test cases of a candidate conform to all the other candidates in
the same operation.

Table 3. Sample test cases that conform to or violate a given
constraint.

Constraint: Either A or B must be specified.

Conformance Violation

Given A, no B Given B, no A Given A and B no A no B

False positives are produced when a false candidate is mistakenly
validated through testing. Such case happens when the conform-
ance or violation of a candidate causes unintended side effect,
which coincidentally leads to the conformance or violation of
some other constraints. INDICATOR mitigates this issue by making
sure that test cases for one candidate are generated without con-
flicting with the other candidates in the same operation.

Concrete examples of false negatives and false positives observed
from our evaluations are further discussed in Section 5.

5. EVALUATION
To evaluate the effectiveness of our INDICATOR approach, we
applied INDICATOR to infer dependency constraints for four web
services, i.e., Twitter, Flickr, Lastfm, and APAA. Specifically,
this section shows the evaluation results of inferring the most
prevalent category of dependency constraints among various cate-
gories, i.e., “either parameter A or parameter B must be specified”
(we refer to constraints of this category as (A, B)either-or in this
section). We applied INDICATOR to infer constraint candidates
from Java SDKs, namely twitter4j8 for Twitter, flickrj9 for Flickr,
and lastfm API10 for Lastfm; there is no Java SDK available for
the APAA web service. We solicited parameter values from one
researcher in the Institute of Software at Peking University, for
only 28 (1.7%) of the involved parameters, while values for all the
remaining parameters were collected automatically by INDICATOR.
We spent two weeks to prepare a golden standard for the web
services. We first ran test cases concerning all combinations in-
volving every two parameters for each operation, and then invited
two researchers from the institute to manually inspect the results.
The golden standard and details of our evaluation results are
available at http://sa.seforge.org /indicator/.

Our evaluation addresses the following research questions:

• RQ1: How effectively and efficiently can INDICATOR infer
constraints?

• RQ2: How well can information in documentation and SDKs
complement each other?

• RQ3: How much can the candidate-validation stage benefit
the candidate-generation stage?

• RQ4: How much can the candidate-generation stage benefit
the candidate-validation stage?

The first research question concerns the overall effectiveness and
performance of our approach, while the next three ones concern
the benefits of integrating information from heterogeneous arti-
facts. We answer the first three questions in Section 5.1. To an-

8 twitter4j-2.2.5: http://twitter4j.org/.
9 flickrj-1.2: http://flickrj.sourceforge.net/.
10 lastfm API: http://www.u-mass.de/lastfm.

swer the last question, we conducted an additional evaluation and
present the results in Section 5.2.

5.1 Effectiveness and Efficiency of Constraint
Inference
We measure the effectiveness of INDICATOR using both precision
and recall metrics. We measure the efficiency of INDICATOR using
the number of executed test cases as the metric, rather than the
exact time that INDICATOR spent on the web services. The reason
is that most (over 95%) of the time was spent on running test cas-
es, and we must control the rate of making requests to avoid ex-
ceeding the rate limits imposed by the service providers, e.g.,
INDICATOR slept for 10 seconds after making each authenticated
request to Twitter.

The evaluation results are listed in Table 4. Column “Real” lists
the number of real constraints used as the golden standard for
each web service. For statistics concerning the final output of
INDICATOR, column “Ttl” lists the total number of constraints
produced by INDICATOR; and columns “Pre” and “Rec” list the
precision and recall, respectively. For statistics concerning the
constraint candidates, column “Doc” lists the number of candi-
dates generated from documentation using the loose strategy (we
also applied the rigid strategy of extracting candidates from doc-
umentation, but the detailed results are omitted due to space limit,
instead we will compare their results briefly in the end of this
section). Columns “DP” and “DR” list the precision and recall of
the candidates generated from documentation, respectively. Col-
umn “SDK” lists the number of candidates generated from SDK.
Columns “SP” and “SR” list the precision and recall of the candi-
dates generated from SDK, respectively. Column “Flt” lists the
percentage of candidates that are filtered (i.e., have not been vali-
dated) by testing, and are considered as false candidates by INDI-
CATOR. Column “Exced TC” lists the number of distinct test cases
executed by INDICATOR. Column “Svd TC” lists the percentage of
test cases that are exempted from being executed by INDICATOR,
compared with a brute-force approach of finding the concerned
constraints; such brute-force approach tests all combinations in-
volving every two parameters in each operation.

From the results in Table 4, we have the following observations.
First, INDICATOR achieved high precisions and recalls on these
web services, with an average precision of 94.4% and recall of
95.5%. We will later show examples of the false positives and
negatives, and analyze the reasons for producing them. Second,
compared with documentation, INDICATOR inferred much fewer
constraint candidates from SDKs, but with much higher precisions.
We further depict the percentages of the real constraints covered
by each source in Figure 7. In general, 28.4% of the constraints
are covered by both sources, while 54.5% come from only docu-
mentation, and 12.5% come from only SDKs, indicating that doc-
umentation and SDKs complement each other. Third, most
(75.1%) of the constraint candidates are filtered in the candidate-
validation stage through testing, indicating that testing plays an

Table 4. Evaluation results of INDICATOR.

Subject #Real Final Output Constraint Candidates #Exced
TC

% Svd
TC

#Ttl %Pre %Rec #Doc %DP %DR #SDK %SP %SR %Flt

Twitter 40 38 97.4 92.5 113 27.4 77.5 12 100.0 30.0 68.1 221 79.2

Flickr 12 11 100.0 91.7 101 9.9 83.3 1 100.0 8.33 89.2 174 87.3

Lastfm 34 37 91.9 100.0 128 23.4 88.2 23 100.0 67.7 71.1 147 56.0

APAA 2 3 66.7 100.0 9 22.2 100.0 0 100.0 0.0 66.7 12 98.2

Ttl/Avg 88 89 94.4 95.5 351 20.8 82.9 36 100.0 40.9 75.1 554 84.7

important role in improving the quality of the produced con-
straints. Finally, by integrating information from documentation
and SDKs, INDICATOR greatly (84.7%) reduced the test cases
needed to be executed, compared with a constraint-inference ap-
proach in a brute-force manner, which is actually the adopted
manner by existing approaches to generate test cases based on
only type definitions.

We next analyze reasons for producing false positives and nega-
tives. All the five false positives for the four services are caused
by coincidental violations and satisfactions of constraints belong-
ing to categories other than the “Either-Or” category. For example,
a false positive for Twitter operation “GET geo/search” is (accu-
racy, lat)either-or, which was caused by violating/satisfying the con-
straint that “lat and long must be paired” (which is described ex-
plicitly in the documentation). INDICATOR first generated two
constraint candidates for this operation, (accuracy, lat)either-or and
(lat, long)either-or. To test the former one, INDICATOR avoided vio-
lation and conflict of the latter one by including a long parameter
in all test cases. INDICATOR finally considered the former one as a
real constraint according to criterion a in Section 4.4: all the vio-
lating test case failed due to providing long but no lat, and some
of the satisfying test cases passed due to providing both lat and
long.

Another false positive example is (keywords, title)either-or for Ama-
zon operation “ItemSearch”, caused by violating/satisfying the
constraint “at least one of its twenty search parameters must be
provided”. INDICATOR first generated (keywords, title)either-or as
the only candidate for the operation, because no sentences include
any two of the other parameters. INDICATOR finally considered
the candidate as real, because all the violating test case failed due
to providing none of the search parameters, and all the satisfying
test cases passed due to providing at least one of keywords and
title.

These false positives could be reduced by considering more con-
straint categories. In theory, they are still unavoidable due to the
lack of knowledge of what constraint categories exist in one ser-
vice. Another way to alleviate the false-positive problem is to
apply stricter criteria of validating constraints by additionally
requiring the error messages of the violating test cases to be con-
sistent with the candidates’ descriptions. However, the stricter
criteria would result in a high precision in the price of a low recall:
error messages might use different words from the constraint’s
description to describe the constraint’s violation. For example, the
error message for violating “lat and long must be paired” is “Inva-
lid Coordinates”.

All the four false negatives of INDICATOR are due to that the doc-
umentation does not even mention the two parameters in one sen-
tence, indicating inconsistencies between documentation and ser-
vice implementation: either the documents missed describing

some constraints, or the service implemented some requirements
that are not necessary.

In addition, seven constraints stated explicitly in the documenta-
tion were invalidated by testing, indicating potential bugs in ser-
vice implementation. For example, the document for Flickr opera-
tion “flickr.places.placesForUser” states that “you must pass either
a place_id or a woe_id”, whereas test cases without neither pa-
rameters passed.

Note that all the preceding results were obtained adopting the
loose strategy to extract constraint candidates from documentation.
To adopt the rigid strategy, INDICATOR used the constraint-
describing sentences from the other three web services as the tem-
plate sentences for one web service. Compared with the preceding
results, INDICATOR produced results with a slightly higher preci-
sion (an average of 98.7%) but a lower recall (an average of
84.1%). In addition, the rigid strategy greatly saved the cost of the
approach, by producing only 22.9% of the candidates produced by
the loose strategy. The lower recall was not only due to that con-
straints’ descriptions use words not covered by the templates, but
also due to missing constraints in the documentation. For example,
using the loose strategy, INDICATOR discovered the real constraint
(user_id, screen_name)either-or for the Twitter operation “GET
lists/all”, mentioned by the sentence “The user is specified using
the user_id, or screen_name parameters”. This sentence is clearly
not a constraint-describing sentence, and thus resulted in a false
negative for our rigid-strategy-based approach. Details of evalua-
tion results of the rigid strategy are omitted due to space limit.

5.2 Benefit to Candidate Validation from
Candidate Generation
The candidate-generation stage from documentation and SDKs
benefits the candidate-validation stage in two ways. First, it great-
ly narrows down the search space for real constraints. INDICATOR
saved 84.7% of the test cases from being executed, compared with
approaches based on only type definitions to generate test cases.
Second, it reduces the false positives and negatives for candidate
validation, by providing guidance for test-case generation, and
ensuring that each test case violates no more than one constraint
candidate.

To evaluate the latter benefit, we modified our approach to gener-
ate test cases without considering the other constraint candidates
in the same operation, and compared the results with those of
INDICATOR, as shown in Figure 8. In particular, the results for
APAA are omitted, for which the modified results remain the
same with those of INDICATOR. It can be observed that the modi-
fied approach resulted in a non-trivial degradation in precision
(from the average of 94.4% to 55.1%) and recall (from the aver-
age of 95.5% to 85.2%).

Most false positives introduced by the modified approach (not by
INDICATOR) were due to coincidental violation and satisfaction of
another real constraint candidate in the same operation. For exam-
ple, for the Twitter operation “GET statuses/oembed”, the modi-
fied approach produced three false constraints, (maxwidth, id)either-

or, (align, id)either-or, (omit_script, id)either-or, due to violating/satisfy-
ing the real constraint candidate, (url, id)either-or. These false con-
straints were produced according to criterion a in Section 4.4,
because all violating test cases failed, due to providing neither url
nor id, and some of the satisfying test cases passed, due to provid-
ing id.

All false negatives introduced by the modified approach (not by
INDICATOR) were due to violation of the other real constraint
candidates in the same operation, which contains multiple real

Figure 7. Percentages of the either-or constraints covered by
different information sources.

0% 20% 40% 60% 80% 100%AverageAPAALastfmFlickrTwitter

Percentage

Doc-OnlyBothSDK-OnlyNeither

constraint candidates. For example, for the Flickr operation
“flickr.places.placesForContacts”, a false negative (place_type, pla-
ce_type_id)either-or was produced, because all the test cases failed
due to violating the other real candidate (place_id, woe_id)either-or,
with only vague error messages “missing required parameters”.

6. RELATED WORK
To the best of our knowledge, there are only two existing ap-
proaches to automatically inferring formal constraints of interact-
ing with web services. Bertolino et al. [2] proposed an approach to
synthesize temporal constraints, such as “a CartCreate operation
should be invoked before a CartAdd operation”. Their approach
first derives these constraints from service type definitions based
on data type analysis, and then checks the conformance between
the derived constraints and the service implementation by means
of testing. Fisher et al. [5] presented an approach also based on
testing to discover simple constraints involving single parameters,
such as whether a parameter is required. They further applied the
discovered constraints to detect imprecision errors in WSDL files,
such as declaring a required parameter to be optional. Compared
with these two approaches, INDICATOR infers a new and important
type of constraints, Dependency Constraints on Parameters. In
addition to testing web services, INDICATOR also integrates in-
formation from natural-language service documentation and ser-
vice SDKs to infer constraints effectively and efficiently, address-
ing the two challenges faced by these approaches, as discussed
earlier in Section 1.

All these constraints of interacting with web services could be
formally described using service modeling languages such as
WSML [3] or OWL-S [11]. To facilitate the automation of service
discovering, composing, and invoking, researchers and developers
proposed such languages to conceptually model web services.
However, according to our investigation, such conceptual descrip-
tions for most popular web services are not readily available. IN-
DICATOR could automatically discover these constraints, and
might help to build the conceptual models for web services.

Our work is also related to program verification approaches [7-9,
14] that use formally described constraints to detect violations of
constraints as bugs in client applications. In particular, Rubinger
and Bultan [14] presented their experience on applying the Mi-
crosoft Code Contract system to the Facebook API. They provid-
ed the system with formal contracts (which are called constraints
in this paper) that were manually created according to the Face-
book API documentation. The system verified API client applica-
tions for contract violations. Their experience indicates that pro-
gram verification based on contracts enables to build more robust
client applications with less effort spent on debugging. Similarly,
Hallé et al. [7] conducted a case study on APAA of verifying
client applications at runtime against formally described con-

straints. Both these pieces of work demonstrate the importance of
our approach: INDICATOR automatically infers formal constraints,
thus making these constraint-based verification approaches practi-
cal and usable.

We finally present some technically related approaches concern-
ing the constraint inference for local API libraries. According to
their inference-data sources, these approaches fall into three cate-
gories. The first category of approaches [4, 15] analyzes the
source code of API client applications, and infers the frequent API
usage patterns as constraints. Although there are also plenty of
open source client applications for web services, inferring con-
straints from these client applications is unlikely to achieve desir-
able results. The main issue is the low coverage of web service
operations: our manual investigation shows that only the several
most popular operations are invoked in the available client appli-
cations. However, we plan to explore in future work to include
client applications as a complementary information source. The
second category of approaches [12, 16-18] extracts constraints
from API library documentation. In particular, Zhong et al. [18]
proposed an approach to infer resource-manipulation constraints
from Javadocs. Pandita et al. [12] proposed an approach to infer
pre-conditions and post-conditions for invocations of API meth-
ods from their method descriptions. Both the two approaches infer
constraints by combining sophisticated NLP and machine-learning
techniques. In contrast, thanks to integrating heterogeneous in-
formation sources, INDICATOR uses only simple and reliable in-
formation from documentation, and then relies on testing to refine
the results. The third category of approaches [6, 13] infers con-
straints by testing. In particular, Gabel and Su [6] described a
framework to automatically validate temporal constraints inferred
from client applications by testing. Their framework validates a
constraint if all its violating test cases fail. As we earlier discussed
in Section 1, using only this criterion would lead to many false
positives, when the test cases failed in consequence of violating
some other constraints rather than the one under validation. INDI-
CATOR avoids these false positives by additionally requiring either
that some of the satisfying test cases pass, or that the error mes-
sages of the violating test cases are consistent with the constraint’s
description.

7. CONCLUSION
In this paper, we have proposed a novel approach called INDICA-
TOR to automatically inferring Dependency Constraints on Param-
eters for web services. INDICATOR infers dependency constraints
effectively and efficiently via a hybrid analysis of heterogeneous
web service artifacts, including the service documentation, the
service SDKs, and the web services themselves. To evaluate our
approach, we applied INDICATOR to infer dependency constraints
for four popular web services. The results show that INDICATOR
infers constraints with an average precision of 94.4% and recall of
95.5%. Compared with existing approaches based on only web
services themselves, INDICATOR improves the precision by 39.4%
and recall by 10.3%, while saving 84.7% of the efforts.

8. ACKNOWLEDGMENTS
The authors from Peking University are sponsored by the National
Basic Research Program of China (Grant No. 2009CB320703),
the National Natural Science Foundation of China (Grant No.
61121063，61033006), and the High-Tech Research and Devel-
opment Program of China (Grant No. 2012AA011202). Tao Xie's
work is supported in part by NSF grants CCF-0845272, CCF-
0915400, CNS-0958235, CNS-1160603, an NSA Science of Se-
curity Lablet grant, and a NIST grant.

Figure 8. Precisions and recalls of INDICATOR and the modi-
fied approach.

0%20%40%60%80%100%

Precision Recall

Twitter

0%20%40%60%80%100%

Precision Recall

Flickr

0%20%40%60%80%100%

Precision Recall

Lastfm

0%

20%

40%

60%

80%

100%

Precision Recall

Average

Indicator

Modified

9. REFERENCES
[1] Aho, A. V., Lam, M. S., Sethi, R. and Ullman, J. D. 1986.

Compilers: Principles, Techniques, and Tools. Addison Wes-
ley.

[2] Bertolino, A., Inverardi, P., Pelliccione, P. and Tivoli, M.
2009. Automatic synthesis of behavior protocols for compos-
able web-services. In Proceedings of the 7th Joint Meeting of
the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software
Engineering (Amsterdam, The Netherlands, August 24-28,
2009). ESEC/FSE '09. ACM, New York, NY, 141-150.

[3] Bruijn, J. D., Fensel, D., Keller, U., Kifer, M., Lausen, H.,
Krummenacher, R., Polleres, A. and Predoiu, L. 2005. Web
Service Modeling Language (WSML). Available at
http://www.w3.org/Submission/WSML/.

[4] Engler, D., Chen, D. Y., Hallem, S., Chou, A. and Chelf, B.
2001. Bugs as deviant behavior: a general approach to infer-
ring errors in systems code. In Proceedings of the 18th ACM
symposium on Operating systems principles (Chateau Lake
Louise, Banff, Canada, October 21-24, 2001). SOSP '01.
ACM, New York, NY, 57-72.

[5] Fisher, M., Elbaum, S. and Rothermel, G. 2007. Automated
Refinement and Augmentation of Web Service Description
Files. Technical Report. University of Nebraska - Lincoln.

[6] Gabel, M. and Su, Z. D. 2010. Testing mined specifications.
In Proceedings of the 20th International Symposium on the
Foundations of Software Engineering (Cary, North Carolina,
November 11-16, 2012). FSE '12. ACM, New York, NY.

[7] Hallé, S., Bultan, T. , Hughes, G., Alkhalaf, M., Villemaire,
R. 2010. Runtime verification of web service interface con-
tracts. Computer. 43, 3 (March 2010), 59-66.

[8] Havelund, K. and Pressburger, T. 1999. Java PathFinder, a
translator from Java to Promela. In Proceedings of the 5th
and 6th International SPIN Workshops on Theoretical and
Practical Aspects of SPIN Model Checking (Trento, Italy, Ju-
ly 5, 1999, Toulouse, France, September 21 and 24, 1999).
Springer-Verlag London, UK, 152.

[9] Hovemeyer, D. and Pugh, W. 2004. Finding bugs is easy.
ACM SIGPLAN Notices. 39, 12 (December 2004), 92-106.

[10] Martin, E., Basu, S. and Xie, T. 2007. Automated testing and
response analysis of web services. In Proceedings of the
IEEE International Conference on Web Services, Application
Services and Industry Track (Salt Lake City, Utah, USA, Ju-
ly 9-13, 2007). ICWS '07. 647-654.

[11] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott,
D., McIlraith, S., Narayanan, S., Paolucci, M., Parsia, B.,
Payne, T., Sirin, E., Srinivasan, N. and Sycara, K. 2004.
OWL-S: Semantic Markup for Web Services. Available at
http://www.w3.org/Submission/OWL-S/.

[12] Pandita, R., Xiao, X. S., Zhong, H., Xie, T., Oney, S. and
Paradkar, A. 2012. Inferring method specifications from nat-
ural language API descriptions. In Proceedings of the 34th
International Conference on Software Engineering (Zurich,
Switzerland, June 2-9, 2012). ICSE '12. IEEE Press Pisca-
taway, NJ, USA, 815-825.

[13] Pradel, M. and Gross, T. R. 2012. Leveraging test generation
and specification mining for automated bug detection with-
out false positives. In Proceedings of the 34th 2012 Interna-
tional Conference on Software Engineering (Zurich, Switzer-
land, June 2-9, 2012). ICSE '12. IEEE Press Piscataway, NJ,
USA, 288-298.

[14] Rubinger, B. and Bultan, T. 2010. Contracting the Facebook
API. In Proceedings Fourth International Workshop on Test-
ing, Analysis and Verification of Web Software (Antwerp,
Belgium, September 20-24, 2010). TAV-WEB '10. 63-74.

[15] Weimer, W. and Necula, G. C. 2005. Mining temporal speci-
fications for error detection. In Proceedings of the 11th In-
ternational Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (Edinburgh, U.K., April 4-
8, 2005). TACAS '05. Springer-Verlag, Edinburgh, UK, 461-
476.

[16] Wu, Q., Liang, G. T., Wang, Q. X. and Mei, H. 2011. Mining
effective temporal specifications from heterogeneous API da-
ta. Journal of Computer Science and Technology. 26, 6 (No-
vember 2011), 1061-1075.

[17] Wu, Q., Liang, G. T., Wang, Q. X., Xie, T. and Mei, H. 2011.
Iterative mining of resource-releasing specifications. In Pro-
ceedings of the 26th IEEE/ACM International Conference on
Automated Software Engineering (Lawrence, Kansas, No-
vember 6-12, 2011). ASE '11. IEEE Computer Society
Washington, DC, USA, 233-242.

[18] Zhong, H., Zhang, L., Xie, T. and Mei, H. 2009. Inferring
resource specifications from natural language API documen-
tation. In Proceedings of the 24th IEEE/ACM International
Conference on Automated Software Engineering (Auckland,
New Zealand, November 16-20, 2009). ASE '09. IEEE Com-
puter Society Washington, DC, USA, 307-318.

