
Perspectives on Automated Testing of
Aspect-Oriented Programs

Tao Xie
Department of Computer Science

North Carolina State University
Raleigh, NC 27695

xie@csc.ncsu.edu

Jianjun Zhao
Department of Computer Science

Shanghai Jiaotong University
Shanghai 200240, P.R. China

zhao-jj@cs.sjtu.edu.cn

ABSTRACT

Aspect-oriented software development is gaining popularity with
the adoption of aspect-oriented languages in writing programs. To
reduce the manual effort in assuring the quality of aspect-oriented
programs, we have developed a set of techniques and tools for
automated testing of aspect-oriented programs. This position pa-
per presents our perspectives on automated testing techniques from
three dimensions: testing aspectual behavior or aspectual compo-
sition, unit tests or integration tests, and test-input generation or
test oracles. We illustrate automated testing techniques primarily
through the last dimension in the perspectives. By classifying these
automated testing techniques in the perspectives, we provide better
understanding of these techniques and identify future directions for
automated testing of aspect-oriented programs. This position paper
also presents a couple of new techniques that we propose based on
the perspectives.

Categories and Subject Descriptors: D.2.5 [Testing and Debug-
ging]: Testing tools

General Terms: Reliability.

Keywords: Software testing, Aspect-oriented software develop-
ment, AspectJ

1. INTRODUCTION
In aspect-oriented software development (AOSD) [11, 22], sep-

aration of concerns in software development has been improved
because techniques in AOSD facilitate modularizing crosscutting
concerns of a software system and thus make it easier to main-
tain and evolve. Previous research in AOSD has focused primarily
on the activities of software system design, problem analysis, and
language implementation. Although testing is known to be a labor-
intensive process that accounts for half the total cost of software de-
velopment [6], research on testing in AOSD, especially automated
testing, has not been sufficiently conducted. Although an aspect-
oriented design or implementation can lead to a better system ar-
chitecture or a disciplined coding style, it does not protect against
mistakes made by developers during software development. To as-
sure high software quality in AOSD, we need to develop automated

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Workshop WTAOP ’07 March 12-13, 2007 Vancouver, British Columbia,
Canada
Copyright 2007 ACM 1-59593-663-9/07/03 ...$5.00.

testing techniques and tools for AOSD in order to reduce human ef-
fort in the software testing process.

Aspect-oriented programming languages, such as AspectJ [11],
introduce some new language constructs (such as join points, ad-
vice, intertype declarations, and aspects) to the common object-
oriented programming languages, such as Java. The behavior of an
aspect in AspectJ programs can be categorized into two types [14]:
aspectual behavior is behavior implemented in pieces of advice
and aspectual composition is behavior implemented in pointcuts
for composition between base and aspectual behavior.

When we treat an aspect as a unit, unit tests for an aspect are
those tests that are created to test in isolation pieces of advice de-
fined in the aspect. However, it is often difficult to manually or
automatically construct the aspect’s execution context in unit tests.
When we treat an aspect as a unit and its affected classes also as
units, integration tests for the aspect are those tests that are created
to test the affected classes woven with the aspect. These integration
tests can consist of the invocations of those methods affected by the
aspect. These invocations eventually exercise the interaction be-
tween the aspect and the affected classes by invoking pieces of ad-
vice from the advice-call sites inserted within the affected classes.

In automated software testing, there are two major activities:
test-input generation and test oracles [5]. Test-input generation
generates test inputs for the program under test. After these test
inputs are generated and executed, we need to have a way (called
test oracles) to determine whether these test executions are correct.
When there are no specifications for the program, relying on un-
caught exceptions is limited in exposing faults other than robust-
ness faults [7]. But it is also infeasible for developers to inspect the
executions of a large number of generated test inputs. One feasible
and practical way is test selection: using a tool to select a subset
of test executions for inspection. Another way is runtime behav-
ior checking against specifications: allowing developers to write
specifications for the program and the specifications can be used to
automatically check the executions of the generated test inputs.

In our past research, we have developed a set of techniques and
tools for automated testing of aspect-oriented programs. In this po-
sition paper, we present our perspectives on classifying automated
testing techniques from three preceding dimensions:

• testing aspectual behavior or aspectual composition

• unit tests or integration tests

• test-input generation or test oracles

Through the classification, we can gain better understanding of
the existing automated testing techniques and identify future re-
search directions by filling the identified gap in the research agenda.
We illustrate the techniques primarily for aspect-oriented programs
written in AspectJ [11], a popular aspect-oriented programming
language. In our perspectives, we summarize the techniques and

tools that we have developed in our priori work. In particular, we
present the techniques of test-input generation based on a wrapper
mechanism, which enables us to leverage the existing Java test-
generation tools to generate test inputs for AspectJ programs [26],
as well as test selection techniques for behavior checking based on
branch and interaction coverage [26], dataflow coverage [30], data
coverage [28], and mutation testing [3]. We also present behav-
ior checking techniques based on specifications for aspect-oriented
programs [31]. In addition, we propose a couple of new techniques
in our perspectives: generating unit tests by leveraging existing As-
pectJ testing frameworks [14, 29] and automatic mock-object cre-
ation techniques [21], and generating mutants for advice body by
leveraging muJava [15], a Java mutation testing tool.

2. OVERVIEW
We present our perspectives on automated testing of aspect-oriented

programs in order to classify automated testing techniques. Table 1
shows the classification of major automated testing techniques. This
section gives an overview of these techniques and their classifica-
tions, and the rest of this position paper gives the details of these
techniques.

We classify techniques based on three dimensions:

• testing aspectual behavior or aspectual composition [14]. As-

pectual behavior describes behavior implemented in pieces
of advice. Aspectual composition describes behavior imple-
mented in pointcuts for composition between base and as-
pectual behavior.

• unit tests or integration tests. Unit tests for an aspect are
those tests that are created to test in isolation pieces of advice
defined in the aspect. Integration tests for the aspect are those
tests that are created to test the classes being woven with the
aspect.

• test-input generation or test oracles. Test-input generation

generates test inputs for either aspects directly (as unit tests)
or woven classes (as integration tests). Test oracles [5] pro-
vide ways for checking the correctness of the executions of
generated test inputs. Some techniques can be semi-automated,
such as selecting a subset of test inputs for inspection, still re-
quiring human inspection for correctness. Some techniques
can be totally automated, such as runtime behavior checking
against specifications when they are available.

JamlUnit [14] and AJTE [29] are two AspectJ unit testing frame-
works for facilitating the creation of unit tests for aspects. These
two frameworks themselves do not provide the feature of auto-
mated test-input generation, similar to the JUnit testing framework [10]
for testing Java classes. Based on these two frameworks, we pro-
pose automated test-input generation techniques by leveraging ex-
isting Java test-generation tools, improving the techniques of di-
rectly feeding compiled aspect bytecode to the existing tools [27].
Both frameworks primarily focus on testing aspectual behavior but
AJTE also allows developers to write assertions that check point-
cut matching. Our APTE [2] approach automates the generation of
such assertions. General speaking, this feature of checking point-
cut matching can be seen as a (limited) way of testing aspectual
composition.

Our Aspectra approach [26] allows developers to supply base
classes for the aspect under test and then creates a wrapper for each
woven class. Then the existing Java test-generation tools can be
leveraged to generate integration tests for the woven class by treat-
ing the wrapper class as the class under test. Although Aspectra
generates integration tests, its major objective is not to test aspec-

tual composition but to test aspectual behavior, which is exercised
eventually by the generated integration tests.

Various types of coverage information [32] can be used to se-
lect tests for testing aspectual behavior so that developers can fo-
cus their inspection efforts on these selected tests. For example,
our test selection techniques use branch coverage [26] or dataflow
coverage [30] inside the aspect under test. Our test selection tech-
niques also use data coverage [28], which is concerned with the
input values to pieces of advice defined in the aspect. We also pro-
pose a new wrapper technique for leveraging existing Java mutation
testing tool [15] in mutation testing of aspectual behavior. Pipa [31]
is a behavioral interface specification language for AspectJ. It is an
extension to the Java Modeling Language [13], a behavioral inter-
face specification language for Java. After developers write Pipa
specifications for an aspect, we can automatically check test execu-
tions against the specifications. All these preceding techniques can
be applied for either unit tests or integration tests.

Two existing types of coverage information can be used to se-
lect tests for testing aspectual composition. Our test selection tech-
niques use interaction coverage [26], which characterizes the cov-
erage of the call sites calling between methods in base classes and
advice in an aspect. Our test selection techniques also use dataflow
coverage [30] across aspects and base classes. In addition, our mu-
tation testing techniques for pointcuts [3] can also be used to select
tests for testing aspectual composition.

Based on Table 1, we can observe that we are short of test-input
generation techniques for testing aspectual composition (shown by
the empty entry in the third row, last column of the table). This
observation leads us to propose to extend our Aspectra approach
to fill this gap in future work. We can also observe that there ex-
ists no specification or property language for specifying properties
of aspectual composition. This observation leads us to propose to
develop languages to express properties of aspectual composition
to fill this gap in future work. Note that for unit tests there is gen-
erally no automated technique for checking aspectual composition
(shown by the empty entry in the last row, third column of the ta-
ble), because unit tests are generally not created for testing aspec-
tual composition.

In the rest of the position paper, we present the techniques listed
in Table 1 in more details.

3. TEST-INPUT GENERATION
This section presents challenges and proposed techniques for

generating unit tests and integration tests, respectively. In partic-
ular, unit-test generation needs to address the issue of construct-
ing execution contexts for aspects and we propose to exploit two
existing AspectJ unit testing frameworks and existing Java test-
generation tools. Integration-test generation needs to address the
issue of aspect weaving for test generation: visibility of woven
methods needs to be provided to test-generation tools and unwanted
weaving needs to be avoided. We propose a wrapper mechanism to
address the issue by leveraging existing Java test-generation tools.

3.1 Unit-Test Generation
An aspect can be treated as a class and a piece of advice defined

in the aspect can be treated as a method in the class. Then unit tests
can be generated for the aspect and its advice. In fact, an AspectJ
compiler such as ajc [1,9] compiles aspect source into aspect-class
bytecode and a piece of advice into a method in the class bytecode.

Our techniques [27] generate unit tests for aspects by feeding the
complied aspect classes to existing Java test-generation tools such
as Parasoft Jtest [19], JCrasher [7], Rostra [24], and Symstra [25],
which can generate tests based on Java bytecode. However, these

Unit tests Integration tests

Test-input Aspectual JamlUnit [14], AJTE [29] Aspectra [26]
behavior

generation Aspectual AJTE [29], APTE [2]
composition

Test Aspectual branch cov [26], dataflow cov [30] branch cov [26], dataflow cov [30]
oracles data cov [28], Pipa [31], muJava [15] data cov [28], Pipa [31], muJava [15]

Aspectual interaction cov [26]
composition dataflow cov [30]

pointcut mutation testing [3]

Table 1: Classification of automated testing techniques for aspect-oriented programs

Java test generation tools based on bytecode are not able to generate
meaningful tests for advice methods whose argument types include
JoinPoint or AroundClosure. These two classes belong to As-
pectJ execution contexts and these Java test generation tools cannot
create appropriate objects for these two classes.

To address the issues of constructing meaningful execution con-
texts, we propose to incorporate JamlUnit [14] and automatic mock-
object creation [21]. JamlUnit uses mock objects [17] to emulate
execution contexts such as join points. In particular, JamlUnit pro-
vides some helper classes, which allow developers to carefully con-
struct environments as if certain actual join points in base classes
are reached. Although JamlUnit has not provided features of auto-
matic mock object creation, some existing automatic mock-object
creation techniques [21] can be used in combination with JamlUnit.
Note that these existing techniques capture the execution of existing
tests and replay the executions to create mock objects; therefore,
applying these techniques requires some initial integration tests to
be generated for woven classes (described in the next section) and
the integration-test executions are captured and replayed for creat-
ing mock objects in unit tests.

Another issue of generated unit tests is that the tests invoke meth-
ods (complied from advice) whose names are not human-readable.
This issue makes it difficult for developers to inspect test execu-
tions for correctness (described in Section 4). The AJTE unit test-
ing framework [29] creates a wrapper class for each aspect. For
each piece of advice in the aspect, AJTE creates a method in the
wrapper class; the method name is generated from keywords in the
advice declaration, being more readable than the advice’s method
name compiled by ajc. Although this feature does not improve the
test generation directly, the generated test inputs are more human-
readable. AJTE also creates a method in the wrapper class for each
pointcut. This method checks whether a given joinpoint matches
the pointcut expression. Our APTE [2] approach automatically
generates joinpoints collected from the base classes as arguments
for this method in generated unit tests.

3.2 Integration-Test Generation
To get around the difficulties of constructing execution contexts

for aspects, we can generate integration tests for base classes wo-
ven with the aspects and these integration tests eventually exer-
cise aspectual behavior. In particular, given aspects, developers
can construct appropriate base classes for the aspects and then use
an AspectJ compiler such as ajc [1, 9] to weave aspects into the
constructed base classes to produce woven classes in the form of
bytecode. Then these woven classes can be fed to automatic Java
test-generation tools such as Parasoft Jtest [19], JCrasher [7], Ros-
tra [24], and Symstra [25], which can generate test inputs based on
Java bytecode. However, three issues need to be addressed when

these existing test-generation tools are leveraged to generate test
inputs for AspectJ programs:

• When a piece of advice is related to call join points, the ex-
isting test-generation tools cannot execute the advice during
its test-generation process, because the advice is to be woven
in call sites, which are not available before test generation.

• Although we can use ajc [1, 9] to weave the generated tests
with the aspect classes in order to execute advice related to
call join points, the compilation can fail when the interfaces
of woven classes contain intertype methods and the gener-
ated tests invoke these intertype methods. In addition, weav-
ing the generated test classes with the aspect classes could
introduce unwanted advice into the test classes.

• Public non-advice methods in aspect classes cannot be exer-
cised by the test inputs generated for woven classes, because
woven classes do not have any call sites of these public non-
advice methods.

To address these issues, we have developed the Aspectra ap-
proach [26] to automatically synthesize a wrapper class for each
constructed base class for aspects and then the wrapper class is
fed to existing test-input generation tools for generating integra-
tion tests. In particular, there are six steps for generating test inputs
based on the wrapper mechanism:

1. Compile and weave the base class and aspects into class byte-
code using an AspectJ compiler such as ajc [1, 9].

2. Synthesize a wrapper class for the base class based on the
woven class bytecode. Aspectra synthesizes a wrapper method
for each public method in the base class. This wrapper method
invokes the public method in the base class. In this wrap-
per class, Aspectra also synthesizes a wrapper method for
each public intertype method woven into the base class. This
wrapper method uses Java reflection [4] to invoke the inter-
type method; otherwise, the compilation in the third step can
fail because intertype methods are not recognized by ajc be-
fore compilation. In a similar way, Aspectra also synthe-
sizes a wrapper method for a public non-advice method in
aspect classes. The wrapper method ensures that an inter-
type method or public non-advice method of aspect classes
is tested by existing test-generation tools.

3. Compile and weave the base class, wrapper class, and as-
pects into class bytecode using ajc. This step ensures that the
advice related to call join points is executed during the test-
generation process, because the invocations to the advice are
woven into the call sites (within the wrapper class) of public
methods in the base class.

4. Clean up unwanted woven code in the woven wrapper class.
Aspectra scans the bytecode of the woven wrapper class and

removes the woven code that are for advice related to execution
join points. Note that Aspectra needs to keep the woven code
that are for advice related to call join points.

5. Generate test inputs for the woven wrapper class using ex-
isting test-generation tools based on class bytecode, such as
Parasoft Jtest [19], JCrasher [7], Rostra [24], and Symstra [25].
These tools export generated tests to test code, usually as a
JUnit test class [10].

6. Compile the generated test class into class bytecode using a
Java compiler [4]. Note that we do not use ajc to weave the
exported test class with the wrapper class, base class, or as-
pects, because the weaving process can introduce unwanted
woven code in the test class.

4. TEST SELECTION FOR BEHAVIOR

INSPECTION
After a large number of unit or integration tests are automatically

generated and executed, the correctness of these test executions is
still unknown when there are no specifications for checking their
correctness. But it is infeasible for developers to inspect such a
large number of test executions. This section presents test selec-
tion techniques that select a subset of generated tests for inspection.
These techniques are based on coverage information [32] such as
branch, interaction, dataflow, and data coverage or based on muta-
tion testing [3, 15]. A generated test input is selected if it achieves
new coverage that is not achieved by already selected test inputs
or it kills new mutants that are not killed by already selected test
inputs.

4.1 Branch Coverage
Branch coverage [6] measures whether boolean expressions in

control structures are evaluated to both true and false. Examples
of control structures include if-statement, while-statement, switch-
statement cases, and exception handlers. To determine whether a
test exercises new aspectual behavior, we measure whether the test
covers a previously uncovered branch in aspects of an AspectJ pro-
gram. Branch coverage can be measured at the source code level or
bytecode level. We choose to measure aspectual branch coverage
at the bytecode level because the same piece of source code in as-
pects (e.g., source code in around advice) can be woven into mul-
tiple places in woven bytecode and covering these several places
are often necessary for assuring high quality of the woven code.

When measuring aspectual branch coverage at the bytecode level,
we have faced a couple of complications and developed techniques
to address them in the tool implementation. First, we need to iden-
tify bytecode that is compiled from aspect source code. We scan
the woven bytecode based on some characteristics of the woven
bytecode produced by an AspectJ compiler. In our tool imple-
mentation, we identify a class (in the bytecode form) produced by
ajc [1,9] to be an aspect class if it has a method whose name starts
with “ajc$”. The methods in an aspect class are aspect methods.
Because some new methods of a base class are also created by
ajc for advice such as around advice, we identify a method in a
non-aspect class also to be an aspect method if its name ends with
“$advice”. Then the branches within an aspect method are instru-
mented automatically and their coverage is measured at runtime.
Note that in this research context, a method entry is considered as
one branch; therefore, measuring method coverage is part of mea-
suring branch coverage. By doing so, we can produce meaningful
measurement results when there is no branch in aspect methods.

The second complication is that some branches woven in the
bytecode of an aspect method can be infeasible to cover. We have

inspected uncovered branches measured by our tool and determine
whether some of these uncovered branches are inherently infeasi-
ble to cover. Then we improve our tool to exclude these infeasible
branches for measurement.

4.2 Interaction Coverage
Branch coverage characterizes aspectual behavior but does not

characterize aspectual composition, which is concerned with inter-
action between base classes and aspects. The interactions between
base classes and aspects are primarily through the call sites between
methods in base classes and advice in aspects; we call these call
sites as aspectual interactions. To determine whether a test ex-
ercises new aspectual composition, we measure whether the test
covers a previously uncovered aspectual interaction in an AspectJ
program [26].

In particular, we classify four types of methods in AspectJ pro-
grams: advised methods, advice, intertype methods, and public
non-advice methods. We call advice, intertype methods, and pub-
lic non-advice methods as aspect methods. We particularly focus
on aspectual interactions, which are between advised methods and
aspect methods. An interaction from method m1 to method m2 is
characterized by a call site in m1’s body and this call site invokes
m2. We categorize aspectual interactions into the following two
types:

• from advised methods to aspect methods (in short as advised-

aspect interaction)

• from aspect methods to advised methods (in short as aspect-

advised interaction)

Note that normally a piece of advice is supposed to be woven
into at least one base class; thus, it is supposed to have at least one
advised-aspect interaction. But in practice, a piece of advice may
not have any advised-aspect interaction because of program errors
or other practical reasons. As an extreme case, we may not have
any advised-aspect interaction for an aspect because no aspects can
be woven into provided base classes. Then we may measure the
interaction coverage to be 100% although there is no interaction to
cover at all. To address this issue and reflect the absence of compo-
sition for advice, we add into interaction coverage a special cover-
age: coverage of advice. With the augmented interaction coverage,
we can measure 0% interaction coverage for the preceding extreme
case. This situation is similar to where we consider a method entry
as one branch in measuring branch coverage, as is described in the
previous section.

4.3 Dataflow Coverage
Data flow testing [8, 12, 20] mainly focuses on testing the value

assignment of each variable in a program by executing sub-paths
from the assignment (definition) to some program points in which
the variable is used (use). A def-use pair of a variable v is an order
pair (d, u) where d is a statement having a definition of v and u is
a statement having a use of v, or some memory location bound to
v, that can be reached by d over some path in the program. A test
covers a def-use pair if the execution of the test leads to traversal
of a subpath from the definition to the use without any interven-
ing redefinition of that memory location [8]. Dataflow coverage is
used to select tests that cover new def-use pairs that have not been
covered by previously selected tests.

Our test selection techniques support dataflow testing of aspects
at three levels [30]. In each aspect, a module can be a piece of
advice, an intertype method, or a normal method. We perform
three levels of testing for an aspect: intra-module, inter-module,
and intra-aspect testing. For an individual module such as a piece

of advice, an intertype method, and a normal method, we perform
intra-module testing. For a public module along with other mod-
ules that it calls in an aspect, we perform inter-module testing. For
modules that can be accessed outside the aspect and can be invoked
in any order by users of the aspect, we perform intra-aspect testing.

We use dataflow coverage to select particular def-use pairs within
an aspect to cover. Corresponding to the three levels of testing for
an aspect, we compute three types of def-use pairs: intra-module,
inter-module, and intra-aspect def-use pairs for the aspect under
test. We can define these three types of def-use pairs regarding an
aspect by adapting the idea proposed by Harrold and Rothermel [8],
which originally defined def-use pairs for testing of classes.

4.4 Data Coverage
Sometimes a program fault in an aspect can be value-sensitive:

two test inputs may exercise the same path within the faulty aspect
and one test input can expose the fault in the aspect but the other
test input cannot. Recently bounded-exhaustive testing [16] has
been proposed to test a program, especially one that has structurally
complex inputs. Bounded exhaustive testing tests a program on all
valid inputs up to a given bound. Basically bounded-exhaustive
testing can be considered as a technique that adopts data cover-

age [18] and we can apply data coverage in selecting tests for test-
ing aspectual behavior [28]: if a test covers a previously uncovered
input-data value of advice or intertype method in aspects, then this
test is selected.

There are two major problems to be addressed when we measure
data coverage for AspectJ programs. One is to identify which meth-
ods belong to aspects and the other is to characterize input-data
values for these methods because input-data values can involve the
states of receiver objects and arguments. To address the first prob-
lem, similar to the techniques presented in Section 4.1, we identify
two types of aspect methods in AspectJ programs: advice and in-
tertype methods in aspect classes. To address the second problem,
we represent each aspect-method execution with the actual method
that was executed and a representation of the state (reachable from
the receiver object and method arguments) at the beginning of the
execution. We call such a state method-entry state.

4.5 Mutation Testing
To help select tests with respect to aspectual behavior, we per-

form mutation testing of the source code in aspects. We propose
to leverage the existing Java mutation testing tool such as mu-
Java [15]. Because muJava cannot directly analyze aspect code, we
first refactor the body of each advice method or intertype method
into a static method defined in another newly created normal Java
class, and replace the advice or intertype method body with a call
to the static method. Then we apply muJava on the newly created
normal Java class, which includes the bodies of the statements orig-
inally defined in aspects. The resulting mutants together with the
refactored aspect code can be used to perform mutation testing of
aspect code.

To help select tests with respect to aspectual composition, we
perform pointcut mutation testing [3], which requires generation of
effective mutants, i.e., variations of the pointcut expression that re-
semble closely the original pointcut expression. We have developed
a tool that serves the following purposes: generating relevant mu-
tants and detecting equivalent mutants. Relevant mutants are those
that are relevant to the original pointcut and resemble closely the
original pointcut without being arbitrary strings. Equivalent mu-
tants are those that are pointcut mutants that match the same set
of join points as the original pointcut. In particular, our tool identi-
fies join points that are matched by a pointcut expression, generates

mutants of this pointcut expression, and identifies join points that
are matched by these mutants. The mutants’ matched join points
are then compared with those of the original pointcut and these mu-
tants are classified as different types of mutants for selection. When
more than one mutant has the same set of join points, we select the
mutant with the longest expression (in string length) for that par-
ticular set of join points. The classified mutants are ranked using
a string similarity measure to help the developer choose a mutant
that resembles closely the original pointcut. The developer could
use designed test data (for the woven classes produced by aspect
weaving) along with these mutants to perform mutation testing of
pointcuts.

5. RUNTIME BEHAVIOR CHECKING WITH

SPECIFICATIONS
In previous sections, we discussed ways for automated genera-

tion of unit and integration tests and selection of generated tests
based on coverage information. However, manual effort is still
needed to inspect the executions of the selected tests for correct-
ness. In this section, we discuss how to check runtime program
behavior (in particular, aspectual behavior) by further developing a
behavioral interface specification language called Pipa for AspectJ.
Developers can write Pipa specifications as test oracles for the as-
pects under test and use a runtime assertion checker to check the
correctness of test executions.

Pipa [31] is a formal behavioral interface specification language
(BISL) tailored to AspectJ. Pipa is a simple and practical exten-
sion to the Java Modeling Language (JML), a BISL for Java. Pipa
uses the same basic approach as JML to specify AspectJ classes
and interfaces, and extends JML, with just a few new constructs, to
specify aspects. Pipa specifies both the syntactic interface and the
behavior of aspects. The syntactic interface of an aspect consists
of the signatures of its advice, intertype methods, normal methods,
and the names and types of its fields. The behavior is specified in
assertions, given as pre- and postconditions and aspect invariants.
Pipa allows assertions (pre- and postconditions and aspect invari-
ants) to be specified for aspects. The predicates in Pipa are written
using regular AspectJ expressions extended with logical operators
and universal and existential quantifiers. Pipa specifications are ex-
pressed as special comments in AspectJ interface definitions, fol-
lowing “//@” or enclosed between “/**@” and “*/”.

Pipa can be used as a tool for describing test oracles during test-
ing of aspects. Our approach uses specifications as test oracles and
Pipa is used to write such specifications. The specification of an
aspect describes what the aspect does but not how it does. Each
aspect under test is assumed to be annotated with Pipa assertions,
such as pre- and postconditions, and aspect invariants, which de-
scribe the aspectual behavior of the aspect. We propose to develop
a runtime assertion checker for Pipa, which can be used to detect
assertions violations at runtime and to interpret them as either test
successes or failures during the testing process.

6. CONCLUSION
Automated software testing helps reduce manual testing effort

in aspect-oriented software development. We have proposed our
perspectives on automated testing of aspect-oriented programs. We
classify automated testing techniques based on three dimensions:
testing aspectual behavior or aspectual composition, unit tests or
integration tests, and test-input generation or test oracles. We have
illustrated various techniques including test-input generation, test
selection based on coverage information and mutation testing, and
runtime behavior checking with specifications.

Many techniques and tools that we have developed are based
on leveraging existing Java tools to test aspect-oriented programs
such as AspectJ programs because Java bytecode produced by an
AspectJ compiler [1, 9] can often be analyzed or tested by existing
Java testing tools. However, due to the specific features in aspect-
oriented programs, sometimes we cannot directly apply these Java
testing techniques or tools to test aspect-oriented programs. In such
cases, we create some new wrappers or other mechanisms to enable
us to leverage existing Java testing tools.

On the other hand, although much work has been done for test-
ing aspect-oriented programs, there are still many open problems
in this area. For example, how to develop a systematic approach
for integration testing of aspect-oriented programs? How to empir-
ically evaluate the existing testing techniques for aspect-oriented
programs? How to develop an efficient benchmark suite that is suit-
able for evaluating existing testing techniques and tools for aspect-
oriented programs? Moreover, the role of static analysis techniques
(such as program slicing [23]) should also be investigated in sup-
porting automated testing of aspect-oriented programs.

7. REFERENCES
[1] AspectJ compiler 1.2, May 2004.

http://eclipse.org/aspectj/.

[2] P. Anbalagan and T. Xie. APTE: Automated pointcut testing
for AspectJ programs. In Proc. 2nd Workshop on Testing

Aspect-Oriented Programs, pages 27–32, July 2006.

[3] P. Anbalagan and T. Xie. Efficient mutant generation for
mutation testing of pointcuts in aspect-oriented programs. In
Proc. 2nd Workshop on Mutation Analysis, pages 51–56,
November 2006.

[4] K. Arnold, J. Gosling, and D. Holmes. The Java

Programming Language. Addison-Wesley Longman
Publishing Co., Inc., 2000.

[5] L. Baresi and M. Young. Test oracles. Technical Report
CIS-TR-01-02, University of Oregon, Dept. of Computer and
Information Science, Eugene, Oregon, U.S.A., August 2001.

[6] B. Beizer. Software Testing Techniques. International
Thomson Computer Press, 1990.

[7] C. Csallner and Y. Smaragdakis. JCrasher: an automatic
robustness tester for Java. Software: Practice and

Experience, 34:1025–1050, 2004.

[8] M. J. Harrold and G. Rothermel. Performing data flow testing
on classes. In Proc. 2nd ACM SIGSOFT Symposium on

Foundations of Software Engineering, pages 154–163, 1994.

[9] E. Hilsdale and J. Hugunin. Advice weaving in AspectJ. In
Proc. 3rd International Conference on Aspect-Oriented

Software Development, pages 26–35, 2004.

[10] JUnit, 2003. http://www.junit.org.

[11] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In Proc. 11th European Conference on

Object-Oriented Programming, pages 220–242. 1997.

[12] J. W. Laski and B. Korel. A data flow oriented program
testing strategy. IEEE Trans. Software Eng., 9(3):347–354,
1983.

[13] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design
of JML: A behavioral interface specification language for
Java. Technical Report TR 98-06i, Department of Computer
Science, Iowa State University, June 1998.

[14] C. V. Lopes and T. Ngo. Unit testing aspectual behavior. In
Proc. 1st Workshop on Testing Aspect-Oriented Programs,
March 2005.

[15] Y.-S. Ma, J. Offutt, and Y. R. Kwon. MuJava: an automated
class mutation system. Softw. Test. Verif. Reliab.,
15(2):97–133, 2005.

[16] D. Marinov and S. Khurshid. Testera: A novel framework for
automated testing of java programs. In Proc. 16th IEEE

International Conference on Automated Software

Engineering, pages 22–31, 2001.

[17] Mock objects, 2004. http://www.mockobjects.com.

[18] P. Netisopakul, L. J. White, J. Morris, and D. Hoffman. Data
coverage testing of programs for container classes. In Proc.

13th International Symposium on Software Reliability

Engineering, pages 183–194, November 2002.

[19] Parasoft. Jtest manuals version 4.5. Online manual, April
2003. http://www.parasoft.com/.

[20] S. Rapps and E. J. Weyuker. Selecting software test data
using data flow information. IEEE Trans. Softw. Eng.,
11(4):367–375, 1985.

[21] D. Saff and M. D. Ernst. Automatic mock object creation for
test factoring. In Proc. Workshop on Program Analysis for

Software Tools and Engineering, pages 49–51, June 2004.

[22] P. Tarr, H. Ossher, W. Harrison, and J. Stanley M. Sutton. N
degrees of separation: multi-dimensional separation of
concerns. In Proc. 21st International Conference on Software

Engineering, pages 107–119, 1999.

[23] M. Weiser. Program slicing. In Proc. 5th International

Conference on Software Engineering, pages 439–449, 1981.

[24] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for
detecting redundant object-oriented unit tests. In Proc. 19th

IEEE International Conference on Automated Software

Engineering, pages 196–205, Sept. 2004.

[25] T. Xie, D. Marinov, W. Schulte, and D. Noktin. Symstra: A
framework for generating object-oriented unit tests using
symbolic execution. In Proc. the International Conference

on Tools and Algorithms for the Construction and Analysis

of Systems, April 2005.

[26] T. Xie and J. Zhao. A framework and tool supports for
generating test inputs of AspectJ programs. In Proc. 5th

International Conference on Aspect-Oriented Software

Development, pages 190–201, March 2006.

[27] T. Xie, J. Zhao, D. Marinov, and D. Notkin. Automated test
generation for AspectJ program. In Proc. 1st Workshop on

Testing Aspect-Oriented Programs, March 2005.

[28] T. Xie, J. Zhao, D. Marinov, and D. Notkin. Detecting
redundant unit tests for AspectJ programs. In Proc. 17th

IEEE International Conference on Software Reliability

Engineering, pages 179–188, November 2006.

[29] Y. Yamazaki, K. Sakurai, S. Matsuura, H. Masuhara,
H. Hashiura, and S. Komiya. A unit testing framework for
aspects without weaving. In Proc. 1st Workshop on Testing

Aspect-Oriented Programs, March 2005.

[30] J. Zhao. Data-flow-based unit testing of aspect-oriented
programs. In Proc. 27th IEEE International Computer

Software and Applications Conference, pages 188–197, Nov.
2003.

[31] J. Zhao and M. Rinard. Pipa: A behavioral interface
specification language for AspectJ. In Proc. 6th International

Conference on Fundamental Approaches to Software

Engineering, pages 150–165, April 2003.

[32] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test
coverage and adequacy. ACM Comput. Surv., 29(4):366–427,
1997.

