Visualizing Path Exploration to Assist Problem
Diagnosis for Structural Test Generation

Jiayi Cao', Angello Astorga!, Siwakorn Srisakaokul', Zhengkai Wu', Xueqing Liu!, Xusheng Xiao?, Tao Xie'
'University of Illinois at Urbana-Champaign, 2Case Western Reserve University
Email: {jcao7,aastorg2,srisaka2,zw3,x1iu93,taoxie} @illinois.edu, xusheng.xiao@case.edu

Abstract—Dynamic Symbolic Execution (DSE) is among the
most effective techniques for structural test generation, i.e., test
generation to achieve high structural coverage. Despite its recent
success, DSE still suffers from various problems such as the
boundary problem when applied on various programs in practice.
To assist problem diagnosis for structural test generation, in this
paper, we propose a visualization approach named PexViz. Our
approach helps the tool users better understand and diagnose
the encountered problems by reducing the large search space
for problem root causes by aggregating information gathered
through DSE exploration.

I. INTRODUCTION

Dynamic Symbolic Execution (DSE) [1]-[3] is among the
most effective techniques for structural test generation [4].
DSE collects the constraints on inputs from executed branches
to form path conditions and flips constraints in the path
conditions to obtain new path conditions for exploring new
paths and achieving high structural coverage. However, users
of DSE-based tools such as Pex [5]-[7] often experience
various categories of problems [8]-[11] while applying the
tools on various programs in practice. One major category of
problems is the boundary problem: when covering a branch
in the program under test requires a large number of explored
paths, DSE may not be able to cover such branch due to in-
sufficiency of its default exploration-resource allocation (such
as the maximum number of explored paths allocated to path
exploration). Such problem often occurs for a program under
test containing loops [12] or complex string operations [13].

When such problem arises, the DSE-based tools present
little information about the problem root cause, leaving the
users in the dark. Furthermore, there is little visual (i.e., easy
to digest) guidance readily available to solve the problem
effectively. The lack of guidance is especially troublesome
given that the tools do not scale well when the number of
problems increases. As a result, the time needed to investigate
the problem root cause is prohibitive.

To address such issue, in this paper, we propose a visu-
alization approach named PexViz. Our approach helps the
tool users better understand and diagnose the encountered
problems by reducing the large search space for problem
root causes by aggregating information gathered through DSE
exploration. In particular, our approach provides visualization
to summarize the path-exploration results by collapsing re-
dundant exploration results through a Variant Control Flow

978-1-5386-4235-1/18/$31.00 ©2018 IEEE

Graph (VCFG) (a CFG with its nodes being reduced to only
those corresponding to branch statements) and then encoding
information gathered from the DSE process on top of the
VCFG. By iteratively interacting with the resulting graph,
the users of a DSE-based tool can navigate through relevant
information when diagnosing the encountered problems. We
implement our approach as an extension to IntelliTest (derived
from Pex [5]-[7]), an industrial test generator available in
Visual Studio 2015/2017, and a significant improvement over
an existing state-of-the-art visualization approach, SEViz [14].

II. PEXV1zZ APPROACH

Our PexViz approach consists of three components:
the Variant Control Flow Graph (VCFG) generator, the
exploration-data augmentor, and the graph visualizer. The
VCFG generator reads the program source code and trans-
forms it into a VCFG representation, with an example shown
in Figure 2. In a VCFG, a typical node corresponds to a
branch statement in the program source code, and a directed
edge between the starting node and the ending node indicates
the control flow from the branch statement represented by
the starting node to the branch statement represented by the
ending node. The exploration-data augmentor is invoked by the
IntelliTest exploration runtime and gathers useful information
to augment the VCFG. Example information includes incre-
mental path condition, being the predicate gathered from the
branch statement corresponding to the current VCFG node,
and flip count, being the count of flipping the constraint
gathered from the incremental path condition of the current
VCFG node. Finally, the graph visualizer reads the output
VCFG and generates an interactive visualization front-end to
present information to the users. We next illustrate the details
of the graph visualizer, with a modified BubbleSort example.

A. Graph Visualizer

The graph visualizer includes the visualization front-end
to display the VCFG graph and information on it, with an
example shown in Figure 2. In particular, to improve the
guidance provided by the visualization result, we present an
interactive graph with rich information to help the users. We
use different colors and shapes to encode the information
that the VCFG nodes contain and to help the users easily
differentiate the different situations represented by the VCFG
nodes. In the graph, each VCFG node represents one branch
statement from the source code. We extract and use the

Boolean predicate within the branch statement as the label for
the VCFG node so that the users can quickly identify which
line of code the branch statement belongs to. In case there are
the same or similar branch conditions from the source code
for multiple VCFG nodes, the users can click on each VCFG
node to see the actual line number of the branch statement in
the source code. Flip count is also shown on the VCFG node’s
label for convenience because it is an informative statistic in
DSE exploration. The VCFG edges in the graph represent the
execution flow of the program from one branch statement to
another. Self edges and back edges are possible as well to
indicate loops. The arrows on the VCFG edges indicate the
direction of the execution flow. It is possible to have two-
way VCFG edges between VCFG nodes. According to the
data gathered in the exploration-data augmentor, the graph
visualizer renders the information into filled colors, text labels,
and textual data. In particular, the following information is
visualized:

« Shape. A rectangle represents a VCFG node for a branch
statement in the source code while a circle represents a
utility VCFG node, such as an entry point.

o Filled color. (1) White represents that the incremental
path condition in the VCFG node does not contain sym-
bolic variables. White indicates lower inspection priority.
(2) Green represents that the incremental path condition
contains symbolic variables and has been reached at least
once during the DSE exploration. Green is a safe color
to indicate less threat to achieving code coverage. (3)
Orange represents an un-flipped constraint from an in-
cremental path condition that contains symbolic variables.
Orange is a warning color to indicate a threatening factor.
(4) Red represents an unreached branch statement during
the DSE exploration. Red indicates a serious situation
deserving attention. (5) Blue represents a utility VCFG
node, such as an entry node, which is a node that does
not come from the source code.

B. Example

Figure 1 shows a code snippet adapted from a bubble
sort method in the open source DSA project (https://archive.
codeplex.com/?p=dsa). We run IntelliTest with default settings
on the code snippet and obtain 11/14 block coverage. The
IntelliTest console result indicates that 122 paths have been
explored until IntelliTest stops because of reaching the timeout
boundary, and IntelliTest generates 6 inputs that cover different
blocks, along with 2 inputs that trigger exceptions.

The tool users can investigate the corresponding PexViz
graph as shown in Figure 2. There are 6 VCFG nodes in
the PexViz graph, which has 97.8% fewer nodes than the
276 nodes from the SEViz [14] graph (not shown here due
to space limit). The users can start examining the PexViz
graph from the blue entry VCFG node. The users can directly
observe the clear correspondence between VCFG nodes and
branch statements through the VCFG node labels. Thus, such
mechanism saves the users navigation time in contrast to
clicking through each of the 276 nodes in the SEViz graph.

}

13 = public veid BubbleSort(int[] number, int n)
14 {

15 int count = @;

16 = for (int 1 = @; i < number.Length;i++)
17 {

18 count++;

19 = for (int § = @;3 < njj++)

26 {

21 = if (number[i] > n)

22

23 int temp = number[j];

24 number[§] = number[j + 1];
25 number[j + 1] = temp;

26 1

27 = if(count == 5)

28 {

29 count = @;

30 }

31 }

32 }

33

34 = if (number.Length > 288)

35

36 throw new Excepticn("bug");

37 }

38 1

39 }

46

Fig. 1: A code snippet of modified BubbleSort where a
boundary problem is faced

PexViz

number Length > 2000

Loop

true
False ik

True Loop

True

Fig. 2: PexViz visualization on on running IntelliTest against
the modified BubbleSort

The orange VCFG node showing 0 flip count immediately
draws the users’ attention with distinct color compared to all
other VCFG nodes’ colors. According to the orange VCFG
node’s label, the condition is expected to be evaluated to
“True” if the length of the number array is larger than 200.
To gain further understanding of the reason why the constraint
is not flipped, the users can examine the three neighboring
green VCFG nodes. All three green VCFG nodes have flip
count of around 120. The information on the generated test
inputs that the users can observe after clicking on the three
green VCFG nodes indicates that the array with length larger
than 200 is not created. IntelliTest stops before it is able to
generate an array with length 200; therefore, increasing the
bound of the maximum number of explored paths can be a
solution to the problem. After the users increase the bound,
IntelliTest manages to reach 14/14 (100%) block coverage.
Acknowledgment. This work was supported in part by Na-
tional Science Foundation under grants no. CNS-1513939 and
CNS-1564274.

[1]

[2]

[3]

[5]

[6]

[7]

REFERENCES

C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler,
“EXE: automatically generating inputs of death,” ACM Transactions on
Information and System Security (TISSEC), vol. 12, no. 2, p. 10, 2008.
P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated
random testing,” in Proceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2005), 2005,
pp. 213-223.

K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit testing engine
for C,” in Proceedings of European Software Engineering Conference
Held Jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (ESEC/FSE 2005), 2005, pp. 263—
272.

T. Xie, N. Tillmann, J. de Halleux, and W. Schulte, “Future of developer
testing: Building quality in code,” in Proceedings of the FSE/SDP
Workshop on Future of Software Engineering Research (FOSER 2010),
2010, pp. 415-420.

N. Tillmann and J. De Halleux, “Pex — white box test generation for
NET,” in Proceedings of International Conference on Tests and Proofs
(TAP 2008), 2008, pp. 134-153.

T. Xie, N. Tillmann, J. de Halleux, and W. Schulte, “Fitness-guided
path exploration in dynamic symbolic execution,” in Proceedings of
IEEE/IFIP International Conference on Dependable Systems & Net-
works (DSN 2009), 2009, pp. 359-368.

N. Tillmann, J. De Halleux, and T. Xie, “Transferring an automated
test generation tool to practice: From Pex to Fakes and Code Digger,”

[8]

[9]

[10]

(11]

(12]

[13]

[14]

in Proceedings of ACM/IEEE international conference on Automated
Software Engineering (ASE 2014), 2014, pp. 385-396.

X. Xiao, T. Xie, N. Tillmann, and J. De Halleux, “Covana: Precise
identification of problems in Pex,” in Proceedings of International
Conference on Software Engineering (ICSE 2011), 2011, pp. 1004-1006.
X. Xiao, T. Xie, N. Tillmann, and J. de Halleux, “Precise identification of
problems for structural test generation,” in Proceedings of International
Conference on Software Engineering (ICSE 2011), 2011, pp. 611-620.
S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and Z. Su,
“Synthesizing method sequences for high-coverage testing,” in Proceed-
ings of ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2011),
2011, pp. 189-206.

T. Xie, L. Zhang, X. Xiao, Y. Xiong, and D. Hao, “Cooperative software
testing and analysis: Advances and challenges,” J. Comput. Sci. Technol.,
vol. 29, no. 4, pp. 713-723, 2014.

X. Xiao, S. Li, T. Xie, and N. Tillmann, “Characteristic studies of
loop problems for structural test generation via symbolic execution,” in
Proceedings of IEEE/ACM 28th International Conference on Automated
Software Engineering (ASE 2013), 2013, pp. 246-256.

N. Li, T. Xie, N. Tillmann, J. d. Halleux, and W. Schulte, “Reggae: Auto-
mated test generation for programs using complex regular expressions,”
in Proceedings of IEEE/ACM International Conference on Automated
Software Engineering (ASE 2009), 2009, pp. 515-519.

D. Honfi, A. Voros, and Z. Micskei, “SEViz: A tool for visualizing
symbolic execution,” in Proceedings of IEEE International Conference
on Software Testing, Verification and Validation (ICST 2015), 2015, pp.
1-8.

