
1

Characterizing and Finding System
Setting-Related Defects in Android Apps

Jingling Sun, Ting Su, Kai Liu, Chao Peng, Zhao Zhang, Geguang Pu, Tao Xie, and Zhendong Su

Abstract—Android, the most popular mobile system, offers a number of user-configurable system settings (e.g., network, location, and
permission) for controlling devices and apps. Even popular, well-tested apps may fail to properly adapt their behaviors to diverse
setting changes, thus frustrating their users. However, there exists no effort to systematically investigate such defects. To this end, we
conduct the first large-scale empirical study to understand and characterize these system setting-related defects (in short as “setting
defects”), which reside in apps and are triggered by system setting changes. We devote substantial manual effort (over four
person-months) to analyze 1,074 setting defects from 180 popular apps on GitHub. We investigate the impact, root causes, and
consequences of these setting defects and their correlations. We find that (1) setting defects have a wide impact on apps’ correctness
with diverse root causes, (2) the majority of these defects (≈70.7%) cause non-crashing (logic) failures, and (3) some correlations exist
between the setting categories, root causes, and consequences. Motivated and informed by these findings, we propose two
bug-finding techniques that can synergistically detect setting defects from both the GUI and code levels. Specifically, at the GUI level,
we design and introduce setting-wise metamorphic fuzzing, the first automated dynamic testing technique to detect setting defects
(causing crash and non-crashing failures, respectively) for Android apps. We implement this technique as an end-to-end, automated
GUI testing tool named SETDROID. At the code level, we distill two major fault patterns and implement a static analysis tool named
SETCHECKER to identify potential setting defects. We evaluate SETDROID and SETCHECKER on 26 popular, open-source Android
apps, and they find 48 unique, previously-unknown setting defects. To date, 35 have been confirmed and 21 have been fixed by app
developers. We also apply SETDROID and SETCHECKER on five highly popular industrial apps, namely WeChat, QQMail, TikTok,
CapCut, and AlipayHK, all of which each have billions of monthly active users. SETDROID successfully detects 17 previously unknown
setting defects in these apps’ latest releases, and all defects have been confirmed and fixed by the app vendors. After that, we
collaborate with ByteDance and deploy these two bug-finding techniques internally to stress-test TikTok, one of its major app products.
Within a two-month testing campaign, SETDROID successfully finds 53 setting defects, and SETCHECKER finds 22 ones. So far, 59
have been confirmed and 31 have been fixed. All these defects escaped from prior developer testing. By now, SETDROID has been
integrated into ByteDance’s official app testing infrastructure named FASTBOT for daily testing. These results demonstrate the strong
effectiveness and practicality of our proposed techniques.

Index Terms—Empirical study, System Settings, Android Apps, GUI Testing, Static Analysis

✦

1 INTRODUCTION

Android supports the running of millions of apps nowa-
days. Specifically, a number of user-configurable system set-
tings are offered by the (preinstalled) system app Settings
on Android for controlling devices and apps. For example,
users can change the system language, switch to another
type of network connection, grant or revoke app permis-
sions, or adjust the screen orientation. When these settings
change, an app is expected to correctly adapt its behavior,
and behave consistently and reliably.

However, achieving the preceding goal is challenging.
Even popular, well-tested apps may be unexpectedly af-
fected due to inadequate considerations of diverse setting
changes. For example, WordPress [1], a popular website and

• Jingling Sun, Ting Su, Kai Liu and Geguang Pu are with Shanghai Key
Laboratory of Trustworthy Computing, East China Normal University,
China. Kai Liu worked as a research intern at Bytedance when this work
was conducted. Ting Su and Geguang Pu are the corresponding authors
of this paper.

• Chao Peng and Zhao Zhang are with Product RD & Infrastructure,
Bytedance Network Technology, Beijing, China.

• Tao Xie is with the Key Laboratory of High Confidence Software Technolo-
gies (Peking University), Ministry of Education China.

• Zhendong Su is with Department of Computer Science, ETH Zurich,
Switzerland.

blog management app (which has 10,000,000∼50,000,000
installations on Google Play and 2,600 stars on GitHub),
suffered from two defects triggered by switching to the
airplane mode (a commonly-used setting during traveling).
One defect was triggered when a user turned on the airplane
mode when publishing a new blog post; WordPress was
stuck at the post uploading status even after the user later
turned off the airplane mode and connected to the net-
work [2]. The other defect was triggered when a post-draft
was created under the airplane mode; WordPress constantly
crashed at the next startup [3]. Both defects were labeled as
critical but escaped from pre-release developer testing.

Moreover, these setting defects can be frustrating. For
example, NextCloud [4] is a popular on-premise file-sharing
app (which has 1,000,000∼5,000,000 installations on Google
Play and 2,600 stars on GitHub). A user reported that he
could not use the auto-upload functionality for unknown
reasons [5]. After extended discussion, the developers fi-
nally found that the auto-upload functionality failed be-
cause the power saving mode was turned on. The user
complained that he preferred keeping the power saving on
all day to save battery. To make sure that the auto-upload
functionality would work, he already added NextCloud into
the whitelist of the power saving mode (which allows



Fig. 1. Overview of our study, including three steps: (a) data collection, (b) data analysis, and (c) application.

NextCloud to use battery without any restrictions), but the
functionality still did not work.

Despite these setting defects’ real-world occurrences and
impact, there exists no effort to systematically investigate
these defects in Android apps. For example, prior work
studies only very limited types of system settings (e.g., app
permissions [6], [7] and screen orientation [8]). Thus, we lack
a comprehensive understanding of these setting defects. On
the other hand, state-of-the-art fully-automated GUI testing
techniques [9], [10], [11] cannot effectively detect these set-
ting defects for two major reasons. First, these techniques
usually constrain the testing within the app under test and
thus have no or little chance to detect these defects, which
require interacting with the system app Settings. Second,
these techniques are limited to detecting crash failures [11],
[12], [13] due to the lack of strong test oracles [14], while
many setting defects are non-crashing logic ones that lead
to app freezing, functionality failures, or problematic GUI
display, which our study will demonstrate.

To fill this gap, we conduct the first systematic study to
understand and characterize these setting defects. Specifi-
cally, we aim to investigate the following research questions:

• RQ1 (impact): Do settings defects have a wide impact on
the correctness of apps in the wild?

• RQ2 (root causes): What are their major root causes?
• RQ3 (consequences): What are their common conse-

quences? How do they manifest themselves?
• RQ4 (correlations): Are there any correlations between

setting categories, root causes, and consequences?

Answering these questions can help understand the impact,
root causes, and consequences of these setting defects, and
also benefit bug finding and diagnosing. Specifically, Fig.
1 shows the overview of this study, which contains three
steps. In step (a), we study the Android documentation [15],
[16] to summarize the main setting categories and the key-
words of settings (Section 2.1). We then use these keywords
to mine 1,074 setting defects from the issue repositories of
180 popular Android apps on GitHub (Section 2.2). In step
(b), we carefully study these defects by reviewing the bug
reports and analyzing the root causes, fixes, consequences,
and correlations (Section 2.3), and present the answers to
RQ1∼RQ4 in Section 3. In step (c), informed by the study,
we propose SETDROID and SETCHECKER to help find set-
ting defects in Section 4.

Our study reveals that setting defects have a wide,
diverse impact on the correctness of apps. Specifically, out
of the 180 apps, 171 apps (=95.0%) use at least one setting
option in their code, and 162 apps (=90.0%) have been
affected by setting defects. Further, we distill five major root
causes. Specifically, incorrect callback implementations and lack

of setting checks are the most common ones. We also note that
only a few setting defects (≈2.5%) are caused by the mutual
influence between two settings, while some were device-
specific due to the fast evolution of Android. On the other
hand, setting defects lead to diverse consequences, including
crashes, functionality failures, problematic GUI display, and
disrespect of setting changes. Specifically, the majority of
these defects (≈70.7%) cause non-crashing failures, which
poses a significant challenge on existing fully-automated
GUI testing techniques.

By analyzing the correlations between the setting cat-
egories and their common root causes and consequences,
we find that the setting defects from all setting categories
could lead to non-crashing failures. Moreover, the lack of
setting checks is the most common root cause for almost
all setting categories. This finding inspires us to use static
analysis to detect such defects by summarizing code-level
fault patterns. On the other hand, we find that almost all
setting defects manifest themselves on the GUI pages. This
finding inspires us to find setting defects via black-box GUI-
level testing. In all, these correlations offer us a deep under-
standing of setting defects and useful insights for designing
effective bug-finding techniques (detailed in Section 3.4).

Specifically, guided by the preceding findings, we pro-
pose setting-wise metamorphic fuzzing, the first automated
testing approach at the GUI level to effectively detect setting
defects without requiring explicit oracles. Our key insight
is that an app’s behavior should, in most cases, remain
consistent if a given setting is changed and later properly
restored, or exhibit expected differences if not restored. We
realize our approach in SETDROID, an automated, end-to-
end GUI testing tool, for detecting both crashing and non-
crashing setting defects. We apply SETDROID on 26 popu-
lar, open-source Android apps. SETDROID has successfully
discovered 42 unique, previously-unknown setting defects.
So far, 31 have been confirmed and 20 fixed by the devel-
opers. We further apply SETDROID on five highly popular
industrial apps that each have billions of monthly active
users worldwide, i.e., WeChat [17] and QQMail [18] from
Tencent, TikTok [19] and CapCut [20] from ByteDance, and
AlipayHK [21] from Alibaba. In these apps’ latest releases,
SETDROID successfully finds 17 setting defects, all of which
have been confirmed and fixed by the app vendors. The
majority of all these setting defects (49 out of 59) cause
non-crashing failures, which cannot be detected by existing
fully automated dynamic testing tools (corroborated by our
evaluation in Section 5).

Further, we distill two major fault patterns (tackling
the major root cause, i.e., lack of setting checks) at the code
level, and build a static analysis tool named SETCHECKER

2



to identify potential setting defects. We apply SETCHECKER
on the same 26 open source apps tested by SETDROID.
SETCHECKER successfully finds 17 unique, previously-
unknown setting defects, 6 of which have not been found
by SETDROID. So far, 4 have been confirmed and 1 fixed by
the developers. The result shows that SETCHECKER can syn-
ergistically complement SETDROID. We give a more detailed
analysis on SETDROID and SETCHECKER in Section 5.5.

Afterward, we collaborate with ByteDance and deploy
SETDROID and SETCHECKER internally to help find set-
ting defects in TikTok, another major app product from
ByteDance with billions of monthly active users worldwide.
Within a two-month testing campaign, SETDROID success-
fully finds 53 setting defects. To date, 48 of them have been
confirmed, and 20 have been fixed. On the other hand,
SETCHECKER successfully detects 22 defects. To date, 11
have been confirmed and fixed. By now, SETDROID has
been integrated into ByteDance’s official app testing infras-
tructure named FASTBOT [22], [23]. These results clearly
demonstrate the strong effectiveness and practicality of our
techniques. In summary, this article makes the following
major contributions:

• We conduct the first systematic study on setting defects
to understand and characterize their impact, root causes,
consequences, and correlations.

• Informed by this study, we propose two bug-finding
techniques to detect setting defects. At the GUI level,
we introduce setting-wise metamorphic fuzzing, the first
automated GUI testing technique to effectively detect
setting defects. At the code level, we distill two major fault
patterns and use static analysis to find setting defects.

• We implement the two bug-finding techniques as two
tools namely SETDROID and SETCHECKER, respectively.
SETDROID and SETCHECKER have revealed 48 setting
defects in 26 open-source apps and 92 defects in five
industrial apps. The majority of these defects cause non-
crashing failures and could not be detected by existing
testing tools. Our evaluation also shows that SETDROID
and SETCHECKER outperform prior techniques and com-
plement each other in finding setting defects.

• We have made our tools and dataset publicly available
at https://github.com/setting-defect-fuzzing/home, to facili-
tate the replication of our work as well as the future
research in this direction.

In an earlier version [24] of the work in this article,
we studied the setting defects in Android apps and de-
veloped the setting-wise metamorphic testing tool named
SETDROID. In this article, we have made substantial ex-
tensions in six aspects. (1) We investigate the correlations
between the setting categories and their root causes and
consequences (corresponding to the new research question
RQ4). Based on this analysis, we obtain some new observa-
tions and insights, which were not identified by our prior
work (see Section 3.4). Based on the correlation analysis, we
find that the setting defects from some setting categories
are more suitable for static analysis than dynamic analysis.
(2) We propose two generic optimizations for SETDROID in
terms of testing efficiency and precision (see Section 4.1.4).
To improve the efficiency of SETDROID, we use static analy-
sis to identify and run only relevant setting changes against

the app under test. This optimization reduces 15.4∼84.6%
of testing time. To improve the precision of SETDROID, we
analyze the reasons of false positives and reduce one major
type of false positive related to the language setting. This
optimization reduces the prior false positive rate from 80.8%
to 19.4%. We confirm that both optimizations do not incur
any false negatives. (3) Informed by the answers to RQ4,
we develop a static analysis tool named SETCHECKER to
help find setting defects. Specifically, we summarize two
major fault patterns and use control/data-flow analysis to
find setting defects at the code level (see Section 4.2). (4)
We evaluate the effectiveness of SETCHECKER on 26 apps
(see Section 5.3), and compare SETCHECKER with other
static analysis tools (see Section 5.4). SETCHECKER finds 6
new setting defects, which were not found by SETDROID;
SETCHECKER also outperforms other static analysis tools in
finding setting defects. We further compare and analyze the
effectiveness of SETDROID and SETCHECKER in Section 5.5
(corresponding to the new research question RQ7). Indeed,
SETDROID and SETCHECKER can complement each other.
(5) We collaborate with ByteDance and apply SETDROID
and SETCHECKER internally to test TikTok, one major app
product of ByteDance. SETDROID and SETCHECKER suc-
cessfully find 53 and 22 setting defects, respectively, which
escaped from developer testing. SETDROID has been inte-
grated into ByteDance’s official app testing infrastructure
named FASTBOT. (6) We open-source our tools and dataset
at https://github.com/setting-defect-fuzzing/home, to facilitate
the replication of our work and motivate the future research
in this direction.

2 EMPIRICAL STUDY METHODOLOGY

This section presents how we prepare the dataset for our
empirical study and how we analyze them to answer our
research questions.

2.1 Summarizing Setting Categories

To systematically summarize the setting categories, we in-
spect the Android documentation [15], [16] and the main-
stream Android systems (Android 7.1, 8.0, 9.0, and 10.0).
We finally identify 9 major setting categories. Further, we
summarize (1) the commonly used keywords to denote the
settings in these categories; these keywords are used by
the bug-report collection in Section 2.2; and (2) the specific
Android SDK APIs (including classes, methods, or variables)
used by or related to these setting categories; these APIs
are used by the impact analysis in Section 2.3. Table 1
lists these 9 major setting categories. The column “Setting
Categories” lists the category names of these settings as
classified by Android, “Keywords” gives the commonly used
keywords to denote the settings within these categories, and
“Description” summarizes their main functionalities.

2.2 Collecting Bug Reports of Setting Defects

We follow the following three steps to collect valid bug
reports of setting defects.

3

https://github.com/setting-defect-fuzzing/home
https://github.com/setting-defect-fuzzing/home


TABLE 1
List of 9 major setting categories summarized by our study including their levels, keywords, and brief descriptions.

Setting
Categories

Keywords Description

Network and
connect

Bluetooth, WLAN, NFC, internet, network,
hot-spot, mobile, wifi, airplane

Manage the device’s network mode (WiFi, mobile data or airplane mode), and the
connection with other devices (such as Bluetooth).

Location and
security

location, device only, phone only, GPS, high
accuracy, screen lock, fingerprint

Manage the device’s security settings (e.g., how to unlock screen), location setting
(turning on/off device location) and three location modes: high accuracy (using the
network and GPS), battery saving (using the network), and device only (using GPS).

Sound vibrate, ringtone, do not disturb, slient Manage the device’s sound-related options (e.g., the “do not disturb” mode can
completely mute the device).

Battery power save, battery Manage the power saving mode and the list of apps that are not restricted by the power
saving mode (the power saving whitelist).

Display
orientation, vertical, horizontal, split screen,
Multi-window, screen resulotion, brightness,
landscape, portrait, rotate

Manage the device’s display settings (e.g., screen brightness and font size) and screen
orientation settings (e.g., whether to allow the device to rotate the screen).

Apps and
notifications

permission, disable, notification Manage the runtime permissions of apps and whether they can push notifications to
users.

Developer developer option, keep activity A number of advanced settings to simulate specific running environment (e.g., enable
“Force RTL (right to left) layout direction”).

Accessibility accessibility, talkback, text-to-speech, color cor-
rection, color inversion, high contrast text

Customize the device to be more accessible, e.g., adjusting the contrast of UI interface
and opening the screen reader.

Other Set-
tings

setting, preference, date, time, time zone, hour
format, date&time, reading mode, car mode,
one-handed mode, dark mode, game mode,
night mode, theme, language

Users can change the languages, the way that they input, the system time, the time
zone and hour format (24-hour or 12-hour format), and the themes.

Fig. 2. Characteristics of the 180 apps under study.

2.2.1 Step 1: App Collection
We choose open-source Android apps on GitHub as our
study subjects because we can view their source code, defect
descriptions, reproducing steps, fix patches, and discus-
sions. Specifically, we collect the app subjects as follows.
• We use GitHub’s REST API [25] to crawl all the Android

projects on GitHub. We focus on the apps that are released
on Google Play and F-Droid, the two popular Android
app markets. Because these apps can receive feedback
from real users and thus are usually well maintained. We
attain 1,728 Android projects.

• To focus on those projects that contain enough bug reports
for our study, we keep only the projects with over 200
closed bug reports. We then attain 215 Android projects.

• We manually inspect each project and exclude the ones
that are not real apps (e.g., some projects are simple demo
apps to illustrate third-party Android libraries). Finally,
we attain 180 Android apps as our study subjects.

Fig. 2 shows the characteristics of the 180 apps in terms of
the number of stars and issues (i.e., bug reports) on GitHub,
the installations on Google Play, and the app categories. We
can see that these apps are popular and diverse, serving as
a solid basis for our analysis.

2.2.2 Step 2: Bug-report Collection
From the 180 apps, we attain 177,769 bug reports in total.
To collect bug reports for our study, we use three sets of

keywords to filter bug reports. When a bug report contains
at least one keyword from each of these three keyword sets,
we select the bug report to include in our study.
• Setting keywords: A bug report within our study scope

should contain at least one of the setting keywords listed
in Table 1. For each keyword, we consider the possible
forms that users may use (e.g., capitalization, abbrevia-
tions, and tenses). For example, users may use “power
saving” to represent “power save”.

• Defect/failure keywords: We focus on the bug reports that
describe real app defects/failures rather than feature re-
quests or documentation issues. Thus, we use the key-
words of “crash”, “exception”, “bug”, and “issue” to filter
bug reports.

• Reproducing keywords: To facilitate bug-report analysis,
we focus on the bug reports that contain the reproduc-
ing steps. We use the keywords of “repro”, “STR”, and
“record” to filter bug reports. These reproducing steps are
important, helping us understand and confirm whether a
bug report indeed reflects a setting defect.

Finally, we attain 11,656 bug reports within our study scope.

2.2.3 Step 3: Dataset Construction
To answer RQ1, RQ2, and RQ3, we manually inspect the
11,656 bug reports from the previous step, and keep only
the valid bug reports by the following rules:
• We retain only the bug reports where the reporters or

developers make clear statements that changing system
settings is a necessary condition for triggering the failures.
For example, we exclude the bug reports that just mention
settings.

• When we do not have clear clues from bug reports, we
reproduce the failures to confirm whether they reflect
setting defects. To reproduce the failures, we need to
obtain the corresponding app versions. If the app versions
are no longer available on the app markets (Google Play or
F-Droid), we will check whether the app’s GitHub repos-
itory releases the corresponding app versions. Otherwise,
we will pull the corresponding version of source code and

4



manually build the app. We reproduce the failures based
on the steps described in the corresponding bug reports.

Finally, we successfully attain 1,074 valid bug reports as
the dataset for our subsequent analysis. Among these bug
reports, 482 are closed and linked with code-fixing commits.

2.3 Analysis Methods for Research Questions

This section details the analysis methods used to answer
the research questions. Note that, to avoid omissions and
misclassifications in answering RQ1, RQ2, and RQ3, four
co-authors participate in the process for data collection,
classification, manual analysis, and cross-checking.

2.3.1 Analysis Method of RQ1

To answer RQ1, we focus on the 180 apps collected from
GitHub and investigate (1) the usage of settings in the apps,
i.e., which apps use which setting categories; and (2) the
impact of setting defects against the apps, i.e., which apps
are ever affected by which setting defects.

To investigate the usage of settings, we use static analy-
sis to analyze whether an app uses specific APIs (classes,
methods, or variables) of each setting category (summa-
rized in Section 2.1) in its code. We observe that this
method is feasible and reliable because using these spe-
cific APIs is the only way for an app to access settings.
For example, apps use the class ConnectivityManager
to query the network connectivity, and get notified
when the network connectivity changes; apps use method
checkSelfPermission to check whether specific per-
missions have been granted; apps use the system vari-
able Settings.System.SCREEN_BRIGHTNESS to read
the current screen brightness. Thus, we use these classes,
methods, or variables to determine which setting category
is used by an app. We give the complete list of these APIs of
each setting category used in this study on the web page of
our supplementary materials [26]. To investigate the impact
of setting defects, we focus on the 1,074 setting defects
collected from the 180 apps. We inspect how many apps
out of the 180 apps were affected by these setting defects
and which setting categories these setting defects belong to.

2.3.2 Analysis Method of RQ2

To answer RQ2, we focus on analyzing the setting defects
in the 482 fixed bug reports out of the 1,074 valid bug
reports. We study the fixed bug reports, including developer
comments and code fixes, to understand the setting defects’
root causes. If necessary, we also refer to Android documen-
tation [15] or Stack Overflow [27] to find more clues.

Specifically, two co-authors first work on a common set
of bug reports to identify the root causes based on (1) the
causes behind these setting defects and (2) the defect-fixing
strategies. Then, the two co-authors discuss together with
the other co-authors to reach the consensus on the initial
categories. After that, the four co-authors work separately
on the remaining bug reports to classify the root causes.
They discuss and cross-check together when the categories
need to be updated (e.g., add, merge, or modify categories).

2.3.3 Analysis Method of RQ3

To answer RQ3, we focus on all the 1,074 valid bug reports.
We study these bug reports to determine the consequences.
If necessary, we reproduce the failures to observe the conse-
quences (Section 2.2.3 describes the reproduction process).

Specifically, similar to the analysis on root causes, the
two co-authors first work on a common set of bug reports to
identify the consequences. Then, the two co-authors discuss
together with the other co-authors to reach a consensus
on the initial categories. After that, the four co-authors
work separately on the remaining bug reports to classify
the consequences. They discuss and cross-check together
when the categories need to be updated (e.g., add, merge,
or modify categories).

In addition, we studied the manifestations of these 1,074
setting defects, i.e., whether these defects will manifest as
GUI defects (i.e., whether a defect would be manifested
through GUI pages when it is triggered) and whether these
defects would lead to some GUI differences (i.e., whether
a defect would lead to some GUI differences when the
relevant setting is on or off). We count the number of bugs
that will manifest as GUI defects and lead to some GUI
differences. These information helps us to design effective
bug-finding techniques.

2.3.4 Analysis Method of RQ4

To answer RQ4, we use the analysis results from RQ1∼RQ3
as the basis, and summarize the root causes and the con-
sequences within each setting category. We investigate the
correlations between the setting categories, root causes,
and consequences from different aspects. For example, we
inspect which root causes are the most common across
different categories, whether one root cause could lead to
different consequences within one setting category, etc.

3 STUDY RESULTS AND ANALYSIS

In this section, we present our study results of RQ1 ∼ RQ4
and discuss our major findings.

3.1 RQ1: Impact of Settings Defects

To understand the impact of setting defects, we investigate
two aspects: (1) the usage of settings in the apps; (2) the
impact of setting defects against the apps.

Table 2 (column “#Apps using settings”) lists the number
of apps that use APIs related to each setting category. The
result is based on the list of setting-related APIs summa-
rized in Section 2.1. Note that the numbers in Table 2 may
overlap because one app may use multiple settings. Row
“#Total” gives the unique number of apps that use settings.
Additionally, the data in Table 2 may not characterize the
exact number of apps affected by the settings because it
is difficult in practice to collect all possible setting-related
APIs. In some cases, some settings do not provide explicit
APIs. For example, we have not counted the usage of some
settings (e.g., “Developer”, “Accessibility”, denoted by “-”
in “Others” in Table 2) because they do not export explicit
APIs. But when an app uses the APIs in our list, we are sure
that the app depends on the corresponding settings. Thus,

5



TABLE 2
Statistics of the impact of settings on the apps.

Setting Categories #Apps using
settings

#Apps were
affected

#Setting
Defects

Network and connect 86 68 326
Location and security 47 10 14
Sound 67 16 50
Battery 57 10 18
Display 109 78 226
Apps and notification 134 49 121
Others - - 319
#Total 171 162 1,074

the current results in Table 2 can be viewed as the lower
bound of setting usage by apps.

In Table 2, we can see that 95.0% (171/180) of the apps
use at least one setting-related API. For the remaining nine
apps, we manually examined their source code. Indeed,
they do not use system settings, and no setting defects
were reported. For example, one of the nine apps is a
calculator app, which has simple functionalities and does
not use any system setting. Among all the setting categories,
“Apps and notification” is the most commonly used one
because most non-trivial apps use dynamic permissions and
notifications. The setting category “Network and connect”
is also commonly used. For “Display”, we find many apps
check the changes of font size, screen brightness, screen
orientation, and multi-window mode. For ”Location and
security”, apps use the APIs like android.location and
com.google.android.gms.location for localization.
Apps use android.media.AudioManager to access vol-
ume and ringer mode control in the “Sound” category. The
API PowerManager#isPowerSaveMode is usually used
to check whether the device is in power saving mode by
apps in the category “Battery”. Although there are only 57
apps that check the battery settings in the code, we find
there are more apps that are actually affected by this setting.

Table 2 (column “#Apps were affected”) counts which
apps were ever affected by setting defects according to the
1,074 bug reports in our dataset. We find that most apps
were affected by at least one setting defect. Specifically,
162 apps have setting defects, which account for 90.0%
(162/180) of the 180 apps under study. The three categories
“Display”, “Network and connect”, and “Apps and notifi-
cations” have the widest impact on the app’s correctness.

Table 2 (column “#Setting Defects”) classifies the defects
reflected by the 1,074 bug reports in our dataset according
to the defects’ setting categories. Similar to the observation
from column “#Apps were affected”, we can see that the
three categories “Display”, “Network and connect”, and
“Apps and notifications” lead to the majority (701/1,074
≈65.2%) of setting defects. This result indicates that the
settings in these categories are more likely to cause setting
defects than the other ones.

Answer to RQ1: Our study reveals that 95.0%
(171/180) of apps in our dataset use system settings
according to the setting-related APIs used in the app
code. 90.0% (162/180) of apps were ever affected by
setting defects. Thus, setting defects indeed have a
wide impact on the app correctness.

3.2 RQ2: Root Causes of Setting Defects
To analyze the root causes, we focus on investigating 482
fixed bug reports with explicitly-linked code fixing commits.
We finally identified five major categories of root causes
based on the reasons behind these setting defects and the
corresponding defect-fixing strategies. Table 3 summarizes
these root causes ordered by their corresponding numbers
of bug reports from the most to least. We next explain and
illustrate these root causes.

3.2.1 Incorrect Callback Implementations
To properly handle settings, developers are required to
properly implement the callback methods, which are called
by the Android system when some settings change. For
example, when users grant or deny permissions, the call-
back onRequestPermissionsResult() is called; when
users change the system language, specific Activity lifecycle
callbacks (e.g., onCreate()) are called. If these callbacks
are not correctly implemented, setting defects may occur.
Thus, these defects are usually fixed in specific callbacks.

For example, in AnkiDroid [28]’s Issue #4951, when a
user grants the storage permission from the permission
request dialog, the original 3-dot menu icon disappears from
the top-right corner of the screen. The reason is that the
developers do not properly handle the app logic in the
callback. Fig. 3 shows the patch. When the user responds
to the permission request, the system invokes the call-
back onRequestPermissionsResult() (Line 1). After
the user grants the storage permission, the original menu
should be redrawn because its content is changed. However,
the developers forget to call invalidateOptionsMenu()
to redraw the menu (Line 5). As another example, some
users will enable the “Do not keep activities” setting option
to reduce system resource consumption. However, this set-
ting change requires developers to properly handle Activity
lifecycle callbacks (e.g., properly saving app data) because
Android may kill any activity running in the background.
WordPress’s issues #9685 and #5456 lead to fatal crashes
due to the developers fail to properly handle app data in
the callbacks.

3.2.2 Lack of Setting Checks
Many apps could be affected when specific settings (e.g., net-
work) change. If developers fail to properly check the status
of these settings or do not monitor the status while using
related setting APIs, some serious failures may occur. These
defects are usually fixed by adding conditional checks.

For example, in NextCloud’s Issue #2889, the user
complains that some app functionalities are affected
even if she whitelists the app from the power sav-
ing. As shown in Fig. 4, the developers check
only whether the device is in the power saving
mode by PowerManager#isPowerSaveMode() (Line
3), but do not check whether the app is in the
whitelist of the power saving mode by PowerManager#
IsIgnoringBatteryOptimizations(). In the end, the
developers fix the defect by adding this check (Lines 5-6).

3.2.3 Fail to Adapt User Interfaces
Some settings, e.g., multi-window display, font size, lan-
guages, and dark mode, affect the user interfaces (UIs) of

6



TABLE 3
Major root causes of setting defects.

Root Causes #Bug Reports
Incorrect callback implementations 164
Lack of setting checks 143
Fail to adapt user interfaces 103
Lack of considering Android versions 27
Mutual influence between settings 12
Other minor reasons 33

Fig. 3. Patch for AnkiDroid’s Issue #4951

apps. If an app fails to properly adapt its UIs when these
settings change, some display defects may exist. We observe
that such setting defects are usually fixed by modifying the
resource files (e.g., XML layouts) rather than the app code.

For example, because the UI layouts are not properly
designed, Status [29]’s Issue #914 leads to the disappearance
of some UI elements when the app adapts itself to the multi-
window display mode. In Frost [30]’s Issue #1659, when
users change the system language from German to Russian,
the texts overlap or cannot be displayed completely within
the screen, because the translation from German to Russian
leads to much longer texts.

3.2.4 Mutual Influence Between Settings

Some settings have explicit or implicit mutual influence,
which many app developers are unaware of. This factor may
lead to some unexpected setting defects. The fixes of such
defects usually involve multiple settings.

One typical example of explicit mutual influence is
that the positioning in Android can be affected by the
settings of both network and location. Because Android
supports positioning via either GPS or network or both.
In Commons [31]’s Issue #1735, the app crashes if it
is opened offline. The root cause is that the app calls
locationManager#getlastknownlocation() to get
the current geographic location via network. When the
network is closed, this call returns a NULL value, which is
later used by getLatitude(). As a result, the app crashes
by a NullPointerException.

One typical example of implicit mutual influence is that
when the power saving mode is enabled, some settings
such as location, network, and animation are affected. This
factor may make the failure diagnosis quite difficult. For
example, in Clover [32]’s Issue #360, the app is always stuck
for unknown reasons and then forced closed. The develop-
ers finally locate the culprit: the animation is automatically
disabled when the power saving mode is on. The app is
stuck because the startup animation cannot be played.

3.2.5 Lack of Considering Android Versions

The Android system evolves fast, and some setting mech-
anisms may change. This factor may lead to some device-
specific setting defects. For example, in Openlauncher [33]’s
issue #67: when a user changes the volume while the

Fig. 4. Patch for NextCloud’s Issue #2889

Fig. 5. Patch for Openlauncher’s Issue #67

“do not disturb” (DND) mode is enabled (in the no-
tification setting category), the app crashes. The root
cause is that since Android’s Nougat version, if an
app is in the DND mode, the app needs to get the
ACCESS NOTIFICATION POLICY permission before it can
use AudioManager to change the volume. As shown in Fig.
5, the developers fix this defect by checking whether the
system version is above Android 7.0 (Line 1) before calling
the AudioManager#setStreamVolume() (Line 7). Take
another case as an example, in TUM Campus’s issue #714,
a user reported that when he opens WiFi on his device
(which is shipped with Android 4.4.2), the app will crash.
The root cause is that DFN-PKI, the service used by TUM
Campus to issue, distribute and check digital certificates, is
not compatible with Android 4.4.2 or lower. These setting
defects are induced by compatibility issues but triggered by
changing specific system settings.

3.2.6 Other minor reasons

The other reasons for setting defects are usually related to
the app’s domain-specific logic. For example, in WordPress,
when a user edits and saves a post’s draft, the app will
automatically upload the draft to the server and overwrite
the previously saved draft (on the server). However, in
WordPress’s issue #10525, if a user turns on the Airplane
mode and then edits a post’s draft, and turns off the Air-
plane mode while saving the draft, the UploadStarter()
method in WordPress will be called twice to update the draft
on the server. However, these two method calls refer to the
same piece of draft. As a result, the latter one will access
the draft deleted by the former one, and eventually leads
to app crash. Since the bugs in this category are caused by
app-specific erroneous logic, we do not categorize them into
other generic categories of root causes.

Answer to RQ2: Our study distills 5 major root
causes of setting defects. Among these causes, in-
correct callback implementations, lack of setting checks,
and fail to adapt user interfaces are responsible for the
majority (410/482 ≈85.1%) of setting defects. Mutual
influence between settings and lack of considering An-
droid versions could lead to setting defects, despite
only a few (39/482 ≈8.1%).

7



3.3 RQ3: Consequences of Setting Defects
This section summarizes the four major consequences of the
defects reflected by the 1,074 bug reports in our dataset. We
detail the four major consequences w.r.t. their numbers of
defects from the most to least. Specifically, we find that the
majority (759/1,074 ≈70.7%) of setting defects lead to non-
crashing consequences, in addition to the crashing failure.

3.3.1 Crash
315 of the 1,074 setting defects lead to the app crash. In
most cases, users can recover the app by restoring the setting
changes and restarting the app. But in some cases, users
cannot restore the settings changes, and the app is totally
broken. For example, in OpenFoodFacts [34]’s Issue #1118,
when users switch to the Hindi language, the app preference
page anymore cannot be opened and just crashes. The users
have to reinstall the app.

3.3.2 Disrespect of Setting Changes
285 setting defects disrespect the changes of settings, i.e.,
setting changes do not take effect. The main reason is that
developers fail to consider some settings, and thus the app
does not adapt itself to these setting changes. For example,
in Signal [35]’s Issue #6411, even if users turn on the “Do not
disturb” mode, Signal is still making the sound from time to
time when notifications come in, annoying the users. Other
failure manifestations include untranslated texts or incom-
plete translations when the system language is changed.

3.3.3 Problematic UI Display
218 setting defects lead to problematic UI display. Some set-
tings, e.g., languages and themes, may affect UI display if the
corresponding resource files are not correctly implemented.
For example, in the email client app K-9 [36], users can see
the quoted texts from the last reply when writing an email.
But when the app’s theme is changed to the dark mode, the
quoted texts from the last reply become invisible. Because
the developers forget to adjust the color of the quoted texts
(which are in black) according to the current theme.

3.3.4 Functionality Failure
197 setting defects lead to functionality failure, i.e., the orig-
inal app functionality cannot work as expected when some
setting changes happen. In most cases, the affected apps
do not alert users that the function fails due to the setting
changes; in some cases, the apps may give a wrong alert
and mislead the users. For example, in syncthing [37]’s Issue
#727, the background synchronization functionality does
not work for unknown reasons. After a long discussion,
the developers find that the functionality fails because the
power saving mode is enabled. In this case, syncthing does
not alert the users that the power saving mode is affecting
the synchronization functionality, and thus confuses the
users. Other failure manifestations include app stuck, black
screen, infinite loading, data loss, and unable to refresh.

The remaining 59 defects’ consequences are very specific
(e.g., slaggy GUIs, delayed updates of app data on GUIs),
so we do not discuss them in detail.

In addition, according to our investigation of bug mani-
festation in Section 2.3.3, most of the setting defects would

manifest through GUI pages. According to our statistics,
out of all the 1,074 setting defects, 1,000 setting defects
(93.1%≈1,000/1,074) manifest as GUI defects, 841 of which
(78.3%≈841/1,074) would lead to some GUI differences
when the relevant setting is turned on or off.

Answer to RQ3: Our study reveals that setting
defects lead to diverse consequences. The majority
(759/1,074 ≈70.7%) cause the non-crashing failures
and manifest as GUI defects, which are hard to be
automatically detected by existing testing tools.

3.4 RQ4: Correlations between Setting Categories,
Root Causes, and Consequences

To investigate the correlations between the setting categories
and their common root causes and consequences, we count
the settings, root causes, and consequences of all bug reports
in our dataset as described in Section 2.3.4 and summarize
them in Table 4. In Table 4, column “Setting” denotes the
setting categories. For column “Root Causes”, we count the
root causes of the bug reports under the corresponding
setting category and sort the root causes in terms of their
occurrences in the bug reports from the most to the least
(i.e., the root causes are sorted by their popularity within
each setting category). Note that we list only the common
root causes. For column “Consequences”, we sort the conse-
quences in a similar way within each setting category.

3.4.1 What are the correlations?

Based on the results in Table 4, we have three important
observations. First, the setting defects from all the setting
categories could lead to non-crashing failures, in addition
to crashes. It indicates that designing effective bug-finding
techniques for these non-crashing failures is indeed important
and useful for all the settings. This observation also explains
why our proposed bug-finding techniques in Section 4
can find setting defects from different setting categories.
Specifically, “Disrespect of setting” and “Problematic UI
display” are the two most common consequences for the
five setting categories (i.e., “Network”, “Sound”, “Battery”,
“Language”, and “Time”). In addition, some consequences
happen in only some specific settings, e.g., data loss affects
only “Network” and “Display”.

Second, “Lack of setting checks” is the most common
root cause for almost all setting categories. It indicates that
capturing this type of root cause is most beneficial for finding
setting defects. This observation motivates the design of our
static analysis technique in Section 4.2 to focus on this root
cause. Moreover, we find that one type of root cause may lead to
different consequences. For example, due to the lack of setting
checks on the network connection, Signal suffers from two
defects with distinct consequences. In issue #6447 [38], a
user reports that when he switches from WiFi to data (and
vice versa), Signal cannot receive notifications anymore. In
issue #5353 [39], another user complains that if he calls his
friends offline, Signal will crash. On the other hand, we find
that one type of consequence could be caused by different root
causes. For example, WordPress’s issues #9685 and #5456

8



TABLE 4
Correlations between the setting categories and their common root causes and consequences.

Setting Root Causes Consequences Suitable techniques
Network Lack of setting checks, Incorrect callback implementations Disrespect of setting, Crash, Wrong prompt, Infinite loading, Data loss Dynamic analysis
Location Lack of setting checks Crash, Wrong prompt, Incorrect positioning Static analysis
Sound Lack of setting checks, Lack of considering Android version Disrespect of setting, Crash Static analysis
Battery Lack of setting checks Disrespect of setting, Crash Static analysis
Display Incorrect callback implementations, Fail to adapt user interfaces Crash, Problematic UI display, Data loss, Disrespect of setting Dynamic analysis
Permission Lack of setting checks, Incorrect callback implementations Crash, Wrong prompt Dynamic/Static analysis
Language Lack of setting checks, Incorrect callback implementations Problematic UI display, Crash, Disrespect of setting Dynamic/Static analysis
Time Lack of setting checks Disrespect of setting, Crash Dynamic/Static analysis

discussed in Section 3.2.1 are caused by the incorrect call-
back implementation, while Issue #67 of Openlauncher [33]
discussed in Section 3.2.5 is caused by lack of considering
Android versions. But both defects lead to crashes.

Third, although the consequences of setting defects are
diverse, the triggering conditions of most setting defects are
similar, i.e., when some related setting is changed, the app
may show some unexpected behaviors on the GUI pages.
In other words, an app can work well under some settings,
but when the setting changes, the app may go wrong (e.g.,
crash, data loss, and functionality failures). This observation
motivates the design of our dynamic analysis technique via
injecting setting changes in Section 4.1.

3.4.2 Which bug-finding technique is more suitable?

Based on the preceding correlation analysis, we find that
the setting defects from some setting categories are more
suitable for dynamic analysis (i.e., testing), while others
are more suitable for static analysis. In column “Suitable
techniques”, we indicate which bug-finding technique(s)
we believe is more suitable or are both suitable. We next
discuss the reasons why we reach such conclusions. In
Section 5, we empirically compare the effectiveness between
the proposed dynamic and static analysis techniques, and
the experimental results corroborate our conclusions here.

Next, we discuss our observations and conclusions in
detail for each setting category.

• Network. We observe that Android provides many differ-
ent network-related APIs, and the apps use different ways
to manage network connections. In addition, network-
related defects have different fault patterns. For example,
the network connection is not checked before or dur-
ing the usage of network-related APIs, and the network
connection is not properly recovered after the network
type is switched. Thus, it could be difficult to summarize
all possible fault patterns with different network-related
APIs at the code level. Meanwhile, from the GUI level,
the possible consequences of network-related defects (e.g.,
disrespect of setting, crash, wrong prompt, infinite load-
ing, and data loss) are clear and easier to be identified.
Therefore, network-related defects are more suitable for
dynamic analysis than static analysis.

• Location. The location-related defects lead to crash,
wrong prompt, and incorrect positioning. For the conse-
quence of incorrect positioning, it is difficult for dynamic
analysis to identify such defects as these changes will not
reflect on the attributes of UI widgets. However, it is sim-
pler to detect such defects at the code level, as they have
the similar fault patterns, i.e., the state of location setting
fails to be checked before or after the location-related APIs
are used. Thus, static analysis is more suitable in this case.

• Sound and battery. According to our observation, it is
difficult for dynamic analysis to identify abnormalities
for volume (e.g., no sound can be heard) and battery-
related defects at the GUI level. On the other hand, static
analysis is more suitable for these two settings because
there are some specific fault patterns at the code level. For
example, for battery, we can check whether an app fails
to check whether it is in the power saving whitelist when
the power saving mode is on.

• Display. The changes of display settings could affect
app lifecycle. Specifically, the major root cause, i.e., in-
correct (lifecycle) callback implementations, can lead to
crash, problematic UI display, data loss, and disrespect
of setting. Finding such defects at the code level requires
tracking the storage and recovery of application specific
data, but this tracking is hard to be precise. Meanwhile, it
is easier to observe these consequences at the GUI level.
Thus, dynamic analysis is more suitable in this case.

• Other settings. For the setting defects from other setting
categories (i.e., “Permission”, “Language”, and “Time”),
some fault patterns can be characterized at the code level,
but they may not cover all possible faulty cases. In some
cases, dynamic analysis will be able to detect more types
of setting defects, when we add appropriate oracle rules.
Thus, for these settings, both dynamic and static analysis
may help.

Answer to RQ4: There are indeed some correlations
between setting categories and their root causes and
consequences. These correlations provide guidance
for designing effective and appropriate bug-finding
techniques for the setting defects as well as justifying
the design of our techniques.

4 DETECTING SETTING DEFECTS

Motivated by our empirical findings, we propose two bug-
finding techniques to detect setting defects from both the
GUI and code levels.

4.1 Setting-wise Metamorphic Fuzzing

This section presents setting-wise metamorphic fuzzing, the
automated testing technique at the GUI level, to detect
setting defects.

4.1.1 High-level Idea
Our key insight is that, in most cases, the app behaviors
should keep consistent if a given setting is changed and
later properly restored, or show expected differences if not

9



restored. Otherwise, a likely setting defect is found. For ex-
ample, an app’s functionalities should not be affected if the
network is closed but immediately opened; or an app should
show the texts in a different language if the default language
is changed. Thus, based on the preceding observation, we
are inspired to leverage the idea of metamorphic testing [40]
to tackle the oracle problem.

4.1.2 Approach

Our approach, setting-wise metamorphic fuzzing, randomly in-
jects a pair of events ⟨ec, eu⟩ into a given seed GUI test E to
obtain a mutant test E′, where ec changes a given setting,
while eu properly restores the setting or does nothing. By
comparing the GUI consistency between the seed test E and
the mutant test E′, we can tell whether the app behaviors
have been affected.

Formally, let E be a seed GUI test that is a sequence of
events, i.e., E = [e1, . . . , ei, . . . , en], where ei is a user event
(e.g., click, edit, swipe, screen rotation). E can be executed on
an app P to obtain a sequence of GUI layouts (pages) L =
[ℓ1, . . . , ℓi, . . . , ℓn+1], where ℓi is a GUI layout (which con-
sists of a number of GUI widgets). Specifically, if we view
the execution of ei as a function, then ℓi+1 = ei(ℓi), i ≥ 1. By
injecting a pair of new events ⟨ec, eu⟩ into E, we can obtain a
mutant GUI test E′ = [e′1, . . . , ec, . . . , eu, . . . , e

′
n] that can be

executed on P to obtain a sequence of GUI layouts (pages)
L′ = [ℓ′1, . . . , ℓc, . . . , ℓu, . . . , ℓ

′
n+1]. To ease the illustration

of our technique, we assume the injection of ⟨ec, eu⟩ will
not break the execution of seed test E. In Section 4.1.3, we
explain how our design holds this assumption. Next, we
compare the GUI consistency between the GUI layouts of E
(i.e., L) and those of E′ (i.e., L′), respectively, to find defects.
In practice, we check the GUI consistency by comparing the
differences of executable GUI widgets between L and L′.
Let e.w be the GUI widget w that e targets.
Oracle checking rule I. The rule I is coupled with the
following two strategies that inject ⟨ec, eu⟩ into E to obtain
E′. Conceptually, in most cases, the app behaviors should
keep consistent.

• Immediate setting mutation. We inject ec followed immedi-
ately by eu. For example, ec turns on the power saving
mode, and eu immediately adds the app into the whitelist
of power saving. Here, ec globally changes the power
saving setting (affecting the app under test), while ec can
be viewed as restoring the setting for the app under test.

• Lazy setting mutation. We inject ec first and inject eu only
when it is necessary (e.g., the app prompts an alert dialog
or a request message). For example, ec revokes app per-
mission, and eu grants the permission only when the app
requests that permission. Note that our study justifies the
rationale of the lazy mutation strategy because prompting
proper alerts to users is demanded by Android design
guidelines to improve user experience [41].

Fig. 6. Workflow of SETDROID to find setting defects.

The preceding figure illustrates Rule I: under these two
injection strategies, if there exists one GUI event ei ∈ E′ and
its target widget ei.w cannot be located on the correspond-
ing layout ℓ′i ∈ L′ (ℓ′i corresponds to ℓi ∈ L), then a likely
setting defect is found. Because it likely indicates that the
app’s behaviors are affected. Formally,

∃ei.ei.w ∈ ℓi ∧ ei.w /∈ ℓ′i (1)

Oracle checking rule II. Under Rule II, we inject only ec into
E (eu is ignored). This rule aims to confirm that changing a
given setting, e.g., languages, hour format (12-hour or 24-hour
format), indeed leads to some GUI changes. For example,
when the default language is changed, we check whether
the texts in ℓi and ℓ′i are indeed in the expected different
languages while no other inconsistencies appear. In practice,
we use the language identification tool named langid [42] to
determine the language of each text.

Thus, Rule I does equal checking on GUI consistency and
applies to three common consequences of setting defects,
i.e., crash (a special case of GUI inconsistency), functionality
failure, and problematic UI display. Rule II does inequality
checking on GUI consistency and applies to the checking of
disrespect of setting changes.

4.1.3 Design and Implementation of SETDROID

We design and implement our approach as an automated
GUI testing tool named SETDROID. Fig. 6 depicts the work-
flow. It has four main modules: (a) test executor, (b) setting
change injector, (c) oracle checker, and (d) bug report reducer.
We detail the four modules as follows.
Test Executor. The test executor runs the same app under
test (AUT) on two identical devices A and B in parallel.
During testing, the executor generates a seed test on-the-
fly on device A and replays the same seed test injected with
setting changes (i.e., the mutant test) on device B at the same
time. Specifically, the executor works in a loop: (1) get the
current GUI layout of the AUT on device A, (2) randomly
choose an executable widget from the layout and generate
an event, (3) execute the event on both devices A and B. This
on-the-fly strategy offers the flexibility for injecting setting
changes at runtime, which avoids breaking the seed test.
We require that devices A and B are identical (e.g., the same
Android versions and screen sizes) because doing so ensures
that the testing environment is exactly the same and reduces
uncertain environmental factors during testing.

We use random seed tests because they are diverse,
practical, and scalable to obtain. In practice, we use the
UI AUTOMATOR test framework [43] to execute events and
obtain GUI layouts. Note that the event generation proce-
dure (i.e., steps (1) and (2)) in the test executor module

10



TABLE 5
List of pairs of events for setting changes.

Setting Oracle
Rule

Injection
Strategy Pair of events for setting changes

Network I Immediate ⟨turn on airplane, turn off airplane⟩
Network I Lazy ⟨turn on airplane, turn off airplane⟩
Network I Lazy ⟨switch to mobile data, switch to Wi-Fi⟩
Location I Lazy ⟨turn off location, turn on location⟩
Location I Lazy ⟨switch to ”device only”,

switch to ”high accurancy”⟩
Sound I Lazy ⟨turn on ”do not disturb”,

turn off ”do not disturb”⟩
Battery I Immediate ⟨turn on the power saving mode,

add the app into the whitelist⟩
Battery I Lazy ⟨turn on the power saving mode,

turn off the power saving mode⟩
Display I Immediate ⟨switch to landscape, switch to portrait⟩
Display I Immediate ⟨turn on multi-window,

turn off multi-window⟩
Permission I Lazy ⟨turn off permission, turn on permission⟩
Language II - ⟨change system language, -⟩
Time II - ⟨change hour format, -⟩

can be replaced by any automated test input generation
algorithms [44], [13], [11] or existing developer-written tests.
Setting Change Injector. During the above process, the
setting change injector will randomly inject a pair of events
⟨ec, eu⟩ into device B. We clarify the design and implemen-
tation of this module as follows.

What kinds of ⟨ec, eu⟩ are supported? Table 5 lists the
supported pairs of events for setting changes (see Column
“Setting” and “Pair of events for setting changes”). Accord-
ing to our empirical study, these pairs of events in Table 5
can manifest the majority of setting defects and cover the
other forms of setting changes. Note that because our oracle
checking rules are generic, it is easy and flexible to include
other pairs of setting changes in the future. Specifically, the
two devices A and B are initialized with the same default
setting environment before testing: airplane mode off, Wi-Fi
on, mobile data on, location (high accuracy) on, battery saving
mode off, multi-window off, screen orientation in the landscape,
DND mode off, language is English, and 12-hour format.

Among the nine setting categories in Table 1, Table 5 only
considers seven categories except for the “developer” and
“accessibility” ones. We did not consider the “developer”
category because we find that developer options are not
commonly used by app users but are mainly used by app
developers for debugging. Also, the number of setting de-
fects caused by the “developer” category is small, and app
developers are usually not interested in such setting defects.
We did not consider the “accessibility” category because
adapting oracle checking rule I for the accessibility options
is difficult and applying oracle checking rule II needs to
be ad-hocly designed for each accessibility option. Based
on the preceding considerations, we only target the setting
categories that can manifest the majority of setting defects
according to our study.

How to inject ⟨ec, eu⟩? Typically, the setting change
injector injects ec after a GUI event in the seed test by coin-
flipping and later injects eu according to the two mutation
strategies defined in Section 4.1. Under oracle checking rule
I, the setting change injector restores the changed setting
(i.e., executing eu) when necessary. For example, ec re-
vokes/denies app permission, and eu grants the permission
only when the app requests that permission via a permission
request dialog. Note that prompting proper alerts to users
is demanded by Android design guidelines to improve user

experience. Under oracle checking rule II, the setting change
injector injects only ec and does not inject eu. Besides the
preceding main injection strategies, informed by our study,
we adopt the following two important considerations in
designing this module.

First, we find that many setting defects (211/486≈43.4%)
in our study are triggered by changing settings at runtime
rather than before starting the apps. Guided by this insight,
SETDROID randomly injects the pair of events ⟨ec, eu⟩ at any
position of a seed test (i.e., injecting ec after each GUI event
by coin-flipping and later injecting eu) rather than only at
the beginning of a seed test. Moreover, if one pair of ⟨ec, eu⟩
is injected and no setting defect is found, the next same pair
of ⟨ec, eu⟩ is injected again later. This process continues until
the seed test ends. In Section 5.2, the comparison between
SETDROID and Baseline B (which changes the settings only
before starting the apps) justifies the usefulness of this
strategy as SETDROID finds more defects than Baseline B.

Second, we find that only a few setting defects
(10/486≈2.1%) are caused by explicitly changing two set-
tings (i.e., two settings are changed to non-default values at
the same time), and no defects are caused by changing more
than two settings. Guided by this insight, the setting change
injector randomly injects one single pair of events ⟨ec, eu⟩ at
one time, which does not interleave with others. Only the
screen orientation (which is viewed as a normal user event)
may be interleaved with other setting changes.
Oracle checker. After each event is generated by the test
executor, the oracle checker dumps the GUI layouts from
devices A and B, and checks whether the layout of device B
is consistent with that of device A (i.e., Rule I), or shows
expected differences w.r.t. that of device A (i.e., Rule II),
while also monitoring app crashes. If a defect is found, the
checker generates a bug report that includes the executed
events, GUI layouts, and screenshots.
Bug report reducer. The bug report reducer removes any bug
report that is duplicated or cannot be faithfully reproduced.
Specifically, it replays the recorded GUI tests that trigger
setting defects for multiple runs to decide reproducibility.
It uses the GUI inconsistencies between the two layouts as
the hash key to remove any duplicated bug report. This step
does not incur any false negatives.

Specifically, to improve the reproducibility, we have
made several decisions in tool implementation: (1) waiting
each GUI event to take effect before executing the next one
to reduce the risk of flaky tests, (2) limiting the length
of each test case (100 events in our case), (3) clearing
the app data and resetting the mutated settings between
each test case, and (4) recording all the executed events,
the screenshots and the mutated setting options for bug
reproduction. Specifically, SETDROID removes a bug if it
cannot be faithfully reproduced before reporting. Therefore,
all the defects reported by SETDROID are reproducible.

4.1.4 Optimizations of SETDROID

Compared to our prior work [24], we optimize SETDROID
in terms of testing efficiency and precision.
Optimization I: Identify the relevant settings of an app.
We add a generic optimization strategy in the setting change
injector (module (b) in Fig. 6) to identify the relevant set-
tings of an app (i.e., which settings are used by the app).

11



Specifically, we perform static analysis to determine which
settings are relevant to the app. In particular, we analyze
whether an app uses specific APIs (classes, methods, or
variables) of each setting category in its code. This analysis
is similar to that used by RQ1. In this way, SETDROID needs
to apply only the relevant pairs of events for setting changes
(see Table 5) to stress test an app, and thus substantially
improves testing efficiency. This optimization strategy will
not introduce false negatives because the setting defects
(e.g., network accessing issues) only appear when the app
fails to properly adapt to the change of some specific setting
(e.g., network). If the app’s functionality does not rely on
the specific setting, it is safe to avoid changing the relevant
setting (e.g., closing/opening the network connection). In
our case, our technical insight is that if an app does not use
any API related to that setting, the app does not rely on
that setting. In Section 5.3.2, we show the improvement of
testing efficiency by applying this optimization strategy.
Optimization II: Reduce the false positive rate. In our
prior work [24], the false positive rate of Rule II is high
(535/662≈80.8%). We analyze the experimental results and
find that materialistic and RedReader incur the majority of
false positives (435/535≈81.3%) of Rule II. These two apps
are newsreaders in English. When SETDROID changes the
default language, the texts of these newsreaders do not
need to be translated. But SETDROID assumes that these
behaviors violate Rule II, i.e., disrespect of setting changes.
SETDROID reports one defect when a news article is de-
tected, thus leading to a large number of false positives.

To this end, we add a generic optimization strategy in
the bug report reducer (module (d) in Fig. 6) to reduce the
false positives. Our key observation is that only local strings
specified in an app should be translated, while non-local
strings such as the texts in a news article loaded from a
remote server should be escaped. We find that each app
has a strings.xml file in its resource folder, and this file
stores the app’s local strings. Thus, the bug report reducer
can automatically remove the false positives if the reported
untranslated strings are not in strings.xml. This opti-
mization strategy will not introduce false negatives. Because
our key technical insight is that only local strings in the
strings.xml file need to be translated. Deleting those bug
reports related to non-local strings will not remove the valid
setting defects. In Section 5.3.2, we will show the results by
applying this optimization.

In addition, we find that some false positives are caused
by the reserved keywords that do not need to be translated
when the language is changed. However, the proportion of
such false positives is small. Thus, we do not reduce them;
otherwise, we have to use some ad-hoc strategies.

4.2 Static Analysis for Setting Defects
According to the results of our empirical study, we find that
some setting defects can be detected at the code level. We
summarize two major fault patterns and propose a static
analysis tool SETCHECKER to detect the setting defects.

4.2.1 Fault Pattern Analysis
We analyze 482 fixed bug reports in the dataset of our study.
By analyzing these reports, we characterize these setting
defects as two fault patterns:

Fig. 7. Fault Pattern I.

Fig. 8. Fault Pattern II.

• Fault Pattern I. As shown in Fig. 7, if there exists some
program trace S=[s0, ..., si, ..., sn] in the control-flow
graph (CFG) of an app, where si is a statement denoting
an invocation of API α. It is known that all settings in the
device have two states: on and off. The first fault pattern is
that API α (e.g., AudioManager#setStreamVolume()
in Fig. 7) can be executed only if the state of setting
σ (permission ACCESS NOTIFICATION POLICY in this
case) is on; otherwise, an exception will be thrown.
However, if none of the statements between s0 and
si checks whether the state of setting σ is on (e.g.,
isNotificationPolicyAccessGranted() in Fig. 7
is an API that checks whether the state of permission
ACCESS NOTIFICATION POLICY is on), the app has a
suspicious setting defect.
Example of Fault Pattern I. Fig. 5 in Sec-
tion 3.2.5 shows such a defect. Before calling
AudioManager#setStreamVolume() (Line 7), the
ACCESS NOTIFICATION POLICY permission is not
checked (Line 3). As since Android’s Nougat version,
if an app is in the DND mode, the app needs to get
the ACCESS NOTIFICATION POLICY permission before
calling setStreamVolume(). If an app never checks
this permission before calling setStreamVolume(),
SecurityException will be thrown during the running
of the app.

• Fault Pattern II. As shown in Fig. 8, if there exists some
program trace S=[s0, ..., si, ..., sj , ..., sn] in the control-
flow graph (CFG) of an app, where si is a statement
assigning the return value of an API α to the variable
υ, and sj is a statement using the variable υ (or the alias
of variable υ). The second fault pattern is that sj uses υ
(or the alias of variable υ), but none of the statements
between si and sj checks whether the value of υ (or
the alias of variable υ) is valid or not. In the illustra-
tive example of Fig. 8, the API α is LocationManager
#getLastKnownLocation(), and the variable loc ac-
cepts the return value of API α, which is later used by

12



Fig. 9. Example of Fault Pattern II.

sj . If υ is not checked (i.e., whether υ is a NULL value), a
suspicious setting defect is found in the app.
Example of Fault Pattern II. Fig. 9 shows such a de-
fect of OneBusAway [45], which is an app serving real-
time transit information. The return value of a setting-
related API is not checked before being used. Specifically,
LocationManager #getLastKnownLocation() (Line
6) returns the current geographic location via GPS. When
the location setting is closed or the GPS signal is not
stable, NULL value will be returned. Therefore, a non-
NULL check (Line 10) should be performed before using
the return value of this API (Line 11).

Note that fault patterns I and II aim at finding different
types of setting defects, which require different static analy-
sis strategies.
• Fault pattern I aims at those setting defects in which

the states of related settings are deterministic (that is, the
states of these settings only change when an app user
turns on/off these settings). For example, the states of
permission, sound, and battery settings are deterministic.
Thus, checking the states of these settings before the API
invocation is safe. In Section 4.2.2 (Algorithm 1), we adopt
the backward control-flow analysis to detect such defects.

• Fault pattern II aims at those setting defects in which
the states of related settings are non-deterministic (that
is, the states of these settings may be changed by an
app user or affected by the external environment). For
example, the states of network and location settings
are non-deterministic. Take the location setting as
a concrete example, even if the state of a device’s
location setting (e.g., the GPS) is on, the return value of
LocationManager#getLastKnownLocation() (i.e.,
the location information obtained from the GPS) may still
be invalid (e.g., NULL) if the GPS signal is weak or lost
due to the external environment. Thus, for these settings,
only checking their states before calling the relevant API
is unsafe, and we should additionally check their return
values before being used by the API. In Section 4.2.2
(Algorithm 2), we adopt the forward data-flow analysis
to detect such defects.

4.2.2 Static Defect Detection
To detect the setting defects w.r.t. the preceding two
fault patterns, we propose a static analysis tool named
SETCHECKER. We implement SETCHECKER based on
SOOT [46]. SOOT is an analysis and transformation frame-

Algorithm 1: Finding defects w.r.t. fault pattern I
inputs : APK: the APK file of an Android app,

p < requireSettingAPI, checkSettingAPI >: a tuple p,
in which the first element represents an API that requires the
state of setting σ to be on, and the second element represents
another API that can check the state of setting σ

output: defectSet: the set of defects matched by the fault pattern, and
each defect is represented as a trace of method invocations.

1 defectSet← ∅;
2 allMethods← getAllMethods(APK);
3 cg ← buildCallGraph(APK);
4 foreach method m ∈ allMethods do
5 if p.requireSettingAPI in m then
6 methodsTraces← getAcyclicCallers(m, cg);
7 foreach methodsTrace t ∈ methodsTraces do
8 isCheckSettingAPIExist← false;
9 target← p.requireSettingAPI ;

10 foreach method caller ∈ t do
11 dominators←

caller.findDominatorsOf(target);
12 foreach dominator ∈ dominators do
13 if dominator uses p.checkSettingAPI then
14 isCheckSettingAPIExist← true;
15 break;

16 target← caller

17 if isCheckSettingAPIExist == false then
18 defectSet← defectSet ∪ {t}

19 return defectSet;

work, which provides some analysis functionalities includ-
ing call graph construction, def/use chain analysis, and
data-flow analysis, etc. SETCHECKER combines control-flow
and data-flow analyses to detect setting defects.
(1) Algorithm 1. The algorithm shown in Algorithm 1
detects defects w.r.t. fault pattern I. First, we summa-
rize a mapping list based on our empirical study. If
there exist two APIs, the first of which requires the
state of setting σ to be on, and the second of which
can check the state of setting σ, we store them as
a tuple p < requireSettingAPI, checkSettingAPI >
and add them to the mapping list. The algorithm takes
the APK file of an Android app and a tuple p <
requireSettingAPI, checkSettingAPI > in the map-
ping list as input. After initialization (Line 1), the al-
gorithm first gets all methods (Line 2) and the method
call graph (Line 3) of the given Android app, then tra-
verses every method, and looks for all methods using
the API p.requireSettingAPI (Lines 4-5). If a method
m is found to use API p.requireSettingAPI , the al-
gorithm searches the method call graph and gets all
method call traces that can reach m as a method list
named methodsTraces (Line 6). For each method call
trace methodsTrace in the methodsTraces (Line 7),
a variable isCheckSettingAPIExist is used to repre-
sent whether the setting check API p.checkSettingAPI
is found in this methodsTrace. The initial value of
isCheckSettingAPIExist is false (Line 8). For each
method list methodsTrace, the i+ 1th element of
methodsTrace is the caller of the ith element (where i
is the index of list methodsTrace, i >= 0). Specifically,
the first element of methodsTrace, i.e., methodsTrace[0],
is method m. The algorithm first sets target to API
p.requireSettingAPI (Line 9), sets caller to method m
(Line 10), and then starts the loop. In each loop iteration, the
algorithm checks whether the caller calls the setting check
API p.checkSettingAPI before calling the target by per-

13



Algorithm 2: Finding defects w.r.t. fault pattern II
inputs : APK: the APK file of an Android app,

settingDependentAPI : an API, whether the return value of
this API is a NULL value depends on the state of setting σ

output: defectSet: the set of defects w.r.t. fault pattern II, and each
defect is represented as a trace of methods

1 Function Main:
2 defectSet← ∅
3 allMethods← getAllMethods(APK)
4 foreach method m ∈ allMethods do
5 if m use settingDependentAPI then
6 defectSet← defectSet ∪ findDefect(m, ∅, ∅)

7 Function findDefect(m, initSet,methodsTrace):
8 nodes←

nullnessAnalysis(m, settingDependentAPI, initSet)
9 defectSet← ∅

10 methodsTrace.append(m)
11 foreach node n ∈ nodes do
12 defectF lag ← false
13 foreach value v ∈ n.inSet do
14 if v is used in n then
15 defectSet← defectSet ∪ {methodsTrace}
16 defectF lag ← true
17 break

18 if n is a method call site and defectF lag == false then
19 m← the method called by n
20 foreach value v ∈ n.inSet do
21 if v is used as a parameter of m then
22 initSet← ∅
23 defectSet← defectSet ∪

findDefect(m, initSet,methodsTrace)
24 break

25 return defectSet

forming dominator analysis [47] (Lines 11-13). If there exists
a dominator that uses p.checkSettingAPI , the algorithm
sets the value of isCheckSettingAPIExist to true (Line
14) and exits the loop (Line 15). Otherwise, it sets target to
the current caller (Line 16), updates caller to the caller of
the current caller, and enters the next loop iteration (Line
10). In the end, if isCheckSettingAPIExist is still false
(Line 17), then on this trace, the state of setting σ has not
been checked from the beginning of the entry method to the
point where p.settingDependentAPI is called. Therefore, a
suspicious setting defect is found, and the method call trace
is added to the set defectSet (Line 18).
(2) Algorithm 2. The algorithm shown in Algorithm 2 de-
tects defects w.r.t. fault pattern II. We implement this algo-
rithm based on the forward data-flow analysis framework
provided by SOOT. Algorithm 2 takes the APK file of an
Android app and an API settingDependentAPI as input.
Whether the return value of the API settingDependentAPI
is NULL depends on the state of setting σ. After initial-
ization (Line 2), Algorithm 2 first gets all methods (Line
3) of the given Android app, then traverses every method,
and finds all methods using the API settingDependentAPI
(Lines 4-5). If a method m uses API settingDependentAPI ,
the algorithm calls function findDefect to detect whether
there is a setting defect in method m (Line 6). Function
findDefect first performs the branched nullness analysis
on target method m to confirm which statements are at
risk of using NULL values (Line 8). We implement the func-
tion nullnessAnalysis in reference to the classic reaching-
definition data-flow framework [47]. Let s be a statement.
Let gen(s) and kill(s) be the dataflow facts generated or
killed by s. Let pred(s) be the predecessor statements of s.

The data-flow equations used for a given basic block s in
reaching definitions are

in (s) =
⋃

p∈pred[s]

out (p) (2)

out(s) = gen (s) ∪ (in (s)− kill (s)) (3)

Based on the generic equations, we customize the gen
and kill sets. If s is an assignment statement in which
any variable in the set in(s) or the return value of API
settingDependentAPI is assigned to a variable v, variable
v will be added to the set gen(s). If s is a conditional
statement that performs the non-NULL check at any variable
v in the set out(s), variable v and its aliases will be added
to the set kill(s). It is worth noting that the algorithm
computes out sets from in sets sensitive to branches as we
implement a branched forward flow analysis.

The return value of nullnessAnalysis is a list of nodes,
each of which represents a statement s with two sets in(s)
and out(s) (denoted as n.inSet and n.outSet, respectively).
These two sets describe the variables that may have NULL
value before and after the execution of this statement.
After executing nullnessAnalysis (Line 8), the next step
(implemented in function findDefect shown in Line 7) is
to find which statements use variables that may have NULL
values. Since findDefect is a recursive function, a variable
methodsTrace is used to record how many methods of
the app have gone through (Line 10). For each statement
in the target method m (Line 11), if any variable of the
inSet is used in this statement, a setting defect is found,
and the methodsTrace is added to the set of recorded de-
fects defectSet (Lines 13-17). If the statement calls another
method of the app, and the variable v in the n.inSet is used
as the parameter of the call, then findDefect will enter
the called method to find the suspicious setting defects, and
set the initSet to variable v. If setting defects are found in
the called method, they will be merged into the defectSet
(Lines 18-24).

5 EVALUATION

We evaluate the effectiveness of our two bug finding tech-
niques and the usefulness of our insights gained from the
study by answering RQ5, RQ6, and RQ7:
• RQ5: How effectively can SETDROID and SETCHECKER

find previously-unknown setting defects in real-world
apps (including both open-source and industrial apps)?

• RQ6: Do our insights gained from the study help
SETDROID and SETCHECKER find setting defects that
cannot be found by prior tools?

• RQ7: What are the differences between SETDROID and
SETCHECKER in finding setting defects? Can they com-
plement each other?

5.1 Evaluation Setup of RQ5
We consider the 30 apps from prior work [48] as the evalu-
ation subjects, because most of these apps are selected from
the popular open-source apps on GitHub [49]. Considering
our experiment requires developers’ feedback, we focus
on those actively-maintained apps. Thus, our evaluation
subjects include 26 apps as the other 4 apps are obsoleted.

14



5.1.1 Setup of SETDROID

We run SETDROID on a 64-bit Ubuntu 18.04 machine (64
cores, AMD 2990WX CPU, and 64GB RAM), Android em-
ulators (Android 8.0, Pixel XL). SETDROID applies the 13
pairs of setting changing events (in Table 5) separately on
each app. For each pair, SETDROID randomly generates
20 seed tests (each seed contains 100 events) for fuzzing,
which takes about 1 hour. Thus, the whole evaluation for 26
apps takes 1*13*26=338 CPU hours (nearly 14 CPU days).
Here, the whole testing time is computed assuming the
optimization strategy in Section 4.1.4 is not enabled. In
Section 5.3.2, we discuss the reduction of testing time when
the strategy is enabled. Specifically, for each bug report,
SETDROID provides the failure-triggering event trace and
the screenshots. With this information, we manually inspect
all bug reports and count the true positives (TP for short)
and false positives (FP for short). We validate each TP on
real Android devices before reporting these TPs. When the
triggering trace and the consequence of a TP are different
from those of each of all bug reports submitted by us so far,
we submit a new bug report in the issue repositories. For
each bug report, we provide the developers with the failure-
reproducing steps and videos to ease failure diagnosis. If
the bug report is not marked as a duplicate one by the
developers, we regard it as a unique defect. We also evaluate
SETDROID on five industrial apps from Tencent, ByteDance
and Alibaba, i.e., WeChat [17], QQMail [18], TikTok [19],
CapCut [20], and AlipayHK [21], all of which each have
billions of monthly active users. We allocate a 2-day testing
time for each app and run on two real devices (Galaxy
A6s, Android 8.1.0). Then, we inspect any found defects and
report them to the developers.

5.1.2 Setup of SETCHECKER

We run SETCHECKER on the same Ubuntu 18.04 machine in
Section 5.1.1 to analyze each app. For each suspicious defect
reported by SETCHECKER, we manually verify whether
it is a true positive or a false positive by inspecting the
suspicious faulty code to infer a failure-triggering test on
the GUI pages. If the test can witness the suspicious defect,
we count it as a true positive. Specifically, we constrain
our manual inspection time on each suspicious defect as 10
minutes. If we cannot verify a suspicious defect within 10
minutes, we give up this suspicious defect and do not report
it to the developers (i.e., we count it as neither a true positive
or a false positive). We verify the reported suspicious defects
on both an Android emulator (Android 8.0, Pixel XL) and a
Galaxy A6s mobile phone (Android 8.1.0).

5.2 Evaluation Setup of RQ6.
To answer RQ6, we designed experiments to compare
SETDROID and SETCHECKER with some existing testing
techniques.

5.2.1 Setup of dynamic testing tools
Existing fully automated dynamic testing tools for Android
can be divided into two categories. The first category in-
cludes generic testing tools [50], [51], [52], [53], [54], [55],
[56], [57]. These tools focus on only the app under test and
do not interact with the system app Settings to change

settings which were confirmed by a recent study [11]. The
second category includes tools for detecting specific fail-
ures [48], [6], [58], [59]. To our knowledge, PREFEST [48] and
PATDROID [6] are the two relevant dynamic testing tools for
SETDROID. PREFEST does app preference-wise testing but
also considers some system settings (i.e., WiFi, Bluetooth,
mobile data, GPS locating, and network locating), while
PATDROID considers permissions. Note that in principle
all these existing tools cannot detect non-crashing failures
that SETDROID targets. But we still do the comparison.
Specifically, we build two baselines for comparison:
• Baseline A (random testing): This baseline mimics one

typical generic testing tool, Monkey [50], which randomly
explores the app under test without explicitly changing
settings. This baseline follows the same testing strategy
of Monkey. We do not choose to directly run Monkey.
Because Baseline A can generate tests based on widgets
(which are intuitive), while Monkey generates pixel-based
events (which are hard to understand). In addition, Base-
line A can help reproduce setting defects much more
easily. In practice, Baseline A just runs Module (a) in Fig. 6.

• Baseline B (random testing+setting changes): This base-
line mimics the testing strategies of PREFEST and
PATDROID, which change settings before starting an app
and then randomly explore the app. Baseline B considers
all the setting changes in Table 5, including all the settings
in PREFEST and PATDROID. In practice, Baseline B just
runs Modules (a) and (b) in Fig. 6.

• We also run PREFEST and PATDROID for direct compari-
son with SETDROID.

Note that we allocate 13 hours (the same testing time
used by SETDROID) for each setting change of the two
baselines, PREFEST, and PATDROID to test each of 26 open-
source apps on one emulator, and check the generated bug
reports to confirm whether they could find setting defects.
To eliminate randomness, we test each app three times and
take the average values as the final results.

5.2.2 Setup of static analysis tools

Existing static analysis tools for Android can be divided
into two categories. One category is generic static analysis
tools that detect various types of code faults, while the other
category focuses on specific types of code faults. For the first
category, we choose Android LINT [60] to compare with
SETCHECKER because LINT is the most popular Android
static analysis tool. It can check an Android project with
source code for diverse types of issues for correctness,
security, performance, usability, accessibility, and interna-
tionalization. For the second category, to our best knowl-
edge, there is no static analysis tool for detecting all types
of setting defects. We note that two tools REVDROID [61]
and ARPDROID [62] can find defects caused by runtime
permissions. However, we find that ARPDROID reports a
lot of false alarms. The high number of false alarms prevents
us from identifying real defects within reasonable manual
efforts. So we decide to compare REVDROID with only
SETCHECKER. REVDROID is a static analysis tool to detect
the potential defects caused by permission revocation (sim-
ilar to the setting changes in our context). We run LINT [60]
and REVDROID on the same Ubuntu 18.04 machine and

15



manually verify and count the number of found setting
defects for each tool.

5.3 Results of RQ5
We evaluate the ability of SETDROID and SETCHECKER in
setting defects detection from effectiveness, usability, diver-
sity of found defects, and practicality. And we present the
evaluation results in this section.

5.3.1 Effectiveness
Table 6 shows the setting defects found by SETDROID and
SETCHECKER, respectively. Columns 2-4 give the app name,
the number of installations on Google Play (“-” indicates
that the app is not released on Google Play), and the number
of stars on GitHub; Columns 5-8 give the information of
detected defects, which contains issue ID, issue state (fixed,
confirmed, under discussion with developers, or waiting for
the reply), related setting, and consequence. As shown in
Table 6, out of the 26 apps, SETDROID and SETCHECKER
detect 48 unique and previously-unknown setting defects
in 26 apps. so far, 35 have been confirmed and 21 have
been fixed. The results demonstrate the effectiveness of
SETDROID and SETCHECKER. Further, we receive positive
feedback from developers. For example, one developer of
Forecastie comments that “Yep, good spot. Cheers for posting
this bug”; one developer of Omni Notes responds “Thanks
for pointing my attention to that”; “Well spotted. Cheers for
the bug report.”. These comments show that SETDROID and
SETCHECKER can find defects cared by developers.

5.3.2 Usability
Table 6 shows the detailed evaluation results of SETDROID
and SETCHECKER on each app. Specifically, Columns 9-12,
respectively, show the results of SETDROID, including the
FPs of oracle checking rule I (#FPSI ), the TPs of oracle
checking rule I (#TPSI ), the FPs of oracle checking rule II
(#FPSII , the numbers preceding and following the symbol
“→”, respectively, denote the FPs of SETDROID before and
after using the FP reduction strategy (see Optimization II
in Section 4.1.4)) and the TPs of oracle checking rule II
(#TPSII , the numbers preceding and following the symbol
“→”, respectively, denote the TPs of SETDROID before and
after using the FP reduction strategy).

During testing, SETDROID reports 293 defects in total.
Among them, 149 defects are reported by oracle checking
rule I, 124 of which are TPs (124/149≈83.2%); the remaining
144 defects are reported by oracle checking rule II, 116 of
which are TPs (116/144≈80.6%). We analyze the FPs of these
two rules and identify some major reasons.
• FPI of oracle checking rule I. Rule I in fact has a very

low false-positive rate (16.8%). We find that all these FPs
are caused by specific app features triggered by setting
changes. For example, when the screen orientation setting
is changed, app Always On pops up animation on top of
the screen, leading to some GUI inconsistencies between
the two devices.

• FPII of oracle checking rule II. In our prior work, the
false-positive rate of Rule II is high (535/662≈80.8%). To
reduce the false positive rate, we analyze the experimen-
tal results and add a generic FP reduction strategy for

SETDROID (see Section 4.1.4) in this journal version. The
current result clearly shows that the strategy is useful as
it substantially reduces the false positive rate of Rule II
from 80.8% to 19.4% (≈28/144). And no true positive is
removed after the FP reduction strategy is applied. The
remaining FPs are caused by some reserved keywords that
do not need to be translated after the language is changed.

On the other hand, in our prior work, we have to run 13
hours for each pair of events for setting changes in Table 5
for one app. To improve testing efficiency, we add a generic
optimization strategy for SETDROID (see Section 4.1.4) in
this journal version, i.e., we perform static analysis to de-
termine which settings are relevant to the app and inject
only the relevant pairs of events for setting changes in
Table 5. In Table 6’s Column 13 (i.e., (#StrategyS)), the
numbers preceding and following the symbol “→”, respec-
tively, denote the numbers of pairs of events for setting
changes needed to run on each app before and after the
optimization strategy (see Optimization I in Section 4.1.4)
is applied (note that our prior work applies all the 13 pairs
of events for setting changes on each app). We can see
that this optimization strategy reduces 2∼11 irrelevant pairs
of events for setting changes, reducing 15.4∼84.6% testing
time. The results clearly shows that the strategy is useful.
Moreover, to investigate whether this optimization strategy
will bring false negatives, we manually confirmed that for
all the benchmark apps, none of the settings (which induce
the setting defects found by SETDROID before optimization)
are filtered out by this optimization strategy. The result
shows that this strategy does not incur any false negatives
in our experiment.

As for SETCHECKER, 78 suspicious setting defects are
found in 26 apps. In Table 6, Columns 14-15 respectively
give the number of setting defects reported by SETCHECKER
(#ReportedP ) and the number of verified setting defects
(#VerifiedP ). Specifically, out of 78 defects, 46 are success-
fully verified with real tests, achieving the hit rate of 59.0%
(≈46/78). For each of the remaining 32 defects, there is one
of three main reasons for failing to verify. (1) The mapping
between the source code and the corresponding GUI wid-
gets are hard to be set up. As a result, we sometimes cannot
know which UI widgets should be executed to reach the
code of interest. (2) The preconditions required to manifest
the defect are difficult to be satisfied. As a result, even if the
faulty code is successfully reached, the defect still cannot be
triggered. (3) The found defect is located in a piece of dead
code, which could not be triggered in reality. In addition,
Column 16 (TimeP ) in Table 6 reports the static analysis
time cost on each app. We can see that the static analysis on
these open-source apps is efficient.

5.3.3 Diversity of found defects

From Table 6, we can see that the setting defects found
by SETDROID and SETCHECKER are diverse: the apps are
affected by different settings with different consequences.

In terms of root causes, we inspect all 20 fixed defects
and find that most of them are due to the lack of setting
checks. For example, RadioBeacon will stay in the infinite
loading status when the network is disconnected during up-
loading, and cannot recover after the network is connected.

16



TABLE 6
List of the 48 setting defects found by SETDROID and SETCHECKER and the detailed statistics of the evaluation results.

App ID App name #Downloads #Stars Issue ID Issue state Cause setting Consequence #FPSI #TPSI #FPSII #TPSII #StrategyS #ReportedP #VerifiedP TimeP
1 APhotoManager - 187 #175 Confirmed Permission Crash 0 3 0 → 0 0→0 13 → 4 0 0 22s
2 A2DP Volume 100K-500K 81 #295 Fixed Display Crash 0 10 0 → 0 0→0 13 → 5 8 8 21s

#291 Fixed Display Data lost
#290 Fixed Display Crash
#289 Fixed Display & Permission Data lost
#294 Confirmed Developer Crash
#301 Confirmed Permission Crash

3 Always On 10M-50M 129 #2476 Confirmed Language Disrespect of Settings 3 0 3 → 3 6→6 13 → 8 5 2 26s
#2475 Confirmed Language Incomplete translation(5)

4 AnkiDroid 5M-10M 4.3K #5407 Fixed Permission Stuck 0 4 7 → 1 0→0 13 → 11 2 1 38s
5 AntennaPod 500K-1M 3.9K #4227 Fixed Network Lack of refresh 1 2 7 → 2 1→1 13 → 11 0 0 4s
6 Commons 50K-100K 716 #3134 Discussion Location Infinite loading 0 9 30 → 3 0→0 13 → 10 6 2 45s

#3906 Confirmed Permission Crash
#4594 Confirmed Permission Crash
#4498 Confirmed Display Crash

7 ConnectBot 1M-5M 1.7K 1 8 8 → 2 0→0 13 → 8 0 0 4s
8 FillUp 100K-500K 31 3 0 0 → 0 0→0 13 → 2 0 0 13s
9 Forecastie 10K-50K 692 #358 Fixed Permission Lack of prompt 1 3 1 → 1 5→5 13 → 8 0 0 16s

#504 Fixed Language Incomplete translation(5)
#505 Confirmed Display Data lost

10 Good Weather 5K-10K 204 #61 Waiting Network Infinite loading 0 6 4 → 4 51→51 13 → 8 10 10 14s
#55 Waiting Location Lack of prompt
#62 Waiting Language Language confusion

11 Materialistic 100K-500K 2.2K #1429 Waiting Network Lack of refresh 1 8 144 → 1 1→1 13 → 7 10 1 13s
12 Notepad 100K-500K 197 0 3 4 → 1 1→1 13 → 4 0 0 54s
13 Omni Notes 100K-500K 2.3K #695 Fixed Permission Lack of prompt 0 9 3 → 3 3→3 13 → 7 2 1 31s

#764 Fixed Location Error prompt
#776 Fixed Language Disrespect of Settings
#775 Fixed Language Incomplete translation(2)

14 Opensudoku 10K-50K 279 #93 Confirmed Language Incomplete translation(7) 1 2 1 → 1 7→7 13 → 1 0 0 52s
15 RedReader 100K-500K 1.2K #749 Discussion Network Infinite loading 0 4 291 → 1 30→30 13 → 8 0 0 38s

#783 Confirmed Language Incomplete translation(23)
16 Timber 100K-500K 6.6K #454 Confirmed Display Data lost 0 4 0 → 0 9→9 13 → 8 0 0 35s

#458 Waiting Permission Crash
#459 Waiting Language Incomplete translation(9)

17 Vanilla Music 500K-1M 862 #1048 Waiting Display Crash 1 7 0 → 0 0→0 13 → 5 0 0 22s
18 Wikipedia 50M-100M 1.5K 0 6 4 → 0 0→0 13 → 7 7 1 54s
19 OpenBikeSharing 1K-5K 63 #55 Confirmed Display Function failure 3 8 0 → 0 0→0 13 → 4 3 3 13s

#59 Confirmed Permission Error prompt
20 Suntimes - 162 #420 Fixed Location Infinite loading 1 2 0 → 0 0→0 13 → 10 6 1 40s
21 RadioBeacon - 51 #234 Confirmed Network Stuck 3 2 10 → 4 1→1 13 → 10 13 11 19s

#249 Confirmed Permission Crash
22 RunnerUp 50K-100K 583 #923 Fixed Permission Lack of prompt 0 1 0 → 0 0→0 13 → 8 4 4 36s

#1082 Waiting Network Lack of prompt
23 Amaze 1M-5M 3.6K #1885 Fixed Display & Permission Black screen 4 21 18 → 1 0→0 13 → 8 0 0 35s

#1964 Fixed Display & Permission Data lost
#1920 Fixed Network Lack of prompt
#1919 Fixed Display & Permission Crash
#1965 Fixed Permission Crash

24 Kiss 1M-5M 2K #1835 Waiting Location Wrong Prompt 0 0 0 → 0 0→0 13 → 3 4 1 18s
25 Habits 1M-5M 4.5K #599 Fixed Display Data lost 2 2 0 → 0 1→1 13 → 2 0 0 28s

#620 Fixed Language Incomplete translation(2)
26 Signal 100M-500M 22.3K 0 0 0 → 0 0→0 13 → 11 0 0 59S

TABLE 7
Setting defects found in the five industrial apps.

ID App Setting Consequence
1 QQMail Permission Functionality failure
2 QQMail Permission Crash
3 Wechat Permission Functionality failure
4 Wechat Permission Functionality failure
5 Wechat Language Problematic UI display
6 Wechat Language Incomplete translation
7 Wechat Network Stuck
8 Wechat Network Functionality failure
9 CapCut Network Infinite loading
10 CapCut Permission Functionality failure
11 CapCut Display&Permission Problematic UI display
12 CapCut Network Functionality failure
13 TikTok Network Functionality failure
14 TikTok Permission Functionality failure
15 TikTok Location Functionality failure
16 AlipayHK Language Functionality failure
17 AlipayHK Location Functionality failure

Some defects are caused by incorrect callback implemen-
tations (e.g., AnkiDroid has one defect that fails to properly
handle permission callbacks), while some defects are caused
by mutual influence between settings (e.g., as some apps
may use both GPS and the network for positioning, network
fluctuations may affect the positioning function. Suntimes
has a setting defect caused by calling the location obtained
when the network is lost.) On the other hand, most of the
language defects are caused by the incomplete translation.

These setting defects also lead to different consequences
in addition to crashes. For example, some apps lack neces-
sary prompts or give wrong prompts when their functions
fail. When the device-only mode is turned on, Omni Notes
cannot insert the current location into the notes and prompts
the user with a wrong, confusing message “location not

found”. As an example of disrespect of settings, when
the users change the default system language to another
language, Always On indeed adjusts to the new language.
But when Always On is closed and reopened, the language
setting gets lost and rolls back to the default language.

5.3.4 Practicality

As shown in Table 7, SETDROID detects 17 unique and
previously-unknown setting defects in 5 commercial apps,
all of which have been confirmed and fixed by Tencent,
ByteDance, and Alibaba. Note that we report only those
defects that we believe to be true positives (TP) to the app
vendors, and the TP rates are high (80.8% on average across
the five apps). Table 7 shows the details of these defects.
According to our observation, these defects affect different
modules and lead to different consequences. Some defects
are severe and quickly fixed by the vendors. Afterwards,
ByteDance collaborates with us and deploys SETDROID to
stress test TikTok, one of its major app products. Within a
two-month testing campaign, SETDROID successfully finds
53 setting defects in TikTok. So far, 48 of them have been
confirmed, and 20 have already been fixed.

We also apply SETCHECKER on the latest version of
TikTok at the time of study. Due to the large code base, it
takes SETCHECKER about 17 hours to scan TikTok for setting
defects. Finally, SETCHECKER successfully finds 22 defects
in TikTok. 14 of them are due to the lack of permission
checks, and the remaining 8 are related to network settings.
So far, 11 defects have been fixed.

We find that SETDROID and SETCHECKER only have
one common setting defect. We inspected the testing results

17



TABLE 8
Comparison of SETDROID and other dynamic testing techniques. C and NC represent crashing and non-crashing consequences, respectively.

Setting All settings Bluetooth, network and location Permission
Tool Baseline A Baseline B SETDROID PREFEST SETDROID PATDROID SETDROID

Consequence C NC C NC C NC C NC C NC C NC C NC
#Defects 0 0 3 0 9 33 0 0 0 10 2 0 6 8

TABLE 9
Comparison of SETCHECKER and other static analysis tools.

Setting All setting Permission
Tool LINT SETCHECKER REVDROID SETCHECKER
#Defects 1 44 23 29

and found two major reasons. One reason is that TikTok
has many complex functionalities, and SETDROID failed to
cover the functionalities where the defects reside due to its
random seed tests. On the other hand, SETCHECKER can
scan the whole code base. Another reason is that most of the
fault patterns implemented in SETCHECKER complements
the ability of SETDROID. We will discuss the differences
between these two tools in detail in Section 5.5.

Answer to RQ5: SETDROID and SETCHECKER are
effective and practical in finding setting defects for
real-world apps. The found defects are diverse in
terms of root causes and consequences and are of
developers’ concern. These two tools also show rea-
sonable usability as their false positive rates are low.
Moreover, SETDROID’s two optimizations did not
incur false negatives on all the tested apps, and sig-
nificantly improved testing precision and efficiency.

5.4 Results of RQ6
Table 8 shows the comparison results of SETDROID and
other dynamic testing techniques and the baselines. Row
“#Defects” denotes the number of unique setting defects. We
can see that SETDROID can detect more crashing and non-
crashing setting unique defects than the other techniques.
Baseline A does not detect any defect because it does
not explicitly change settings like existing automated app
testing tools, while Baseline B detects only 3 crashes (which
are also detected by SETDROID) because it only changes set-
tings before running tests. Because PREFEST and PATDROID
cover only limited types of settings, we compare the number
of defects detected by PREFEST/PATDROID and a restricted
SETDROID (focusing on only those types of settings covered
by PREFEST/PATDROID), respectively (shown in the last
eight columns of Table 8). PREFEST does not detect any set-
ting defect while PATDROID detects two crashes related to
permissions. Note that the crashes detected by PATDROID
and SETDROID do not overlap, likely caused by the ran-
domness in test generation. In summary, (1) SETDROID
detects 33 non-crashing setting defects, none of which can
be detected by other approaches under comparison. (2)
SETDROID is designed to change settings at random events,
indeed exposing more setting defects, compared to Baseline
B. (3) PREFEST and PATDROID focus on the combinations
of setting changes, but do not detect any defects caused
by multiple settings in our subjects, conforming to our
findings that most of the setting defects can be manifested

by one single setting. These results indicate the superiority
of SETDROID over existing tools and usefulness of our study
insights in designing SETDROID.

Table 9 shows the comparison results of SETCHECKER,
LINT, and REVDROID. Row “#Defects” denotes the number
of setting defects reported by these static analysis tools after
false positives are manually excluded. Initially, LINT finds
142 suspicious defects in 26 apps. But after manual inspec-
tion, we find only one of them is a real setting defect, which
is due to the lack of permission checks. This result indicates
that LINT lacks the fault patterns related to setting defects,
and SETCHECKER can well complement LINT. On the other
hand, REVDROID can detect only permission related defects.
Initially, REVDROID reports 99 suspicious defects in 17 apps.
We manually check these suspicious defects and confirm
that 23 of them are true positives, and the remaining 76
are false positives. Note that all these 23 true positives are
also found by SETCHECKER. We find two major reasons for
explaining the false positives of REVDROID. (1) REVDROID
fails to identify that some permissions are already checked
before calling the permission-related APIs. For example, app
A2DP Volume already checks ACCESS_COARSE_LOCATION
and ACCESS_FINE_LOCATION permissions before calling
LocationManager# removeUpdates(). But REVDROID
still reports it as an suspicious defect. We find 20 false posi-
tives are caused by such a factor. (2) REVDROID mistakenly
reports defects related to non-dangerous permissions. In
fact, non-dangerous permissions are automatically granted
when an app is installed and cannot be revoked. So we do
not need to check these non-dangerous permissions. 49 of
76 reported suspicious defects are such false positives.

Answer to RQ.6: Inspired by the insights of our
study, SETDROID is designed to be able to detect
non-crashing setting defects that cannot be detected
by existing automated testing tools. SETCHECKER
can detect more setting defects than prior static anal-
ysis tools with the help of the fault patterns distilled
from our study and achieve higher accuracy.

5.5 Results of RQ7
Table 10 shows the differences between SETDROID and
SETCHECKER in terms of the setting defects found in the
26 open-source apps. Specifically, SETDROID reports 293
defects, 240 of which are TPs, while SETCHECKER reports
78 defects, 46 of which are successfully verified with real
tests. In total, 48 unique and previously-unknown setting
defects are found, 11 of which are found by both tools. In
detail, 31 setting defects are found by only SETDROID, and 6
defects are found by only SETCHECKER. Specifically, for the
network, display location, and sound settings, SETDROID
finds 11, 9, 5, and 0 defects, respectively, while SETCHECKER
finds 8, 0, 8, and 12 defects, respectively. These results are

18



consistent with our analysis in Section 3.4, i.e., dynamic
analysis techniques (such as SETDROID) are better for find-
ing the defects related to the network and display settings
while static analysis techniques (such as SETCHECKER) are
more suitable for finding those related to the location and
sound settings. Indeed, these results show that SETDROID
and SETCHECKER can complement each other in finding
setting defects. We next give a more detailed analysis on
the effectiveness of these two tools.

Why are some setting defects missed by SETDROID?
Through our analysis, we note three major reasons for
explaining why SETDROID may miss some setting defects
while SETCHECKER can still find them. First, some setting
defects will not cause GUI inconsistency, so it is difficult for
SETDROID to detect them. For example, SETCHECKER finds
OpenBikeSharing’s issue #59 (affected by permission setting,
the app cannot display the map of the user’s location), while
SETDROID misses it. The reason is that no matter whether
OpenBikeSharing successfully locates the user’s location, the
dumped GUI layouts of the map interface are consistent. As
a result, SETDROID does not have the chance to manifest
the GUI inconsistencies. Second, SETDROID’s effectiveness
is also limited by the coverage of random seed tests. For
example, SETCHECKER finds KISS’s issue #1835 (a setting
defect related to permission), while SETDROID misses it. In
issue #1835, the app fails to prompt proper alerts if a user
searches for contacts when the “read contacts” permission is
disabled. However, this defect can be triggered only when
the searched text is a valid contact name. This condition is
difficult to be satisfied by the random seeds of SETDROID.
Third, some setting defects can be triggered on only specific
Android versions. Thus, they are easier to be found by static
analysis such as SETCHECKER than by dynamic analysis.

Why are some setting defects missed by SETCHECKER?
Most setting defects are non-crashing failures, and many
of them are caused by application specific logic errors.
Thus, summarizing the complete and accurate fault patterns
at the code level to capture all setting defects is almost
impossible. The fault patterns of some setting defects are
ad-hoc from the perspective of root causes. For example, a
user of ownCloud reports in issue #1498 that if the device is
offline during the upload process, the upload of the app will
be suspended immediately, and the user cannot resume the
upload after the network is restored. The developer solves
this defect by adding a button with the text ”retry” and the
response method of the ”retry” button. From the code level,
most apps just need to catch the exception and prevent the
apps from crashing when offline. Not all network-related
apps require a retry button to resume interrupted opera-
tions, so it is difficult to summarize a common fault pattern
for this defect. Thus, we summarize only some common
fault patterns to detect some categories of some common
setting defects, and other setting defects cannot be caught.

What are the ability boundaries of SETDROID and
SETCHECKER? As a static analysis tool, SETCHECKER can
quickly find defects related to the supported settings As
shown in Table 6, for the 26 open-source apps we tested, it
takes only 29 seconds on average to complete the analysis.
But SETCHECKER has some limitations. First, the types of
defects found by SETCHECKER are limited by the supported

TABLE 10
Number of the setting defects found by our two tools.

Tool #Reported #Verified #Unique Defects
SETDROID 293 240 42

SETCHECKER 78 46 17

fault patterns. For example, in Section 5.5, there are some
setting defects found by SETDROID that cannot be detected
by SETCHECKER. Second, SETCHECKER requires the avail-
ability of the app source code (or at least the unobfuscated
APK file). Third, it requires more effort to verify the setting
defects reported by SETCHECKER by constructing the real
tests. For SETDROID, it can detect various types of setting
defects due to the generic oracle rules. SETDROID can also
provide the real tests to reproduce the reported setting
defects. But SETDROID also has some limitations. First, as
we discussed in Section 5.5, SETDROID cannot detect the
setting defects that will not lead to GUI inconsistencies (e.g.,
volume and power consumption related issues). Second,
SETDROID’s effectiveness could be affected by the adequacy
(e.g., code coverage) of the seed tests used for mutation, and
the Android versions used for testing (because some setting
defects are compatibility issues).
How to apply SETDROID and SETCHECKER in practice? In
practice, both SETDROID and SETCHECKER can find some
setting defects that are hard to be detected by the other,
due to their respective technical limitations. Thus, these two
tools are complementary in bug finding. From the tool users’
perspective, they could apply the tools according to the
actual scenarios. For example, if users cannot obtain the app
source code (or at least the unobfuscated APK file), they
could choose SETDROID because it is a black-box testing
tool; in the scenario of in-house testing (when the app source
code is available) with tight testing time, they could use
SETCHECKER because it can quickly identify potential bugs
without running the app. If the users are not subject to the
preceding limitations, they could run both tools to find as
many setting defects as possible. Note that in this case the
running order of these two tools does not affect the bug
finding results.

Answer to RQ.7: In terms of the numbers of found
setting defects, SETDROID is more effective than
SETCHECKER. But SETCHECKER can complement
SETDROID by finding more defects that are hard to
be found by SETDROID.

6 DISCUSSION

This section provides an extended discussion of our work
in the following three aspects: (1) testing mechanism (2)
generality, and (3) threats to validity.

6.1 Relationships between SETDROID’s Testing Mecha-
nism and the Root Causes of Setting Defects

We wish to discuss the relationships between SETDROID’s
testing mechanism and the root causes of setting defects.
It can help readers understand why SETDROID can detect
the various categories of setting defects discussed in our

19



empirical study. In Section 3.2, we discuss six types of
root causes of setting defects. Although the root causes are
diverse, SETDROID’s oracle checking rules are generic to
capture the inconsistent app behaviors caused by setting
defects when a given setting is changed and later properly
restored, or the expected differences cannot be shown when
the change is not restored. For example, Section 3.2.1 dis-
cusses the root cause of incorrect callback implementations.
Take AnkiDroid’s issue #4951 as an example (discussed in
Section 3.2.1), AnkiDroid did not correctly implement the
callback method when the permission setting is changed
(i.e., forgetting to redraw the menu bar after the permission
setting changes). In this case, this setting defect can be cap-
tured by SETDROID because it checks the GUI consistency
between the seed test and the mutant test (which revokes
and later restores the permission).

6.2 Generality of Our Approaches
Since our oracle checking rules are generic, adding other
pairs of setting changes into SETDROID is feasible and only
involves one-time effort. Similarly, for SETCHECKER, we can
also detect other types of setting defects by adding new fault
patterns. One interesting direction is to explore whether
our techniques can be applied to finding app setting-related
defects. According to our experience, it might be doable but
could be ad-hoc to define oracle checking rules and fault
patterns because different apps have different app settings
and their expected behaviors are different and app-specific.

6.3 Threats to Validity
One main threat to validity is likely insufficient representa-
tiveness of app subjects used in our study. To alleviate this
threat, for our systematic study, we collect 180 apps from
1,728 Android apps on GitHub. As shown in Section 2.2,
these 180 apps are popular and cover diverse app categories.
For the evaluation of SETDROID, besides highly popular in-
dustrial apps, we use all the non-obsolete app subjects from
recent prior work [48]. Another threat is likely incomplete-
ness of setting keywords, causing incomprehensiveness of
the setting defects collected by us. To alleviate this threat,
we study the official Android documentation and collect as
many keywords as possible for each setting, and we also
consider different possible forms that users may use in bug
reports. The third threat is likely incorrectness of manual
inspection. Our manual analysis may introduce errors. To
alleviate this threat, the four co-authors cross-check each
other’s analysis results to ensure correctness. The last threat
is that due to the fast evolution of Android systems and
apps, the validity of the presented results (e.g., the study
findings, the performance of the proposed two tools) may
be affected. To alleviate this threat, we studied all the re-
ported issues of the subject apps that have already involved
different Android system versions. Therefore, the classifica-
tion and the findings we obtained could be still valid for
future Android system versions. For the dynamic testing
tool SETDROID, as long as the metamorphic relation is valid
(e.g., the app behaviors should keep consistent if a given
setting is changed and later properly restored, or show
expected differences if not restored), SETDROID should be
still effective and applicable. For the static analysis tool

SETCHECKER, although the APIs used by the fault patterns
may change, its algorithmic detection strategy based on
control- and data-flow analysis should be still valid, and
only necessary update of APIs is needed. The main limita-
tion of SETDROID is that it cannot ensure that all the target
codes (or activities) are covered because it generates random
seed tests. However, we believe SETDROID can be enhanced
by existing powerful test generation techniques.

7 RELATED WORK

In this section, we discuss four strands of related work: (1)
configuration testing for traditional software, (2) empirical
studies for Android app defects, (3) automated Android app
GUI testing, and (4) Android app static analysis. We focus
on some representative pieces of work in the recent years.

7.1 Configuration Testing for Traditional Software

Prior work investigates misconfiguration defects for tradi-
tional software. Yin et al. [63] conduct a study on a commer-
cial storage system (COMP-A) and four widely used open-
source systems (CentOS, MySQL, Apache, and OpenLDAP)
to study the main reasons of configuration defects. Multi-
ple studies [64], [65], [66] focus on effective configuration
combination strategies for testing and show that simple
algorithms such as most-enabled-disabled are the most effec-
tive. Efforts [67], [68], [69] also exist to automatically detect
configuration defects in traditional software. In contrast, our
work is the first to systematically study setting defects in
Android apps.

7.2 Empirical Studies for Android App Defects

A number of empirical studies investigate different types
of Android app defects [58], [70], [71]. For example, Hu
et al. [58] study and detect the WebView defects, while
Fan et al. [70], [72] and Su et al. [73] study the framework-
specific crash defects, and Kong et al. [74] locate framework-
specific bugs that are not captured in the stack traces. But
they do not cover setting defects addressed by our work.
Some studies investigate Android configurations [75], [76],
[77], but these configurations denote different Android SDK
versions, device screen sizes, or configuration files (e.g.,
AndroidManifest.xml) of Android apps. These config-
urations are different from the system settings considered in
our work. Some researchers study limited types of setting
defects. Wang et al. [7] conduct a large-scale empirical study
of runtime permission defects in the Android ecosystem.

7.3 Automated Android App GUI Testing

A number of automated GUI testing techniques have been
proposed [52], [55], [56], [57], [78], [79], using different
approaches, such as symbolic execution [80], evolutionary
algorithm [53], random [50] and model-based testing [81],
[51], [54]. However, these testing techniques are limited to
crash defects due to lack of strong test oracles. In contrast,
our testing technique, informed by our study, leverages the
idea of metamorphic testing to detect both crash and non-
crashing setting defects. Adamsen et al. [82] also use spe-
cific metamorphic relations to enhance existing test suites

20



for Android, but they do not target setting defects. Some
previous work explores limited types of setting defects. For
example, Sadeghi et al. [6] propose PATDROID, which uses
combinatorial testing to automatically detect permission
defects. Similarly, Lu et al. [48] propose PREFEST, which
uses symbolic execution and combinatorial testing to detect
crashes induced by changing app-specific preferences and
some system settings. However, our work has two signifi-
cant differences from theirs. First, we systematically explore
different system settings (typically provided by the system
app Settings), while they explore only limited types of
settings. Second, SETDROID can detect non-crashing setting
defects, while PATDROID and PREFEST can detect only
crash ones. Our evaluation in Section 5.4 also shows these
differences. Riganelli et al. [59] and Guo et al. [83] use screen
rotations to detect data loss defects. However, they can
detect only the setting defects induced by screen rotations,
while SETDROID can detect many different setting defects.
GENIE [84] uses metamorphic testing to find generic types
of functional bugs, and ODIN [85] uses differential analysis
to find functional bugs. These two tools are different from
SETDROID because they do not target setting defects.

7.4 Android App Static Analysis

There are various approaches to doing static analysis of
Android apps differing in precision, runtime, scope, and
focus [86], [87]. Some static analysis approaches focus on
detecting defects caused by specific setting categories. Since
the release of Android 6.0, researchers have proposed var-
ious approaches to help legacy apps automatically migrate
to the runtime permission model. Dilhara et al. [62] present
ARPDROID, an automated solution that detects and re-
pairs incompatible permission uses, adapting the app un-
der analysis to the new permission model. Fang et al. [61]
build an automatic tool, REVDROID, to analyze the poten-
tial side effects of permission revocation. However, these
approaches focus on only specific types of setting defects,
while SETCHECKER targets more types of setting defects.

8 CONCLUSION

In this article, we have presented the first empirical anal-
ysis of setting defects in Android apps and have shown
that most apps are affected by setting defects. We have
identified five major root causes and four types of conse-
quences of these defects, and we have also analyzed the
correlation between setting categories and their root causes
and consequences. Guided by our study findings, we have
proposed a setting-wise metamorphic fuzzing tool named
SETDROID and a fault-pattern-based static analysis tool
named SETCHECKER to detect setting defects. SETDROID
and SETCHECKER find 123 previously-unknown setting de-
fects from 26 open-source and 5 industrial apps. These
defects have diverse root causes and consequences. We have
also given an in-depth comparison between our proposed
tools and prior tools, and shown the superiority of our
bug finding techniques. We have open-sourced our dataset
and tools to facilitate replication and future research at
https://github.com/setting-defect-fuzzing/home.

ACKNOWLEDGMENT

We would like to thank the anonymous TSE reviewers for
their constructive and valuable feedback on earlier versions
of this paper. Ting Su was partially supported by NSFC
Project No. 62072178 and the “Digital Silk Road” Shanghai
International Joint Lab of Trustworthy Intelligent Software
(Grant No. 22510750100). Geguang Pu was partially sup-
ported by National Key Research and Development Pro-
gram (2020AAA0107800) and Shanghai Collaborative Inno-
vation Center of Trusted Industry Internet Software. Tao
Xie was partially supported by National Natural Science
Foundation of China under Grant No. 62161146003, and
the Tencent Foundation/XPLORER PRIZE. Zhendong Su
and Ting Su were partially supported by a Google Faculty
Research Award.

REFERENCES

[1] W. Team, “WordPress,” 2022, retrieved 2022-12 from https://
github.com/wordpress-mobile/WordPress-Android.

[2] mzorz, “WordPress issue #6026,” 2017, retrieved 2022-12 from
https://github.com/wordpress-mobile/WordPress-Android/
issues/6026.

[3] malinajirka, “WordPress issue #10096,” 2019, retrieved
2022-12 from https://github.com/wordpress-mobile/
WordPress-Android/issues/10096.

[4] N. Team, “NextCloud,” 2022, retrieved 2022-12 from https://
github.com/nextcloud/android.

[5] fpernice518, “NextCloud issue #2979,” 2018, retrieved 2022-12
from https://github.com/nextcloud/android/issues/2979.

[6] A. Sadeghi, R. Jabbarvand, and S. Malek, “PATDroid: permission-
aware gui testing of Android,” in Proceedings of the 11th Joint
Meeting on Foundations of Software Engineering (FSE), 2017, pp. 220–
232.

[7] Y. Wang, Y. Wang, S. Wang, Y. Liu, C. Xu, S.-C. Cheung, H. Yu,
and Z.-l. Zhu, “Runtime permission issues in Android apps:
Taxonomy, practices, and ways forward,” IEEE Transactions on
Software Engineering (TSE), 2022.

[8] D. Amalfitano, V. Riccio, A. C. Paiva, and A. R. Fasolino, “Why
does the orientation change mess up my Android application?
from gui failures to code faults,” in Software Testing, Verification
and Reliability (STVR), 2018, p. e1654.

[9] P. Tramontana, D. Amalfitano, N. Amatucci, and A. R. Fasolino,
“Automated functional testing of mobile applications: a systematic
mapping study,” in Software Quality Journal (SQJ), 2019, pp. 149–
201.

[10] P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyandé, and J. Klein, “Au-
tomated testing of Android apps: A systematic literature review,”
IEEE Transactions on Reliability, pp. 45–66, 2018.

[11] T. Su, J. Wang, and Z. Su, “Benchmarking automated gui testing
for Android against real-world bugs,” in Proceedings of 29th ACM
Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), 2021, pp. 119–130.

[12] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input
generation for Android: are we there yet? (E),” in Proceedings of
the 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2015, pp. 429–440.

[13] W. Wang, D. Li, W. Yang, Y. Cao, Z. Zhang, Y. Deng, and T. Xie,
“An empirical study of Android test generation tools in industrial
cases,” in Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering (ASE), 2018, pp. 738–748.

[14] M. Linares-Vásquez, K. Moran, and D. Poshyvanyk, “Continuous,
evolutionary and large-scale: A new perspective for automated
mobile app testing,” in Proceedings of the 2017 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2017,
pp. 399–410.

[15] A. Team, “Android Developers Documentation,” 2022, retrieved
2022-12 from https://developer.android.com.

21

https://github.com/setting-defect-fuzzing/home
https://github.com/wordpress-mobile/WordPress-Android
https://github.com/wordpress-mobile/WordPress-Android
https://github.com/wordpress-mobile/WordPress-Android/issues/6026
https://github.com/wordpress-mobile/WordPress-Android/issues/6026
https://github.com/wordpress-mobile/WordPress-Android/issues/10096
https://github.com/wordpress-mobile/WordPress-Android/issues/10096
https://github.com/nextcloud/android
https://github.com/nextcloud/android
https://github.com/nextcloud/android/issues/2979
https://developer.android.com


[16] ——, “Android Help,” 2022, retrieved 2022-12 from https://
support.google.com/android.

[17] W. Team, “WeChat,” 2022, retrieved 2022-12 from https://www.
wechat.com.

[18] Q. Team, “QQMail,” 2022, retrieved 2022-12 from https://en.mail.
qq.com.

[19] T. Team, “TikTok,” 2022, retrieved 2022-12 from https://www.
tiktok.com.

[20] C. Team, “CapCut,” 2022, retrieved 2022-12 from https://lv.
faceueditor.com.

[21] A. Team, “AlipayHK,” 2022, retrieved 2022-12 from https://www.
alipayhk.com.

[22] T. Cai, Z. Zhang, and P. Yang, “Fastbot: A multi-agent model-
based test generation system,” in Proceedings of the IEEE/ACM 1st
International Conference on Automation of Software Test (AST), 2020,
pp. 93–96.

[23] F. Team, “Fastbot(2.0),” 2022, retrieved 2022-12 from https://
github.com/bytedance/Fastbot Android.

[24] J. Sun, T. Su, J. Li, Z. Dong, G. Pu, T. Xie, and Z. Su, “Understand-
ing and finding system setting-related defects in Android apps,”
in Proceedings of the 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA), 2021, pp. 204–215.

[25] G. Team, “GitHub REST API,” 2022, retrieved 2022-12 from https:
//docs.github.com/en/rest/.

[26] setting-defect fuzzing, “Study Dataset,” 2022, retrieved 2022-
12 from https://github.com/setting-defect-fuzzing/home/tree/
master/Study.

[27] S. O. Team, “Stack Overflow,” 2022, retrieved 2022-12 from https:
//stackoverflow.com.

[28] A. Team, “Ankidroid,” 2022, retrieved 2022-12 from https://
github.com/ankidroid/Anki-Android.

[29] S. Team, “Status,” 2022, retrieved 2022-12 from https://github.
com/status-im/status-react.

[30] F. Team, “Frost,” 2022, retrieved 2022-12 from https://github.
com/AllanWang/Frost-for-Facebook.

[31] C. Team, “Commons,” 2022, retrieved 2022-12 from https://
github.com/commons-app/apps-android-commons.

[32] ——, “Clover,” 2022, retrieved 2022-12 from https://github.com/
chandevel/Clover.

[33] O. Team, “Openlauncher,” 2022, retrieved 2022-12 from https://
github.com/OpenLauncherTeam/openlauncher.

[34] ——, “OpenFoodFacts,” 2022, retrieved 2022-12 from https://
github.com/openfoodfacts/openfoodfacts-androidapp.

[35] S. Team, “Signal,” 2022, retrieved 2022-12 from https://github.
com/signalapp/Signal-Android.

[36] K. Team, “K-9,” 2022, retrieved 2022-12 from https://github.com/
k9mail/k-9.

[37] S. Team, “Syncthing,” 2022, retrieved 2022-12 from https://github.
com/syncthing/syncthing-android.

[38] timotk, “Signal issue #6447,” 2017, retrieved 2022-12 from https:
//github.com/signalapp/Signal-Android/issues/6447.

[39] haffenloher, “Signal issue #5353,” 2017, retrieved 2022-12 from
https://github.com/signalapp/Signal-Android/issues/5353.

[40] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing:
a new approach for generating next test cases,” arXiv preprint
arXiv:2002.12543, 2020.

[41] A. Team, “Request App Permissions,” 2022, retrieved 2022-
12 from https://developer.android.com/training/permissions/
requesting#perm-check.

[42] langid Team, “langid,” 2022, retrieved 2022-12 from https://
github.com/saffsd/langid.py.

[43] uiautomator2 Team, “uiautomator2,” 2022, retrieved 2022-12 from
https://github.com/openatx/uiautomator2.

[44] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input
generation for Android: are we there yet?(e),” in Proceedings of
the 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2015, pp. 429–440.

[45] O. Team, “Onebusaway,” 2022, retrieved 2022-12 from https://
github.com/OneBusAway/onebusaway-android.

[46] S. Team, “Soot,” 2022, retrieved 2022-12 from http://soot-oss.
github.io/soot/.

[47] A. V. Aho, Compilers: principles, techniques and tools (for Anna
University), 2/e. Pearson Education India, 2003.

[48] Y. Lu, M. Pan, J. Zhai, T. Zhang, and X. Li, “Preference-wise testing
for Android applications,” in Proceedings of the 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (FSE), 2019, pp. 268–278.

[49] pcqpcq, “opensource-android-apps,” 2022, retrieved 2022-12 from
https://github.com/pcqpcq/open-source-android-apps/.

[50] M. Team, “Android Monkey,” 2022, retrieved 2022-12 from https:
//developer.android.com/studio/test/monkey.

[51] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for
systematic testing of android apps,” in Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications (OOPSLA), 2013, pp. 641–660.

[52] N. Mirzaei, H. Bagheri, R. Mahmood, and S. Malek, “Sig-droid:
automated system input generation for Android applications,” in
Proceedings of the IEEE 26th International Symposium on Software
Reliability Engineering (ISSRE), 2015, pp. 461–471.

[53] K. Mao, M. Harman, and Y. Jia, “Sapienz: multi-objective auto-
mated testing for Android applications,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis (ISSTA),
2016, pp. 94–105.

[54] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based gui testing of Android
apps,” in Proceedings of the 11th Joint Meeting on Foundations of
Software Engineering (FSE), 2017, pp. 245–256.

[55] T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y. Yao, Q. Zhang, J. Lu, and
Z. Su, “Practical gui testing of Android applications via model
abstraction and refinement,” in Proceedings of the IEEE/ACM 41st
International Conference on Software Engineering (ICSE), 2019, pp.
269–280.

[56] Z. Dong, M. Böhme, L. Cojocaru, and A. Roychoudhury, “Time-
travel testing of Android apps,” in Proceedings of the 42nd Interna-
tional Conference on Software Engineering (ICSE), 2020, pp. 1–12.

[57] M. Pan, A. Huang, G. Wang, T. Zhang, and X. Li, “Reinforcement
learning based curiosity-driven testing of Android applications,”
in Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA), 2020, pp. 153–164.

[58] J. Hu, L. Wei, Y. Liu, S.-C. Cheung, and H. Huang, “A tale of
two cities: how webview induces bugs to Android applications,”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering (ASE), 2018, pp. 702–713.

[59] O. Riganelli, S. P. Mottadelli, C. Rota, D. Micucci, and L. Mariani,
“Data loss detector: automatically revealing data loss bugs in An-
droid apps,” in Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA), 2020, pp. 141–
152.

[60] L. Team, “Lint,” 2022, retrieved 2022-12 from https://developer.
android.com/studio/write/lint.

[61] Z. Fang, W. Han, D. Li, Z. Guo, D. Guo, X. S. Wang, Z. Qian,
and H. Chen, “RevDroid: Code analysis of the side effects after
dynamic permission revocation of Android apps,” in Proceedings
of the 11th ACM on Asia Conference on Computer and Communications
Security (ASIA CCS), 2016, pp. 747–758.

[62] M. Dilhara, H. Cai, and J. Jenkins, “Automated detection and
repair of incompatible uses of runtime permissions in Android
apps,” in Proceedings of the 5th International Conference on Mobile
Software Engineering and Systems (MOBILESoft), 2018, pp. 67–71.

[63] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and
S. Pasupathy, “An empirical study on configuration errors in
commercial and open source systems,” in Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles (SOSP),
2011, pp. 159–172.

[64] A. Halin, A. Nuttinck, M. Acher, X. Devroey, G. Perrouin, and
B. Baudry, “Test them all, is it worth it? assessing configuration
sampling on the jhipster web development stack,” in Empirical
Software Engineering (EMSE), 2019, pp. 674–717.

22

https://support.google.com/android
https://support.google.com/android
https://www.wechat.com
https://www.wechat.com
https://en.mail.qq.com
https://en.mail.qq.com
https://www.tiktok.com
https://www.tiktok.com
https://lv.faceueditor.com
https://lv.faceueditor.com
https://www.alipayhk.com
https://www.alipayhk.com
https://github.com/bytedance/Fastbot_Android
https://github.com/bytedance/Fastbot_Android
https://docs.github.com/en/rest/
https://docs.github.com/en/rest/
https://github.com/setting-defect-fuzzing/home/tree/master/Study
https://github.com/setting-defect-fuzzing/home/tree/master/Study
https://stackoverflow.com
https://stackoverflow.com
https://github.com/ankidroid/Anki-Android
https://github.com/ankidroid/Anki-Android
https://github.com/status-im/status-react
https://github.com/status-im/status-react
https://github.com/AllanWang/Frost-for-Facebook
https://github.com/AllanWang/Frost-for-Facebook
https://github.com/commons-app/apps-android-commons
https://github.com/commons-app/apps-android-commons
https://github.com/chandevel/Clover
https://github.com/chandevel/Clover
https://github.com/OpenLauncherTeam/openlauncher
https://github.com/OpenLauncherTeam/openlauncher
https://github.com/openfoodfacts/openfoodfacts-androidapp
https://github.com/openfoodfacts/openfoodfacts-androidapp
https://github.com/signalapp/Signal-Android
https://github.com/signalapp/Signal-Android
https://github.com/k9mail/k-9
https://github.com/k9mail/k-9
https://github.com/syncthing/syncthing-android
https://github.com/syncthing/syncthing-android
https://github.com/signalapp/Signal-Android/issues/6447
https://github.com/signalapp/Signal-Android/issues/6447
https://github.com/signalapp/Signal-Android/issues/5353
https://developer.android.com/training/permissions/requesting#perm-check
https://developer.android.com/training/permissions/requesting#perm-check
https://github.com/saffsd/langid.py
https://github.com/saffsd/langid.py
https://github.com/openatx/uiautomator2
https://github.com/OneBusAway/onebusaway-android
https://github.com/OneBusAway/onebusaway-android
http://soot-oss.github.io/soot/
http://soot-oss.github.io/soot/
https://github.com/pcqpcq/open-source-android-apps/
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/write/lint
https://developer.android.com/studio/write/lint


[65] F. Medeiros, C. Kästner, M. Ribeiro, R. Gheyi, and S. Apel, “A
comparison of 10 sampling algorithms for configurable systems,”
in Proceedings of the 38th International Conference on Software Engi-
neering (ICSE), 2016, pp. 643–654.

[66] S. Souto, M. d’Amorim, and R. Gheyi, “Balancing soundness and
efficiency for practical testing of configurable systems,” in Pro-
ceedings of the 39th International Conference on Software Engineering
(ICSE), 2017, pp. 632–642.

[67] T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupathy,
“Early detection of configuration errors to reduce failure damage,”
in Proceedings of the 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2016, pp. 619–634.

[68] M. Lillack, C. Kästner, and E. Bodden, “Tracking load-time config-
uration options,” in Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering (ASE), 2014, pp. 445–
456.

[69] S. Zhang and M. D. Ernst, “Which configuration option should
i change?” in Proceedings of the 36th International Conference on
Software Engineering (ICSE), 2014, pp. 152–163.

[70] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su,
“Large-scale analysis of framework-specific exceptions in Android
apps,” in Proceedings of the IEEE/ACM 40th International Conference
on Software Engineering (ICSE), 2018, pp. 408–419.

[71] A. Alshayban, I. Ahmed, and S. Malek, “Accessibility issues in
Android apps: state of affairs, sentiments, and ways forward,”
in Proceedings of the IEEE/ACM 42nd International Conference on
Software Engineering (ICSE), 2020, pp. 1323–1334.

[72] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, and G. Pu, “Effi-
ciently manifesting asynchronous programming errors in Android
apps,” in Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering (ASE), 2018, pp. 486–497.

[73] T. Su, L. Fan, S. Chen, Y. Liu, L. Xu, G. Pu, and Z. Su, “Why
my app crashes? understanding and benchmarking framework-
specific exceptions of Android apps,” IEEE Transactions on Software
Engineering (TSE), pp. 1115–1137, 2022.

[74] P. Kong, L. Li, J. Gao, T. Riom, Y. Zhao, T. F. Bissyandé, and
J. Klein, “Anchor: locating android framework-specific crashing
faults,” Automated Software Engineering (ASE), pp. 1–31, 2021.

[75] E. Kowalczyk, M. B. Cohen, and A. M. Memon, “Configurations
in Android testing: they matter,” Proceedings of the 1st International
Workshop on Advances in Mobile App Analysis (A-Mobile), pp. 1–6,
2018.

[76] M. Fazzini and A. Orso, “Automated cross-platform inconsistency
detection for mobile apps,” in Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2017, pp. 308–318.

[77] A. K. Jha, S. Lee, and W. J. Lee, “Developer mistakes in writing
Android manifests: an empirical study of configuration error,” in
Proceedings of the IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR), 2017, pp. 25–36.

[78] W. Guo, L. Shen, T. Su, X. Peng, and W. Xie, “Improving automated
gui exploration of Android apps via static dependency analysis,”
in Proceedings of the 2020 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2020, pp. 557–568.

[79] T. Su, “FSMdroid: guided GUI testing of android apps,” in Pro-
ceedings of the 38th International Conference on Software Engineering
(ICSE), 2016, pp. 689–691.

[80] J. Zhang, “Constraint solving and symbolic execution,” in Working
conference on verified software: theories, tools, and experiments, 2005,
pp. 539–544.

[81] Y. Li, Z. Yang, Y. Guo, and X. Chen, “DroidBot: a lightweight
ui-guided test input generator for Android,” in Proceedings of
the IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C), 2017, pp. 23–26.

[82] C. Q. Adamsen, G. Mezzetti, and A. Møller, “Systematic execution
of Android test suites in adverse conditions,” in Proceedings of
the 2015 International Symposium on Software Testing and Analysis
(ISSTA), 2015, pp. 83–93.

[83] W. Guo, Z. Dong, L. Shen, W. Tian, T. Su, and X. Peng, “Detecting
and fixing data loss issues in Android apps,” in Proceedings of the

31st ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA), 2022, pp. 605–616.

[84] T. Su, Y. Yan, J. Wang, J. Sun, Y. Xiong, G. Pu, K. Wang, and Z. Su,
“Fully automated functional fuzzing of android apps for detecting
non-crashing logic bugs,” Proceedings of the ACM on Programming
Languages (OOPSLA), pp. 1–31, 2021.

[85] J. Wang, Y. Jiang, T. Su, S. Li, C. Xu, J. Lu, and Z. Su, “Detecting
non-crashing functional bugs in Android apps via deep-state
differential analysis,” in Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE), 2022, pp. 434–446.

[86] L. Li, T. F. Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel,
D. Octeau, J. Klein, and L. Traon, “Static analysis of android apps:
A systematic literature review,” Information and Software Technology
(IST), pp. 67–95, 2017.

[87] P. Kong, L. Li, J. Gao, T. F. Bissyandé, and J. Klein, “Mining
Android crash fixes in the absence of issue-and change-tracking
systems,” in Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA), 2019, pp. 78–
89.

Jingling Sun received the BS degree in soft-
ware engineering from East China Normal Uni-
versity, China, in 2018, where she is currently
pursuing the PhD degree. And she is a visiting
student with the Singapore Management Univer-
sity. Her research focuses on program analysis
and testing. For more information, please visit
https://jinglingsun.github.io/.

Ting Su received the BS degree in software
engineering and PhD degree in computer sci-
ence from School of Software Engineering, East
China Normal University, Shanghai, China, in
2011 and 2016, respectively. He was a postdoc
at ETH Zurich, Switzerland and Nanyang Tech-
nological University, Singapore, respectively. He
is a Professor at East China Normal Univer-
sity. His research focuses on software analy-
sis, testing and verification, and was recognized
with three ACM SIGSOFT distinguished paper

awards. He has published broadly in top-tier programming language
and software engineering venues, including PLDI, OOPSLA, ICSE, ES-
EC/FSE, ISSTA, ASE, TSE and CSUR. For more information, please
visit https://tingsu.github.io/.

Kai Liu received the BS degree from the School
of Software Engineering, Henan University of
Technology, Zhengzhou, China, in 2020. Cur-
rently, he is studying for a postgraduate de-
gree in East China Normal University, Shanghai,
China. His research focuses on Android software
testing.

23

https://jinglingsun.github.io/
https://tingsu.github.io/


Chao Peng received the BEng degree in Com-
puter Science from Xuzhou University of Tech-
nology and the MSc degree in High Performance
Computing and Data Science and the PhD de-
gree in Informatics from University of Edinbugh.
He is a senior researcher at ByteDance where
he focuses on software testing, static analysis
and compiler optimisation. For more information,
please visit https://chao-peng.github.io.

Zhao Zhang is a senior techinical expert at
the ByteDance infrastructure team and devel-
ops the Fastbot stability testing tool. He is en-
gaged in mobile software performance, virtual
reality motion sickness and avatar research. For
more information, please visit https://github.com/
zhangzhao4444.

Geguang Pu received the BS degree in mathe-
matics from Wuhan University, in 2000, and the
PhD degree in mathematics from Peking Univer-
sity, in 2005. He is a professor with the School of
Software Engineering, East China Normal Uni-
versity. His research interests include program
testing, analysis and verification. He served as
PC members for international conferences such
as SEFM, ATVA, TASE etc. He was a co-chair
of ATVA 2015. He has published more than 70
publications on the topics of software engineer-

ing and system verification (including ICSE, FSE, IJCAI, FM, ECAI,
CONCUR etc).

Tao Xie received the BS degree in computer
science from Fudan University, Shanghai, China,
the MS degree in computer science from Peking
University, Beijing, China, and the PhD degree in
computer science from the University of Wash-
ington at Seattle, WA. He is a Peking Univer-
sity Chair Professor, where he specializes in
software engineering, system software, software
security, and trustworthy AI. He is a Foreign
Member of Academia Europaea, and a Fellow
of ACM, IEEE, and AAAS. For more information,

please visit https://taoxiease.github.io/.

Zhendong Su received the BS degree in com-
puter science and BA degree in mathematics
from the University of Texas at Austin, Austin,
TX, and the MS and PhD degrees in com-
puter science from the University of California
at Berkeley, Berkeley, CA. He is a professor
in computer science at ETH Zurich, where he
specializes in programming languages and com-
pilers, software engineering, computer security,
deep learning and education technologies. He
is a Member of the Academia Europaea and a

Fellow of the IEEE. For more information, please visit https://people.inf.
ethz.ch/suz/.

24

https://chao-peng.github.io
https://github.com/zhangzhao4444
https://github.com/zhangzhao4444
https://taoxiease.github.io/
https://people.inf.ethz.ch/suz/
https://people.inf.ethz.ch/suz/

	Introduction
	Empirical Study Methodology
	Summarizing Setting Categories
	Collecting Bug Reports of Setting Defects
	Step 1: App Collection
	Step 2: Bug-report Collection
	Step 3: Dataset Construction

	Analysis Methods for Research Questions
	Analysis Method of RQ1
	Analysis Method of RQ2
	Analysis Method of RQ3
	black Analysis Method of RQ4


	Study Results and Analysis
	RQ1: Impact of Settings Defects
	RQ2: Root Causes of Setting Defects
	Incorrect Callback Implementations
	Lack of Setting Checks
	Fail to Adapt User Interfaces
	Mutual Influence Between Settings
	Lack of Considering Android Versions
	Other minor reasons

	RQ3: Consequences of Setting Defects
	Crash
	Disrespect of Setting Changes
	Problematic UI Display
	Functionality Failure

	black RQ4: Correlations between Setting Categories, Root Causes, and Consequences
	What are the correlations?
	Which bug-finding technique is more suitable?


	Detecting Setting Defects
	Setting-wise Metamorphic Fuzzing
	High-level Idea
	Approach
	Design and Implementation of SetDroid
	black Optimizations of SetDroid

	Static Analysis for Setting Defects
	Fault Pattern Analysis
	Static Defect Detection


	Evaluation
	Evaluation Setup of RQ5
	Setup of SetDroid
	Setup of SetChecker

	Evaluation Setup of RQ6.
	Setup of dynamic testing tools
	black Setup of static analysis tools

	Results of RQ5
	Effectiveness
	black Usability
	Diversity of found defects
	Practicality

	Results of RQ6
	Results of RQ7

	Discussion
	Relationships between SetDroid's Testing Mechanism and the Root Causes of Setting Defects
	Generality of Our Approaches
	Threats to Validity

	Related Work
	Configuration Testing for Traditional Software
	Empirical Studies for Android App Defects
	Automated Android App GUI Testing
	Android App Static Analysis

	conclusion
	References
	Biographies
	Jingling Sun
	Ting Su
	Kai Liu
	Chao Peng
	Zhao Zhang
	Geguang Pu
	Tao Xie
	Zhendong Su


