
IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 1

Fault Analysis and Debugging of Microservice
Systems: Industrial Survey, Benchmark System,

and Empirical Study
Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan Ding

Abstract—The complexity and dynamism of microservice systems pose unique challenges to a variety of software engineering tasks
such as fault analysis and debugging. In spite of the prevalence and importance of microservices in industry, there is limited research
on the fault analysis and debugging of microservice systems. To fill this gap, we conduct an industrial survey to learn typical faults of
microservice systems, current practice of debugging, and the challenges faced by developers in practice. We then develop a
medium-size benchmark microservice system (being the largest and most complex open source microservice system within our
knowledge) and replicate 22 industrial fault cases on it. Based on the benchmark system and the replicated fault cases, we conduct an
empirical study to investigate the effectiveness of existing industrial debugging practices and whether they can be further improved by
introducing the state-of-the-art tracing and visualization techniques for distributed systems. The results show that the current industrial
practices of microservice debugging can be improved by employing proper tracing and visualization techniques and strategies. Our
findings also suggest that there is a strong need for more intelligent trace analysis and visualization, e.g., by combining trace
visualization and improved fault localization, and employing data-driven and learning-based recommendation for guided visual
exploration and comparison of traces.

Index Terms—microservices, fault localization, tracing, visualization, debugging

F

1 INTRODUCTION

Microservice architecture [1] is an architectural style and
approach to developing a single application as a suite of small
services, each running in its own process and communicating
with lightweight mechanisms, often an HTTP resource API.
Microservice architecture allows each microservice to be
independently developed, deployed, upgraded, and scaled.
Thus, it is particularly suitable for systems running on cloud
infrastructures and require frequent updating and scaling of
their components.

Nowadays, more and more companies have chosen to
migrate from the so-called monolithic architecture to mi-
croservice architecture [2], [3]. Their core business systems
are increasingly built based on microservice architecture.
Typically a large-scale microservice system can include hun-
dreds to thousands of microservices. For example, Netflix’s
online service system [4] uses about 500+ microservices
and handles about two billion API requests every day [5];
Tencent’s WeChat system [6] accommodates more than 3,000
services running on over 20,000 machines [7].

A microservice system is complicated due to the ex-
tremely small grained and complex interactions of its mi-
croservices and the complex configurations of the runtime

• X. Peng is the corresponding author.
• X. Zhou, X. Peng, C. Ji, W. Li, and D. Ding are with the School of

Computer Science and the Shanghai Key Laboratory of Data Science,
Fudan University, Shanghai, China, and Shanghai Institute of Intelligent
Electronics & Systems, China.

• T. Xie is with the University of Illinois at Urbana-Champaign, USA.
• J. Sun is with the Singapore University of Technology and Design,

Singapore.

environments. The execution of a microservice system may
involve a huge number of microservice interactions. Most
of these interactions are asynchronous and involve complex
invocation chains. For example, Netflix’s online service sys-
tem involves 5 billion service invocations per day and 99.7%
of them are internal (most are microservice invocations);
Amazon.com makes 100-150 microservice invocations to
build a page [8]. The situation is further complicated by
the dynamic nature of microservices. A microservice can
have several to thousands of physical instances running
on different containers and managed by a microservice
discovery service (e.g., the service discovery component of
Docker swarm). The instances can be dynamically created or
destroyed according to the scaling requirements at runtime,
and the invocations of the same microservice in a trace may
be accomplished by different instances. Therefore, there is a
strong need to address architectural challenges such as deal-
ing with asynchronous communication, cascading failures,
data consistency problems, discovery, and authentication of
microservices [9].

The complexity and dynamism of microservice systems
pose great and unique challenges to debugging, as the
developers are required to reason about the concurrent
behaviors of different microservices and understand the
interaction topology of the whole system. A basic and
effective way for understanding and debugging distributed
systems is tracing and visualizing system executions [10].
However, microservice systems are much more complex and
dynamic than traditional distributed systems. For example,
there lacks a natural correspondence between microservices
and system nodes in distributed systems, as microservice
instances can be dynamically created and destroyed. There-



IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 2

fore, it is not clear whether or how well the state-of-the-art
debugging visualization tools for distributed systems can be
used for microservice systems.

In spite of the prevalence and importance of microser-
vices in industry, there exists limited research on the subject,
with only a few papers on microservices in the software
engineering research community, and even fewer in ma-
jor conferences. The existing research focuses on a wide
range of topics about microservices, including design [11],
testing [3], [12], [13], [14], deployment [15], [16], [17], ver-
ification [18], composition [19], architecture recovery [20],
legacy migration [21], and runtime adaptation [22]. There
exists little research on the fault analysis and debugging
of microservice systems. Moreover, the existing research on
microservices is usually based on small systems with few
microservices (e.g., 5 microservices or fewer [2]). Such lack
of non-trivial open source benchmark microservice systems
results in a gap between what the research community
can produce and what the industrial practices really need.
There have been appeals that practitioners and researchers
develop and share a common microservice infrastructure
that can emulate the production environments of typical
microservice applications for more repeatable and industry-
focused empirical studies [23], [24].

To fill this gap and pursue practice-relevant research
on microservices, we conduct an industrial survey on fault
analysis of typical faults of microservice systems, current
practice of debugging, and the challenges faced by the
developers. Our survey shows that the current techniques
used in practice are limited and the developers face great
challenges in microservice debugging. We then conduct an
empirical study to further investigate the effectiveness of
existing industrial debugging practices and whether the
practices can be facilitated by state-of-the-art debugging
visualization tools.

To enable our study and also provide a valuable practice-
reflecting benchmark for the broad research community,
we develop a medium-size benchmark microservice system
named TrainTicket [25]. Within our knowledge, our system
is the largest and most complex open source microservice
system. Upon the system, we replicate the 22 representa-
tive fault cases collected in the industrial survey. Based
on the benchmark system and replicated fault cases, we
empirically evaluate the effectiveness of execution tracing
and visualization for microservice debugging by extending
a state-of-the-art debugging visualization tool [10] for dis-
tributed systems. Based on the study results, we summarize
our findings and suggest directions for future research.

In this work, we make the following main contributions:

• We conduct a survey on industrial microservice
systems and report the fault-analysis results about
typical faults, current practice of debugging, and the
challenges faced by the developers.

• We develop a medium-size benchmark microservice
system (being the largest and most complex open
source microservice system within our knowledge)
and replicate 22 representative fault cases upon it.
The system and the replicated fault cases can be used
as a benchmark for the research community to fur-
ther conduct practice-relevant research on microser-

vice fault analysis and debugging, and potentially
other practice-relevant research on microservices.

• We experimentally evaluate the effectiveness of ex-
ecution tracing and visualization for microservice
debugging and propose a number of visualization
analysis strategies for microservice debugging.

In this work we also extend the benchmark system pre-
sented in our earlier 2-page poster paper [26] by introducing
more microservices (from 24 to 41) and characteristics (e.g.,
more languages, interaction modes). The replicated fault
cases have been released as an open-source project [27],
which can be easily integrated into the benchmark sys-
tem [25]. The details of our industrial survey and empirical
study (along with the source code of our open source
benchmark system and replicated faults) can be found in
our replication package [28].

The rest of the article is structured as follows. Section 2
presents background knowledge of microservice architec-
ture. Section 3 describes the industrial survey, including the
process and the results. Section 4 introduces the benchmark
system and the 22 replicated fault cases. Section 5 presents
the effectiveness evaluation of execution tracing and visual-
ization based on the replicated fault cases and discusses our
observations and suggestions. Section 6 discusses threats to
validity. Section 7 reviews related work. Section 8 concludes
the paper and outlines future work.

2 BACKGROUND

Microservice architecture arises from the broader area of
Service Oriented Architecture (SOA) with a focus on compo-
nentization of small lightweight microservices, application
of agile and DevOps practices, decentralized data man-
agement and governance among microservices [2]. With
the migration from monolithic architecture to microservice
architecture, architectural complexity moves from the code
based to the interactions of microservices. The interactions
among different microservices must be implemented using
network communication. Microservice invocations can be
synchronous or asynchronous. Synchronous invocations are
considered harmful due to the multiplicative effect of down-
time [9]. Asynchronous invocations can be implemented by
asynchronous REST invocations or using message queues.
The former provides better performance whereas the latter
provides better reliability. As a user request usually involves
a large number of microservice invocations and each mi-
croservice may fail, the microservices need to be designed
accordingly, i.e., taking possible failures of microservice
invocations into account.

Microservice architecture is supported by a series of
infrastructure systems and techniques. Microservice de-
velopment frameworks such as Spring Boot [29] and
Dubbo [30] facilitate the development of microservice sys-
tems by providing common functionalities such as REST
client, database integration, externalized configuration, and
caching. Microservice systems widely employ container
(e.g., Docker [31]) based deployment for portability, flexi-
bility, efficiency, and speed [9]. Microservice containers can
be organized and managed by clusters with configuration
management, service discovery, service registry, load bal-
ancing by using runtime infrastructure frameworks such as



IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 3

Spring Cloud [32], Mesos [33], Kubernetes [34], and Docker
Swarm [35].

The unique characteristics of microservices pose chal-
lenges to existing debugging techniques. Existing debug-
ging techniques are designed based on setting up break-
points, manual inspection of intermediate program states,
and profiling. However, these techniques are ineffective
for microservices. For instance, due to the high degree of
concurrency, the same breakpoint might be reached through
very different executions resulting in different intermediate
program states. Furthermore, a microservice system con-
tains many asynchronous processes, which requires tracing
multiple breakpoints across different processes; such tracing
is considerably more challenging than debugging mono-
lithic systems. Besides inspecting intermediate program
states, it is equally, if not more, important to comprehend
how microservices interact with each other for debugging.
Profiling similarly becomes more complicated due to the
high dynamism of microservices.

In addition, existing fault localization techniques [36] are
ineffective for microservices. Program-slicing-based fault
localization [37] works by identifying program statements
that are irrelevant to the faulty statement and allowing the
developers to investigate the fault based on the remaining
statements. Program slicing for microservices is compli-
cated since we must slice through many processes con-
sidering different interleavings of the processes. Spectrum-
based fault localization [38] computes the suspiciousness
of every statement using information such as how many
times it is executed in passing test executions or failed test
executions, and ranks the statements accordingly so that
the developers can focus on the highly suspicious ones.
There is no evidence that such techniques work for highly
concurrent and dynamic systems such as microservices.
Similarly related fault localization techniques are designed
mainly for sequential programs, such as statistic-based fault
localization [39], and machine-learning-based ones [40], [41].

In recent years, fault localization has been extended to
concurrent programs [42], [43], [44] and distributed sys-
tems [45], [46], [47]. Both groups of work start with logging
thread (and node) level execution information and then
locate faults using existing techniques. Applying such tech-
niques to microservices is highly non-trivial since the con-
tainer instances in microservices are constantly changing,
causing difficulty in log checking and overly fragmented
logs.

3 INDUSTRIAL SURVEY

In order to precisely understand the industry needs, we
start with an industrial survey and then proceed with the
collection of typical fault cases and the understanding of
the current practice on microservice debugging.

3.1 Participants and Process

We identify an initial set of candidates for the survey
from the local technical community who have talked about
microservice in industrial conferences or online posts (e.g.,
articles, blogs). These candidates further recommend more
candidates (e.g., their colleagues). Among these candidates,

we select and invite 46 engineers for interview based on
the following criteria. The candidate must have more than
6 years’ experience of industrial software development and
more than 3 years’ experience of microservice development.

Among the invited engineers, 16 of them accept the
invitation. The 16 participants are from 12 companies and
their feedback is based on 13 microservice systems that
they are working on or have worked on. These participants
have a broad representation of different types of compa-
nies (i.e., traditional IT companies, Internet companies, and
non-IT companies), different types of microservice systems
(Internet services, enterprise systems) of different scales (50
to more than 1000 microservices), and different roles in
development (technical roles and managerial roles). The
information of the participants and subject systems are
listed in Table 1, including the company (C.), the participant
(P.), the subject system, the number of microservices (#S.),
and the position of the participant.

Among the 12 companies, C1, C6, C7, C8, C11, and C12
are leading traditional IT companies, of which C1 and C8
are Fortune 500 companies; C3, C4, C5, and C10 are leading
Internet companies; C2 and C9 are non-IT companies. The
13 subject systems can be categorized into two types. One
type is Internet microservices that serve consumers via the
Internet, including A3, A4, A5, A6, A10, and A11. The other
type is enterprise systems that serve company employees,
including A1, A2, A7, A8, A9, A12, and A13. The number
of microservices in these systems ranges from 50 to more
than 1000, with a majority of them involving about 100-200
microservices. The 16 participants take different positions in
their respective companies. Among these positions, Junior
Software Engineer, Staff Software Engineer, Senior Software
Engineer, and Architect are technical positions; and Man-
ager is a managerial position that manages the development
process and project schedule.

We conduct a face-to-face interview with each of the
participants. The participant is first asked to recall a mi-
croservice system that he/she is the most familiar with and
provide his/her subsequent feedback based on the system.
The participant introduces the subject system and the role
that he/she takes in the system-development project. Then
we interview and discuss with the participant around the
following questions:

• Why does your company choose to apply the mi-
croservice architecture in this system? Is the system
migrated from an existing monolithic system or de-
veloped as a new system?

• How does your team design the system? For exam-
ple, how does your team determine the partitioning
of microservices?

• What kinds of techniques and what programming
languages are used to develop the system?

• What challenges does your team face during the
maintenance of the system?

Afterwards, the participant is asked to recall those fault
cases that he/she has handled. For each fault case, the
participant is asked to describe the fault and answer the
following questions:

• What is the symptom of the fault and how can it be
reproduced?



IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 4
TABLE 1

Survey Participants and Subject Systems
C. P. Subject System #S. Position

C1 P1 A1: online meeting system 50+ Staff Software Engineer
P2 A2: collaborative translation system 100+ Senior Software Engineer

C2 P3 A3: personal financial system 100+ Manager
C3 P4 A4: message notification system 80+ Staff Software Engineer
C4 P5 A5: mobile payment system 200+ Architect
C5 P6 A6: travel assistance system 1000+ Senior Software Engineer
C6 P7 A7: OA (Office Automation) system 100+ Manager

C7 P8 A8: product data management system 200+ Architect
P9 A8: product data management system 200+ Senior Software Engineer

C8 P10 A9: price management system 100+ Manager
P11 A9: price management system 100+ Senior Software Engineer

C9 P12 A10: electronic banking system 200+ Senior Software Engineer
C10 P13 A11: online retail system 100+ Senior Software Engineer
C11 P14 A12: BPM system 60+ Staff Software Engineer

C12 P15 A13: enterprise wiki system 200+ Senior Software Engineer
P16 A13: enterprise wiki system 200+ Senior Software Engineer

• What is the root cause of the fault and how many
microservices are involved?

• What is the process of debugging? How much time is
spent on debugging and what techniques are used?

After the interview, whenever necessary, we conduct
follow-up communication with the participants via emails
or phone calls to clarify some details.

3.2 General Practice

Our survey shows that most of these companies, not only
the Internet companies but also the traditional IT com-
panies, have adopted microservice architecture to a cer-
tain degree. Independent development and deployment as
well as diversity in development techniques are the main
reasons for adopting microservice architecture. Among the
13 surveyed systems, 6 adopt microservice architecture by
migrating from existing monolithic systems, while the re-
maining 7 are new projects using microservice architecture
for a comparatively independent business. The migration of
some systems is still incomplete: the systems include both
microservices and old monolithic modules. The decisions
on the migration highly depend on its business value and
effort.

Feedback in response to the second question mainly
comes from the participants who hold the positions of man-
ager or architect. 4 of 5 choose to take a product perspective
instead of a project perspective on the architectural design
and consider the microservice partitioning based on the
product business model. They express that this strategy
ensures stable boundary and responsibility of different mi-
croservices.

Among the 13 surveyed systems, 10 use more than one
language, e.g., Java, C++, C#, Ruby, Python, and Node.js.
One of the systems (A6) uses more than 5 languages. 9
of the participants state that runtime verification and de-
bugging are the main challenges, and they heavily depend
on runtime monitoring and tracing of microservice systems.
The managers and architects are interested in using runtime
monitoring and tracing for verifying the conformance of
their systems to microservice best practices and patterns,
while the developers are interested in using them for debug-
ging. Debugging remains as a major challenge for almost all
of the participants. They often spend days or even weeks
analyzing and debugging of a fault.

3.3 Fault Cases

In total, the 16 participants report 22 fault cases as shown in
Table 2. For each case, the table lists its reporter, symptom,

root cause, and the time (in days) used to locate the root
cause. Detailed descriptions of these fault cases (along with
the source code of our open source benchmark system and
replicated faults) can be found in our replication pack-
age [28]. Note that developers take several days to locate
the root causes in most cases. These faults can be grouped
into 6 common categories as shown in Table 3 based on their
symptoms (functional or non-functional) and root causes
(internal, interaction, or environment).

Functional faults result in malfunctioning of system ser-
vices by raising errors or producing incorrect results. Non-
Functional faults influence the quality of services such as
performance and reliability. From Table 3, it can be seen that
most of the faults are functional, causing incorrect results
(F1, F2, F8, F9, F10, F11, F12, F13, F14, F18, F19, F21, F22),
runtime failures (F7, F15, F16), or no response (F20); only 4
of them are non-functional, causing unreliable services (e.g.,
F3, F5) or long response time (F4, F17).

The root causes of Internal faults lie in the internal im-
plementation of individual microservices. For example, F14
is an internal fault caused by a mistake in the calculation of
Consumer Price Index (CPI) implemented in a microservice.
The root causes of Interaction faults lie in the interactions
among multiple microservices. These faults are often caused
by missing or incorrect coordination of microservice inter-
actions. For example, F1 is caused by the lack of sequence
control in the asynchronous invocations of multiple message
delivery microservices; F12 is caused by the incorrect behav-
iors of a microservice resulted from an unexpected state of
another microservice. The root causes of Environment faults
lie in the configuration of runtime infrastructure, which
may influence the instances of a single microservice or the
instances of a cluster of microservices. For example, F3 and
F20 are caused by improper configuration of Docker (cluster
level) and JBoss (service level), respectively. These faults
may influence the availability, stability, performance, and
even functionality of related microservices.

To learn the characteristics of the faults in microservice
systems, we discuss with each participant to determine
whether the reported fault cases are particular to microser-
vice architecture. The criterion is whether similar fault cases
may occur in systems of monolithic architecture. Based on
the discussion, we find that internal faults and service-
level environment configuration faults are common in both
microservice systems and monolithic systems, while inter-
action faults and cluster-level environment configuration
faults are particular to microservice systems.

3.4 Debugging Practice

Based on the survey, we summarize the existing debugging
process of microservice systems and identify different matu-
rity levels of the practices and techniques on debugging. We
also analyze the effectiveness of the debugging processes of
the reported fault cases.

3.4.1 Debugging Process

Our survey shows that all the participants depend on log
analysis for fault analysis and debugging. Their debugging
processes are usually triggered by failure reports describing



IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 5
TABLE 2

Microservice Fault Cases Reported by the Participants
Fault Reporter Symptom Root Cause Time
F1 P1 (A1) Messages are displayed in wrong order Asynchronous message delivery lacks sequence control 7D
F2 P2 (A2) Some information displayed in a report is wrong Different data requests for the same report are returned in an unexpected order 3D
F3 P2 (A2) The system periodically returns server 500 error JVM configurations are inconsistent with Docker configurations 10D
F4 P3 (A3) The response time for some requests is very long SSL offloading happens in a fine granularity (happening in almost each Docker instance) 7D
F5 P4 (A4) A service sometimes returns timeout exceptions for user requests The high load of a type of requests causes the timeout failure of another type of requests 6D
F6 P5 (A5) A service is slowing down and returns error finally Endless recursive requests of a microservice are caused by SQL errors of another dependent microservice 3D
F7 P6 (A6) The payment service of the system fails The overload of requests to a third-party service leads to denial of service 2D
F8 P7 (A7) A default selection on the web page is changed unexpectedly The key in the request of one microservice is not passed to its dependent microservice 5D
F9 P7 (A7) There is a Right To Left (RTL) display error for UI words There is a CSS display style error in bi-directional 0.5D
F10 P8 (A8) The number of parts of a specific type in a bill of material (BOM) is wrong An API used in a special case of BOM updating returns unexpected output 4D
F11 P9 (A8) The bill of material (BOM) tree of a product is erroneous after updates The BOM data is updated in an unexpected sequence 4D
F12 P10 (A9) The price status shown in the optimized result table is wrong Price status querying does not consider an unexpected output of a microservice in its call chain 6D
F13 P11 (A9) The result of price optimization is wrong Price optimization steps are executed in an unexpected order 6D
F14 P11 (A9) The result of the Consumer Price Index (CPI) is wrong There is a mistake in including the locked product in CPI calculation 2D
F15 P11 (A9) The data-synchronization job quits unexpectedly The spark actor is used for the configuration of actorSystem (part of Apache Spark) instead of the system actor 3D
F16 P11 (A9) The file-uploading process fails The “max-content-length” configuration of spray is only 2 Mb, not allowing to upload a bigger file 2D
F17 P12 (A10) The grid-loading process takes too much time Too many nested “select” and “from” clauses are in the constructed SQL statement 1D
F18 P13 (A11) Loading the product-analysis chart is erroneous One key of the returned JSON data for the UI chart includes the null value 0.5D
F19 P13 (A11) The price is displayed in an unexpected format The product price is not formatted correctly in the French format 1D
F20 P14 (A12) Nothing is returned upon workflow data request The JBoss startup classpath parameter does not include the right DB2 jar package 3D
F21 P15 (A13) JAWS (a screen reader) misses reading some elements The “aria-labeled-by” element for accessibility cannot be located by the JAWS 0.5D
F22 P16 (A13) The error of SQL column missing is returned upon some data request The constructed SQL statement includes a wrong column name in the “select” part according to its “from” part 1.5D

TABLE 3
Fault Categories

Root Cause
Influence Functional Non-Functional

Internal F9, F14, F18, F19, F21, F22 F17
Interaction F1, F2, F6, F7, F8, F10, F11, F12, F13 F5

Environment F15, F16, F20 F3, F4

the symptoms and possibly reproduction steps of the fail-
ures, and ended when the faults are fixed. The debugging
processes typically include the following 7 steps.

• Initial Understanding (IU). The developers get an
initial understanding of the reported failure based
on the failure report. They may also examine the
logs from the production or test environment to
understand the failure. Based on the understanding,
they may have a preliminary judgement of the root
causes or decide to further reproduce the failure for
debugging.

• Environment Setup (ES). The developers set up a
runtime environment to reproduce the failure based
on their initial understanding of the failure. The en-
vironment setup includes the preparation of virtual
machines, a deployment of related microservices,
and configurations of related microservice instances.
To ease the debugging processes, the developers
usually set up a simplified environment, which for
example includes as less virtual machines and mi-
croservices as possible. In some cases the developers
can directly use the production or test environment
that produces the failure for debugging and thus this
step can be skipped.

• Failure Reproduction (FR). Based on the prepared run-
time environment, the developers execute the failure
scenario to reproduce the failure. The developers
usually try different data sets to reproduce the failure
to get a preliminary feeling of the failure patterns,
which are important for the subsequent steps.

• Failure Identification (FI). The developers identify fail-
ure symptoms from the failure reproduction exe-
cutions. The symptoms can be error messages of
microservice instances found in logs or abnormal
behaviours of the microservice system (e.g., no re-
sponse for a long time) observed by the developers.

• Fault Scoping (FS). The developers identify suspi-
cious locations of the microservice system where the
root causes may reside, for example implementations
of individual microservices, environment configura-

TABLE 4
Maturity Levels of Debugging

Maturity Level Systems Percentage
Basic Log Analysis A1, A7, A11 23%
Visual Log Analysis A2, A3, A8, A9, A10, A12 46%
Visual Trace Analysis A4, A5, A6, A13 31%

tions, or interactions of a group of microservices.
• Fault Localization (FL). The developers localize the

root causes of the failure based on the identified
suspicious locations. For each suspicious location,
the developers confirm whether it involves real faults
that cause the failure and identify the precise location
of the faults.

• Fault Fixing (FF). The developers fix the identified
faults and verify the fixing by rerunning related test
cases.

Note that these steps are not always sequentially exe-
cuted. Some steps may be repeated if the subsequent steps
can not be successfully done. For example, the developers
may go back to set up the environment again if they
find they can not reproduce the failure. Some steps may
be skipped if they are not required. For example, some
experienced developers may skip environment setup and
failure reproduction if they can locate the faults based on
the logs from the production or test environment and verify
the fault fixing by their special partial execution strategies.

3.4.2 Maturity Levels of Debugging Practices
We find that the practices and techniques on debugging for
the 13 systems can be categorized into 3 maturity levels as
shown in Table 4.

The first level is basic log analysis. At this level, the
developers analyze original execution logs produced by
the system to locate faults. The logs record the execution
information of the system at specific points, including the
time, executed methods, values of parameters and variables,
intermediate results, and extra context information such as
execution threads. Basic log analysis follows the debugging
practices of monolithic systems and requires only common
logging tools such as Log4j [48] for capturing and collecting
execution logs. To locate a fault, the developers manually
examine a large number of logs. Successful debugging at
this level depends heavily on the developers’ experience
on the system (e.g., overall architecture and error-prone mi-
croservices) and similar fault cases, as well as the technology
stack being used.



IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 6

TABLE 5
Time Analysis of Debugging Practices from Industrial Survey

Fault Type #MS Supported Level Actually Adopted Overall Time (H) Time of Each Step (H)
IU ES FR FI FS FL FF

F1 Interaction, Functional 3 basic log basic log 56 16 6 6 8 8 16 6
F2 Interaction, Functional 6 visual log visual log 26 4 6 6 3 3 6 4
F3 Environment, Non-Functional 6 visual log basic log 80 26 4 3 16 20 24 8
F4 Environment, Non-Functional 10+ visual log visual log 56 16 10 6 6 8 8 4
F5 Interaction, Non-Functional 6 visual trace basic log 48 16 6 4 4 8 8 3
F6 Interaction, Functional 8 visual trace visual trace 24 3 3 3 4 4 6 4
F7 Interaction, Functional 6 visual trace visual trace 16 3 3 3 2 1 2 4
F8 Interaction, Functional 3 basic log basic log 40 8 6 4 4 8 8 4
F9 Internal, Functional 1 basic log basic log 4 1 - - 0.5 1 1 0.5

F10 Interaction, Functional 4 visual log basic log 32 6 4 4 4 8 4 4
F11 Interaction, Functional 6 visual log visual log 32 4 6 6 4 4 6 3
F12 Interaction, Functional 4 visual log basic log 48 8 4 4 4 8 16 4
F13 Interaction, Functional 6 visual log visual log 48 4 8 4 8 12 12 4
F14 Internal, Functional 1 visual log visual log 16 4 2 2 1 2 3 3
F15 Environment, Functional 2 visual log basic log 24 8 2 2 2 3 4 3
F16 Environment, Functional 2 visual log visual log 16 4 2 2 1 3 3 3
F17 Internal, Non-Functional 1 visual log visual log 8 4 - - - - 2 2
F18 Internal, Functional 1 basic log basic log 4 2 - - - 0.5 1 1
F19 Internal, Functional 1 basic log basic log 8 4 - - - - 1 4
F20 Environment, Functional 3 visual log visual log 24 4 2 3 4 4 4 4
F21 Internal, Functional 1 visual trace basic log 5 1 1 1 - - 1 1
F22 Internal, Functional 1 visual trace basic log 12 4 2 2 - - 3 3

3.7 28.5 7 3.5 3 3.1 4.4 6.3 3.5

The second level is visual log analysis. At this level,
execution logs are structured and visualized for fault lo-
calization. The developers can flexibly retrieve specific ex-
ecution logs that they are interested in using conditions and
regular expressions, and sort the candidate results according
to specific strategies of debugging. The selected execution
logs can be aggregated and visualized by different kinds of
statistical charts. Log retrieval and visualization are usually
combined to allow the developers to interactively drill up
and down through the data (execution logs). For example,
to locate a fault resulting in abnormal execution results for
a microservice, the developers can first use a histogram to
learn the range and distribution of different results and
then choose a specific abnormal result to examine related
execution logs. To support visual log analysis, the devel-
opers need to use a centralized logging system to collect
the execution logs produced in different nodes and include
information about the microservice and its instances in
execution logs. Log analysis at this level highly depends
on tools for log collection, retrieval, and visualization. A
commonly used toolset is the ELK stack, i.e., Logstash [49]
for log collection, ElasticSearch [50] for log indexing and
retrieval, and Kibana [51] for visualization.

The third level is visual trace analysis. At this level,
the developers further analyze collected traces of system
executions with the support of trace visualization tools. A
trace is resulted from the execution of a scenario (e.g., a test
case), and is composed of user-request trace segments. A
user-request trace segment consists of logs that share the
same user request ID (created for each user request). In
particular, when a user request comes in the front door of the
system, the adopted tracing framework [52] creates a unique
user request ID, which is passed along with the request
to each directly or indirectly invoked microservice. Thus,
logs collected for each such invoked microservice record the
user request ID. The developers can use visualization tools
to analyze user requests’ microservice-invocation chains
(extracted from the traces) and identify suspicious ranges of
microservice invocations and executions. As a microservice
can invoke multiple microservices in parallel, the visual-
ization tools usually organize the microservice-invocation

chains into a tree structure. For example, a visualization
tool can vertically show a nested structure of microservice
invocations and horizontally show the duration time of
each microservice invocation with colored bars. Analysis
at this level highly depends on advanced microservice
execution tracing and visualization tools. Commonly used
toolset include Dynatrace [52] and Zipkin [53]. Our survey
shows that most companies choose to implement their own
tracing and visualization tools, as they are specific to the
implementation techniques of microservice architecture.

Visual log analysis provides better support for most
types of faults than basic log analysis. Flexible log retrieval
provides a quick filtering of execution logs. Visualized
statistics of microservice executions (e.g., variable values or
method execution counts) reveal patterns of microservice
executions. These patterns can help locate suspicious mi-
croservice executions. For example, for F22, the developers
can easily exclude those methods that are executed fewer
times than that of failure occurrences based on the statistics.
However, locating interaction-related faults often requires
the developers to understand microservice executions in
the context of microservice-invocation chains. Visual trace
analysis further improves visual log analysis by embedding
log analysis in the context of traces. For example, for F1,
the developers can compare the traces of success scenarios
with the traces of failure scenarios, and identify the root
cause based on the different orders of specific microservice
executions.

Tables 2 and 4 show that there is often a mismatch be-
tween the log analysis level and the faults. For example, the
system A7 is still at the basic log analysis level, which cannot
help locate the fault F8 reported from this system. In such
cases, the developers often need to manually investigate a
lot of execution logs and code. They usually start with the
failure-triggering location in the logs and then examine the
logs backwards to find suspicious microservices and check
the code of the microservices.

3.4.3 Effectiveness Analysis
To analyze the effectiveness of different debugging practices
we collect the maturity levels of debugging practices and



IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 7

the time consumed by each step of the 22 fault cases.
Table 5 shows the results, including the fault type, the
number of microservices involved in the fault case (#MS),
the supported maturity level and the actually adopted ma-
turity level of debugging, and the time consumed for the
whole debugging process and individual steps. The last line
shows the average of the #MS and the average of the time
consumed for the entire debugging process and individual
steps.

Note that for some fault cases the maturity levels of the
debugging practices adopted by the developers are lower
than the levels supported in their teams. For example, for
F5 the developers choose to use basic log analysis while
they are equipped with visual trace analysis. Moreover, the
developers may also combine practices of different levels.
For example, when they adopt visual trace analysis or visual
log analysis they may also use basic log analysis to examine
details.

The time consumed for the whole debugging process
and individual steps is obtained from the descriptions of
the participants during the interviews. The participants
are asked to estimate the time by hours. To validate their
estimation, the participants are asked to confirm the esti-
mation with their colleagues and examine the records (e.g.,
the debugging time indicated by the period between bug
assignment and resolution) in their issue tracking systems.

On average the time used to locate and fix a fault
increases with the number of microservices involved in
the fault: 9.5 hours for one microservice, 20 hours for two
microservices, 40 hours for three microservices, 48 hours for
more than three microservices. For some fault cases (e.g.,
F6) the overall time is less than the sum of the time spent
on each step. This is usually caused by the simultaneous
execution of multiple steps. For example, when confirming
a suspicious location of the fault in fault localization, the
developers can simultaneously conduct fault scoping to
identify more suspicious locations.

We find that the advantages of visual log analysis and
visual trace analysis are more obvious for interaction faults.
On average, the developers spend 20, 35, 45 hours in these
fault cases adopting visual trace analysis, visual log analy-
sis, basic log analysis, respectively.

In general, initial understanding, fault scoping, fault lo-
calization are more time consuming than the other steps, as
these steps require in-depth understanding and analysis of
logs. Also in these steps the advantages of visual log/trace
analysis are more obvious. For example, the average time
for initial understanding is 3, 7, 21 hours when using visual
trace analysis, visual log analysis, basic log analysis, respec-
tively. In some cases (e.g., F9, and F17-19) the developers
choose to skip environment setup and failure reproduction,
as they can easily identify the failure symptoms from user
interfaces or exceptions. In other cases (e.g., F17, F19, F21,
F22) the developers choose to skip failure identification and
fault scoping, as they can identify potential locations of the
faults based on failure symptoms and past experience.

According to the feedback of the participants, 11 out of
13 of them who have experiences of visual log/trace anal-
ysis believe that the visual analysis tools and practices are
very useful. But how much the tools and practices can help
depends on the faulty types and developers’ experiences,

skills, and preferences.

4 BENCHMARK SYSTEM AND FAULT-CASE REPLI-
CATION

Our survey clearly reveals that the existing practices for
fault analysis and debugging of microservice systems can
be much improved. To conduct research in this area, one of
the difficulties faced by researchers is that there is a lack of
benchmark systems, which is due to the great complexity
in setting up realistic microservice systems. We thus set
up a benchmark system: TrainTicket [25]. Our empirical
study is based on TrainTicket and the 22 fault cases that
are reported in the survey and replicated in the system.
The system and the replicated fault cases can be used as
a valuable benchmark for the broad research community to
further conduct practice-relevant research on microservice
fault analysis and debugging, and even other broad types
of practice relevant research on microservices.

TrainTicket provides typical train ticket booking func-
tionalities such as ticket enquiry, reservation, payment,
change, and user notification. It is designed using mi-
croservice design principles and covers different interac-
tion modes such as synchronous invocations, asynchronous
invocations, and message queues. The system contains 41
microservices related to business logic (without counting
all database and infrastructure microservices). It uses four
programming languages: Java, Python, Node.js, and Go.
Detailed description of the system (along with the source
code of our open source benchmark system and replicated
faults) can be found in our replication package [28].

We replicate all the 22 fault cases collected from the
industrial survey. In general, these fault cases are replicated
by transferring the fault mechanisms from the original
systems to the benchmark system. In the following, we de-
scribe the replication implementation of some representative
fault cases. Descriptions of the replication implementation
of the other fault cases can be found in our replication
package [28].

F1 is a fault associated with asynchronous tasks, i.e.,
when we send messages asynchronously without message
sequence control. We replicate this fault in the order cancel-
lation process of TrainTicket. In the process, there are two
asynchronous tasks being sent, which have no additional
sequence control. The first task should always be completed
before the second one. However, if the first task is delayed
and completed only after the second one, the order reaches
an abnormal status, leading to a failure.

F3 is a reliability problem caused by improper configura-
tions of JVM and Docker. JVM’s max memory configuration
conflicts with Docker cluster’s memory limitation configu-
ration. As a result, Docker sometimes kills the JVM process.
We replicate this fault in the ticket searching process. We
select some microservices that are involved in this process
and revise them to be more resource consuming. These
revised microservices are deployed in a Docker cluster with
conflicting configurations, thus making these microservices
sometimes unavailable.

F4 is a performance problem caused by improper con-
figuration of Secure Sockets Layer (SSL) applied for many
microservices. The result is frequent SSL offloading at a fine



IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 8

granularity, which slows down the executions of related
microservices. We replicate this fault by applying the faulty
SSL configuration to every microservice of TrainTicket. Then
when a user requests a service (e.g., ticket reservation),
he/she will feel that the response time is very long.

F5 is a reliability problem caused by improper usage of a
thread pool. The microservice uses a thread pool to process
multiple different types of service requests. When the thread
pool is exhausted due to the high load of a type of service
requests, another type of service requests will fail due to
timeout. We replicate this fault in the ticket reservation
service, which serves both the ticket searching process and
the ticket booking process. When the load of ticket searching
is high, the thread pool of the service will be exhausted and
the ticket booking requests to the service will fail due to
timeout.

F8 is caused by missing or incorrect parameter passing
along an invocation chain. We replicate this fault in the order
cancellation process. When a VIP user tries to cancel a ticket
order, the login token saved in Redis [54] (an in-memory
data store) is not passed to some involved microservices
that require the token. This fault causes that the user gets
unexpectedly lower ticket refund rate.

F10 is caused by an unexpected output of a microservice,
which is used in a special case of business processing. We
replicate this fault in the ticket booking process. In the ticket
ordering service, we implement two APIs, which respec-
tively serve for general ticket ordering and ticket ordering
of some special stations. The API for special ticket order-
ing sometimes returns an unexpected output that is not
correctly handled, thus making the ticket booking process
fail.

F11 is a fault that occurs in asynchronous updating of
data, caused by the missing of sequence control. When the
bill of material (BOM) tree is updated in an unexpected
order, the resulting tree is incorrect. But when the user
turns on the “strict mode” on product BOM services, the
resulting tree is rebuilt when the BOM tree includes some
negative numbers, leading to a correct tree. We replicate
this fault in the order cancellation process, which includes
two microservices (payment service and cancel service) that
asynchronously set the same value in the database. Due to
the missing of sequence control, the two microservices may
set the value in a wrong sequence, thus causing an incorrect
value. But if the user turns on the “strict order” mode
on the order service, the incorrect value will be corrected
eventually.

F12 is caused by an unexpected output of a microservice
when it is in a special state. We replicate this fault in
the ticket booking process. We introduce state admDepSta-
tion/admDesStation for the ticket reservation service instance
to indicate the departure/destination station of which the
administrator is examining the tickets. if no administra-
tor examining things happened, the corresponding ticket
reservation service instance will be without state. If the
departure/destination station of a ticket reservation request
is admDepStation/admDesStation, and the ticket reservation
service is accessed by the same request thread twice or more
times including both with and without state instance, the
request will be denied with an unexpected output and the
ticket booking process returns an error.

For each of these preceding faults, we create a devel-
opment branch for its replication in the fault case reposi-
tory [27]. Researchers using the repository can easily mix
and match different faults to produce a faulty version of
TrainTicket including multiple faults.

5 EMPIRICAL STUDY

Our empirical study with the TrainTicket system and the
replicated fault cases includes two parts. In the first part,
we investigate the effectiveness of existing industrial de-
bugging practices for the fault cases. In the second part,
we develop a microservice execution tracing tool and two
trace visualization strategies for fault localization based
on a state-of-the-art debugging visualization tool [10] for
distributed systems, and investigate whether it can improve
the effectiveness of debugging interaction faults. A group of
6 graduate students who are familiar with TrainTicket and
have comparable experiences of microservice development
serve as the developers for conducting debugging indepen-
dently. For each fault case, the developers locate and fix the
faults based on a given failure report, and the developers
who debug with different practices are different. To provide
a fair comparison, we randomly select a developer for each
fault case and each practice to allow a developer to use
different practices for different fault cases. The developers
follow the general process presented in Section 3.4.1 for
debugging. For any step, if the developers cannot complete
in two hours they can choose to give up and the step and
the whole process fail.

5.1 Debugging with Industrial Debugging Practices

In this part of the study, we investigate the effectiveness
of the debugging practices of the three maturity levels by
qualitative analysis and quantitative analysis respectively.
For each fault case three developers are selected to debug
with the practices of different maturity levels. The tools
provided for different maturity levels are as follows.

• Basic Log Analysis. The developers use command
line tools to grab and analyze logs.

• Visual Log Analysis. The developers use the ELK
stack, i.e., Logstash [49] for log collection, Elas-
ticSearch [50] for log indexing and retrieval, and
Kibana [51] for visualization.

• Visual Trace Analysis. The developers use both the
ELK stack and Zipkin [53] for debugging.

5.1.1 Qualitative Analysis

We qualitatively compare different levels of practices based
on the debugging processes of F8 as shown in Figure 1.

Figure 1(a) presents a snapshot of basic log analysis,
which shows the logs captured from a container running
a microservice of food service. The developers identify a
suspicious log fragment in the red box and find that the
food refund rate is 68%, which is lower than the predefined
VIP refund rate for food ordering. Thus they can regard the
calculation of food refund rate as a potential fault location.
A shortage of basic log analysis is the lack of context of



IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 9

(a) Basic Log Analysis

(b) Visual Log Analysis

(c) Visual Trace Analysis

Fig. 1. Qualitative Comparison of Different Levels of Debugging Practices

microservice invocation, which makes it hard for the devel-
opers to analyze and understand the logs in the context of
user requests and invocation chains.

Figure 1(b) presents a snapshot of visual log analysis. It
shows the histograms of average refund rate of the instances
of two related microservices (food service and consign ser-
vice) in different virtual machines, as well as corresponding
logs. The refunds of these two services are both included
in the ticket refund. As the failure symptom is low ticket
refund rate, the developers choose the lowest bar which
shows the average food refund rate in VM3 (see the red
box in Figure 1(b)) to check the logs. From the logs the
developers find that the lowest food refund rate is 65%,
and thus regard the calculation of food refund rate as a
potential fault location. Compared with basic log analysis,
visual log analysis provides aggregated statistics of vari-
ables and quality attributes (e.g., response time), and thus
can help developers to identify suspicious microservices
and instances. However, it lacks the context of user requests
and invocation chains, and thus can not support the analysis
of microservice interactions.

Figure 1(c) presents a snapshot of visual trace analysis.
It shows the entire trace of the order cancellation process,
including the nested invocations of microservices, and the
consumed time of each invocation. The developers find that
the ticket cancellation process invokes not only the food
service and the consign service, but also the config service
and route service. Then they further analyze the logs of
the config service and find that a suspicious general refund
rate (which can be 36% in the lowest case) is used by the
ticket cancellation process to calculate the final refund rate.
They thus regard the calculation of general refund rate in
the config service as a potential fault location. This fault
localization is more precise than the localization supported
by the basic log analysis and the visual log analysis.

Compared with visual log analysis, visual trace analysis
supports the understanding of microservice executions in
the context of user requests and invocation chains.

5.1.2 Quantitative Analysis
The results of the study are shown in Table 6, including the
time used for the whole debugging process and that of each



IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 10

TABLE 6
Time Analysis of Debugging with Industrial Debugging Practices

Fault Maturity Level Overall Time (H) Time of Each Step (H)
IU ES FR FI FS FL FF

F1
basic log 6.3 2 0.5 0.5 1 1 1.5 0.5
visual log 4 1.3 0.3 0.3 0.7 0.3 0.7 0.2

visual trace 3.3 1 0.3 0.3 0.6 0.4 0.6 0.2

F2
basic log 6.8 1.8 1.2 0.9 1 0.8 1.3 0.6
visual log 4 1 0.6 0.4 0.7 0.6 0.8 0.3

visual trace 3.1 0.6 0.6 0.4 0.6 0.6 0.6 0.3

F3
basic log failed 3 1 1 failed failed failed failed
visual log failed 2.6 1.2 0.6 1.2 failed failed failed

visual trace failed 2.2 1 0.6 1 failed failed failed

F4
basic log failed 2 1 0.3 1 failed failed failed
visual log failed 1.1 0.9 0.4 1 failed failed failed

visual trace failed 1 0.8 0.3 1 failed failed failed

F5
basic log 5 2 0.6 0.6 0.7 0.7 0.6 0.2
visual log 4.4 1.3 0.4 0.7 0.6 0.4 0.7 0.3

visual trace 3.2 0.9 0.4 0.6 0.4 0.4 0.6 0.2

F6
basic log 2.8 0.6 0.3 0.3 0.4 0.6 0.4 0.2
visual log 2.1 0.4 0.3 0.3 0.3 0.2 0.3 0.3

visual trace 1 0.2 0.1 0.1 0.1 0.1 0.3 0.3

F7
basic log 5.3 1.6 1.2 0.9 0.6 0.6 0.7 0.4
visual log 3.9 0.8 0.8 0.8 0.3 0.4 0.6 0.4

visual trace 2.8 0.4 0.4 0.4 0.3 0.3 0.6 0.4

F8
basic log 5.4 1.6 0.6 0.6 1 0.8 0.6 0.3
visual log 3.6 0.6 0.6 0.8 0.9 0.9 0.4 0.2

visual trace 3.2 0.6 0.6 0.8 0.6 0.6 0.4 0.2

F9
basic log 1.8 0.3 0.2 0.2 0.3 0.3 0.4 0.1
visual log - - - - - - - -

visual trace - - - - - - - -

F10
basic log 4 1.2 0.3 0.3 0.8 0.6 0.6 0.3
visual log 3.6 1 0.3 0.3 0.6 0.6 0.6 0.3

visual trace 3 0.8 0.3 0.3 0.4 0.4 0.6 0.2

F11
basic log 6 1.6 0.8 0.8 1 0.6 1 0.3
visual log 5 1.1 0.6 0.4 1 0.6 0.8 0.2

visual trace 2.9 0.4 0.4 0.4 0.6 0.4 0.6 0.2

F12
basic log 10 4 0.8 0.8 1 1.4 1.2 0.8
visual log 6 2 0.6 0.6 0.6 1 0.8 0.4

visual trace 3.3 1 0.6 0.4 0.4 0.4 0.6 0.2

F13
basic log 6.3 2 0.7 0.7 0.8 1 1 0.3
visual log 5.4 1.6 0.6 0.6 0.6 0.6 0.8 0.4

visual trace 4.3 1 0.6 0.3 0.4 0.6 0.9 0.3

F14
basic log 1 0.2 0.1 0.1 0.2 0.2 0.1 0.1
visual log 1.1 0.3 0.1 0.1 0.2 0.2 0.1 0.1

visual trace 0.8 0.2 0.1 0.1 0.1 0.1 0.1 0.1

F15
basic log 1 0.2 0.2 0.2 0.1 0.1 0.1 0.1
visual log 0.4 0.1 - - - - 0.2 0.1

visual trace 0.4 0.1 - - - - 0.2 0.1

F16
basic log 2.1 0.6 0.3 0.3 0.3 0.3 0.2 0.2
visual log 1.8 0.4 0.3 0.3 0.3 0.3 0.2 0.2

visual trace 2 0.4 0.3 0.3 0.4 0.4 0.2 0.2

F17
basic log 2.6 1 0.3 0.3 0.2 0.2 0.4 0.2
visual log 1.6 0.4 0.3 0.3 0.2 0.2 0.1 0.1

visual trace 1.7 0.4 0.3 0.3 0.1 0.3 0.2 0.1

F18
basic log 1.3 0.4 0.2 0.2 0.2 0.2 0.1 0.1
visual log 1 0.4 - - 0.2 0.2 0.2 0.1

visual trace 1.1 0.4 - - 0.2 0.2 0.2 0.1

F19
basic log 0.7 0.3 - - 0.1 0.1 0.1 0.1
visual log - - - - - - - -

visual trace - - - - - - - -

F20
basic log 2.2 0.8 0.3 0.3 0.4 0.2 0.2 0.1
visual log 0.8 0.3 - - 0.2 0.1 0.1 0.1

visual trace 0.8 0.3 - - 0.2 0.1 0.1 0.1

F21
basic log 1.6 0.4 0.2 0.2 0.3 0.2 0.2 0.1
visual log - - - - - - - -

visual trace - - - - - - - -

F22
basic log 0.4 0.2 - - - - 0.1 0.1
visual log - - - - - - - -

visual trace - - - - - - - -

step. A mark “-” means that the developer skips the step. If
all the steps are skipped, it means that the fault can be easily
identified and fixed with lower level practices (e.g., basic log
analysis) thus there is no need for higher level practices. A
mark “failed” means that the developer fails to complete the
step. If a step of a debugging process fails, the whole process
fails also.

The developers fail in F3 and F4 with all the three levels
of industrial practices. Both of them are non-functional En-
vironment faults. For F9, F19, F21, F22, the developers easily
locate and fix the faults with basic log analysis. All of them
are Internal faults. For the other faults, there is a general
trend of reduced debugging time with the employment of
higher level debugging practices (from basic log, visual log,
to visual trace analysis). In these fault cases Interaction
faults are the ones that benefit the most from higher levels
of debugging practices.

Similar to the industrial survey, initial understanding,
fault scoping, fault localization are more time consuming
than the other steps, and environment setup and failure
reproduction are sometimes skipped. The time used for

Fig. 2. Trace Visualization by ShiViz

environment setup and failure reproduction varies with the
employed debugging practices. According to the feedback
from the developers, they often try to make a simplest
failure reproduction based on the initial understanding, so
the accuracy of the initial understanding influences the time
used for environment setup and failure reproduction

5.2 Debugging with Improved Trace Visualization
From the above, we observe that tracing and visualizing can
potentially help fault analysis and debugging of microser-
vice systems. Thus, in this part of the study, in order to
better support fault analysis and debugging of microservice
systems, we investigate the effectiveness of the state-of-the-
art distributed system debugging techniques for microser-
vice system debugging.

5.2.1 Tracing and Visualization Approach
ShiViz [10] is a state-of-the-art debugging visualization tool
for distributed systems. It visualizes distributed system
executions as interactive time-space diagrams that explicitly
capture distributed ordering of events in the system. ShiViz
supports pairwise comparison of two traces by highlighting
their differences. It compares the distribute-system nodes
and events from two traces by names and descriptions, and
highlights the nodes or events (in one trace) that do not
appear in the other. ShiViz supports the selection of a part
of a trace for comparison. For example, we can select a user-
request trace segment, i.e., the events for a specific user
request based on the request ID.

Figure 2 presents an example of trace visualization by
ShiViz, which shows the nodes (colored boxes at the top),
the node timelines (vertical lines), events (circles on time-
lines), and partial orders between events (edges connecting
events). The rhombuses (events) on the left side highlight
the differences between the two traces, and we can also click
to see the detail of the rhombuses.

This pairwise comparison can be used to locate suspi-
cious nodes and events in microservice system debugging
when execution information (e.g., service name, user request
ID, and invoked method) is added to the names and descrip-
tions of nodes and events, by treating a microservice unit as
a distribute-system node. We can leverage ShiViz to visual-
ize the traces of microservices by transforming the trace logs



IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 11

into the log formats of ShiViz. However, a basic problem for
visualizing microservice traces is how to map microservice
units to nodes. Microservice instances run on containers
and can be dynamically created or destroyed together with
their containers. Moreover, the instance that is assigned to
handle a microservice invocation is uncertain. Therefore,
microservice instances (containers) cannot be treated as the
nodes in trace visualization. We thus propose the following
two visualization strategies for microservice traces.

• Microservice as Node (Service-Level Analysis). All the
instances of the same microservice are treated as one
node. Thus the events at different instances of the
same microservice are aggregated to the same node.

• Microservice State as Node (State-Level Analysis). All the
instances of the same microservice and with the same
state (determined based on predefined state variables
or expressions) are treated as one node. Thus the
events at different instances of the same microservice
and during the same state are aggregated to the same
node. This technique depends on predefined state
variables or expressions of each microservice.

A trace resulted from executing a microservice system’s
scenario (e.g., test case) may include many user requests
(e.g., a ticket query request triggered by a button click on
a web page). In the trace, a user-request trace segment
resulted from each user request includes a series of microser-
vice invocations. Furthermore, each microservice invocation
may involve multiple execution events occurring on dif-
ferent microservice instances such as sending/receiving an
invocation request or a call back. Therefore, an execution
tracing tool needs to log all the execution events and attach
a user request ID (request ID in short) and a microservice
invocation ID (invocation ID in short) to each log. Our tool
is implemented in Java. For REST invocations, we use the
servlet filter and interceptor to inject tracing information of
the caller into the http header of the HTTPRequest object. The
injected information includes the request ID, invocation ID,
microservice name, instance ID, IP address, port number,
along with the class name and method name of the invoked
microservice and the caller, respectively. Such information is
sent together with the http request to the callee. For message
queues, we use a message channel interceptor to inject and
catch the interaction queue data. Based on such tracing
information, each microservice instance records tracing logs,
which are then collected by our central logging system.

Based on the two visualization strategies, we leverage
ShiViz to diagnose microservice faults by pairwise compar-
ison of traces. This characteristic makes ShiViz superior to
previous microservice tracing/visualization tools, e.g., ELK
stack, Zipkin.

5.2.2 Debugging Methodology

Based on the tracing tool and the two visualization strate-
gies, we define a debugging methodology as shown in Fig-
ure 3 for our empirical study based on general debugging
practices of distributed systems. The rationale of the process
is based on the assumption that the fault-revealing parts of
a failure trace are different from the corresponding parts in
a success trace, and are shared with another failure trace.

Fig. 3. Debugging Methodology

For each fault, we collect a set of traces resulted from
executing the same scenario (with different parameter val-
ues) including both success traces and failure traces. We
select a success trace TraceS and two failure traces TraceF1

and TraceF2 for comparison. We first compare TraceS and
TraceF1 based on user requests. For example, a scenario
of ticket booking includes a series of user requests such as
ticket query, train selection, and passenger selection, and the
events for each of these requests in two traces are compared
separately. To ease the selection of user requests, we attach
a readable label (e.g., “ticket query”) for each request ID
in the logs. Based on the comparison, we can obtain a set
of diff ranges DR, each of which are multiple consecutive
events that are different between the two traces. We then
compare between TraceF1 and TraceF2 by user requests to
confirm the ranges in DR that are shared in the two traces.
The confirmed ranges in DR are identified as fault-revealing
ranges.

The purpose of this study is to investigate whether trace-
based debugging can benefit from improved tracing and
visualization. Therefore, we select 12 fault cases from all
the 22 ones for the study according to the following two
criteria. First, they are Interaction or Environment faults, as
Internal faults can not benefit from trace analysis. Second,
their debugging time is more than 1 hour by visual trace
analysis (see Table 6). The selected fault cases are: F1, F2, F3,
F4, F5, F7, F8, F10, F11, F12, F13, F16. For each fault case a
developer who did not debug the fault using the industrial
debugging practices is selected to locate and fix the fault.

5.2.3 Qualitative Analysis

The benefits that different debugging steps can obtain from
the improved trace visualization are different. For initial
understanding the developers can get an impression of the
overall differences between success traces and failure traces,
including the number and size of diff ranges. Some devel-
opers can even directly identify suspicious fault locations in
initial understanding. Environment setup, failure reproduc-
tion, and failure identification can indirectly benefit from the
analysis through more accurate initial understanding of the
failure. Fault scoping and fault localization can directly ben-
efit from the analysis by identifying diff ranges. Fault fixing
can indirectly benefit from the analysis in the verification of
fault fixing.

Figure 4 shows an example of service-level analysis
for faulty microservice invocation in F10, which is caused
by incorrect handling of an unexpected output of one of
the APIs of a microservice. The developers can see there
are two differences (rhombus) in the red box, indicating
that the invoked APIs are different (although the invoked



IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 12

Fig. 4. An Example of Service Level Analysis for Faulty Microservice Invocation

Fig. 5. An Example of Service Level Analysis for Faulty Interaction
Sequence

microservices are the same). As the corresponding range in
the comparison of failure traces involves no differences, they
can identify this range as a potential fault location.

Figure 5 shows an example of service-level analysis
for faulty interaction sequence in F1, which is caused by
missing coordination of asynchronous invocations. Based on
the structures of the events, the developers can identify two
pairs of corresponding ranges in the success trace and the
failure trace, showing as red boxes and green boxes respec-
tively. They can find that the orders of the two ranges in the
two traces are different. As the orders have no difference

in the comparison of failure traces, they can identify the
difference as a potential fault location.

Figure 6 shows an example of service- and state-level
debugging for F12. When conducting service-level analysis
as shown in Figure 6(a), there is no difference between the
failure trace and the success trace. Then the developers
choose to use state-level analysis to refine the comparison
of the traces by introducing state variables or expressions.
Based on the understanding of the system, the developers
choose to try the following two state variables of the ticket
order service: administrator examining station indicating the
departure/destination station of which the administrator is
examining the tickets, and order processing thread pool indicat-
ing whether the limit of the pool is not reached, reached, or
exceeded (0, 1, or 2). As the administrator examining station
has more than 20 different values, the developers choose
to use state expression instead of the state variable, e.g.,
use the country region information: GetRegion (administrator
examining station). Then the developers get the state-level
analysis results as shown in Figure 6(b). It can be seen that
the nodes for the ticket order service are annotated with
the combined states (“region5”/0 and “region3”/1) and
thus the differences (nodes and events) between the failure
trace and the success trace are identified and highlighted as
rhombuses (in the red box). The developers further examine
the comparison between the two failure traces as shown in
Figure 6(c), which compares the ticket order service with the
same administration state (“region3”) and different thread
pool states (2 and 1). These two comparisons provide pre-
liminary evidence that the state of administrator examining
“region3” of the ticket order service is relevant to the fault
and the range highlighted in Figure 6(b) is a candidate fault-
revealing range.



IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 13

(a) Service Level Analysis (b) State Level Analysis (Success Vs. Failure) (c) State Level Analysis (Failure Vs. Failure)

Fig. 6. An Example of Service- and State-Level Analysis

When necessary, the developers can introduce more state
variables/expressions for comparison, paying the price of
having more nodes in the visualized trace. The developers
can gradually adjust the strategies and attempt different
combinations of state variables/expressions. Heuristics can
be applied to identify such combinations. For instance,
desirable state variables/expressions are likely built from
static variables, singleton-member variable, or key-values in
temp storage, e.g., in Redis [54].

We find that all the successful analyses are based on the
following four tactics on comparing a failure trace and a
success trace.

T1 (Single-Event Difference). The fault-revealing range
is a single event, and the difference lies only in the descrip-
tions (e.g., invoked method) of the event.

T2 (Single-Range Difference). The fault-revealing range
involves different interaction sequences among nodes.

T3 (Multiple-Range Difference). The execution orders
of multiple fault-revealing ranges are different.

T4 (Multiple-Request Difference). The execution orders
of multiple user requests are different.

Among these tactics, T1 does not involve differences in
node interaction sequences, while the other three tactics
do. The tactics used for the analysis of each fault case are
also shown in Table 7. It can be seen that tactics may be
combined for debugging to locate a fault, because a fault
may involve multiple fault-revealing ranges at different
levels. The difficulty of debugging increases from T1 to T4
with the analysis of trace differences in a larger scope.

T4 is relatively hard to use, as it involves complex
interactions among different user requests. F2 is an example
for which T4 must be used. Due to the extensive usage
of asynchronous interactions in microservice systems, the
processing orders of user requests do not always correspond
to their receiving order. If there are interactions among
different user requests, it is likely that a fault will be in-
troduced due to erroneous coordination of processing user
requests. F2 is an example of this case. As the trace analysis
involves a large number of events across multiple user
requests, and the events of different requests are interleaved,
F2 cannot be effectively analyzed based on existing visual-
ization techniques, unless the differences between success
and failure traces are reflected in the trace comparison of a
single request. For F2, the developer spends a lot of time
in seeking the root cause. But for F13, as the trace analysis

involves a much smaller number of events across multiple
user requests compared to F2, and the events of different
requests on ShiViz can be easily distinguished, F13 can be
effectively analyzed, and less time consumed.

5.2.4 Quantitative Analysis
The time-analysis results of debugging with improved trace
visualization are shown in Table 7. Among the 12 fault cases,
the developers fail in 2 cases (F3 and F4) in which they
also fail with visual trace analysis. For F16, the develop-
ers succeed but use more time than visual trace analysis.
These three cases are all Environment faults (F3 and F4 are
non-functional, F16 is functional); such result suggests that
debugging such faults cannot benefit from trace analysis.

In all the other 9 fault cases, the developers achieve
improved debugging effectiveness with decreased average
debugging time from 3.23 hours to 2.14 hours. Note that
these 9 fault cases are all Interaction faults. For these faults,
fault localization, initial understanding, failure reproduction
are the three steps that benefit the most from the analysis.
The time used for these steps is reduced by 49%, 28%, and
24%, respectively compared with visual trace analysis.

Table 7 also shows the detailed analysis processes of
the developers on each of the 12 fault cases, including the
used visualization strategy, number of nodes (#N.), number
of events (#E.), number of user requests (#UR.), number
of fault-revealing ranges identified in each analysis (#FR.),
number of events in fault-revealing ranges in each analysis
(#FE.), and hit (i.e., the analysis that succeeds in identi-
fying at least one true fault-revealing range, ’Y’ indicates
successfully identified, ’N’ indicates failed) in each analysis.
A mark “-” indicates that the developers fail in identifying
the ranges or events. The results show that each debugging
with a combination of success and failure traces involves
about 7-22 nodes (representing services or service states)
and hundreds to thousands of events. These events belong
to 2-7 user requests, and the traces of each user request are
compared separately.

Each successful analysis identifies several fault-revealing
ranges with dozens of events. For some fault cases (F1, F2,
F7, F8, F10, and F13), service-level analysis can effectively
identify the fault-revealing ranges (Hit is ’Y’). Some other
fault cases (F5, F11, and F12) require service state-level
analysis to identify the fault-revealing ranges. For F12, both
developers successfully identify one of the issue states.



IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 14

TABLE 7
Empirical Study Results of Debugging with Improved Trace Visualization

Fault Overall Time (H) Time of Each Step (H) Strategy #N. #E. #UR. #FR. #FE. Hit TacticIU ES FR FI FS FL FF
F1 2 0.6 - - 0.6 0.6 0.2 0.1 Service 7 228 4 1 8 Y T3
F2 2.4 0.6 0.6 0.4 0.4 0.4 0.6 0.3 Service 21 2706 3 2 9 Y T4
F3 failed 1 0.6 0.6 0.8 failed failed failed Service 11 398 2 2 39 N T3
F4 failed 0.8 0.8 0.3 1 failed failed failed Service 22 1704 5 - - N T3
F5 2.2 0.6 0.4 0.3 0.4 0.3 0.2 0.1 State 17 972 2 3 255 N T1, T2
F7 2.6 0.8 - - 0.8 0.6 0.3 0.2 Service 22 1705 3 3 24 Y T1
F8 2.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 Service 7 178 4 1 4 Y T1
F10 2.1 0.6 0.2 0.2 0.3 0.3 0.4 0.1 Service 16 960 6 2 28 Y T1
F11 2.3 0.4 0.4 0.3 0.4 0.4 0.4 0.1 State 9 303 4 3 24 Y T1, T2, T3
F12 1.3 0.3 0.2 0.2 0.4 0.1 0.1 0.1 State 9 210 5 3 4 Y T1, T2
F13 1.6 0.3 0.2 0.2 0.3 0.3 0.2 0.2 Service 12 372 7 3 57 Y T4
F16 2.3 0.3 0.3 0.3 0.4 0.4 0.4 0.2 Service 6 233 2 2 3 N T3

There are also unsuccessful cases (F3, F4), indicating that
the developers fail in locating at least one fault-revealing
range. The main reason is that the two cases are environ-
mental faults, and they are not sufficiently supported by
our debugging methodology.

5.3 Findings
Our study shows that most fault cases except those caused
by environmental settings can benefit from trace visualiza-
tion, especially those related to microservice interactions. By
treating microservices or microservice states as the nodes,
we can further improve the effectiveness of microservice
debugging using state-of-the-art debugging visualization
tools for distributed systems. A difficulty for state-level
tracing and visualization mainly lies in the definition of mi-
croservice states. As a microservice system may have a large
number of microservices and state variables/expressions,
it highly depends on the experience of the developers to
achieve effective and efficient fault analysis by identifying a
few key states that can help reveal the faults.

A challenge for the trace visualization lies in the huge
number of nodes and events. Large-scale industrial mi-
croservice systems have hundreds to thousands of microser-
vices and tens of thousands to millions of events in a trace.
Such a number of nodes and events can make the visualiza-
tion analysis infeasible. This problem can be alleviated from
two aspects. First, better trace visualization techniques such
as zoom in/out and node/event clustering are required to
allow the developers to focus on suspicious scopes. For
example, node/event clustering can adaptively group co-
hesive nodes and events together, and thus reduce the num-
ber of nodes and events to be examined by progressively
disclosing information. Second, fault localization techniques
such as spectrum based fault localization [38], [55] and delta
debugging [56] can be combined with visualization analysis
for microservice debugging. On the one hand, the combi-
nation can suggest suspicious scopes in traces by applying
statistical fault localization on microservice invocations, and
on the other hand, the combination can provide results
of code-level fault localization (e.g., code blocks) within
specific microservices.

In view of the great complexity caused by the scale of
microservice interactions and the dynamics of infrastruc-
ture, we believe that debugging of microservices needs to
be supported in a data-driven way. For instance, one way
is to combine human expertise and machine intelligence

for guided visual exploration and comparison of traces.
The supporting tools can take full advantage of the large
amount of data produced by runtime monitoring and his-
torical analysis and make critical suggestion and guidance
during the visual exploration and comparison of traces. For
example, the tools can suggest suspicious scopes in traces
and sensitive state variables that may differentiate success
and failure traces based on probabilistic data analysis, or
recommend historical fault cases that share similar patterns
of traces. Based on these suggestions and guidance, the
developers can dig into possible segments of traces or add
relevant state variables to trace comparison and visualiza-
tion. These actions are in turn collected and used by the tools
as feedback to improve further suggestion and guidance.

6 THREATS TO VALIDITY

One common threat to the external validity of our studies
lies in the limited participants and fault cases. The industrial
experiences learned from these participants may not rep-
resent other companies or microservice systems that have
different characteristics. The fault cases collected from the
industrial participants may not cover more complex faults
or other different fault types. One major threat to the inter-
nal validity of the industrial survey lies in the accuracy of
the information (e.g., time of each debugging step) collected
from the participants. As such information is not completely
based on precise historical records, some of the information
may not be accurate.

The threats to the external validity of the empirical study
mainly lie in the representativeness of the benchmark sys-
tem. The system currently is smaller and less complex (e.g.,
less heterogeneous) than most of the surveyed industrial
systems, despite being the largest and most complex open
source microservice system within our knowledge. Thus
some experiences of debugging obtained from the study
may not be valid for large industrial systems.

There are three major threats to the internal validity of
the empirical study. The first one lies in the implementa-
tion of the fault cases based on our understanding. The
understanding may be inaccurate, and the replication of
some faults in a different system may not fully capture
the essential characteristics of the fault cases. The second
one lies in the uncertainty of runtime environments such
as access load and network traffic. Some faults may behave
differently with different environment settings, thus need



IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 15

different debugging strategies. The third one lies in the
differences of the experiences and skills of the developers
who participate in the study. These differences may also
contribute to the differences of debugging time and results
with different practices.

7 RELATED WORK

Some researchers review the development and status of
microservice research using systematic mapping study and
literature review. Francesco et al. [2] present a systematic
mapping study on the current state of the art on architecting
microservices from three perspectives: publication trends,
focus of research, and potential for industrial adoption.
One of their conclusions is that research on architecting
microservices is still in its initial phases and the balanced in-
volvement of industrial and academic authors is promising.
Alshuqayran et al. [57] present a systematic mapping study
on microservice architecture, focusing on the architectural
challenges of microservice systems, the architectural dia-
grams used for representing them, and the involved quality
requirements. Dragoni et al. [58] review the development
history from objects, services, to microservices, present the
current state of the art, and raise some open problems and
future challenges. Aderaldo et al. [23] present an initial set
of requirements for a candidate microservice benchmark
system to be used in research on software architecture. They
evaluate five open source microservice systems based on
these requirements and the results indicate that none of
them is mature enough to be used as a community-wide
research benchmark. Our open source benchmark system
offers a promising candidate to fill such vacancy. Our in-
dustrial survey well supplements these previous systematic
mapping studies and literature reviews.

There has been some research on debugging concurrent
programs [38], [59], [60] and distributed systems [10], [61],
[62], [63]. Asadollah et al. [64] present a systematic mapping
study on debugging concurrent and multicore software in
the decade between 2005 and 2014. Bailis et al. [61] present
a survey on recent techniques for debugging distributed sys-
tems with a conclusion that the state-of-the-art of debugging
distributed systems is still in its infancy. Giraldeau et al. [62]
propose a technique to visualize the execution of distributed
systems using scheduling, network, and interrupt events.
Aguerre et al. [63] present a simulation and visualization
platform that incorporates a distributed debugger. Beschast-
nikh et al. [10] discuss the key features and debugging
challenges of distributed systems and present a debugging
visualization tool named ShiViz, which our empirical study
investigates and extends. In contrast to such previous re-
search, our work is the first to focus on debugging support
for microservice systems.

8 CONCLUSION

In this work, we have presented an industrial survey to con-
duct fault analysis on typical faults of microservice systems,
current industrial practice of debugging, and the challenges
faced by the developers. Based on the survey results, we
have developed a medium-size benchmark microservice
system (being the largest and most complex open source

microservice system within our knowledge) and replicated
22 representative fault cases from industrial ones based on
the system. These replicated faults have then been used as
the basis of our empirical study on microservice debug-
ging. The results of the study show that, by using proper
tracing and visualization techniques or strategies, tracing
and visualization analysis can help debugging for locating
various kinds of faults involving microservice interactions.
Our findings from the study also indicate that there is a need
for more intelligent trace analysis and visualization, e.g., by
combining techniques of trace visualization and improved
fault localization, and employing data-driven and learning-
based recommendation for guided visual exploration and
comparison of traces.

Industrial microservice systems are often large and com-
plex. For example, industrial systems are highly heteroge-
neous in microservice interactions and may use not only
REST invocations and message queues but also remote
procedure calls and socket communication. Moreover, in-
dustrial systems are running on highly complex infrastruc-
tures such as auto-scaling microservice cluster and service
mesh (a dedicated infrastructure layer for service-to-service
communication [65]). Such complexity and heterogeneity
pose additional challenges on execution tracing and vi-
sualization. Our future work plans to further extend our
benchmark system to reflect more characteristics of indus-
trial microservice systems, and explore effective trace visual-
ization techniques and the combination of fault localization
techniques (e.g., spectrum-based fault localization [38] and
delta debugging [56]) for microservice debugging. More-
over, we plan to explore a more technology-independent
way to inject tracing information at every service invocation
via service mesh tools such as Linkerd [66] and Istio [67].

ACKNOWLEDGMENTS

This work was supported by the National Key Research
and Development Program of China under Grant No.
2018YFB1004803. Tao Xie’s work was supported in part by
National Science Foundation under grants no. CNS-1513939,
CNS-1564274, and CCF-1816615.

REFERENCES

[1] J. Lewis and M. Fowler, “Microservices a definition of
this new architectural term,” 2014. [Online]. Available:
http://martinfowler.com/articles/microservices.html

[2] P. D. Francesco, I. Malavolta, and P. Lago, “Research on archi-
tecting microservices: Trends, focus, and potential for industrial
adoption,” in 2017 IEEE International Conference on Software Archi-
tecture, ICSA 2017, Gothenburg, Sweden, April 3-7, 2017, 2017, pp.
21–30.

[3] V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K. Reiter, and
V. Sekar, “Gremlin: Systematic resilience testing of microservices,”
in 36th IEEE International Conference on Distributed Computing Sys-
tems, ICDCS 2016, Nara, Japan, June 27-30, 2016, 2016, pp. 57–66.

[4] Netflix.Com, “Netflix,” 2018. [Online]. Available:
https://www.netflix.com/

[5] SmartBear, “Why you can’t talk about microservices
without mentioning netflix,” 2015. [Online]. Avail-
able: https://smartbear.com/blog/develop/why-you-cant-talk-
about-microservices-without-ment/

[6] Wechat.Com, “Wechat,” 2018. [Online]. Available:
https://www.wechat.com/



IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 16

[7] H. Zhou, M. Chen, Q. Lin, Y. Wang, X. She, S. Liu, R. Gu, B. C. Ooi,
and J. Yang, “Overload control for scaling wechat microservices,”
in Proceedings of the ACM Symposium on Cloud Computing, SoCC
2018, Carlsbad, CA, USA, October 11-13, 2018, 2018, pp. 149–161.

[8] A. Deb, “Application delivery service challenges in
microservices-based applications,” 2016. [Online]. Avail-
able: http://www.thefabricnet.com/application-delivery-service-
challenges-in-microservices-based-applications/

[9] Amazon.Com, “Amazon,” 2017. [Online]. Avail-
able: https://d0.awsstatic.com/whitepapers/microservices-on-
aws.pdf

[10] I. Beschastnikh, P. Wang, Y. Brun, and M. D. Ernst, “Debugging
distributed systems,” Commun. ACM, vol. 59, no. 8, pp. 32–37,
2016.

[11] S. Hassan and R. Bahsoon, “Microservices and their design trade-
offs: A self-adaptive roadmap,” in IEEE International Conference on
Services Computing, SCC 2016, San Francisco, CA, USA, June 27 -
July 2, 2016, 2016, pp. 813–818.

[12] G. Schermann, D. Schöni, P. Leitner, and H. C. Gall, “Bifrost:
Supporting continuous deployment with automated enactment
of multi-phase live testing strategies,” in Proceedings of the 17th
International Middleware Conference, Trento, Italy, December 12 - 16,
2016, 2016, p. 12.

[13] A. de Camargo, I. L. Salvadori, R. dos Santos Mello, and
F. Siqueira, “An architecture to automate performance tests on
microservices,” in Proceedings of the 18th International Conference
on Information Integration and Web-based Applications and Services,
iiWAS 2016, Singapore, November 28-30, 2016, 2016, pp. 422–429.

[14] R. Heinrich, A. van Hoorn, H. Knoche, F. Li, L. E. Lwakatare,
C. Pahl, S. Schulte, and J. Wettinger, “Performance engineering for
microservices: Research challenges and directions,” in Companion
Proceedings of the 8th ACM/SPEC on International Conference on
Performance Engineering, ICPE 2017, L’Aquila, Italy, April 22-26,
2017, 2017, pp. 223–226.

[15] P. Leitner, J. Cito, and E. Stöckli, “Modelling and managing
deployment costs of microservice-based cloud applications,” in
Proceedings of the 9th International Conference on Utility and Cloud
Computing, UCC 2016, Shanghai, China, December 6-9, 2016, 2016,
pp. 165–174.

[16] W. Hasselbring, “Microservices for scalability: Keynote talk ab-
stract,” in Proceedings of the 7th ACM/SPEC International Conference
on Performance Engineering, ICPE 2016, Delft, The Netherlands, March
12-16, 2016, 2016, pp. 133–134.

[17] S. Klock, J. M. E. M. van der Werf, J. P. Guelen, and S. Jansen,
“Workload-based clustering of coherent feature sets in microser-
vice architectures,” in 2017 IEEE International Conference on Software
Architecture, ICSA 2017, Gothenburg, Sweden, April 3-7, 2017, 2017,
pp. 11–20.

[18] A. Panda, M. Sagiv, and S. Shenker, “Verification in the age of
microservices,” in Proceedings of the 16th Workshop on Hot Topics
in Operating Systems, HotOS 2017, Whistler, BC, Canada, May 8-10,
2017, 2017, pp. 30–36.

[19] I. L. Salvadori, A. Huf, R. dos Santos Mello, and F. Siqueira, “Pub-
lishing linked data through semantic microservices composition,”
in Proceedings of the 18th International Conference on Information
Integration and Web-based Applications and Services, iiWAS 2016,
Singapore, November 28-30, 2016, 2016, pp. 443–452.

[20] G. Granchelli, M. Cardarelli, P. D. Francesco, I. Malavolta,
L. Iovino, and A. D. Salle, “Microart: A software architecture re-
covery tool for maintaining microservice-based systems,” in 2017
IEEE International Conference on Software Architecture Workshops,
ICSA Workshops 2017, Gothenburg, Sweden, April 5-7, 2017, 2017,
pp. 298–302.

[21] J. Lin, L. C. Lin, and S. Huang, “Migrating web applications to
clouds with microservice architectures,” in Applied System Innova-
tion (ICASI), 2016 International Conference on. IEEE, 2016, pp. 1–4.

[22] S. Hassan and R. Bahsoon, “Microservices and their design trade-
offs: A self-adaptive roadmap,” in IEEE International Conference on
Services Computing, SCC 2016, San Francisco, CA, USA, June 27 -
July 2, 2016, 2016, pp. 813–818.

[23] C. M. Aderaldo, N. C. Mendonca, C. Pahl, and P. Jamshidi, “Bench-
mark requirements for microservices architecture research,” in 1st
IEEE/ACM International Workshop on Establishing the Community-
Wide Infrecaseructure for Architecture-Based Software Engineering,
ECASE@ICSE 2017, Buenos Aires, Argentina, May 22, 2017, 2017,
pp. 8–13.

[24] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov,
“Microservices: The journey so far and challenges ahead,” IEEE
Software, vol. 35, no. 3, pp. 24–35, 2018.

[25] Microservice.System.Benchmark, “Trainticket,” 2018. [Online].
Available: https://github.com/FudanSELab/train-ticket/

[26] X. Zhou, X. Peng, T. Xie, J. Sun, C. Xu, C. Ji, and W. Zhao,
“Benchmarking microservice systems for software engineering
research,” in Proceedings of the 40th International Conference on Soft-
ware Engineering: Companion Proceeedings, ICSE 2018, Gothenburg,
Sweden, May 27 - June 03, 2018, 2018, pp. 323–324.

[27] Fault.Replication, “Fault replication,” 2017. [Online]. Available:
https://github.com/FudanSELab/train-ticket-fault-replicate

[28] Replication.Package, “Fault analysis and debugging
of microservice systems,” 2018. [Online]. Available:
https://fudanselab.github.io/research/MSFaultEmpiricalStudy/

[29] SpringBoot.Com, “Spring boot,” 2018. [Online]. Available:
http://projects.spring.io/spring-boot/

[30] Dubbo.Com, “Dubbo,” 2017. [Online]. Available:
http://dubbo.io/

[31] Docker.Com, “Docker,” 2018. [Online]. Available:
https://docker.com/

[32] SpringCloud.Com, “Spring cloud,” 2018. [Online]. Available:
http://projects.spring.io/spring-cloud/

[33] Mesos.Com, “Mesos,” 2018. [Online]. Available:
http://mesos.apache.org/

[34] Kubernetes.Com, “Kubernetes,” 2018. [Online]. Available:
https://kubernetes.io/

[35] DockerSwarm.Com, “Docker swarm,” 2018. [Online]. Available:
https://docs.docker.com/swarm/

[36] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey
on software fault localization,” IEEE Trans. Software Eng., vol. 42,
no. 8, pp. 707–740, 2016.

[37] R. A. Santelices, Y. Zhang, S. Jiang, H. Cai, and Y. Zhang, “Quan-
titative program slicing: separating statements by relevance,” in
35th International Conference on Software Engineering, ICSE ’13, San
Francisco, CA, USA, May 18-26, 2013, 2013, pp. 1269–1272.

[38] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “Spectrum-based
multiple fault localization,” in ASE 2009, 24th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, Auckland, New
Zealand, November 16-20, 2009, 2009, pp. 88–99.

[39] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan,
“Scalable statistical bug isolation,” in Proceedings of the ACM
SIGPLAN 2005 Conference on Programming Language Design and
Implementation, Chicago, IL, USA, June 12-15, 2005, 2005, pp. 15–26.

[40] W. E. Wong and Y. Qi, “Bp neural network-based effective fault lo-
calization,” International Journal of Software Engineering and Knowl-
edge Engineering, vol. 19, no. 4, pp. 573–597, 2009.

[41] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using
mutation analysis for assessing and comparing testing coverage
criteria,” IEEE Trans. Software Eng., vol. 32, no. 8, pp. 608–624, 2006.

[42] E. H. da S. Alves, L. C. Cordeiro, and E. B. de Lima Filho, “Fault
localization in multi-threaded C programs using bounded model
checking,” in 2015 Brazilian Symposium on Computing Systems Engi-
neering, SBESC 2015, Foz do Iguacu, Brazil, November 3-6, 2015, 2015,
pp. 96–101.

[43] F. Koca, H. Sözer, and R. Abreu, “Spectrum-based fault localization
for diagnosing concurrency faults,” in Testing Software and Systems
- 25th IFIP WG 6.1 International Conference, ICTSS 2013, Istanbul,
Turkey, November 13-15, 2013, Proceedings, 2013, pp. 239–254.

[44] I. Laguna, D. H. Ahn, B. R. de Supinski, S. Bagchi, and T. Gamblin,
“Probabilistic diagnosis of performance faults in large-scale paral-
lel applications,” in International Conference on Parallel Architectures
and Compilation Techniques, PACT ’12, Minneapolis, MN, USA -
September 19 - 23, 2012, 2012, pp. 213–222.

[45] G. Qi, L. Yao, and A. V. Uzunov, “Fault detection and localiza-
tion in distributed systems using recurrent convolutional neural
networks,” in Advanced Data Mining and Applications - 13th In-
ternational Conference, ADMA 2017, Singapore, November 5-6, 2017,
Proceedings, 2017, pp. 33–48.

[46] A. B. Sharma, H. Chen, M. Ding, K. Yoshihira, and G. Jiang, “Fault
detection and localization in distributed systems using invariant
relationships,” in 2013 43rd Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN), Budapest, Hungary,
June 24-27, 2013, 2013, pp. 1–8.

[47] C. Pham, L. Wang, B. Tak, S. Baset, C. Tang, Z. T. Kalbarczyk,
and R. K. Iyer, “Failure diagnosis for distributed systems using



IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 17

targeted fault injection,” IEEE Trans. Parallel Distrib. Syst., vol. 28,
no. 2, pp. 503–516, 2017.

[48] Log4j.Com, “Log4j,” 2017. [Online]. Available:
https://logging.apache.org/log4j/2.x/

[49] Logstash.Com, “Logstash,” 2018. [Online]. Available:
https://www.elastic.co/products/logstash

[50] Elasticsearch.Com, “Elasticsearch,” 2018. [Online]. Available:
https://www.elastic.co/products/elasticsearch

[51] Kibana.Com, “Kibana,” 2018. [Online]. Available:
https://www.elastic.co/products/kibana

[52] Dynatrace.Com, “Dynatrace,” 2013. [Online]. Available:
https://www.dynatrace.com/

[53] Zipkin.Com, “Zipkin,” 2016. [Online]. Available:
https://zipkin.io/

[54] Redis.Io, “redis.io,” 2016. [Online]. Available: https://redis.io/
[55] J. Campos, A. Riboira, A. Perez, and R. Abreu, “Gzoltar:

an eclipse plug-in for testing and debugging,” in IEEE/ACM
International Conference on Automated Software Engineering, ASE’12,
Essen, Germany, September 3-7, 2012, 2012, pp. 378–381. [Online].
Available: https://doi.org/10.1145/2351676.2351752

[56] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-
inducing input,” IEEE Trans. Software Eng., vol. 28, no. 2, pp. 183–
200, 2002.

[57] N. Alshuqayran, N. Ali, and R. Evans, “A systematic mapping
study in microservice architecture,” in 9th IEEE International Con-
ference on Service-Oriented Computing and Applications, SOCA 2016,
Macau, China, November 4-6, 2016, 2016, pp. 44–51.

[58] N. Dragoni, S. Giallorenzo, A. Lluch-Lafuente, M. Mazzara,
F. Montesi, R. Mustafin, and L. Safina, “Microservices: yesterday,
today, and tomorrow,” CoRR, vol. abs/1606.04036, 2016.

[59] S. Park, R. W. Vuduc, and M. J. Harrold, “UNICORN: a unified
approach for localizing non-deadlock concurrency bugs,” Softw.
Test., Verif. Reliab., vol. 25, no. 3, pp. 167–190, 2015.

[60] ——, “Falcon: fault localization in concurrent programs,” in Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 1, ICSE 2010, Cape Town, South Africa, 1-8 May
2010, 2010, pp. 245–254.

[61] P. Bailis, P. Alvaro, and S. Gulwani, “Research for practice: tracing
and debugging distributed systems; programming by examples,”
Commun. ACM, vol. 60, no. 7, pp. 46–49, 2017.

[62] F. Giraldeau and M. Dagenais, “Wait analysis of distributed
systems using kernel tracing,” IEEE Trans. Parallel Distrib. Syst.,
vol. 27, no. 8, pp. 2450–2461, 2016.

[63] C. Aguerre, T. Morsellino, and M. Mosbah, “Fully-distributed
debugging and visualization of distributed systems in anonymous
networks,” in GRAPP & IVAPP 2012: Proceedings of the International
Conference on Computer Graphics Theory and Applications and Interna-
tional Conference on Information Visualization Theory and Applications,
Rome, Italy, 24-26 February, 2012, 2012, pp. 764–767.

[64] S. A. Asadollah, D. Sundmark, S. Eldh, H. Hansson, and W. Afzal,
“10 years of research on debugging concurrent and multicore
software: a systematic mapping study,” Software Quality Journal,
vol. 25, no. 1, pp. 49–82, 2017.

[65] W. Morgan, “What’s a service mesh? and why do i need one?”
2017. [Online]. Available: https://buoyant.io/2017/04/25/whats-
a-service-mesh-and-why-do-i-need-one/

[66] Linkerd, “Linkerd,” 2018. [Online]. Available: https://linkerd.io/
[67] Istio, “Istio,” 2018. [Online]. Available: https://istio.io/

Xiang Zhou is a PhD student of the School of
Computer Science at Fudan University, China.
He received his master degree from Tongji Uni-
versity in 2009. His PhD work mainly concerns
on the development and operation of microser-
vice systems.

Xin Peng is a professor of the School of Com-
puter Science at Fudan University, China. He
received Bachelor and PhD degrees in com-
puter science from Fudan University in 2001 and
2006. His research interests include data-driven
intelligent software development, software main-
tenance and evolution, mobile and cloud com-
puting. His work won the Best Paper Award
at the 27th International Conference on Soft-
ware Maintenance (ICSM 2011), the ACM SIG-
SOFT Distinguished Paper Award at the 33rd

IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE 2018), the IEEE TCSE Distinguished Paper Award at the 34th
IEEE International Conference on Software Maintenance and Evolution
(ICSME 2018).

Tao Xie is a professor and Willett Faculty
Scholar in the Department of Computer Science
at the University of Illinois at UrbanaChampaign,
USA. His research interests are software test-
ing, program analysis, software analytics, soft-
ware security, intelligent software engineeirng,
and educational software engineering. He is a
Fellow of the IEEE.

Jun Sun is currently an associate professor at
Singapore University of Technology and Design
(SUTD). He received Bachelor and PhD degrees
in computing science from National University of
Singapore (NUS) in 2002 and 2006. In 2007,
he received the prestigious LEE KUAN YEW
postdoctoral fellowship. He has been a faculty
member of SUTD since 2010. He was a visiting
scholar at MIT from 2011-2012. Jun’s research
interests include software engineering, formal
methods, program analysis and cyber-security.

Chao Ji is a Master student of the School of
Computer Science at Fudan University, China.
He received his Bachelor degree from Fudan
University in 2017. His work mainly concerns on
the development and operation of microservice
systems.

Wenhai Li is a Master student of the School of
Computer Science at Fudan University, China.
He received his Bachelor degree from Fudan
University in 2016. His work mainly concerns on
the development and operation of microservice
systems.



IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 2018 18

Dan Ding is a Master student of the School of
Computer Science at Fudan University, China.
She received her Bachelor degree from Fudan
University in 2017. Her work mainly concerns on
the development and operation of microservice
systems.


