
GHANDEHARI ET AL.: A COMBINATORIAL TESTING-BASED APPROACH TO FAULT LOCALIZATION 1

A Combinatorial Testing-Based Approach
to Fault Localization

Laleh Sh. Ghandehari, Yu Lei, Raghu Kacker, Richard Kuhn, Tao Xie, David Kung

Abstract— Combinatorial testing has been shown to be a very effective strategy for software testing. After a failure
is detected, the next task is to identify one or more faulty statements in the source code that have caused the failure.
In this paper, we present a fault localization approach, called BEN, which produces a ranking of statements in terms
of their likelihood of being faulty by leveraging the result of combinatorial testing.

BEN consists of two major phases. In the first phase, BEN identifies a combination that is very likely to be failure-
inducing. A combination is failure-inducing if it causes any test in which it appears to fail. In the second phase, BEN
takes as input a failure-inducing combination identified in the first phase and produces a ranking of statements in terms
of their likelihood to be faulty. We conducted an experiment in which our approach was applied to the Siemens suite
and four real-world programs, flex, grep, gzip and sed, from Software Infrastructure Repository (SIR). The experimental
results show that our approach can effectively and efficiently localize the faulty statements in these programs.

Index Terms— Combinatorial Testing, Fault Localization, Debugging

——————————  ——————————

1. INTRODUCTION

ombinatorial testing is based on the observation
that a large number of software failures are caused
by interactions of only a few input parameters [26].
A t-way combinatorial test set, or simply a t-way

test set, is designed to cover all the t-way combinations, i.e.,
combinations involving any t parameters [8][9][29].
Typically, t is a small number and is referred to as the
strength of a combinatorial test set [25][26]. When the input
parameters are properly modeled, a t-way test set could
trigger any failure caused by interaction of at most t
parameters. Empirical studies have shown that
combinatorial testing is very effective in
practice [6][16][25].

After a failure is detected during combinatorial testing,
the next task is locating the fault that caused the failure. In
this paper, we present a fault localization approach called
BEN that leverages the result of combinatorial testing. BEN
takes as input a combinatorial test set and the execution
status, i.e., pass or fail, of each test, and produces as output
a ranking of statements in terms of their likelihood to be
faulty.

Most research in combinatorial testing has focused on
developing efficient combinatorial test generation
algorithms [8][29][33], or demonstrating the effectiveness
of combinatorial testing in different application
domains [6][15][44][48]. Several approaches have been
developed to identify failure-inducing combinations in a
combinatorial test set [49][57]. A failure-inducing

combination, or simply an inducing combination, is a
combination that causes all tests containing this
combination to fail [34][57]. These approaches, however, are
not designed to locate faulty statements in the source code.

A significant amount of research has been reported on
spectrum-based approaches to fault
localization [1][23][40][50]. A program spectrum records
information about certain aspects of a test execution [50],
such as function call counts, program paths, program slices
and use-def chains [40]. Examples of spectrum-based
methods include Tarantula [24], set union, set intersection,
and nearest neighbor [40]. These approaches identify
faulty statements by analyzing the spectra of passing and
failing test executions [24][40][31]. These approaches are
not designed to work with combinatorial testing. However,
they can be applied to analyze test executions obtained from
combinatorial testing, provided that the test executions
were traced. In case that a combinatorial test set is already
executed without being traced, which is often the case in
practice considering that testing and debugging are
fundamentally different activities and are often performed
separately, the test set must be re-executed before these
approaches could be applied. In contrast, our approach does
not require every test execution to be traced and is designed
to be applied after normal testing is performed where test
executions are not traced. We will compare our approach,
i.e., BEN, to these approaches both analytically (Section 6.2)
and experimentally (Section 5.2.3).

Our approach consists of two major phases, inducing
combination identification and faulty statement localization. In
the first phase, BEN takes as input a t-way combinatorial test
set. It adopts an iterative framework to identify an inducing
combination of size t or larger. During each iteration, a set F
of tests is analyzed. Initially F is the t-way combinatorial test
set taken as input by BEN. BEN first identifies the set π of

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

C

————————————————

 Laleh Sh. Ghandehari, Yu Lei and David Kung are with the Department of
Computer Science and Engineering, University of Texas at Arlington,
Texas, USA. E-mail: laleh.shikhgholamhosseing@mavs.uta.edu,
ylei@uta.edu and kung@uta.edu.

 Raghu Kacker, and Richard Kuhn are with the Information Technology
Lab, National Institute of Standards and Technology, Gaithersburg,
Maryland, USA. E-mail: raghu.kacker@nist.gov and kuhn@nist.gov.

 Tao Xie is with the Department of Computer Science, North Carolina State
University, E-mail: taoxie@illinois.edu

mailto:laleh.shikhgholamhosseing@mavs.uta.edu
mailto:ylei@uta.edu
mailto:raghu.kacker@nist.gov
mailto:kuhn@nist.gov

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

all t-way suspicious combinations in F, and ranks them
based on their likelihood to be inducing. Suspicious
combinations are candidates of inducing combinations.

Next, our approach generates a set F′ of new tests. If all
the tests containing a suspicious combination c in F′ fail, c is
marked as an inducing combination, and the process stops.
Otherwise, all the tests in F′ are added to F and the process
is repeated until a t-way combination is marked as an
inducing combination or a stopping condition is satisfied. In
the latter case, no t-way inducing combination is identified
and we increase the size of inducing combination. That is,
we try to identify a (t+1)-way inducing combination. This
process is repeated until an inducing combination is found.
Note that this process must terminate, as a failing test is by
definition an inducing combination.

The novelty of our approach in this phase lies in the fact
that we rank suspicious combinations based on two
notions, namely the combination suspiciousness and
environment suspiciousness of a combination. Informally,
the environment of a combination consists of parameter
values that appear in the same test case but do not appear
in the combination. The higher the combination
suspiciousness of a combination, the lower its
environment suspiciousness, the higher this combination
is ranked. Moreover, new tests are generated for the most
suspicious combinations. Let f be a new test generated for
a suspicious combination c. Test f is generated such that it
contains c and the environment suspiciousness for c is
minimized. If f fails, it is more likely to be caused by c
instead of other values in f.

In the second phase of our approach, i.e., faulty statement
localization, BEN systematically generates a small group of
tests from an inducing combination such that the execution
traces of these tests can be analyzed to quickly locate the
faults. One of the tests in the group is referred to as the core
member, which contains the inducing combination and
produces a failing test execution. The other tests in the
group are referred to as the derived members, which are
derived from the core member in a way such that they are
likely to execute a trace that is very similar to the trace of
the core member but produce a different outcome, i.e., a
passing execution. The spectrum of the core member is
then compared to the spectrum of each derived member to
produce a ranking of statements in terms of their
likelihood to be faulty.

Our approach differs from existing spectrum-based
approaches, which do not deal with the problem of test
generation. Instead, they assume that an existing test set is
generated randomly and/or using other
techniques [24][40][50].

The second phase of BEN is inspired by the notion of
nearest neighbor [40]. The key idea of nearest neighbor is
that faulty statements are likely to appear in the execution
trace of a failing test but not in the execution trace of a
passing test that is as similar to this failing test as possible.
If two tests are significantly different, they are likely to
represent different application scenarios. Thus, the
differences in the execution traces of these two tests are
likely due to program logic, instead of faults. The novelty
of our approach lies in the fact that we generate, in a

systematic manner, a failing test, i.e., the core member, and
then derive its nearest neighbors from this failing test, i.e.,
the derived members. This is in contrast with the approach
in [40], which executes a large number of tests from which
a failing test and its nearest neighbors are selected.

We report an experiment in which we applied our
approach to the Siemens suite and four real-world programs,
flex, grep, gzip and sed, in the Software Infrastructure
Repository (SIR) [46]. The Siemens suite has been used in
several studies to evaluate fault localization
methods [23][40][50]. It contains seven relatively small
programs, each of which has a number of faulty versions.
Similarly, the real-world programs, i.e., flex, grep, gzip and
sed, have a number of faulty versions and have been used in
other studies such as [22][35][36][38][39]. Each of the faulty
versions in SIR contains a single-fault. In order to evaluate
the performance of BEN with multiple faults, we created
several faulty versions that contain multiple faults.

The results show that our approach is effective in
localizing faulty statements and also efficient in that only a
small number of tests need to be executed and traced. For
example, one of the grep programs called grep3 has 18 faulty
versions. Among these faulty versions, four versions were
detected by a 2-way test set consisting of 121 tests. On
average, BEN generated and executed 17.5 additional tests
and traced 6.75 tests for these four versions. One needs to
examine only 0.64% (on average) of the code to locate the
faulty statement.

Moreover, we compared the results of BEN and two
other spectrum based approaches, Tarantula [24] and
Ochiai [31]. Since Tarantula and Ochiai do not deal with test
generation, they were applied to the initial combinatorial
test set. Our experimental results show that BEN performed
better than or as well as Tarantula and Ochiai for all the
programs, but BEN requires a significantly smaller number
of test executions to be traced and analyzed.

The approach presented in this paper is the extension of
our previous work, which has been presented in [19]
and [18]. To the best of our knowledge, our work is the first
to deal with code-based fault localization based on
combinatorial testing. Existing work in this area, i.e., fault
localization based on combinatorial testing, has mainly
dealt with the problem of how to identify inducing
combinations [34][49][45][57].

The remainder of this paper is organized as follows.
Section 2 explains basic concepts and assumptions of our
approach. Section 3 presents the BEN approach. Section 4
gives an example to illustrate the approach. Section 5 reports
the experimental results of applying our approach to the
subject programs. Section 6 discusses existing work on fault
localization. Section 7 provides the concluding remarks and
plans for future work.

2. PRELIMINARIES

In this section, we introduce the basic concepts and
assumptions needed in our approach.

2.1. Basic Concepts

Assume that the system under test (SUT) has a set P of k

GHANDEHARI ET AL.: A COMBINATORIAL TESTING-BASED APPROACH TO FAULT LOCALIZATION 3

input parameters, denoted by P = {p1, p2, … , pk}. Let di be
the domain of parameter pi. That is, di contains all possible
values that pi could take. Let D = {d1 ∪ d2 ∪ …∪ dk} . Let
Π = d1 × d2 × …× dk . Let S be the set of program
statements.

Definition 1. (Test Case) A test case or simply a test is a
function that assigns a value to each parameter. Formally, a
test is a function f: P → D.

Definition 2. (Constraint) A constraint 𝜓 is a function
that maps a test case to a Boolean value true or false,
formally, 𝜓:Π ⟶ {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}.

The SUT includes a set Ψ = {𝜓1, 𝜓2, … , 𝜓|Ψ|} of
constraints. We use Γ ⊆ Π to represent all valid tests for the
SUT. A test f ∈ Γ is valid if and only if ∀𝜓 ∈ Ψ, 𝜓(f) = true.
In the rest of the paper, we refer to a valid test simply as a
test unless otherwise specified.

Definition 3. (Test Oracle) A test oracle determines
whether the execution of a test is pass or fail. Formally, a test
oracle is a function r: Γ → {pass, fail}.

Definition 4. (Combination) A combination c is a test f
restricted to a non-empty, subset M of parameters in P .
Formally, c = f|M where M ⊆ P, and |M| > 0.

In the preceding definition, M is a subset of P. Thus, a test
is a combination where M = P. We use dom(c) to denote the
domain of c, which is a set of parameters involved in c. Note
that dom(c) is the domain of a function, which is different
from the domain of a parameter.

A combination of size one is a special combination, which
we refer to as a component. Since there is only one
parameter involved, we denote a component o as an
assignment, i.e., o = p ← v, where o(p) = v.

Definition 5. (Component Containment) A component o =
p ← v is contained in a combination c denoted by o ∈ c, if
and only if p ∈ dom(c) and c(p) = v.

Definition 6. (Combination Containment) A combination c
is contained in a test f, denoted by c ⊆ f , if and only if ∀p ∈
dom(c), f(p) = c(p) .

Definition 7. (Inducing Combination) A combination c is
failure-inducing, or simply inducing, if any test f in which c
is contained fails. Formally, ∀f ∈ Γ: c ⊆ f ⟹ r(f) = fail.

Definition 7 is consistent with the definition of inducing
combinations in previous work [57][45][34][49].

Definition 8. (Inducing Probability) The inducing
probability of a combination c is the ratio of the number of
all failing tests containing c to the number of all tests
containing c. The inducing probability is computed by

|{f ∈ Γ|r(f) = fail ∧ c ⊆ f}|

|{f ∈ Γ|c ⊆ f}|

The computation of inducing probability requires all
tests containing a combination, which is often not possible
in practice. This notion is, however, useful to evaluate our
experimental results. By Definition 7, an inducing
combination is a combination whose inducing probability is
one.

 Definition 9. (Suspicious Combination) A combination c is
a suspicious combination in a test set F ⊆ Γ if c is contained
only in failing tests in F. Formally, ∀f ∈ F: c ⊆ f ⇒ r(f) = fail.

Inducing combinations must be suspicious
combinations, but suspicious combinations may or may not

be inducing combinations.
Definition 10. (Test Spectrum) A test spectrum is a

membership function γ that determines whether a
statement is exercised by a test (or precisely the execution of
a test). Formally, γ: S × Γ → {true, false} , where γ(s, f) =
true if 𝑠 ∈ 𝑆 is executed by f ∈ Γ , and γ(s, f) = false
otherwise.

In the rest of the paper, we also use γ(f) to represent all
the statements that are executed by f. Formally, γ(f) =
{𝑠 ∈ 𝑆 | γ(s, f) = 𝑡𝑟𝑢𝑒}.

2.2. Assumptions

In this section, we present several assumptions that must
hold to apply BEN.

 Assumption 1. There exists an input parameter model
of the SUT.

This assumption is also required by combinatorial
testing. Our approach is designed to be applied after
combinatorial testing has been performed, and our
approach uses the same input parameter model used to
perform combinatorial testing. In cases that the SUT has
multiple points of entry, an input parameter model could be
created for each entry point, and our approach could be
applied to one entry point at a time.

Assumption 2. The output of the SUT is deterministic. In
other words, the SUT always produces the same output for
a given test.

Assumption 3. There exists a test oracle that determines
the status of a test execution, i.e., pass or fail.

Assumption 3 is made to simplify the presentation of our
approach. The construction of a test oracle is an independent
research problem. Test oracles can be derived automatically
or semi-automatically from formal or informal
specifications [10][13][59]. When a test oracle exists, our
approach can be fully automated. When a test oracle does
not exist, our approach can still be applied, but the user
needs to assist in determining the execution status of a test
case. We note that the test oracle problem is common for
many testing and fault localization approaches, including
spectrum-based fault localization approaches such as
Tarantula. We refer the reader to existing literature for more
detailed discussion on the test oracle problem [4].

Assumption 4. There is at least one failing and one
passing test in the initial test set.

If there is no failing test, no fault is detected. Fault
localization is typically performed when at least one fault is
detected. If there is no passing test, the fault is likely easy to
locate.

3. APPROACH

In this section, we present the BEN approach. BEN consists
of two major phases, inducing combination identification
and faulty statement localization. BEN assumes that a
combinatorial test set has been executed on the subject
program. Thus, the execution status of each test is known.
Also, it assumes that the input parameter model used to
generate the combinatorial test set is known. An input
parameter model includes a set of parameters, each of which
has a set of values, and a set of constraints that must be

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

satisfied for a test to be valid.
The output of our approach is the ranking of statements

such that the higher a statement is ranked, the more likely it
is faulty. In the rest of this section, we explain the details of
BEN.

3.1. Phase 1: Inducing Combination Identification

This phase takes three inputs, including an input parameter
model Ω, a combinatorial test set F0 created based on Ω, and
the strength t of F0 . It produces as output an inducing
combination, or more precisely the top ranked suspicious
combination.

3.1.1. Framework

As shown in Fig 1, our approach adopts an iterative
framework in this phase. During each iteration, the identify
algorithm is used to analyze a set F of test cases and identify
an l-way inducing combination.

Initially, F is the initial combinatorial test set F0, and l is
the strength t of the initial test set. If the identify algorithm
identifies an l-way inducing combination, c (line 5), the while
loop stops and reports c as an inducing combination. If no l-
way inducing combination is found, i.e. the identify
algorithm returns null (line 2), l will be incremented. In the
next iteration, the framework searches for inducing
combinations of size l+1. As shown in Fig 2, new tests may
be added into F by the identify algorithm each time it is
called.

 Based on assumption 4, there is at least one failing test in
the initial test set. Recall that a failing test is an inducing
combination by definition. Therefore, there is at least one
inducing combination in the initial test set. Thus, the

framework must terminate.

3.1.2. Algorithm Identify

 Algorithm identify is shown in Fig 2, and is designed to
find an l-way inducing combination in the test set F. It takes
as input the input parameter model, Ω, test set F and l. The
algorithm consists of two main steps:

(1) Rank generation: In this step, we first identify all the
l-way suspicious combinations in F (line 3). Then, the
component suspiciousness of each component, combination
suspiciousness, ρc, and environment suspiciousness, ρe, of
each suspicious combination are computed (line 7 and line
10). The different types of suspiciousness will be defined in
Section 3.1.3. Finally, a ranking of the suspicious
combinations is produced (line 12).

(2) Test generation: In this step, for a user-specified
number of top-ranked suspicious combinations, a set of new
tests is generated (line 16). Note that the user could specify
the number of top-ranked suspicious combinations and the
number of tests generated for each top-ranked combination.
If an inducing combination is not found, all the new tests in
F’ are added to the test set F to refine the ranking of

Algorithm identify

1 while (true) {

2 // Step 1. rank suspicious combinations

3 π ← 𝑙-way suspicious combinations in F

4 if (π = empty) then return null //No l-way inducing combination is found

5 let Θ be the set of suspicious components that appear in π

6 for each component o ∈ Θ {

7 compute ρ(o) based on formula 1

8 }

9 for each combination τ ∈ π {

10 compute ρc(τ) and ρe(τ) based on formulas 2 and 3, respectively

11 }

12 produce a ranking of l-way combinations in π based on ρc and ρe

13 // Step 2. generate new tests

14 let Τ be the set containing a user-specified number of top-ranked combinations

15 for every combination τ ∈ T {

16 generate a set F′of a user-specified number of new tests that contain τ
17 if (|F′| == 0 || (∀f ∈ F′, r(f) = fail)) {

18 𝑐 ← τ // an l-way inducing combination is found

19 return c

20 }

21 else {

22 F ← F F′

23 }

24 }

25 }

Fig 2. The Identify Algorithm

The Phase 1 Framework

1 𝑙 ← t and F ← F0

2 while ((c ← identify(Ω, 𝑙, F)) = null) {

3 𝑙 ← 𝑙 + 1

4 }

5 return c

Fig 1. The Framework for Identifying Inducing Combination

GHANDEHARI ET AL.: A COMBINATORIAL TESTING-BASED APPROACH TO FAULT LOCALIZATION 5

suspicious combinations in the next iteration (line 22).
The two steps, rank generation and test generation, are

performed iteratively until one of the following two
stopping conditions is satisfied:

(1) The set π of l-way suspicious combinations becomes
empty (line 4); or

(2) An l-way inducing combination is found (line 18). An
l-way suspicious combination τ is considered to be an
inducing combination if no new test containing τ can be
generated, or all newly generated tests containing τ fail (line
17). In the former case, it is very likely that all tests
containing τ have been executed, and all of them must have
failed (otherwise, τ is not suspicious). Thus, τ is the
inducing combination. In the latter case, τ is likely to be
inducing due to the way the new tests are generated as
explained in Section 3.1.4. Later, we will discuss how BEN
works when a non-inducing combination is reported as an
inducing combination.

In the following subsections, we will explain the two
major steps, rank generation and test generation.

3.1.3. Rank Generation

In this step, we first identify the set π of all l-way suspicious
combinations in F . Initially, π contains all the l-way
combinations covered by F . We then check each l-way
combination τ in π. If τ appears in at least one passing test, τ
is removed from π, since it is not suspicious anymore. In the
subsequent iterations, we do not re-compute π from the
scratch. Instead, we only remove from π all the
combinations contained by newly added tests that passed.

If there is no l-way suspicious combination, there is no l-
way inducing combination. In this case, the identify
algorithm returns null. The main framework, as shown in
Fig 1, then increases the size of inducing combination by
one, and calls the identify algorithm again.

In the first iteration, where F = F0 and l = t, all the t-way
combinations are covered by F, as F0 is a t-way test set. But,
when l > t, F does not contain all the l-way combinations.
Therefore, our approach focuses on l-way combinations that
appear in F.

We next discuss how to rank the suspicious
combinations in π . First, we introduce three important
notions of suspiciousness, including component
suspiciousness, combination suspiciousness, and environment
suspiciousness.

Component suspiciousness (ρ): This notion is defined such
that the higher ρ a component o has, the more likely o
contributes to a failure, and the more likely o appears in an
inducing combination. Let F be the test set that is analyzed
in the current iteration. In our approach, ρ is computed by
the following formula:

ρ(o) =
1

3
(u(o) + v(o) + w(o)) (1) 

Where

u(o) =
|{f ∈ F|r(f) = fail ∧ o ∈ f}|

 |{f ∈ F|r(f) = fail}|

v(o) =
|{f ∈ F|r(f) = fail ∧ o ∈ f}|

 |{f ∈ F|o ∈ f}|


w(o) =
|{τ|o ∈ τ ∧ τ ∈ π}|

|π|


The first factor, u(o), shows the ratio of the number of

failing test cases in which component o appears over the
total number of failing test cases. The second factor, v(o),
shows the ratio of the number of failing test cases in which
component o appears over the total number of test cases in
which component o appears. The third factor shows the
ratio of the number of suspicious combinations in which
component o appears over the total number of suspicious
combinations. The three factors are averaged to produce a
value between 0 and 1.

The motivation behind the first two factors is that the
more frequently a component appears in failing test cases,
this component is more likely to contribute to a failure.

There is an important difference between the first two
factors. Since the greater the domain size is, the less
frequently each individual value of this parameter appears
in a test set and consequently in failing test cases, the first
factor, u(o) , has a bias towards smaller domain size
parameters. The second factor, v(o), is used to reduce this
bias.

The motivation for the third factor is that components
of inducing combinations tend to appear more frequently
in suspicious combinations. For example, assume that
combination c = (a ← 0, b ← 0) is inducing. Let f = (a ←
0, b ← 0, c ← 0, d ← 0) be a test case. Test case f fails as it
contains c. Let f ′ = (a ← 1, b ← 1, c ← 0, d ← 0) be another
test case, which passes since it does not contain c. The set
of suspicious combinations derived from these two test
cases is

π = {(a ← 0, b ← 0), (a ← 0, c ← 0),
(a ← 0, d ← 0), (b ← 0, c ← 0), (b ← 0, d ← 0)}

In this set, the frequencies of a ← 0 and b ← 0 are
greater than others. The reason is that (c ← 0, d ← 0)
appears in f ′, which is a passing test case.

Combination suspiciousness (ρc): Combination
suspiciousness of a combination τ is defined to be the
average component suspiciousness of the components that
appear in τ.

Formally combination suspiciousness of τ , ρc(τ) is
computed by

ρc(τ) =
1

|𝜏|
∑ ρ(o)

∀ o∈τ

 (2)

Environment suspiciousness (ρe): The environment of a
combination τ in a test f includes all the components that
appear in f but do not appear in τ . The environment
suspiciousness of a combination τ in a test f is the average
component suspiciousness of the components in the
environment of τ. If there is more than one (failing) test
containing τ in a test set, the environment suspiciousness
of τ in this test set is the minimum environment
suspiciousness of τ in all the tests containing τ. Formally,
environment suspiciousness ρe is computed by

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

ρe(τ) = min
 f∈F∧τ⊆f
∧ r(f)=fail

 (
1

|f| − |𝜏|
 ∑ ρ(o)

o∈f ∧o∉τ

) (3)

Now we discuss how to actually rank the suspicious
combinations based on ρc and ρe . Intuitively, the higher
the value of c, the lower the value of e, the higher a
combination is ranked.

To produce the final ranking, we first produce two
rankings Rc and Re of suspicious combinations, where
Rc is in the non-ascending order of c and Re is in the non-
descending order of e. The final ranking R is produced by
combining Rc and Re as follows. Let τ and τ′ be two
suspicious combinations. Assume that τ has ranks rc and
re in Rc and Re, respectively, and τ′ has ranks rc

′ and re
′ in

Rc and Re, respectively. In the final ranking R, τ is ranked
before τ′ if and only if rc + re < rc

′ + re
′ .

3.1.4. Test Generation

This step is responsible for generating new test cases for a
user-specified number of top-ranked suspicious
combinations. Let 𝜏 be a top-ranked suspicious
combination. A new test f is generated for 𝜏 such that f
contains 𝜏 and the environment suspiciousness for τ is
minimized in f. When such a test passes, this combination
is removed from the suspicious set. When such a test fails,
the failure is more likely due to this combination since its
environment suspiciousness is minimized. Therefore, the
suspicious combination should be marked as an inducing
combination. To increase the confidence, a user-specified
number of tests can be generated for a top-ranked
suspicious combination.

One approach to generating a given number n of new
tests with minimum ρe for a suspicious combination is to
generate all possible tests containing this combination,
remove tests which already exist in F, and then select n
tests that have the lowest ρe . This algorithm is very
expensive. We next describe a more efficient, heuristic
algorithm.

First, we generate a base test f as follows. For each
parameter involved in τ, we give the same value in f as in
τ. Doing so makes sure that f contains τ. For each parameter
in the environment of τ, i.e., each parameter that is not
involved in τ, we choose a value (or component) whose
suspiciousness ρ is the minimum. If there is more than one
value with minimum ρ, one of them is selected randomly.

Next, we check whether the base test f is valid and new,
i.e., making sure that f satisfies all constraints if there is
any, and has not been executed before. If so, f is returned
as the new test that contains τ and has minimum ρe. If not,
we pick one parameter randomly and change its value to a
value with the next minimum ρ. Again, this test is checked
to see whether it is a valid and new test. These steps are
repeated until a new, valid test is found, or the number of
attempts for finding a new test reaches a predefined
number. The process is repeated until a desired number of
new tests are generated.

If BEN does not find any new, valid test, the
combination is marked as an inducing combination,
because it is likely that all the test cases containing this
combination have been executed (and all of them must
have failed).

The newly generated tests, i.e., those in set F′ , are
executed. If all the tests fail, the suspicious combination, τ,
is marked as an inducing combination (line 18 - Fig 2). If
not, F′ is added to the test set (line 22 - Fig 2) to refine the
suspicious combinations set in the next iteration. By
adding F′ to the test set the suspicious combination τ and
all other suspicious combinations appear in passing tests
of F′ are removed from the suspicious combinations set.
Therefore, the number of suspicious combinations could
be reduced by the new tests added into the test set.

3.1.5. Discussion

To successfully identify an inducing combination, BEN
must first identify the combination to be a suspicious
combination. Assume that c is an inducing combination.
Let t be the strength of the initial test set. We consider the
following three cases.

Case (1): c is a t-way combination. As the initial test set
is a t-way test set, there is at least one test that contains c,
and all test cases containing c must fail, since c is inducing.
Therefore, c is identified to be a suspicious combination.

Case (2): The size of c is less than t . All t -way
combinations containing c are inducing combinations, and
are identified to be suspicious combinations.

Case (3): The size of c is more than t. The initial t-way
test set is not guaranteed to cover every combination
whose size is larger than t. If c appears in the initial t-way
test set or the newly generated tests, thus causing a test
containing it to fail, it is identified to be a suspicious
combination when l is equal to the size of c.

Let c be an inducing combination that has been
identified as a suspicious combination. If it is in the top-
ranked set, i.e., the set of a user-specified number of top-
ranked combinations, all the tests generated for c fail since
they contain c. Therefore, c is identified to be an inducing
combination.

Now consider the case that c is not in the top-ranked
set. Without loss of generality, assume that every
combination c’ in the top-ranked set is not inducing. If any
new test generated for c’ passes, c’ is no longer suspicious
and is thus removed from π. This will cause c to move up
in the ranking. With a sufficient number of iterations, c will
be moved into the top-ranked set and will be identified to
be an inducing combination.

If all the tests generated for c’ fail, c’ will be reported as
an inducing combination. As discussed earlier, a new test
for c’ is generated such that if it fails, it is likely due to c’.
Thus, if all the tests generated for c’ fail, c’ is likely to have
a high inducing probability even if it is not truly inducing.

BEN provides the user with several options to control
the cost and effectiveness of the process. First, BEN allows
the user to specify the number of new tests generated for
each top-ranked suspicious combination. The more tests
generated, the more effort it takes to execute them, but the
more confidence we have about the identified inducing
combinations.

Second, BEN allows the user to specify the size of the
top-ranked set for which new tests will be generated. The
bigger the top-ranked set, the more effort to generate and
execute the new tests, but the faster an inducing
combination may be identified. This is because if an
inducing combination c is included in the top-ranked set, c

GHANDEHARI ET AL.: A COMBINATORIAL TESTING-BASED APPROACH TO FAULT LOCALIZATION 7

is identified to be an inducing combination in the first
iteration. Otherwise, it may take multiple iterations for c to
move up into the top-ranked set.

Finally, BEN allows the user to stop the first phase (and
move to the second phase) in the following three ways if
there is limited resource:
1- The user could define the maximum number of

iterations for the identify algorithm. That is, if none of
the two stopping conditions is satisfied after a specified
number of iterations, the identify algorithm stops and
returns null. Returning null shows that there is no
inducing combination of the current size; therefore, the
main framework increments the size in the next
iteration.

2- The user could decide to stop at the end of each iteration
of the framework. In this case, the top ranked suspicious
combination would be reported as an inducing
combination.

3- The user could define the maximum size of inducing
combination. If the maximum size is reached but BEN
still does not find any inducing combination, the top
ranked suspicious combination in the last iteration is
reported as an inducing combination. Recall that in the
worst case, the size of inducing combination is equal to
the number of parameters.

3.2. Phase 2: Faulty Statement Localization

Fig 3 shows the algorithm used by BEN to localize faulty
statements. It consists of two major steps: (1) Test
Generation: In this step, we generate a small group of tests.
The group contains one failing test, which is referred to as
the core member, and at most l passing tests, where l is the
size of the inducing combination. The passing tests are
referred to as the derived members. Each derived member
is expected to produce a similar execution trace as the core

member. (2) Rank Generation: In this step, we compare the
spectrum of the core member to the spectrum of each
derived member, and then produce a ranking of
statements in terms of their likelihood of being faulty.
More details of these two steps are explained in the
following sections.

3.2.1. Test Generation

In this step, as shown in Fig 3 (lines 3-9), a group of tests,
M, which includes the core member f and at most l derived
members, are generated. Let c be the l-way inducing
combination identified in Phase 1. The core member f is
created such that it contains c and the environment
suspiciousness of c in f is minimized (line 4). To generate
such a test, the same algorithm used for test generation in
Phase 1 is applied: For each parameter p involved in c, f
has the same value for p as c , i.e. c ⊂ f , and for each
parameter p that does not appear in c, f takes a value that
has the minimum suspiciousness value among all the
values of p. As discussed later, the reason why we want to
minimize the environment suspiciousness of c is to
maximize the likelihood of a derived member to be a
passing test. If such a test does not satisfy system
constraints, we randomly pick one parameter that does not
appear in c and change its value to a parameter value that
has the next minimum suspiciousness value. We repeat
these steps until a valid test is found, or the number of
attempts for finding a test reaches a predefined number. In
the latter case, a test that contains c from the initial test set
is picked as the core member.

The core member f is likely to fail, since it contains the
inducing combination c identified in the first phase. Next,
for each component o ∈ c , a set of derived member
candidates, Mo, is generated. A derived member candidate
m𝑖 ∈ Mo is generated such that it has the same values as f

Algorithm localize

1 // Step 1. Generate core and derived members

2 let c be the inducing combination identified in Phase 1

3 let M be an empty set

4 generate core member f ∈ Γ such that c ⊂ f and for all o ∈ f and o ∉ c, ρ(o) = min
vi∈d

{ρ(p ← vi)}

5 for (each component o ∈ c) {

6 generate the derived member candidate set Mo for component o based on Θ and Ω

7 select derived member mo ∈ Mowhere r(mo) = pass and |γ(f) − γ(mo)| > 0 and

|γ(f) − γ(mo)| = min
m∈Mo

{|γ(f) − γ(m)|}

8 M = M ∪ {mo}

9 }

10 // Step 2. Rank statements

11 for each statement s ∈ S {

12 for all derived members in m ∈ M)

13 compute ρ(s,m) with respect of core member f, based on formula (5)

14 ρ(s) = ρ(s,m)m∈M /|M|

15 }

16 Let R be the ranking of statement in the non-increasing order of ρ(s)
17 return R

Fig 3. The Localize Algorithm

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

for all parameters except for one component o ∈ c . The
component o is replaced with another component, o′, of
the same parameter with the minimum suspiciousness
value. Note that a parameter may have multiple least
suspicious components, i.e., multiple components with the
minimum suspiciousness value. So, all the tests in Mo are
different from the core member and from each other in one
component, o. Moreover, invalid tests are discarded from
the set.

Fig 4 shows how the derived member candidate set, or

simply candidate set Mo1 is generated from the core

member f. (In the remainder of this paper, we will refer to

a derived member candidate set as a candidate set if there

is no ambiguity.) The core member f contains k

components, o1, o2… , ok , where k is the number of

parameters. Without loss of generality, assume that the

first l components in f, i.e., o1, o2… , o𝑙 , are in the inducing

combination c. As shown in Fig 4, each test in candidate set

Mo1 is different from the core member f in component o1 ∈

c. The o1 component is replaced with o1
j
= p1 ⟵ vj where

o1
j
 is a least suspicious component of p1 . For each least

suspicious component p1 , one derived candidate test is

generated. Formally:

ρ(o1
1 = p1 ⟵ v1) = ρ(o1

2 = p1⟵ v2)… = min
∀j∈d1

ρ (p1 ⟵ vj)

The number of tests in Mo1 depends on the number of
least suspicious components of parameter p1 and
constraints, as all tests in Mo1 must be valid, i.e., they must
satisfy all the system constraints. Candidate tests are likely
to pass. First, the replacement effectively removes
inducing combination c from tests. Second, the use of a
least suspicious component for the replacement and
having the suspiciousness environment minimized reduce
the chance of introducing another inducing combination to
the test.

Next, a derived member mo is selected from each

candidate set Mo (line 7). There are two criteria for derived

member mo . First, it must pass. Second, it has the

minimum positive spectrum difference with the core

member f among all the passing tests in Mo . Formally,

|γ(f) − γ(mo)| = min
m∈Mo∧

r(m)=pass

{|γ(f) − γ(m)|} and |γ(f) −

γ(mo)| > 0.

If there is more than one test that satisfies the two
criteria, one of them is selected randomly. All the derived

members are stored in a set called M (line 8). Fig 5 shows
the core member f and the set M of derived members.

The execution trace of a derived member mi ∈ M is
likely to be very similar to the execution trace of the core
member, because these two tests only differ in one value,
and they have the minimum spectrum differences among
other similar tests. Since all the derived members mi pass
whereas the core member f fail, the faulty statement is very
likely to be one of the statements that appear in the
execution trace of f but do not appear in the execution trace
of m1, m2… , and m𝑙.

3.2.2. Rank Generation

In this step, BEN computes the suspiciousness of each
statement and then ranks them in terms of their likelihood
to be faulty by analyzing the spectrums of the core member
and derived members. The suspiciousness of statement s is
denoted by ρ(s) and computed by analyzing the
spectrums of the core member and derived members. The
suspiciousness of statement s is the average suspiciousness
of s with respect to every derived member. Formally:

ρ(s) = ρ(s,mi)/(|M|)mi∈M
 (4)

where ρ(s, mi) is the suspiciousness of s with respect to
a derived member mi and is computed by the following
formula:

ρ(s,mi) = {

1 if γ(s, f) = true and γ(s,mi) = false

0.5 if γ(s, f) = γ(s,mi) = true (5)

0 if γ(s, f) = false

The idea behind formula (5) is the following. Statements

that are only executed by the core member f are most
suspicious and are given 1 as their suspiciousness value.
Statements that are executed by both the core member and
a derived member are less suspicious, and are given 0.5 as
their suspiciousness value. Note that the execution of a
faulty statement by a test does not necessarily make the test
fail. For example, if there exists a fault in a conditional
expression, this fault can be executed by all the tests but
only cause some to fail. Finally, statements that are not
executed by f are not suspicious.

For example, if there are two derived members in M, m1
and m2, and the core member is f. Assume that a statement
s is executed by f and m2, but not by m1 The suspiciousnes
ρ(s) of s would be 0.75. This is because ρ(s,m1) = 1 and
ρ(s,m2) = 0.5 , and the average of ρ(s,m1) and ρ(s,m2)

f {o1, o2, … , o𝑙 , o𝑙+1, o𝑙+2… , ok} Core

 {𝐨𝟏
′ , o2, … , o𝑙 , o𝑙+1, o𝑙+2… , ok}

M
{o1, 𝐨𝟐

′ , … , o𝑙 , o𝑙+1, o𝑙+2… , ok}

…

 {o1, o2, … , 𝐨𝒍
′, o𝑙+1, o𝑙+2… , ok}

c

Fig 5. The core and derived members

f {o1, o2, … , o𝑙 , o𝑙+1, o𝑙+2… , ok} Core

Mo1

{𝐨𝟏
𝟏, o2, … , o𝑙 , o𝑙+1, o𝑙+2… , ok}

{𝐨𝟏
𝟐, o2, … , o𝑙 , o𝑙+1, o𝑙+2… , ok}

...

c

Fig 4. Generation of the candidate set 𝐌𝐨𝟏

GHANDEHARI ET AL.: A COMBINATORIAL TESTING-BASED APPROACH TO FAULT LOCALIZATION 9

would be 0.75.
The higher the suspiciousness value of a statement, the

more likely this statement is faulty. We rank statements by
a non-ascending order of their suspiciousness value. To
locate the faulty statement, the statements in the top rank
are examined first, and then the statements in the next
rank, until the faulty statement is found.

3.2.3. Discussion

The effectiveness of our approach in this phase depends to
some extent on the quality of the inducing combination c
identified in the first phase. If combination c is truly
inducing, the core member generated by our approach, i.e.,
the one that contains this combination and minimizes its
environment suspiciousness, must fail. However, if c is not
truly inducing, but with a high inducing probability, the
core member still has a high probably to fail. The
experimental results in Section 5.2.1.1 and 5.2.2.1 show that
Phase 1 of our approach can identify truly inducing
combinations or combinations that have a high inducing
probability.

If the core member generated in the second phase does
not fail, we pick a test from the initial t-way test set that
contains c as the core member. Since c is identified as an
inducing combination, there must exist at least one failing
test that contains c in the initial test set. (Otherwise, c
would not even be a suspicious combination.) In this case,
the environment suspiciousness of c in this test may not be
minimized. This may reduce the probability for the
derived members to pass.

If BEN could not find any passing test in a candidate set
Mo for a component o (in the inducing combination), it
ignores the candidate set and thus no derived member is
generated for component o. We note that the existence of
constraints could reduce the number of possible tests in the
candidate set and thus increase the chance of being unable
to find a passing test. In case that no derived member is
generated for all the components in the inducing
combination, BEN picks a passing test from the test set
such that the number of components that differ between
the passing test and the core member is minimized. In this
case, the difference between the core member and this
derived member may not be minimal, which might affect
the efficiency of our approach. We believe the chance for
this case, i.e., all the tests in all the candidate sets for all the
components fail, to occur is small, which is consistent with
our experiments in which it occurred in 16 out of 171
single-fault versions of our subject programs.

3.2.4. Complexity Analysis

In our analysis, we do not consider the complexity of
constraint solving and the cost of test execution. Our
approach uses a third-party solver for constraint solving.
The cost of test execution depends on the subject program.

Let k be the number of parameters, t the strength of the
initial test set and d the largest domain size of the
parameters. Let N be the number of tests in the current
iteration, which includes the tests in the initial test set and
the tests generated in the previous iterations. Note that the
number of tests generated at each iteration depends on two

user-specified numbers, i.e., the size of the top-ranked set
consisting of suspicious combinations for which tests are
to be generated, and the number of tests to be generated
for each suspicious combination in the top-ranked set.
Assume that the inducing combination is of size 𝑙, which is
greater than or equal to t. The maximum number of l-way
combinations contained in the test set is η = (k

𝑙
)N.

To determine whether a combination is suspicious, the
identify algorithm needs to check if the combination
appears in any passing test, which takes O(N × 𝑙) .
Therefore, building the suspicious combination set takes
η × O(N × 𝑙) . Next, the identify algorithm computes the
suspiciousness values for all the components, which
includes computing the frequency of each component in
the suspicious combination set, test set and failing tests.
Computing the frequency in the suspicious combination
set dominates the other two, which takes O(η) for each
component. The maximum number of components is k ×
d . Thus, computing suspiciousness values for all the
components takes k × d × O(η).

After having suspiciousness values of all the
components, computing combination suspiciousness of
each combination (ρc) takes 𝑙, and thus 𝑙 × O(η) for all the
combinations. To compute ρe of a combination, BEN first
searches in the test set to find all the failing tests that
contain this combination, which takes 𝑙 × O(N). Next, for
each of these failing tests, it computes the average
suspiciousness value of k − 𝑙 components in the
environment. Therefore, it takes in total 𝑙 × (k − 𝑙) ×
O(η) × O(N) . Finally, BEN finds the minimum
environment suspiciousness among all these failing tests,
which takes O(N). Therefore, the complexity of computing
ρe for all the combination is 𝑙 × (k − 𝑙) × O(η) × O(N).

The identify algorithm sorts the set of suspicious
combinations three times, once for each ranking Rc , Re ,
and R , taking O(η × log(η)) . This dominates the
complexity of the rank generation step, if the number of
tests N is far less than the number of combinations, η.

The test generation step needs to select (k − 𝑙) values
with minimum ρ first, which takes (k − 𝑙) × O(d). Then it
needs to check whether it is new, which is O(N). Since k, l
and d are smaller than η , O(η × log(η)) dominates the
complexity of the rank generation and test generation
steps. Therefore the complexity of the identify algorithm is
O(η × log(η)). In the worst case, the identify algorithm is
called (k − t) times. Thus, the complexity of this phase is
(k − t) × O(η × log(η)).

In Phase 2, in order to generate the core member, we
need to select values with minimum suspiciousness for
(k − 𝑙) components, which takes (k − 𝑙) × O(d). There are 𝑙
candidate sets, and for each it takes O(d) to find
components with minimum ρ . Therefore, generating all
candidate sets takes 𝑙 × O(d).

 Each candidate set at most contains d − 1 derived
members. Selecting a test with minimum difference in the
spectrum with the core member takes [𝑙 × (d − 1)] × |S|,
where |S| is the number of statements of the program. The
complexity of selecting a test, [𝑙 × (d − 1)] × |S|, dominates
the complexity of this step.

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

In the rank generation step, the complexity of assigning
a suspiciousness value to each statement with respect to
the 𝑙 derived members is O(𝑙). So for all the statements S of
the program, it takes |S| × O(𝑙). Then all the statements
need to be sorted to rank the statements, which is O(|S| ×
log(|S|)) . Since 𝑙 is typically much smaller than the
program size |S| , this sorting operation dominates the
complexity of this part. The complexity of the rank
generation step, O(|S| × log(|S|)) , dominates the
complexity of this phase.

Depending on the programs size, |S| and the number of
suspicious combinations, η, the complexity of Phase 1 or
Phase 2 may dominate the complexity of BEN.

4. EXAMPLE

In this section, we illustrate our approach using an
example program shown in Fig 6. Method foo has a fault in
line 9. The correct statement should be r += (b − d)/(a +
2), but operator “+” is missing. The input parameter model
consists of P = {a, b, c, d}, and da = {0,1}, db = {0,1}, dc =
{0,1,2}, and dd = {0,1,2,3}. The faulty statement is reached
when a is 0 and c is 0 or d is 3. So there are two inducing
combinations (a ← 0, c ← 0) and (a ← 0, d ← 3).
 Assume that the program is tested by a two-way test
set. The test result is shown in Table 1, where three out of
twelve tests fail. Test cases #1 and #7 fail because they
contain combination (a ← 0, c ← 0) . Test case #10 fails
because it contains (a ← 0, c ← 0) and (a ← 0, d ← 3).

4.1. Phase 1: Inducing Combination Identification

Table 1 shows a t-way test set with test execution statuses
for the example program. In the first iteration, the identify
algorithm identifies nine suspicious combinations (Fig 2,
line 3) which are listed in the first column of Table 2. Then
the algorithm computes the suspiciousness values of all the
(seven) components that appear in one or more of these
suspicious combinations.

 For example, component c ← 0 appears in all of the
three failing test cases, so u(c ← 0) = 1. Also, it appears in
a total of four tests, three of which are failing tests, so
v(c ← 0) = 3 4⁄ ; five out of nine members of suspicious

combinations set contain c ← 0 , so w(c ← 0) = 5 9⁄ . The
computations for all the seven components are as follows:

ρ(c ← 0) =
1

3
× (1 +

3

4
+
5

9
) = 0.7685

ρ(d ← 0) =
1

3
× (
1

3
+
1

3
+
2

9
) = 0.2963

ρ(d ← 2) =
1

3
× (
1

3
+
1

3
+
2

9
) = 0.2963

ρ(d ← 3) =
1

3
× (
1

3
+
1

3
+
3

9
) = 0.3333

ρ(b ← 0) =
1

3
× (
1

3
+
1

7
+
1

9
) = 0.1958

ρ(b ← 1) =
1

3
× (
2

3
+
2

5
+
3

9
) = 0.4667

ρ(a ← 0) =
1

3
× (1 +

3

6
+
2

9
) = 0.5741

Table 3 illustrates the suspiciousness values of all the
components. The suspiciousness values for the
components that do not appear in any suspicious
combination are zero.

According to formula (2), ρc for a suspicious
combination τ is the average component suspiciousness of
components that τ contains. For example, in combination
(a ← 0, c ← 0) , ρc is (0.5741 + 0.7685) 2 = 0.6713⁄ . After
computing ρc for all suspicious combinations, we rank
them based on the non-ascending order of ρc. The values
of ρc and Rc for each suspicious combination are shown in
the second and third columns of Table 2.

Next, we compute ρe for each suspicious combination
using formula (3). For example, there are three test cases,
test #1, test #7, and test #10, that contain (a ← 0, c ← 0).
Therefore,

ρe(a ← 0, c ← 0) = min ((
ρ(b←0)+ρ(d←0)

2
) = 0.2460 ,

(
ρ(b←1)+ρ(d←2)

2
) = 0.3815, (

ρ(b←1)+ρ(d←3)

2
) = 0.4000) =

0.2460

TABLE 1

TWO-WAY TEST SET AND STATUS

Test # a b c d Status

1 0 0 0 0 Fail

2 1 1 1 0 Pass

3 0 1 2 0 Pass

4 1 0 0 1 Pass

5 0 0 1 1 Pass

6 1 1 2 1 Pass

7 0 1 0 2 Fail

8 1 0 1 2 Pass

9 0 0 2 2 Pass

10 0 1 0 3 Fail

11 1 0 1 3 Pass

12 1 0 2 3 Pass

Fig 6. An example faulty program

GHANDEHARI ET AL.: A COMBINATORIAL TESTING-BASED APPROACH TO FAULT LOCALIZATION 11

Next we rank suspicious combinations by a non-
descending order of ρe, as shown in column Re of Table 2.

Finally, the two rankings in columns Rc and Re are
combined to produce a final ranking of the suspicious
components (column R). In this final ranking, inducing
combination (a ← 0, c ← 0) is ranked on the top, and the
other inducing combination (a ← 0, d ← 3) is ranked 6th.

Then, a new test is generated for the top ranked
suspicious combination (a ← 0, c ← 0). We assign values to
parameters in its environment, i.e., b and d, such that the
suspiciousness of each value is minimum. For b , 0 is
selected, as min(ρ(b ← 0) = 0.1958 , ρ(b ← 1) = 0.4667) =
0.1958 . For d , 1 is selected as min(ρ(d ← 0) =
0.2963, ρ(d ← 1) = 0, ρ(d ← 2) = 0.2963, ρ(d ← 3) =
0.3333) = 0 . So a new test (a ← 0, b ← 0, c ← 0, d ← 1) is
generated.

The newly generated test, (a ← 0, b ← 0, c ← 0, d ← 1) ,
fails. For simplicity of presentation, assume that only one
test is generated for this combination. (If more tests are
generated, all of them would fail too in this example.)
Therefore, suspicious combination (a ← 0, c ← 0) is
marked as an inducing combination and returned by the
identify algorithm. The main framework of the first phase
stops at the end of the first iteration and reports (a ← 0, c ←
0) as the inducing combination.

4.2. Phase 2: Faulty Statement Localization

In the test generation step of the second phase, the core
member f = (a ← 0, b ← 0, 𝑐 ← 0, d ← 1) is generated. It
contains the inducing combination (a ← 0, c ← 0), and two
components b ← 0 and d ← 1 which have the minimum
suspiciousness value (among components of the same
parameter) as shown in Table 3. The core member fails.

As shown in Fig 7 the candidate set Ma←0 of component
a ← 0 contains only one test, (a ← 1, b ← 0, c ← 0, d ← 1) ,
since a ← 1 is the only component with minimum
suspiciousness. The test passes and therefore is selected as
a derived member, ma←0.

The second candidate set Mc←0, shown in Fig 8, has two
tests, where component c ← 0 from the core member is
replaced with c ← 1 and c ← 2 , since min(ρ(c ← 0) =
0.7685, ρ(c ← 1) = 0, ρ(c ← 2) = 0) = 0 and both
components c ← 1 and c ← 2 have the minimum
suspiciousness value, 0.

To select a derived member mc←0 from candidate set
Mc←0 , both tests m𝑐←0

1 and m𝑐←0
2 are executed and their

execution traces are recorded. A test is selected as a derived

member if it passes and it has minimum spectrum
difference with the core member.

Both tests m𝑐←0
1 and m𝑐←0

2 pass. The spectra of the core

member, f, and two members of candidate set Mc←0 are
shown in Table 4. The second column of Table 4 shows the
program statements. The third column shows the
spectrum of the core member f. The fourth column shows
the program spectrum of m𝑐←0

1 . The fifth column contains 1
if a statement is executed by the core member but not by
 m𝑐←0
1 . Otherwise it contains 0. The sixth column shows the

program spectrum of m𝑐←0
2 . The last column is assigned to

1 iff the corresponding statement is executed by the core
member and not by mc←0

2 . The fifth and seventh columns
are used to compute the spectrum differences of the core
and m𝑐←0

1 or mc←0
2 . The last row of Table 4 shows the

spectrum difference of the core and each member of Mc←0,
which are computed by the summation of fifth and last
columns.

Since both tests mc←0
1 and mc←0

2 pass and have the same
spectrum difference with the core member, test mc←0

1 is
selected randomly as the derived member mc←0 . Fig 9
shows the output of the test generation step, the core
member, f, in the first row and the derived members set M,
which contains two tests.

TABLE 2
 SUSPICIOUS COMBINATIONS AND THEIR CORRESPONDING VALUES

Suspicious combination 𝝆𝒄 𝑹𝒄 𝝆𝒆 𝑹𝒆 𝑹𝒄 + 𝑹𝒆 𝑹

𝑎 ← 0, 𝑐 ← 0 0.6713 1 0.2460 1 2 1

𝑏 ← 1, 𝑐 ← 0 0.6176 2 0.4352 3 5 2

𝑐 ← 0, 𝑑 ← 0 0.5324 4 0.3849 2 6 3

𝑐 ← 0, 𝑑 ← 3 0.5509 3 0.5204 4 7 4

𝑐 ← 0, 𝑑 ← 2 0.5324 4 0.5204 4 8 5

𝑎 ← 0, 𝑑 ← 3 0.4537 5 0.6176 5 10 6

𝑏 ← 1, 𝑑 ← 3 0.4000 6 0.6713 6 12 7

𝑏 ← 1, 𝑑 ← 2 0.3815 7 0.6713 6 13 8

𝑏 ← 0, 𝑑 ← 0 0.2460 8 0.6713 6 14 9

TABLE 3
 COMPONENT SUSPICIOUSNESS

 Parameter Value 𝛒𝐜 Parameter Value 𝛒𝐜

a
0 0.5741

b
0 0.1958

1 0 1 0.4667

c

0 0.7685

d

0 0.2963

1 0 1 0

2 0
2 0.2963

3 0.3333

f (a ← 0, b ← 0, c ← 0, d ← 1) Fail

Mc←0
m𝑐←0
1 = (a ← 0, b ← 0, 𝐜 ← 𝟏, d ← 1) Pass

m𝑐←0
2 = (a ← 0, b ← 0, 𝐜 ← 𝟐, d ← 1) Pass

Fig 8. Candidate set of 𝐌𝐜←𝟎

f (a ← 0, b ← 0, c ← 0, d ← 1) Fail

Ma←0 ma←0 = (𝐚 ← 𝟏, b ← 0, c ← 0, d ← 1) Pass

Fig 7. Candidate set of 𝐌𝐚←𝟎

 f (a ← 0, b ← 0, c ← 0, d ← 1) Fail

M
ma←0 = (𝐚 ← 𝟏, b ← 0, c ← 0, d ← 1) Pass

mc←0 = (a ← 0, b ← 0, 𝐜 ← 𝟏, d ← 1) Pass

Fig 9. Core and derived members of the example program

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

In the rank generation step, the spectrum of the core
member is compared to that of each derived member m ∈
M and the statement suspiciousness with respect to m is

computed. Table 5 shows the program spectra for the core
member and two derived members in columns three to
five. The suspiciousness values for each statement with

TABLE 4
 PROGRAM SPECTRA OF CORE AND CANDIDATE SET 𝐌𝐜←𝟎

 Subject Program 𝛄(𝐬, 𝐟) 𝛄(𝐬,𝐦𝒄←𝟎
𝟏)

𝛄
(𝐟
)
−
𝛄
(𝐦

𝒄
←
𝟎

𝟏
)

𝛄(𝐬,𝐦𝒄←𝟎
𝟐)

𝛄
(𝐟
)
−
𝛄
(𝐦

𝒄
←
𝟎

𝟐
)

1 public static int foo(int a,int b, int c,int d){ True True 0 True 0

2 int r = 1; True True 0 True 0

3 b += a + c; True True 0 True 0

4 switch (a){ True True 0 True 0

5 case 0 : True True 0 True 0

6 if (c<1 || d>2) True True 0 True 0

7 //r += (b-d)/(a+2); - - 0 - 0

8 //fault:+is missing; - - 0 - 0

9 r = (b-d)/(a+2); True False 1 False 1

10 else False True 0 True 0

11 r = b/(c+2); False True 0 True 0

12 break; True True 0 True 0

13 case 1 : False False 0 False 0

14 r = c*(a-d); False False 0 False 0

15 break; False False 0 False 0

16 } True True 0 True 0

17 return r; True True 0 True 0

18 } True True 0 True 0

|γ(f) − γ(mc←0)| - - 1 - 1

TABLE 5
 PROGRAM SPECTRA AND STATEMENTS SUSPICIOUSNESS VALUES

 Subject Program

𝛄
(𝐬
,𝐟
)

𝛄
(𝐬
,𝐦

𝐚
←
𝟎
)

𝛄
(𝐬
,𝐦

𝐜←
𝟎
)

𝛒
(𝐬
,𝐦

𝐚
←
𝟎
)

𝛒
(𝐬
,𝐦

𝐜←
𝟎
)

𝛒(𝐬) Rank

1 public static int foo(int a,int b, int c,int d){ True True True 0.5 0.5 0.5 3

2 int r = 1; True True True 0.5 0.5 0.5 3

3 b += a + c; True True True 0.5 0.5 0.5 3

4 switch (a){ True True True 0.5 0.5 0.5 3

5 case 0 : True False True 1 0.5 0.75 2

6 if (c<1 || d>2) True False True 1 0.5 0.75 2

7 //r += (b-d)/(a+2); - - - - - - -

8 //fault:+is missing; - - - - - - -

9 r = (b-d)/(a+2); True False False 1 1 1 1

10 else False False True 0 0 0 4

11 r = b/(c+2); False False True 0 0 0 4

12 break; True False True 1 0.5 0.75 2

13 case 1 : False True False 0 0 0 4

14 r = c*(a-d); False True False 0 0 0 4

15 break; False True False 0 0 0 4

16 } True True True 0.5 0.5 0.5 3

17 return r; True True True 0.5 0.5 0.5 3

18 } True True True 0.5 0.5 0.5 3

GHANDEHARI ET AL.: A COMBINATORIAL TESTING-BASED APPROACH TO FAULT LOCALIZATION 13

respect to derived tests ma←0 and mc←0 are shown in
columns six and seven (ρ(s,ma←0) and ρ(s, mc←0)) of Table
5, respectively. The last two columns of Table 5 show the
statement suspiciousness and ranks. The faulty statement
in line 9 is ranked to be the first.

Note that this example represents a best-case scenario
of our approach. In the next section, we provide an
experimental evaluation of our approach.

5. EXPERIMENT

We built a tool called BEN [17] that implements our
approach. (BEN is a Chinese word that means “root
cause”.) BEN is available for public download [5]. For our
experiment, we used the command line version of BEN.
 The subject programs are selected from SIR [46],
including seven small programs in the Siemens suite and
four large real-world programs flex, grep, gzip and sed.
Furthermore, we conducted an experimental comparison
between our approach and two well-known spectrum
based approaches, Tarantula [24] and Ochiai [31].

5.1. Experimental Design

5.1.1. Subject Programs

The Siemens Suite has been used to evaluate several fault
localization techniques [23][40][50]. The four real-world
programs, flex, grep, gzip and sed, are significantly larger
programs than the Siemens programs and are included to
evaluate how our approach works on larger programs.
These programs are also used in other studies such
as [22][35][36][38][39]. The Siemens suite and the four real-
world programs are among the most widely used subject
programs for fault localization studies [50]. Note that the
details of the subject programs as well as the faults in these
programs can be found in the SIR [44].

THE SIEMENS SUITE - The Siemens suite contains seven
programs and each of these programs contains a number
of faulty versions. The Siemens suite also provides an error-
free version and a test set for each program. Table 6
represents characteristics of the Siemens programs. The
second column shows the size of executable code
computed by Gcov 4.1.2 [14], and the third column
indicates the number of faulty versions provided for each
program in SIR. Note that the number of lines of executable
code is different from the number of lines of code reported
in [46]. This is because the number of lines of executable

code does not include commented lines, declaration lines,
or code in header files.

Both of the two programs, printtokens and printtokens2,
are used to tokenize the input file and determine the type
of each token. A token could be one of the following types:
identifier, special, keyword, number, comment, character
constant or string constant.

The replace program has three inputs, pattern, substitute
and input text. The program finds every match of pattern in
the input text and replaces it with substitute. The pattern is a
restricted form of regular expression. The substitute is a
string that allows three meta-characters to be used. These
include “@t”, which matches a tab, @n, which matches the
end of a line, and &, which represents the string that
matches the pattern. For example, if the string that matches
pattern is ab and substitute is a&c, all the occurrences of ab
in the input file are replaced with aabc.

 Two programs, schedule and schedule2, take the same
input and produce the same output, but use different
scheduling algorithms. The input includes: (1) three non-
negative integers representing the number of processes in
three different priority queues, low, medium and high; and
(2) a list of commands that must be executed on queues.
There are seven commands, new job, upgrade_prio, block,
unblock, quantum_expire, finish and flush. The output of
these two programs is a list of numbers indicating the
order in which the processes exit (from the scheduling
system).

The tcas program is an aircraft collision avoidance
system. It takes as input twelve numbers that represent
different flight parameters of two aircrafts and generates
as output a resolution advisory, which can be unresolved,
upward and downward.

The totinfo program takes as input a file containing one
or more tables. The program uses the notions of chi-square
and degree of freedom to calculate whether the
distribution of the numbers in these tables is logarithm
gamma distribution. The output is the total degree of
freedom of rows and columns and chi-square.

THE FLEX PROGRAM - The flex program is a fast lexical
analyzer or scanner generator. The flex program reads the
given input file (or files) and generates a C source file,
called scanner. The input file includes pairs of regular
expression and C code, called rules. There are several
options to control the behavior of the flex program. For
example, option “-d” is to enable debugging mode in the
scanner.

There are five versions of the flex in the benchmark, and
each has a number of seeded faults. All versions are
written in C and have four header files and one C file. Table
7 shows the size of executable code computed by Gcov
4.1.2 and the number of faulty versions for each release of
flex. The third column, i.e. the number of lines of executable
code, shows the number for the error-free version. Note
that all the faults in a given version of the flex program are
different from the faults of the other versions, and reside
in the code that has been modified from the previous
version.

TABLE 6
 CHARACTERISTICS OF SIEMENS SUITE

Program
of lines of

executable code
of faulty versions

printtokens 188 7

printtokens2 201 10

replace 242 32

schedule 154 9

schedule2 127 10

tcas 65 41

totinfo 123 23

14 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

THE GREP PROGRAM - The grep program has two input
parameters, patterns and files. It prints lines in each file that
contain a match of any of the patterns. While the grep
program can take multiple patterns and files, we only used
a single pattern and file in this experiment. In addition,
different options can be used to control the behavior of the
grep program. For example, option “–w” causes the
program to print only lines containing whole-word
matches.

The grep program can take four different types of
patterns: (1) basic-regexp: a basic regular expression; (2)
extended-regexp: an extended regular expression; (3)
fixed-strings: a list of fixed strings; (4) perl-regexp: a Perl
regular expression. In this experiment, we only used
extended-regexp.

 There are five versions of grep in the benchmark, each
of which has a number of seeded faults. All the versions
are written in C consisting of ten header files and one C
file. Table 8 shows the release number of each version, the
size of executable code computed by Gcov 4.1.2 and the
number of faulty versions for each version.

Note that all the faults in a given version are different
from the faults of the other versions, and reside in the code
that has been modified from the previous version. For
example, for grep2, all the faults reside in the code modified
from grep 2.2 to grep 2.3.

THE GZIP PROGRAM - The gzip program is used for file
compression and decompression. The input of gzip
includes 13 options and a list of files. For example, “-S”
option is used to define the suffix of the result file, where
the default is “.gz”.

There are five versions of gzip, each of which has a
number of seeded faults. All the versions are written in C,
consisting of six header files and one C file. Table 9 shows
the number of lines of executable code computed by Gcov
4.1.2 and the number of faulty versions for each error-free
version, in the third and fourth columns, respectively. The
release number for each program is shown in the second
column of Table 9. The base version is gzip 1.0.7. The faults
for different gzip versions are different from each other
except for one case where the first fault of gzip5 is the same
as the first fault of gzip2. In addition, all the faults reside in
the code that has been modified from the previous version,
except the fault mentioned above. For example, for gzip2,
all the faults reside in the code modified from gzip 1.1.2 to
gzip 1.2.2.

THE SED PROGRAM - The sed program reads and performs
basic transformations on an input stream. The sed program
takes as input a sed script and one or more text files. The
script file includes some sed commands, such as append,
replace, delete and insert. In addition, a number of options
are available to control the behavior of the sed program. For
example, the “-r” option is used to have extended regular
expressions in the script rather than basic regular
expressions.

There are seven versions of the sed program, and each
has a number of seeded and/or real faults. All the versions
are written in C. Table 10 shows the number of header files,
the number of C files, the lines of executable code of
computed by Gcov 4.1.2, and the number of faulty
versions. Note that the number of lines of executable code
in Table 10 is the total number of lines of executable code

TABLE 10

CHARACTERISTICS OF SED PROGRAMS

Program Release number # of header files # of C files # of lines of executable code # of faulty versions

sed1 1.08 2 1 1923 3

sed2 2.04 2 1 3391 5

sed3 3.01 7 1 2171 6

sed4 3.02 7 1 2172 4

sed5 4.0.6 10 5 4540 4

sed6 4.0.7 8 5 4544 6

sed7 4.1.5 8 5 4919 4

TABLE 7
 CHARACTERISTICS OF FLEX PROGRAMS

Program
Release

number

of lines of

executable code

of faulty

versions

flex1 2.4.6 3393 19

flex2 2.4.7 3934 20

flex3 2.5.1 3939 17

flex4 2.5.2 3965 16

flex5 2.5.3 3967 9

TABLE 8

CHARACTERISTICS OF GREP PROGRAMS

Program
Release
number

of lines of
executable code

of faulty
versions

grep1 2.2 3078 18

grep2 2.3 3224 8

grep3 2.4 3294 18

grep4 2.4.1 3313 12

grep5 2.4.2 3314 1

TABLE 9

CHARACTERISTICS OF GZIP PROGRAMS

Program
Release
number

of lines of
executable code

of faulty
versions

gzip1 1.1.2 1705 16

gzip2 1.2.2 2006 7

gzip3 1.2.3 1866 10

gzip4 1.2.4 1892 12

gzip5 1.3 1993 14

GHANDEHARI ET AL.: A COMBINATORIAL TESTING-BASED APPROACH TO FAULT LOCALIZATION 15

of all the C files in each version.

5.1.2. Initial Test Set

The input parameter model of each program is shown in
Table 11. In [15], we explained how we modeled the input
parameters of the Siemens programs to apply
combinatorial testing. The model of the grep program is
explained in [18]. The detailed models for the Siemens
programs and the grep program are available in [12]. The
models for three programs, flex, gzip and sed, are taken
from [39]. We note that the models presented in [39] are
also used in other studies, e.g., [22].

The model column of Table 11 shows the number of
parameters and their domain sizes. We represent it by
(d1
k1 × d2

k2 × …) , where di
ki indicates that there are ki

number of parameters with domain size as di. Note that
k1 + k2 +⋯ = k , where k is the total number of
parameters. For example, totinfo has six parameters,
among which three parameters have a domain size of 3,
two parameters have a domain size of 5, and one
parameter has a domain size of 6.

The constraint column shows the number of constraints
in each model. Constraints exclude invalid combinations
from the resulting test set. Consider the input model of the
printtokens program, which contains different positions for
different tokens. For example, keyword and identifier are
two types of tokens that could appear at the beginning,
middle or end of the input stream. A constraint is needed
to prevent having more than one type of token appear at
the same position.

Note that programs printtokens and printtokens2 share
the same model, and so do programs schedule and
schedule2. The model of tcas is the same as [25]. Also note
that the models are built based on the specification of the
programs, i.e., independent from their implementations.

 We assume that boundary testing is done before
combinatorial testing is applied. Combinatorial testing
focuses on failures caused by interactions between
parameters, while boundary testing focuses on failure
caused by boundary values of individual parameters. We
used the ACTS tool [2] to generate t-way test sets. For each
(faulty) program, we first test it with a 2-way test set. If a
faulty program is not detected by a 2-way test set, we
increase the test strength and then test the program with a
3-way test set. This process is repeated until we reach
strength 4.

To determine whether a test fails or passes for each
faulty version, we run the test on the error-free version of
the same program and the faulty version. The test fails if
the faulty version produces a different output than the
error-free version. Otherwise, it passes.

Table 12 shows the number of faulty versions detected
by our test sets of different strengths for the Siemens suite.
Note that the number of detected faulty versions by a t-
way test set indicates all the faulty versions that are
detected by the t-way test set but not by (t − 1)-way test
set. For example, 17, 12 and 7 faulty versions of tcas are
detected by the 2-way, 3-way and 4-way test sets,
respectively. The 12 faulty versions that are detected by the
3-way test set are different from the 17 and 7 faulty
versions that are detected by the 2-way and 4-way test set,
respectively. Therefore, in total, 36 faulty versions of tcas
are detected. The same information for the flex, grep, gzip
and sed programs is shown in Tables 13 to 16.

 We also executed all the tests in the test pool that come
with each program in SIR. (We will refer to the test pools
in SIR as the SIR test pools.) These test pools are created
initially in a black box manner based on the tester’s
understanding of the program’s functionality and
knowledge of special and boundary values. Then, white-
box tests are created and added into the pools to ensure
that each executable statement, branch, and definition-use
pair in the error-free version was exercised [46]. All the
faulty versions of the Siemens programs are detected by
the test pools, except version 9 of schedule2. Combinatorial
testing does not detect this version either. The results of
executing the test pools on the flex, grep, gzip and sed
programs are shown in the last column of Tables 13 to 16.

For the grep1 program, both test sets, i.e., our
combinatorial test set and the SIR test pool, detected four
faulty versions. Three out of these four versions are the
same, and one is different. The combinatorial test set
detected version 8 while the SIR test pool detected version
7. The combinatorial test set did not detect version 7
because the particular value that triggers the fault was not
modeled in our model.

Moreover, version 2 of grep4 was detected by the
combinatorial test set but not by the test pool. However,
the test pool detected version 10, which is due to a
boundary value that is not handled correctly.

Note that four faulty versions out of eighteen versions
of grep1 were detected by the 2-way test set. However, in
one of the detected faulty versions, i.e., version 11, all the
tests failed. Based on Assumption 4, BEN was not applied

TABLE 11
PROGRAMS MODEL

Program Model
of

constraints

Si
em

en
s

Su
it

e
 printtokens (21 × 31 × 44 × 51 × 101 × 132) 8

replace (24 × 416) 36

schedule (21 × 38 × 82) 0

tcas (27 × 32 × 41 × 102) 0

totinfo (33 × 52 × 61) 0

flex (26 × 32 × 51) 12

grep (27 × 41 × 51 × 63 × 81 × 91 × 131) 1

gzip (213 × 31) 61

sed (27 × 31 × 41 × 61 × 101) 50

TABLE 12
TEST RESULTS FOR SIEMENS SUITE

Program
of faulty

versions

of detected versions

2-way 3-way 4-way All

printtokens 7 3 0 0 3

printtokens2 10 9 0 0 9

replace 32 32 0 0 32

schedule 9 7 0 0 7

schedule2 10 3 0 0 3

tcas 41 17 12 7 36

totinfo 23 5 7 0 12

16 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

to this version.
In addition, BEN was not applied to four versions out

of sixteen detected faulty versions of the flex1, four
versions out of ten detected faulty versions of flex2, two
versions out of eleven detected faulty versions of flex4 and
four versions out of five detected faulty versions of flex5,
as these versions did not have any passing test.

Moreover, in two versions out of five detected faulty
versions of gzip1 and one version out of three detected
faulty versions of gzip2 all the tests failed.

5.1.3. Multiple-Fault Versions

To evaluate the effectiveness of our approach when the
program under test has more than one fault, we create
several multiple-fault versions for each program. To
increase the diversity, different multiple-fault versions

have different numbers of faults. Table 17 shows the
number of faulty versions with the number of faults
created for each program. For example, we created three
versions with two faults and one version with three faults
for printtokens.
 To create multiple-fault versions, we randomly pick
faults from faults that are detected by our combinatorial
test sets. Consider the schedule program. There are nine
faulty versions and each version has one fault. The
combinatorial test set detects seven of them (Table 12),
versions 1 to 7, and the other two versions, versions 9 and
10, are not detected. To create multiple-fault versions with
two faults, two faulty versions from 1 to 7 are selected
randomly.

For each program, we generate one or more multiple-
fault versions for a given number of faults. The maximum
number of multiple-fault versions for each program
depends on the number of detected faulty versions. When
the total number of detected faulty versions is large, e.g.,
replace and tcas, we create multiple-fault versions with a
maximum number of 10 faults. When the total number of
detected faulty versions is small, e.g., printtokens and
schedule2, more than one multiple-fault version is created
for the same number of faults.

 Since some faults may conflict with each other,
combining them in one version is not possible. For
example, the schedule2 program has three detected faulty
versions, versions 2, 3 and 7. Two faulty versions, versions
3 and 7, conflict with each other. In version 7, the condition
of an if statement is changed, while in version 3, the whole
block that contains the same if statement is removed.
Therefore, having these two versions in one multiple-fault
version is not possible. For the schedule2 program, two
multiple-fault versions with two faults are created. One of
them contains the faults in versions 2 and 3, and the other
contains the faults in versions 2 and 7.

Table 18 shows the result of combinatorial testing on
multiple-fault versions. All of them are detected by a 2-
way test set except one faulty version of program
printtokens2 and one faulty version of program tcas, which
are detected by a 3-way test set. In addition, one version
of the replace program (the version with 8 faults), five
versions of the flex1 program (the versions with 5, 7, 8, 9,
and 10 faults) and six versions of the flex4 program (the
versions with 4, 5, 6, 7, 8 and 9 faults) are ignored because
all the tests in the 2-way test set failed for these versions.

5.1.4. Trace Collection

We used Gcov 4.1.2 [14] to collect execution traces. Gcov
reports the number of times a statement is executed by a
given test. A statement is included in the execution trace of
a given test if and only if it is executed by the test for one
or more times.

Gcov distinguishes between statements that are
executable but are not executed and statements that are not
executable. We used this information to compute the
percentage of executable code that must be inspected to
find the faulty statement. If a program crashes, Gcov does
not report any coverage. To deal with this problem, we add
a statement to call function gcov_flush before every

TABLE 13
 TEST RESULTS FOR FLEX

Program # of faulty

versions
of detected versions # of detected versions

by SIR test pool 2-way 3-way 4-way All

flex1 19 16 0 0 16 16

flex2 20 10 0 0 10 14

flex3 17 5 1 0 6 9

flex4 16 11 0 0 11 11

flex5 6 5 0 0 5 5

TABLE 14

TEST RESULTS FOR GREP

Program
of faulty

versions

of detected versions # of detected versions

by SIR test pool 2-way 3-way 4-way All

grep1 18 4 0 0 4 4

grep2 8 0 0 0 0 4

grep3 18 4 0 0 4 7

grep4 12 2 0 0 2 2

grep5 1 0 0 0 0 0

TABLE 15

TEST RESULTS FOR GZIP

Program
of faulty

versions

of detected versions # of detected versions

by SIR test pool 2-way 3-way 4-way All

gzip1 16 5 0 0 5 7

gzip2 7 3 0 0 3 3

gzip3 10 0 0 0 0 0

gzip4 12 0 0 0 0 3

gzip5 14 2 0 0 2 5

TABLE 16

TEST RESULTS FOR SED

Program
of faulty

versions

of detected versions # of detected versions

by SIR test pool 2-way 3-way 4-way All

sed1 3 0 0 0 0 0

sed2 5 4 0 0 4 5

sed3 6 3 0 0 3 6

sed4 4 0 0 0 0 1

sed5 4 3 0 0 3 4

sed6 6 6 0 0 6 6

sed7 4 3 0 0 3 4

GHANDEHARI ET AL.: A COMBINATORIAL TESTING-BASED APPROACH TO FAULT LOCALIZATION 17

statement. Note that this is only done after a program
crashes.

5.1.5. BEN Configuration

For our experiments, we configure BEN to generate two
tests for each of the five top ranked suspicious
combinations at each iteration. In addition, because of
resource limitation, the size of an inducing combination is
limited to 6 for the Siemens suite, and it is limited to 4 for
the four real-world programs, flex, grep, gzip and sed.

5.1.6. Metrics

Recall that the output of BEN is a ranking of statements in
terms of their likelihood to be faulty. In order to find the
faulty statement, we inspect statements in the first rank,
and then statements in the second rank, and continue to do
so until we find the actual faulty statement. Statements in
the same rank are inspected in the order that they appear
in the program. We record the number of statements that
must be inspected to find the actual faulty statement in
each program to measure the effectiveness of our
approach.
 Moreover, the effectiveness of the first phase, i.e.,
identifying inducing combination, is measured by the
inducing probability (Definition 8) of the identified
combination. The higher inducing probability the
identified inducing combination has, the more effective
our approach is.

The efficiency of our approach is measured by two
factors: the number of tests that are executed and the

TABLE 17
MULTIPLE-FAULT VERSIONS

Program

of multiple-fault versions

2

faults

3

faults

4

faults

5

faults

6

faults

7

faults

8

faults

9

faults

10

faults
ALL

Siemens Suite

printtokens 3 1 0 0 0 0 0 0 0 4

printtokens2 1 1 1 1 1 1 1 0 0 7

replace 1 1 1 1 1 1 1 1 1 9

schedule 1 1 1 1 1 0 0 0 0 5

schedule2 2 0 0 0 0 0 0 0 0 2

tcas 1 1 1 1 1 1 1 1 1 9

totinfo 1 1 1 1 1 1 1 1 1 9

flex

flex1 1 1 1 1 1 1 1 1 1 9

flex2 1 1 1 1 1 0 0 0 0 5

flex3 1 1 1 1 1 0 0 0 0 5

flex4 1 1 1 1 1 1 1 1 1 9

grep

grep1 3 1 0 0 0 0 0 0 0 4

grep3 3 3 1 0 0 0 0 0 0 7

grep4 1 0 0 0 0 0 0 0 0 1

gzip

gzip1 3 1 0 0 0 0 0 0 0 4

gzip2 1 0 0 0 0 0 0 0 0 1

gzip5 1 0 0 0 0 0 0 0 0 1

sed

sed2 1 1 1 0 0 0 0 0 0 3

sed3 3 1 0 0 0 0 0 0 0 4

sed5 3 1 0 0 0 0 0 0 0 4

sed6 1 1 1 0 0 0 0 0 0 3

sed7 3 1 0 0 0 0 0 0 0 4

TABLE 18
TEST RESULTS FOR MULTIPLE-FAULT VERSIONS

Program
of faulty

versions

of detected versions

2-way 3-way All

Siemens
Suite

printtokens 4 4 0 4

printtokens2 7 6 1 7

replace 9 9 0 9

schedule 5 5 0 5

schedule2 2 2 0 2

tcas 9 8 1 9

totinfo 9 9 0 9

flex

flex1 9 9 0 9

flex2 5 5 0 5

flex3 5 5 0 5

flex4 9 9 0 9

grep

grep1 4 4 0 4

grep3 7 7 0 7

grep4 1 1 0 1

gzip

gzip1 4 4 0 4

gzip2 1 1 0 1

gzip5 1 1 0 1

sed

sed2 3 3 0 3

sed3 4 4 0 4

sed5 4 4 0 4

sed6 3 3 0 3

sed7 4 4 0 4

18 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

number of test runs that are traced for coverage collection.
We show the number of tests executed in different stages
of our approach, i.e., number of tests of the initial
combinatorial test set, number of tests needed to identify
inducing combinations (Phase 1), and number of tests
needed to produce the ranking of faulty statements (Phase
2).

We also compare our approach to two approaches,
Tarantula and Ochiai, in terms of effectiveness, i.e., the
number of statements that must be inspected to find the
actual faulty statement, and efficiency, i.e., the number of
tests executed and the number of tests whose execution
traces must be collected.

5.2. Results and Discussion

In this section, we discuss the results of applying BEN to
the subject programs. We first report the results of BEN on
the single-fault programs, followed by the results on the
multiple-fault programs. Next, we compare the results of
BEN to two approaches, Tarantula and Ochiai. Finally, the
threats to validity are discussed.

5.2.1. Results on Single-Fault Versions

This section is divided into two subsections. The first
subsection reports the results of the first phase, identifying
inducing combination. The second subsection discusses
the results of the second phase, faulty statement
localization.

5.2.1.1. Phase 1: Identifying Inducing Combination

Table 19 shows the inducing probabilities of inducing
combinations identified in the first phase. To compute the
inducing probability for combination c, we generated and
executed all the tests containing c. Then, inducing
probability is computed using the formula explained in
Section 2.1.

Depending on the input parameter model of the
program, number of parameters, their domain size and
constraints, generating all the tests containing a
combination can be a very expensive task. This is the case
for the inducing combinations identified for the two
programs, replace and grep. Thus, inducing probabilities
are not computed for these two programs. Note that this
computation is only needed for the evaluation purpose.
That is, it is not needed when our approach is applied in
practice.

In Table 19 the “Test strength (t)” column shows the
strength of the initial test set, and the next column, i.e., “#
of detected versions”, indicates the number of faulty
versions detected using the corresponding test set.

Column “Avg size of inducing combinations” indicates
the average size of inducing combinations for faulty
versions that are detected by the t-way test set. For
example, the sizes of the inducing combinations for three
faulty versions, 3, 5 and 6, of printtokens that are detected
by the 2-way test set, are 2, 4 and 3, respectively. Therefore,
the average size of inducing combinations is 3. As
explained in Section 3.1, the size of an inducing
combination could be greater than the strength of the
initial test set. The last column of Table 19 shows the
average of inducing probabilities of inducing

combinations.
As shown in Table 19, in most cases, the inducing

probability is one, which means that the identified
inducing combination is truly inducing. For printtokens2,
schedule, sed5 and sed7, the inducing probability is close to
one. However, the inducing probability is very low in the
tcas program and in one faulty version of the flex3
program, which is detected by a 3-way test set.

Recall that for our experiments, we limit the size of
inducing combination to six for the Siemens programs and
four for the four large programs. BEN reports the top
ranked suspicious combination of size six (or four), if the
inducing combination of a smaller size was not identified.
For tcas, the average sizes of inducing combinations
reported in Table 19 for test sets of different strengths are
6, 5.82 and 5.92. It is likely that BEN does not find the truly
inducing combination in many cases. Thus, the average
inducing probabilities are low. Similarly, for flex3, the
average sizes of inducing combinations is 4. It is likely that
BEN does not find the truly inducing combination in this
case, as BEN limits the size of inducing combination to 4.

TABLE 19

INDUCING PROBABILITIES FOR SINGLE-FAULT VERSIONS

Program

T
e
st

 s
tr

e
n

g
th

 (
t)

#
 o

f
d

e
te

c
te

d
 v

er
si

o
n

s

A
v

g
 s

iz
e
 o

f
in

d
u

c
in

g

c
o
m

b
in

a
ti

o
n

s

A
v

g
 i

n
d

u
ci

n
g

p
r
o

b
a

b
il

it
y
 o

f
th

e

id
e
n

ti
fi

e
d

 i
n

d
u

c
in

g

c
o
m

b
in

a
ti

o
n

s
Siemens
Suite

printtokens 2 3 3 1

printtokens2 2 9 2.56 0.93

schedule 2 7 2.86 0.86

schedule2 2 3 2 1

tcas 2 17 5.82 0.09

3 12 5.92 0.11

4 7 6 0.06

totinfo 2 5 4.8 1

3 7 4.86 1

flex

flex1 2 12 2 1

flex2 2 6 2 1

flex3 2 5 2.2 1

3 1 4 0.25

flex4 2 9 2.11 1

flex5 2 1 2 1

gzip

gzip1 2 3 2 1

gzip2 2 2 2 1

gzip5 2 2 2 1

sed

sed2 2 4 2.25 1

sed3 2 3 2 1

sed5 2 3 2 0.92

sed6 2 6 2.83 1

sed7 2 3 3 0.96

GHANDEHARI ET AL.: A COMBINATORIAL TESTING-BASED APPROACH TO FAULT LOCALIZATION 19

5.2.1.2. Phase 2: Faulty Statement Localization

Table 20 shows the results of our approach on each
program. We will not explain the column headers one by
one, as they are self-explanatory. Note that in the last eight
columns, average values are used, since the data could be
different in different versions.

Column, “Avg # of tests for identifying inducing
combination”, shows the average number of tests
generated in the first phase, i.e., inducing combination
identification.

If a combination c identified in the first phase is not
inducing, there is a probability that the core member does
not fail. The higher the inducing probability, the more
likely the core member fails. If the inducing probability is
1, the core member will definitely fail. However, our
approach can still apply if the core member does not fail.
We select as the core member a failing test that contains the
inducing combination from the initial test set. Column

“Avg # of times the core member does not fail” shows the
average number of such cases. For all the seven versions of
tcas, when the initial test set is 4-way, the core member is
selected from the initial test set. This is consistent with the
fact that the inducing probabilities of the identified
inducing combinations were very small (Table 19).

 For each version, we compute the total number of tests
in all the derived member sets, i.e., all the tests executed
for generating the derived members. The average of this
number for all versions is shown in the ninth column,
“Avg # of tests executed for generating derived members”.
The number includes all the tests, although later some of
them are discarded since they do not pass. The maximum
value of this column, 21.35, is for the tcas program with a
2-way test set. The minimum value, 2, happens for gzip1,
gzip2, gzip5 and sed5. Note that the number of tests
executed for generating derived members depends on the
size of inducing combination, the domain size of inducing
components, and also system constraints.

TABLE 20
RESULTS FOR SINGLE-FAULT VERSIONS

Program
T

e
st

 s
tr

e
n

g
th

 (
t)

#
 o

f
te

st
s

in
 t

-w
a
y

te
st

 s
et

#
 o

f
d

e
te

c
te

d
 v

er
si

o
n

s

A
v

g
 s

iz
e
 o

f
in

d
u

c
in

g

c
o
m

b
in

a
ti

o
n

s

A
v

g
 #

 o
f

te
st

s
fo

r

id
e
n

ti
fy

in
g

 i
n

d
u

ci
n

g

c
o
m

b
in

a
ti

o
n

A
v

g
 #

 o
f

ti
m

e
s

th
e

c
o

re
 m

em
b

er

d
o

e
s

n
o

t
fa

il

A
v

g
 #

 o
f

te
st

s
ex

ec
u

te
d

fo
r
 g

e
n

e
ra

ti
n

g

d
e
r
iv

e
d

 m
em

b
er

s

A
v

g
 #

 o
f

ti
m

e
s

d
er

iv
e
d

m
e
m

b
e
r
s

se
le

c
te

d

fr
o

m
 i

n
it

ia
l

te
st

 s
et

A
v

g
 #

 o
f

te
st

 r
u

n
s

tr
a

ce
d

 f
o
r
 c

o
v

er
a
g

e

c
o
ll

ec
ti

o
n

A
v

g

#

 o
f

st
a

te
m

e
n

ts

in
sp

e
c
te

d
 t

o
 f

in
d

a
c
tu

a
l

fa
u

lt

A
v

g
 p

e
rc

e
n

ta
g
e
 o

f

st
a

te
m

e
n

ts
 i

n
sp

ec
te

d
 t

o

lo
c
a

te
 a

c
tu

a
l

fa
u

lt

Siemens
Suite

printtokens 2 170 3 3 20 0 10 0 11 25.66 13.65

printtokens2 2 170 9 2.56 16.67 0 10.89 0 11.89 13.55 6.74

replace 2 193 32 3.66 19.37 0.41 4.16 0 5.57 30.91 12.77

schedule 2 64 7 2.86 17.14 0.14 6.43 0 7.57 18.71 12.15

schedule2 2 64 3 2 10 0 4.33 0 5.33 59.67 46.98

tcas 2 100 17 5.82 32.23 0.94 21.35 0 23.29 14 21.54

3 405 12 5.91 25 0.92 20.83 0 22.75 14.67 22.57

4 1434 7 6 20 1 18.57 0 20.57 11.14 17.14

totinfo 2 30 5 4.8 40 0 11.5 0 12.5 20.8 16.91

3 156 7 4.86 27.43 0 13.5 0 14.5 11.71 9.52

flex

flex1 2 26 12 2 10 0 2.25 0.25 3.5 161.58 4.76

flex2 2 26 6 2 9.5 0 3.17 0 4.17 36.67 0.93

flex3 2 26 5 2.2 12 0 3.2 0 4.2 316.6 8.04

3 66 1 4 4 1 7 0 9 88 2.23

flex4 2 26 9 2.11 11.55 0 2.22 0.11 3.33 240.67 6.07

flex5 2 26 1 2 10 0 5 0 6 262 6.60

grep

grep1 2 121 3 2.67 13.33 0.33 10.67 0 12 347 11.27

grep3 2 121 4 3 17.5 0.5 5.25 0 6.75 21.25 0.64

grep4 2 121 2 2 10 0 5 0 6 172.5 5.21

gzip

gzip1 2 21 3 2 8.67 0 2 0.67 3.67 339.33 19.90

gzip2 2 21 2 2 9 0 2 1 4 76.5 3.81

gzip5 2 21 2 2 8 0 2 1 4 86 4.31

sed

sed2 2 58 4 2.25 9 0 5 0.25 6.25 85.5 2.52

sed3 2 58 3 2 6.33 0 10 0 11 4 0.18

sed5 2 58 3 2 3.67 0 2 0.67 3.67 4 0.09

sed6 2 58 6 2.83 6.17 0 7.17 0.5 8.67 160.67 3.54

sed7 2 58 3 3 13.67 0 7.67 0 8.67 11.67 0.24

20 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

The column, “Avg # of times derived members are
selected from initial test set”, shows the number of cases
that all the derived member candidates failed, and a
derived member is selected from the initial test set.

The column, “Avg # of test runs traced for coverage”,
shows the average number of derived members whose
traces are collected. Recall from Section 3.2, the tests of a
candidate set are traced for coverage collection. Note that
BEN also needs the execution trace of the core member.
Therefore the total number of test runs traced by the
coverage tool is the summation of the following four
numbers: 1) one representing the core member; 2) number
of times the core member selected from initial test set
(column eight of Table 20); 3) number of tests executed for
generating derived members (column nine of Table 20);
and 4) number of derived members selected from initial
test set (column ten of Table 20).

The last two columns show the average number and
percentage of statements that must be inspected to locate a
fault. To compute this number, we include statements that
are ranked higher and statements that are ranked at the
same rank but appear before the faulty statement. We did
not perform any dependency analysis, which could reduce
the number of statements that must be inspected.

We note that the number of executable statements in
tcas is 65, less than 100. In this program, when only one
statement is needed to inspect, it is 1.54% of executable
code. Therefore, for the tcas program the number of
statements gives better insight than the percentage of code.

As shown in Table 20 our approach works better for the
flex, grep, gzip and sed programs than the Siemens
programs, i.e. small programs. The best case happens with
sed5 where only 0.09% of code must be inspected to locate
the fault. The worst case happens with gzip1 where 19.90%
of the code must be inspected. For the Siemens programs,
the best and worst cases happen with printtokens and
schedule2, where 6.74% and 46.98% of the code must be
inspected, respectively.

5.2.2. Results on Multiple-Fault Versions

In this section, we discuss the results of our experiments
on the subject programs that have multiple faults.

5.2.2.1. Phase 1: Identifying Inducing Combination

Table 21 shows the inducing probabilities for the inducing
combinations identified in the first phase. To compute
inducing probability, the same procedure used in
Section 5.2.1.1 for single-fault versions is performed.
Again, two programs, grep and replace, are ignored as it is
very expensive to compute inducing probabilities for these
programs.

As shown in Table 21, the inducing probabilities for all
programs are one or close to one, except for the tcas
program. In the five faulty versions (four versions detected
by 2-way test set and one detected by 3-way) of the tcas
program, BEN does not find any inducing combination of
size of five or less. Therefore, the most suspicious
combination whose size is six is reported as an inducing
combination.

5.2.2.2. Phase 2: Faulty Statement Localization

The results are summarized in Table 22, where the
columns are the same as in Table 20. The last two columns,
“Avg # of statements inspected to find actual faults” and
“Avg percentage of statements inspected to locate actual
faults”, show respectively the number of statements and
percentage of statements that should be inspected to locate
the first faulty statement.

 Similar to the single-fault versions, BEN works better
for flex, grep, gzip and sed, than for the Siemens programs.
For the four large programs, the worst case happens in
flex4, where 10.82% of executable code must be inspected
to locate the fault. However, the worst case for the Siemens
programs happens with schedule2, where 25.83% of the
executable code must be inspected.

The results in Tables 20 and 22 suggest that BEN works
better when there are multiple faults. For all the programs,
BEN is more effective for multiple-fault versions than
single-fault versions, except flex4, grep3, sed3 and sed7, in
terms of percentage of code that needs to be inspected.
Moreover, BEN is more efficient for multiple-fault versions
than single-fault versions, in terms of the total number of
tests generated in phases 1 and 2 and the number of test
runs traced by the coverage tool for multiple-fault
versions. This can be explained as follows.

The more faults a program has, the more likely that a
test fails. When there are more failing tests in the initial test
set, it is likely to have more inducing combinations or the

TABLE 21
INDUCING PROBABILITIES FOR MULTIPLE-FAULT VERSIONS

Programs

T
e
st

 s
tr

e
n

g
th

 (
t)

#
 o

f
d

e
te

c
te

d
 v

er
si

o
n

s

A
v

g
 s

iz
e
 o

f
in

d
u

c
in

g

c
o
m

b
in

a
ti

o
n

s

A
v

g
 i

n
d

u
ci

n
g

p
r
o

b
a

b
il

it
y
 o

f
th

e

id
e
n

ti
fi

e
d

 i
n

d
u

c
in

g

c
o
m

b
in

a
ti

o
n

s

Siemens Suite

printtokens 2 4 2.75 0.95

printtokens2 2 7 2.14 1

schedule 2 5 2 0.86

schedule2 2 2 2 1

tcas 2 8 5.12 0.33

3 1 6 0.02

totinfo 2 9 4.67 1

flex

flex1 2 4 2 1

flex2 2 5 2 1

flex3 2 5 2 1

flex4 2 2 2 1

gzip

gzip1 2 4 2 1

gzip2 2 1 2 1

gzip5 2 1 2 1

sed

sed2 2 3 2.33 0.85

sed3 2 4 2 1

sed5 2 4 2 1

sed6 2 3 2 1

sed7 2 4 2.25 1

GHANDEHARI ET AL.: A COMBINATORIAL TESTING-BASED APPROACH TO FAULT LOCALIZATION 21

size of inducing combination is smaller. Inducing
combinations of smaller size are less expensive to identify
than those of larger size. This is because the smaller the
inducing combination is, the fewer times the identify
algorithm is called to identify the combination. Moreover,
the number of candidate sets equals the size of inducing
combination. Thus, the smaller the inducing combination
is, the fewer derived candidate sets and therefore the fewer
tests are generated in the second phase.

5.2.3. Comparison with Tarantula and Ochiai

We compared BEN to two spectrum-based approaches,
Tarantula and Ochiai, in terms of effectiveness and
efficiency. Experiments suggest that Tarantula and Ochiai
perform best among spectrum based
approaches [1][23][31]. Recall that effectiveness is
measured by the percentage of executable code that must
be examined to guide the programmer to the faulty
statement, and efficiency is measured by the number of
tests executed, the number of tests runs traced for coverage
collection, and the execution time.
 Since Tarantula and Ochiai do not deal with test
generation, we applied them using the initial

combinatorial test set.
Tables 23 and 24 show the comparison results for single-

fault versions and multiple-fault versions, respectively.
We used average to aggregate the results of all the detected
faulty versions for each program. The third column shows
the average size of the combinatorial test sets used in the
testing stage for each program. The fourth column shows
the number of detected faulty versions.

The average number of test runs traced for BEN is
shown in the sixth column. For Tarantula and Ochiai,
every test run needs to be traced, so the average number of
test runs traced is the same as the number shown in the
third column. As shown in Tables 23 and 24, BEN needs to
trace only a very small number of tests in comparison with
the other two approaches. However, BEN generates and
executes a number of tests (in addition to the initial test set)
to identify the inducing combination. This cost is shown in
the fifth column of Tables 23 and 24, and it equals the
seventh column of Tables 20 and 22.

 We also report the execution time of BEN, Tarantula
and Ochiai for four large programs flex, grep, gzip and sed.
Experiments are conducted on a server that has an
Intel(R) Xeon(R) E5410 @ 2.33GHz (4-cores) processor and
4 GB memory and that runs Red Hat Enterprise Linux

TABLE 22
RESULTS FOR MULTIPLE-FAULT VERSIONS

Programs

T
e
st

 s
tr

e
n

g
th

 (
t)

#
 o

f
te

st
s

in
 t

-w
a
y

te
st

 s
et

#
 o

f
d

e
te

c
te

d
 v

er
si

o
n

s

A
v

g
 s

iz
e
 o

f
in

d
u

c
in

g

c
o
m

b
in

a
ti

o
n

A
v

g
 #

 o
f

te
st

s
fo

r

id
e
n

ti
fy

in
g

 i
n

d
u

ci
n

g

c
o
m

b
in

a
ti

o
n

A
v

g
 #

 o
f

ti
m

e
s

th
e

c
o

re
 m

em
b

er

d
o

e
s

n
o

t
fa

il

A
v

g
 #

 o
f

te
st

s
ex

ec
u

te
d

fo
r
 g

e
n

e
ra

ti
n

g

d
e
r
iv

e
d

 m
em

b
er

s

A
v

g
 #

 o
f

ti
m

e
s

d
er

iv
e
d

m
e
m

b
e
r
s

se
le

c
te

d

fr
o

m
 i

n
it

ia
l

te
st

 s
et

A
v

g
 #

 o
f

te
st

 r
u

n
s

tr
a

ce
d

 f
o
r
 c

o
v

er
a
g

e

c
o
ll

ec
ti

o
n

A
v

g

#

 o
f

st
a

te
m

e
n

ts

in
sp

e
c
te

d
 t

o
 f

in
d

a
c
tu

a
l

fa
u

lt

A
v

g
 p

e
rc

e
n

ta
g
e
 o

f

st
a

te
m

e
n

ts
 i

n
sp

ec
te

d
 t

o

lo
c
a

te
 a

c
tu

a
l

fa
u

lt

Siemens
Suite

printtokens 2 170 4 2.75 17.5 0 5 0 6 1.25 0.66

printtokens2 2 170 7 2.14 11.43 0 3.14 0 4.14 1.86 0.92

replace 2 193 8 2.5 13 0.12 1.87 0 2.99 12.25 5.06

schedule 2 64 5 2 10 0.2 2.60 0 3.80 8.2 5.32

schedule2 2 64 2 2 10 0 4 0 5 45.5 25.83

tcas 2 100 8 5.12 31.75 0.50 14.37 0 15.87 3.62 5.57

3 405 1 6 22 1 23 0 25 11 16.92

totinfo 2 30 9 4.67 36.67 0 9.78 0 10.78 8.67 7.05

flex

flex1 2 26 4 2 10 0 2.25 0.75 4 127.5 3.76

flex2 2 26 5 2 10 0 2 0 3 11 0.28

flex3 2 26 5 2 10 0 2.2 0 3.2 63 1.60

flex4 2 26 2 2 10 0 2 0.5 3.5 429 10.82

grep

grep1 2 121 4 2.5 15 0 5.5 0 6.5 107.5 3.49

grep3 2 121 7 3.14 15.71 0.57 3.14 0 4.71 32.86 1

grep4 2 121 1 2 10 0 3 0 4 23 0.69

gzip

gzip1 2 21 4 2 8 0 2 1 4 88.75 5.21

gzip2 2 21 1 2 10 0 2 1 4 32 1.60

gzip5 2 21 1 2 4 0 2 1 4 83 4.16

sed

sed2 2 58 3 2.33 11.33 0 2.67 0 3.67 64.67 1.91

sed3 2 58 4 2 8.75 0 6.25 0 7.25 5.75 0.26

sed5 2 58 4 2 2.75 0 2 0.75 3.75 3.25 0.07

sed6 2 58 3 2 5 0 2 1 4 38 0.84

sed7 2 58 4 2.25 10.75 0 5.5 0 6.5 17.5 0.36

22 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Server 6.5 (Santiago) (64 bit). Moreover, BEN uses
Choco [7] as a constraint solver.

 The last three columns of Tables 23 and 24 show the
time comparison results for single-fault versions and
multiple-fault versions, respectively. We used average to
aggregate the results of all the detected faulty versions for
each program. The seventh and eighth columns of Tables
23 and 24 show the average time in seconds to run
Tarantula and Ochiai, which includes executing tests to
collect their spectra and computing the statement ranks
based on Tarantula or Ochiai formula, respectively. The
last column of Tables 23 and 24 indicates the average
execution time of BEN. This time includes time spent in
both phases, including inducing combination
identification and faulty statement localization.

Note that the execution time in Tables 23 and 24 does
not include the time needed for test evaluation. Recall from
Section 5.1.2, in our experiments，a test run is evaluated
by comparing its output to the output produced by
running the same test against the error-free version. In
practice, however, we do not have access to the error-free
version of a program. Thus, it could be misleading to
include the test evaluation time. As discussed in
Section 2.2, the test oracle problem is common to many
testing and fault localization approaches. BEN is most
effective when there exists an automated test oracle or
when test evaluation could be performed quickly.

As shown in Tables 23 and 24, the seventh and eighth
columns, are almost equal, for single and multiple-fault
versions of the four programs, flex, grep, gzip and sed. For
all these programs flex, grep, gzip and sed, single-fault and
multiple-fault versions, BEN is faster than Tarantula and
Ochiai. The best case happens in multiple-fault versions of
grep4 where BEN is 17.3 times faster than Ochiai.

 In [23][40], a score is used to compare different fault
localization methods. The score is defined based on the
percentage of code that must be examined to find the faulty
statement. The percentage is based on executable code, i.e.,
non-executable code is excluded. Tables 25 and 26 show
the percentage of all the program versions that achieve
each score for single-fault and multiple-fault versions,
respectively. The results of BEN, Tarantula and Ochiai for
the Siemens programs are aggregated and shown in the
“Siemens Suite” rows, and the results of these three
approaches for the flex, grep, gzip and sed programs are
aggregated in their corresponding rows.

For single-fault versions (Table 25), on the first score,
i.e., 99-100%, which means only 1% or less than 1% of code
must be inspected to find the first faulty statement, BEN
outperforms Tarantula for the Siemens, flex and grep
programs, while both have the same results for the gzip
and sed programs.

 BEN performs better than Ochiai for the Siemens
programs and the same for the grep and gzip programs on

TABLE 23
EFFICIENCY COMPARISON RESULTS FOR SINGLE-FAULT VERSIONS

Program

Avg # of tests

executed

in the testing stage*

of detected

versions

Avg # of tests generated

and executed in fault

localization stage by BEN

Avg # of test runs

traced for coverage

collection by BEN

Avg execution time

(in seconds)

Tarantula Ochiai BEN

Siemens
Suite

printtokens 170 3 20 11 - - -

printtokens2 170 9 16.67 11.89 - - -

replace 193 32 19.37 5.57 - - -

schedule 64 7 17.14 7.57 - - -

schedule2 64 3 10 5.33 - - -

tcas 461.05 36 27.44 22.58 - - -

totinfo 103.5 12 32.67 13.67 - - -

flex

flex1 26 12 10 3.5 15.61 15.61 4.93

flex2 26 6 9.5 4.17 18.74 18.78 5.83

flex3 32.67 6 10.67 5 18.78 18.78 6.89

flex4 26 9 11.55 3.33 18.79 18.83 4.88

flex5 26 1 10 6 18.96 18.87 7.05

grep

grep1 121 3 13.33 12 94.82 94.65 14.85

grep3 121 4 17.5 6.75 99.05 99.06 29.32

grep4 121 2 10 6 98.96 99.06 7.65

gzip

gzip1 21 3 8.67 3.67 14.93 14.94 7.52

gzip2 21 2 9 4 14.69 14.69 8.65

gzip5 21 2 8 4 16.86 16.84 8.11

sed

sed2 58 4 9 6.25 37.58 37.52 11.67

sed3 58 3 6.33 11 32.75 32.87 12.18

sed5 58 3 3.67 3.67 49.66 49.69 10.09

sed6 58 6 6.17 8.67 49.73 49.79 14.10

sed7 58 3 13.67 8.67 52.96 53.03 15.30

* In Tarantula and Ochiai, all the test runs are traced. Thus, the Avg # of test runs traced for coverage collection is the same as the Avg # of tests
executed in the testing stage.”

GHANDEHARI ET AL.: A COMBINATORIAL TESTING-BASED APPROACH TO FAULT LOCALIZATION 23

the first score. However, Ochiai outperforms BEN for the
flex and sed programs, in terms of the first score of single-
fault versions. Note that on the second score, i.e., 90-99%,
BEN outperforms Ochiai for the flex program.

 For multiple-fault versions of all the programs (Table
26), on the first score, BEN outperforms Tarantula, except
for the gzip program. For the gzip program, all three
approaches, BEN, Tarantula and Ochiai, produce the same
score. BEN also outperforms Ochiai for the Siemens, flex,
grep and sed programs. Moreover, the improvement of
BEN in comparison with the other approaches is greater
for the multiple-fault versions compared to the single-fault
versions. The reason is that BEN first identifies one
inducing combination and it is likely that each inducing
combination corresponds to one faulty statement. In the
second phase, BEN generates a group of tests with one
failing test, i.e., the core member, which likely includes one
inducing combination and executes only one faulty
statement. Therefore, even when there is more than one
fault in the program, BEN focuses on one of them.
However, when Tarantula and Ochiai are applied on
multiple-fault programs, they use the initial test set that
likely includes several failing tests corresponding to
different faulty statements. Moreover, Tarantula and
Ochiai do not perform any nearest neighbor analysis.
Thus, it is likely that very different execution traces are
compared to each other, which reduces their effectiveness
of locating the faulty statement.

Tables 27 and 28 show the comparison between BEN,
Tarantula, and Ochiai for single-fault and multiple-fault
versions, respectively, based on number of outperformed
versions. There are two groups of columns that show the
comparison between BEN and Tarantula and the
comparison between BEN and Ochiai, respectively.

In each group, the first two columns show cases that
BEN outperforms the other approach, Tarantula or Ochiai
(positive numbers). The first column shows the number of
detected faulty versions that BEN outperforms the other
approach, and the next one shows the average percentage
of the differences. For example in the 19 out of 36 detected
single-fault versions of the tcas program, BEN inspects
7.94% (of executable code) less than Tarantula.

The third column of each group shows the number of
detected faulty versions that BEN and the other approach,
Tarantula or Ochiai, produce the same results. In addition,
the last two columns of each group show the number of
versions that the other approach outperforms BEN and the
average percentage of the differences (negative numbers).
For example for five out of 36 detected single-fault versions
of the tcas program, BEN inspects about 3.38% (of
executable code) more than Tarantula.

Five rows, Siemens suite, flex, grep, gzip and sed, are
added to summarize the results of all the Siemens
programs, all the different versions of flex, grep, gzip and
sed versions, respectively.

TABLE 24
EFFICIENCY COMPARISON RESULTS FOR MULTIPLE-FAULT VERSIONS

Program

Avg # of tests

executed

in the testing stage*

of detected

versions

Avg # of tests generated

and executed in fault

localization stage by BEN

Avg # of test runs

traced for coverage

collection by BEN

Avg execution time

(in seconds)

Tarantula Ochiai BEN

Siemens
Suite

printtokens 170 4 17.5 6 - - -

printtokens2 170 7 11.43 4.14 - - -

replace 193 8 13 2.99 - - -

schedule 64 5 10 3.80 - - -

schedule2 64 2 10 5 - - -

tcas 133.89 9 30.67 16.88 - - -

totinfo 30 9 36.67 10.78 - - -

 flex

flex1 26 4 10 4 15.71 15.68 5.60

flex2 26 5 10 3 18.75 18.76 5.11

flex3 26 5 10 3.2 18.64 18.65 5.05

flex4 26 2 10 3.5 18.78 18.77 5.51

 grep

grep1 121 4 15 6.5 94.32 94.42 9.88

grep3 121 7 15.71 4.71 98.95 98.98 32.86

grep4 121 1 10 4 98.67 98.79 5.71

 gzip

gzip1 21 4 8 4 12.63 12.63 7.94

gzip2 21 1 10 4 15.37 15.40 9.12

gzip5 21 1 4 4 14.8 14.8 8.88

 sed

sed2 58 3 11.33 3.67 37.34 37.34 10.55

sed3 58 4 8.75 7.25 32.79 32.63 10.16

sed5 58 4 2.75 3.75 49.61 49.74 9.72

sed6 58 3 5 4 49.74 49.64 10.17

sed7 58 4 10.75 6.5 52.89 52.88 12.30

* In Tarantula and Ochiai, all the test runs are traced. Thus, the Avg # of test runs traced for coverage collection is the same as the Avg # of tests executed
in the testing stage.”

24 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

For single-fault versions (Table 27), BEN outperforms
Tarantula in all the five cases, Siemens suite, flex, grep, gzip
and sed, which is consistent with Table 25. However, the
difference between BEN and Tarantula is very small (less
than one percent) for the gzip program, and thus it is not
reflected in Table 25. According to Table 27, BEN
outperforms Ochiai for the Siemens programs, while
Ochiai works better than BEN for the flex, grep, gzip and sed
programs, for single-fault versions. Note that the
difference between BEN and Ochiai is very small for the

grep and gzip, and it is not reflected in Table 25.
For multiple-fault versions (Table 28), BEN outperforms

Ochiai for three cases, Siemens Suite, grep and gzip,
although the difference between the two approaches is
very small for the Siemens programs. For the flex program,
Ochiai works better than BEN in more versions while BEN
makes greater average of difference percentage than
Ochiai.

In Siemens, flex and sed programs, Tarantula is more
effective than BEN; however, BEN is much more effective

TABLE 25
COMPARISON RESULTS FOR SINGLE-FAULT VERSIONS BASED ON PERCENTAGE OF CODE INSPECTED

Program Approach

Score

9
9

-1
0
0

%

9
0

-9
9
%

8
0

-9
0
%

7
0

-8
0
%

6
0

-7
0
%

5
0

-6
0
%

4
0

-5
0
%

3
0

-4
0
%

2
0

-3
0
%

1
0

-2
0
%

Siemens Suite

BEN 23.53 30.39 22.55 4.90 3.92 9.80 1.96 1.96 0.98 0

Ochiai 20.59 34.31 14.71 11.76 4.90 5.88 5.88 1.96 0 0

Tarantula 18.63 33.33 16.67 11.76 3.92 3.92 8.82 0.98 1.96 0

flex

BEN 35.30 50.00 11.76 2.94 0 0 0 0 0 0

Ochiai 55.88 23.53 14.71 5.88 0 0 0 0 0 0

Tarantula 32.36 44.12 8.82 8.82 5.88 0 0 0 0 0

grep

BEN 66.67 11.11 22.22 0 0 0 0 0 0 0

Ochiai 66.67 11.11 22.22 0 0 0 0 0 0 0

Tarantula 55.56 11.11 22.22 11.11 0 0 0 0 0 0

gzip

BEN 14.29 57.14 14.29 14.28 0 0 0 0 0 0

Ochiai 14.29 57.14 14.29 14.28 0 0 0 0 0 0

Tarantula 14.29 57.14 14.29 14.28 0 0 0 0 0 0

sed

BEN 78.95 21.05 0 0 0 0 0 0 0 0

Ochiai 89.47 10.53 0 0 0 0 0 0 0 0

Tarantula 78.95 15.79 5.26 0 0 0 0 0 0 0

TABLE 26
COMPARISON RESULTS FOR MULTIPLE-FAULT VERSIONS BASED ON PERCENTAGE OF CODE INSPECTED

Program Approach

Score

9
9

-1
0
0

%

9
0

-9
9
%

8
0

-9
0
%

7
0

-8
0
%

6
0

-7
0
%

5
0

-6
0
%

4
0

-5
0
%

3
0

-4
0
%

2
0

-3
0
%

1
0

-2
0
%

Siemens Suite

BEN 38.64 40.91 18.18 0 0 0 0 0 2.27 0

Ochiai 31.82 52.27 13.64 0 0 0 0 2.27 0 0

Tarantula 31.82 61.36 4.55 0 0 0 0 0 2.27 0

flex

BEN 56.25 37.5 6.25 0 0 0 0 0 0 0

Ochiai 43.75 25 6.25 18.75 6.25 0 0 0 0 0

Tarantula 37.5 62.5 0 0 0 0 0 0 0 0

grep

BEN 91.67 0 8.33 0 0 0 0 0 0 0

Ochiai 75.00 16.67 8.33 0 0 0 0 0 0 0

Tarantula 58.33 33.33 8.33 0 0 0 0 0 0 0

gzip

BEN 50 33.33 16.67 0 0 0 0 0 0 0

Ochiai 50 33.33 16.67 0 0 0 0 0 0 0

Tarantula 50 33.33 16.67 0 0 0 0 0 0 0

sed

BEN 94.44 5.56 0 0 0 0 0 0 0 0

Ochiai 88.89 11.11 0 0 0 0 0 0 0 0

Tarantula 83.33 16.67 0 0 0 0 0 0 0 0

GHANDEHARI ET AL.: A COMBINATORIAL TESTING-BASED APPROACH TO FAULT LOCALIZATION 25

in the grep and gzip programs.
We investigated all the four versions of totinfo in which

Tarantula outperforms BEN. In all cases the faulty
statement localized by BEN is different from the one
localized by Tarantula. The faulty statement detected by
Tarantula is not even executed by the core member
generated by BEN. Thus, it is not considered suspicious by
BEN. The same situation happens for two out of three
versions of the tcas program that Tarantula outperforms
BEN (Table 28).

As we mentioned, BEN focuses on one inducing
combination, which is likely due to one faulty statement.
BEN stops searching for inducing combinations, as soon as
the first one is identified, in the first phase. Therefore, BEN
localize the faulty statement related to the identified
inducing combination.

5.2.4. Threats to Validity

Threats to internal validity are factors that may be
responsible for the experimental results, without our

knowledge. One of the key steps in our experiments is
modeling the input parameters, which may affect the
correctness of the result. To reduce this threat, for three
programs, flex, gzip and sed, we used the models from [39].
For the other programs, we have modeled the input
parameters by using the program specifications and if they
are not available, the error-free versions, without having
any knowledge about the faults. All the models, except the
grep model, have been used in other studies [18][15].
In [15], the models are used to compare the effectiveness of
combinatorial testing and random testing.
 In addition, we automated the experimental procedure
as much as possible, as an effort to remove human errors.
In particular, all the steps are automated except counting
the number of statements that should be inspected to find
the faulty statement. Further, consistency of the results has
been carefully checked to detect potential mistakes made
in the experiments. For example, the higher the average of
inducing probability, the more likely the core member
fails. In the extreme case, if the inducing probability is 1,

TABLE 27
COMPARISON RESULTS FOR SINGLE-FAULT VERSIONS BASED ON NUMBER OF OUTPERFORMED VERSIONS

Program

#
 o

f
d

e
te

c
te

d
 v

er
si

o
n

s Tarantula Ochiai

BEN > Tarantula

B
E

N
 =

 T
a

ra
n

tu
la

BEN < Tarantula BEN > Ochiai

B
E

N
 =

 O
ch

ia
i BEN < Ochiai

#
 o

f
v
e
r
si

o
n

s

A
v

g
 o

f

D
if

fe
r
e
n

ce

P
e
r
ce

n
ta

g
e
s

#
 o

f
v
e
r
si

o
n

s

A
v

g
 o

f

D
if

fe
r
e
n

ce

P
e
r
ce

n
ta

g
e
s

#
 o

f
v
e
r
si

o
n

s

A
v

g
 o

f

D
if

fe
r
e
n

ce

P
e
r
ce

n
ta

g
e
s

#
 o

f
v
e
r
si

o
n

s

A
v

g
 o

f

D
if

fe
r
e
n

ce

P
e
r
ce

n
ta

g
e
s

Siemens
Suite

printtokens 3 +1 +8.51 1 -1 -0.53 +1 +4.79 1 -1 -0.53

printtokens2 9 +3 +5.97 2 -4 -3.98 +1 +9.45 4 -4 -7.21

replace 32 +14 +8.56 4 -14 -9.80 +14 +8.21 4 -14 -11.16

schedule 7 +2 +1.30 1 -4 -13.47 +2 +1.30 1 -4 -13.47

schedule2 3 +2 +5.91 1 0 0 0 0 1 -2 -3.54

tcas 36 +19 +7.94 12 -5 -3.38 +19 +7.61 12 -5 -3.38

totinfo 12 +4 +27.85 6 -2 -13.82 +3 +4.07 6 -3 -10.03

Siemens Suite 102 +45 +9.40 27 -30 -8.40 +40 +7.21 29 -33 -8.90

flex

flex1 12 +9 +5.39 2 -1 -5.30 +1 +8.52 1 -10 -2.12

flex2 6 +3 +0.75 2 -1 -0.64 0 0 4 -2 -1.72

flex3 6 +3 +5.64 0 -3 -0.12 +2 +6.42 0 -4 -1.21

flex4 9 +8 +8.53 0 -1 -0.66 +2 +8.20 1 -6 -1.14

flex5 1 0 0 0 -1 -0.10 0 0 0 -1 0.10

flex 34 +23 +5.91 4 -7 -1.01 +5 +7.52 6 -23 -1.57

grep

grep1 3 +1 +3.77 2 0 0 0 0 1 -2 -1.14

grep3 4 +1 +6.80 1 -2 -0.09 +1 +0.24 1 -2 -0.09

grep4 2 +1 +3.08 0 -1 -0.12 0 0 0 -2 -0.98

grep 9 +3 +4.55 3 -3 -0.10 +1 +0.24 2 -6 -0.73

gzip

gzip1 3 +1 +1.11 1 -1 -0.35 +1 +1 1 -1 -1

gzip2 2 +2 +1.10 0 0 0 +1 +0.25 0 -1 -1.45

gzip5 2 +2 +0.25 0 0 0 0 0 0 -2 -0.75

gzip 7 +5 +0.76 1 -1 -0.35 +2 +0.62 1 -4 -0.98

sed

sed2 4 +2 +8.42 0 -2 -2.62 0 0 0 -4 -1.81

sed3 3 +1 +0.69 1 -1 -0.32 0 0 2 -1 -0.32

sed5 3 +2 +0.09 1 0 0 +1 +0.04 1 -1 -0.11

sed6 6 +3 +0.17 0 -3 -5.22 0 0 0 -6 -2.78

sed7 3 +1 +0.73 0 -2 -0.15 0 0 0 -3 -0.16

sed 19 +9 +2.11 2 -8 -2.69 +1 +0.04 3 -15 -1.65

26 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

the core member must fail. To check the consistency of the
results, we checked the inducing probability whenever the
core member did not fail. For instance, in one out of seven
detected faulty versions of the schedule program, the core
member did not fail. We checked the inducing probability
for this version, which is relatively small, 0.25.
 Threats to external validity occur when the
experimental results could not be generalized to other
programs. We use subject programs from the Siemens
suite [11]; these programs are created by a third party and
have been used in other studies [23][40][31]. However, the
subject programs are programs of relatively small size with
seeded faults. To mitigate this threat, the flex, grep, gzip,
and sed programs were added to the experiments, but more
experiments on larger programs with real faults can
further reduce this threat.
 Each of the Siemens program has multiple versions,
each of which has a single-fault. However, programs in
practice could have multiple faults. To mitigate this threat,
we created several multiple-fault versions that combined
randomly selected faults and conducted an experiment on

these versions. More experiments on programs with real
faults can further reduce this threat.

6. RELATED WORK

In this section, we first discuss existing work on identifying
failure-inducing combination, i.e., the first phase of BEN.
Then, we focus on existing work on fault localization,
which is related to the second phase of BEN.

6.1. Related Work on Identifying Inducing
Combinations

Existing approaches to identifying inducing combinations
can be classified into two groups. The first group takes as
input a single failing test and tries to identify inducing
combinations in the test.

 Two techniques, called FIC and FIC_BS [57], try to
identify all the inducing combinations contained in a
failing test. These approaches take one failing test from a
combinatorial test set, then generate and execute a small
number of tests in a systematic manner to identify

TABLE 28
COMPARISON RESULTS FOR MULTIPLE-FAULT VERSIONS BASED ON NUMBER OF OUTPERFORMED VERSIONS

Program

#
 o

f
d

e
te

c
te

d
 v

er
si

o
n

s Tarantula Ochiai

BEN > Tarantula

B
E

N
 =

 T
a

ra
n

tu
la

BEN < Tarantula BEN > Ochiai

B
E

N
 =

 O
ch

ia
i BEN < Ochiai

#
 o

f
v
e
r
si

o
n

s

A
v

g
 o

f

D
if

fe
r
e
n

ce

P
e
r
ce

n
ta

g
e
s

#
 o

f
v
e
r
si

o
n

s

A
v

g
 o

f

D
if

fe
r
e
n

ce

P
e
r
ce

n
ta

g
e
s

#
 o

f
v
e
r
si

o
n

s

A
v

g
 o

f

D
if

fe
r
e
n

ce

P
e
r
ce

n
ta

g
e
s

#
 o

f
v
e
r
si

o
n

s

A
v

g
 o

f

D
if

fe
r
e
n

ce

P
e
r
ce

n
ta

g
e
s

Siemens
Suite

printtokens 4 0 0 3 -1 -0.53 0 0 4 0 0

printtokens2 7 +6 +3.73 1 0 0 +3 +1.33 4 -2 -0.50

replace 8 0 0 1 -7 -4.25 +2 +3.10 1 -5 -4.96

schedule 5 +1 +2.60 1 -3 -5.41 +4 +2.27 0 -1 -9.74

schedule2 2 +1 +3.94 1 0 0 0 0 1 -1 -0.79

tcas 9 +1 +4.62 5 -3 -4.62 +2 +2.31 4 -3 -4.10

totinfo 9 +2 +2.85 3 -4 -11.18 +4 +10.30 3 -3 -1.36

Siemens Suite 44 +11 +3.57 15 -18 -5.84 +15 +4.34 17 -15 -3.51

flex

flex1 4 +2 +3.45 0 -2 -3.58 +2 +23.56 0 -2 -3.08

flex2 5 +4 +3.80 0 -1 -0.61 +4 +20.93 1 0 0

flex3 5 0 0 0 -5 -1.04 0 0 0 -5 -0.85

flex4 2 +1 +1.21 0 -1 -16.95 0 0 0 -2 -5.69

flex 16 +7 +3.33 0 -9 -3.32 +6 +21.81 1 -9 -2.42

grep

grep1 4 +3 +0.64 1 0 0 +2 +13.97 1 -1 -4.00

grep3 7 +4 +2.13 0 -3 -0.10 +4 +0.24 0 -3 -0.10

grep4 1 0 0 0 -1 -0.12 0 0 0 -1 -0.12

grep 12 +7 +1.49 1 -4 -0.10 +6 +4.82 1 -5 -0.89

gzip

gzip1 4 +1 +1.23 3 0 0 +1 +1 3 0 0

gzip2 1 +1 +0.5 0 0 0 +1 +0.25 0 0 0

gzip5 1 +1 +1.96 0 0 0 +1 +0.45 0 0 0

gzip 6 +3 +1.23 3 0 0 +3 +0.57 3 0 0

sed

sed2 3 +2 +5.13 0 -1 -3.27 +2 +2.33 0 -1 -1.77

sed3 4 0 0 2 -2 -0.41 +1 +0.05 1 -2 -0.41

sed5 4 +1 +0.13 3 0 0 0 0 1 -3 -0.06

sed6 3 +2 +0.18 0 -1 -0.22 0 0 0 -3 -0.47

sed7 4 +1 +0.73 0 -3 -0.26 0 0 0 -4 -0.33

sed 18 +6 +1.91 5 -7 -0.72 +3 +1.57 2 -13 -0.42

GHANDEHARI ET AL.: A COMBINATORIAL TESTING-BASED APPROACH TO FAULT LOCALIZATION 27

inducing combinations in the failing test. New tests are
generated such that one value, 𝑣𝑖 , of the failing test is
changed to another possible value. When the newly
generated test passes, 𝑣𝑖 is part of an inducing combination
because its removal makes the test pass. FIC generates k
tests, where k is the number of parameters, for each failure
inducing combination.

FIC_BS is the binary search version of FIC. To generate
a new test, FIC_BS changes the values of k/2 parameters
of the failing test. If the newly generated test passes,
FIC_BS searches for inducing combinations in the changed
values (k/2). The process continues until all inducing
combinations are found. FIC and FIC_BS assume that no
new inducing combinations are introduced when a value
is changed to create a new test.

 Li et al. [30] introduced two approaches, RI and SRI, for
identifying inducing combinations. These techniques use a
method called delta debugging [56] in an iterative
framework. The RI approach takes one failing test from the
initial combinatorial test set, and adopts a similar approach
to FIC_BS to generate a small number of tests. The SRI
approach is an improved version of RI, and it takes as
input one failing test, f. Then it tries to generate a passing
test similar to f. SRI uses the fact that the inducing
combination appeared in the failing test f, but not in the
similar passing test. Therefore, it focuses on the
parameters, which are different in the failed and passing
tests. SRI could identify inducing combination by
generating fewer tests than RI.

The second group of approaches for identifying
inducing combinations takes a set of tests as well as their
execution statuses.

The AIFL and InterAIFL approaches in [45][49] first
identify a set A of suspicious combinations as candidates
for being inducing. Second, it generates a group of tests for
each failing test using the SOFOT strategy [34]. Let k be the
number of parameters. For each test f, the SOFOT strategy
generates k tests by changing the value of one parameter
at a time. Each test is different from the original test f in
one value; the value is selected randomly from the
corresponding parameter’s domain. After executing the
newly generated tests, combinations that appeared in the
passing tests are removed from the suspicious set A. The
InterAIFL approach improves AIFL by adopting a
framework in which the suspicious set A is iteratively
generated and refined until it becomes stable.

BEN also tries to identify inducing combinations in a
combinatorial test set, instead of a single failing test. Thus,
BEN belongs to the second group. There are two
advantages resulting from using the whole test set rather
than a single test. First, a test set contains more information
than a single test. Second, it would be possible to identify
inducing combinations that appear in different tests.

BEN identifies suspicious combinations in the same
way as AIFL and Inter-AIFL. However, BEN produces a
ranking of suspicious combinations and focuses on the
most suspicious combinations. Moreover, BEN
significantly differs from AIFL and Inter-AIFL in the way
of generating new tests. BEN generates tests for a top-
ranked suspicious combinations based on the notions of

combination suspiciousness and environment
suspiciousness. This is in contrast with the SOFOT strategy
used in AIFL and Inter-AIFL.

We mention that Yilmaz et al. proposed a machine
learning approach to identify failure-inducing
combinations [54]. The approach analyzes the
combinatorial test set and tests statuses and builds a
classification tree. The classification tree is used to predict
inducing combinations. Shakya et al. in [43] made some
improvements in identifying failure-inducing
combinations based on Yilmaz’s work.

6.2. Related Work on Fault Localization

In Section 5, we already mentioned two fault
localization approaches, Tarantula [23][24] and Ochiai [1].
Similar to BEN, Tarantula and Ochiai use statement
coverage information to compute suspiciousness of each
statement. Statement coverage is computed by multiple
execution traces of failed and passing tests.

In Tarantula, the suspiciousness value of each statement
is the ratio of failing tests that execute the statement
divided by the ratio of failing tests that execute the
statement plus the ratio of passing tests that execute the
statement. Ochiai computes the suspiciousness value of
each statement by dividing the number of failing tests that
execute the statement by the square root of the product of
the number of all failing tests and the number of all tests
that execute the statement.

Then, Tarantula and Ochiai look for the faulty
statement in a non-increasing order of their suspiciousness
values.

Three spectrum-based approaches, set union, set
intersection and nearest neighbor, are proposed by
Renieris and Reiss [40]. These approaches assume that
there is one failed run (the spectrum of a failing test) and a
large number of passed runs (the spectra of passing tests).

Each of the three approaches has a different way to
identify highly suspicious statements for being faulty, and
these statements are then checked to find the actual faults.
Let f be the program spectrum of a failing run and S be a
set of program spectra of passed runs. The set union
method computes f − sS , where sS is the union spectra
of a set of passed runs. The statements in the spectrum of
the failed run but not in the union spectra of the passed
runs are highly suspicious. In the intersection method, the
highly suspicious statements are in the intersection spectra
of a set of passed runs but not in the spectrum of the failed
run, ⋂ sS − f.

In the nearest neighbor approach, one passed run
whose spectrum is the most similar to the failed spectrum
is selected from 𝑆. The statements in the difference set of
these two spectra have the highest suspiciousness of being
faulty.

If the fault is not found in the highly suspicious
statement set, the program dependence graph is built. The
nodes corresponding to the highly suspicious statements
are marked as blamed nodes. Then, in both directions,
backward and forward, a breadth-first search is performed
from the blamed nodes. The statements corresponding to
the nodes at a distance of one are also suspicious and must

28 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

be checked. This process is repeated until the faulty
statement is found.

Empirical evaluation in [23] shows that for the Siemens
suite, Tarantula is more effective and efficient than the
other methods, including set union, set intersection, and
nearest neighbor. Lucia et al. in [31] reported the
experiments that show Tarantula and Ochiai are
comparable to each other for the Siemens programs.
However, the work reported in [1] suggests that Ochiai
outperforms Tarantula. The former work used statement
coverage spectra while the latter used branch coverage
spectra. Both works, i.e., [1] and [31], applied fault
localization methods using the test pools provided for each
program by the benchmark [11].

Our experimental results also show that Ochiai is
slightly better than Tarantula. BEN used combinatorial test
sets and statement coverage spectra.

The fundamental difference between BEN and the
above spectrum-based approaches is that BEN
systematically generates a small group of tests, and then
analyzes their spectra to produce a ranking of statements.
The existing approaches do not deal with test generation.
Instead, they assume an existing test set that is generated
randomly or using other techniques. In addition, they
require every test execution to be traced. As a result, they
cannot utilize the testing results if the test executions were
not traced. In contrast, our approach is designed to work
after normal testing is performed where test executions are
not traced. Our approach only needs to trace the execution
of a small number of tests that are generated in the second
phase of our approach. As shown in Section 5, our
approach can significantly reduce the number of tests that
need to be traced but still produce results that are
competitive to or better than Tarantula and Ochiai.
 One approach, called LCEC [32], was reported that also
leverages the result of combinatorial testing to localize the
faulty statement. LCEC was published after our original
work in [18][15]. LCEC selects a failing test from the initial
combinatorial test set, and generates a group of passing
tests by changing values of failing test involved in the
inducing combination. The execution traces of failed and
passing tests are analyzed to derive cause-effect chains of
statements. A depth-first search is performed for all cause-
effect chains to locate the faulty statement. Then, if the
faulty statement is not found, a breath-first search is
performed in the dynamic backward slice, associated with
the incorrect output value. LCEC is applied to four small
programs, with a maximum of 220 lines of code, including
the tcas program. The cost of applying LCEC is not
reported in [32]. The LCEC tool is not publicly available.

We mention several other publications in fault
localization literature. Roßler et al. [41] propose a
technique, BUGEX, which adopts a dynamic symbolic
execution approach to generate tests with a minimal
difference from a single failing test in terms of facts, i.e.,
branches or state predicates. Based on the generated tests,
the facts that are executed by more failing tests but fewer
passing tests are more likely to cause the failure. The
proposed approach is different from BEN, as BEN does not
analyze code to generate tests. Instead, BEN generates tests

in a black box manner and uses an input model to find
values for each parameter.

In [52], Xuan and Monperrus proposed an approach to
purify test cases that are written as xUnit-style test
methods. A test method typically contains one or more
assertions that are used to evaluate each test run. In their
approach, when a test method containing multiple
assertions fails, it generates purified test methods of this
failing test method such that each of these purified
methods only contains one assertion and relevant
statements, i.e., statements that may affect this assertion.
These purified test methods are executed to refine the
statement ranking generated by spectrum based fault
localization approaches. Their work is complementary to
ours in that additional tests generated by our approach can
be written as xUnit-style test methods to which their
approach can be applied. Note that while both approaches
generate additional tests for fault localization, these tests
are generated in very different ways. Specifically, the
approach in [52] generates additional tests based on
assertions, whereas our approach generates additional
tests based on inducing combinations.
 Metallaxis [37], is a fault localization approach based on
mutation analysis. The basic idea is the following: The
more failing tests that kill a mutant, the more likely the
statement that is changed by the mutant is faulty. In
Metallaxis, a suspiciousness value is computed for each
mutant, and thus for its corresponding statement, using
the same Tarantula formula, except that the number of
failing (passing) tests that kill the mutant is used, in place
of the number of failing (passing) tests that execute the
statement, in the formula.
 Baah et al. [3] presented a PPDG, a probabilistic
graphical model based on the program dependence graph
to capture the statistical dependences among program
elements. The PPDG could be used to analyze the program
behavior and then generate a ranking of statements for
fault localization.
 Le et al. [28] proposed a multi-modal technique called
AML, that considers bug reports and program spectra to
locate bugs. AML uses Vector Space Model [28] and
Tarantula as the information retrieval and spectrum-based
technique, respectively. Then, it integrates their output
and produces the final ranking.

BEN is different from the above approaches as it is a
spectrum-based fault localization approach based on
combinatorial testing. BEN does not perform any program
dependency analysis.
 In [55] a new approach to prioritize tests for efficient
fault localization is proposed. It used Tarantula as a fault
localization approach. After finding the first failing test, it
prioritizes tests such that tests that could potentially
produce greater suspiciousness for the faulty statement are
executed first. Moreover, Xia et al. [51] proposed a test case
selection strategy to maximize the effectiveness of the
Ochiai approach, while minimizing the cost of test oracle
construction. These approaches are complementary to
BEN in that they could be used to further improve the
effectiveness of BEN.

GHANDEHARI ET AL.: A COMBINATORIAL TESTING-BASED APPROACH TO FAULT LOCALIZATION 29

7. CONCLUSION

In this paper, we presented an approach called BEN to
localizing faults that leverages the result of combinatorial
testing. Our approach combines black-box combinatorial
test generation with white-box spectrum analysis for fault
localization. Our approach consists of two phases. The first
phase identifies a failure-inducing combination, which is
used in the second phase to localize the faulty statement in
the source code.
 In the first phase, BEN adopts an iterative framework
that ranks suspicious combinations and generates new
tests repeatedly until an inducing combination is
identified. The novelty of this phase lies in the fact that we
rank suspicious combinations and generate new tests
based on the notions of combination suspiciousness and
environment suspiciousness. The higher the combination
suspiciousness of a combination, the lower its
environment suspiciousness, the higher this combination
is ranked. New tests are generated for a user-specified
number of top-ranked suspicious combinations such that
the environment suspiciousness of a combination is
minimized in each test. Our approach starts with searching
for inducing combinations whose size is equal to the
strength t of the initial test set. If it is not found, the
approach expands its search to combinations whose size is
greater than t.
 The key idea of the second phase of BEN is that we
systematically generate a group of tests from an inducing
combination such that the spectra of these tests can be
analyzed quickly to identify the faulty statement. This
group of tests consists of a core member that is a failing test
and a number of derived members that are passing tests
but are very similar to the core member. The
suspiciousness values of statements are computed by
analyzing the spectra of the core member and the derived
members.
 We applied BEN to the Siemens suite and also the flex,
grep, gzip and sed programs. Our experimental results
show that our approach requires a very small number of
tests to be generated while significantly reducing the
number of statements to be inspected for fault localization.
In particular, our approach achieves results that are
competitive to or better than those of Tarantula [24] and
Ochiai [1] while requiring significantly fewer test runs to
be traced.
 We emphasize that our approach has an important
advantage over existing spectrum-based approaches such
as Tarantula and Ochiai. Existing spectrum-based
approaches require every test execution be traced. If a test
set is already executed without being traced, the test set
must be re-executed to collect traces before they can be
used by approaches like Tarantula and Ochiai. In contrast,
our approach only requires a small number of tests
generated in the second phase of our approach to be traced.
Our approach is designed to work after normal testing is
performed where test executions do not need to be traced.
 We plan to conduct more empirical studies to further
evaluate the performance of our approach. In particular,
we plan to evaluate our approach using other metrics such
as acc@N and also compare our approach to information

retrieval [28][42][58] or learning-to-rank based
approaches [27][47][53]. We also plan to investigate how to
adapt our approach to work with an arbitrary test set. Our
current approach assumes that a combinatorial test set is
used to test a program. This will further increase the
applicability of our approach. That is, we will try to
identify inducing combinations from an arbitrary test set
and then use them to generate tests for fault localization.
The challenge is to deal with the fact that unlike a
combinatorial test set, an arbitrary test set does not
guarantee that all t-way combinations are covered. This
might reduce the effectiveness of our approach.

8. ACKNOWLEDGMENT

This work is partly supported by three grants
(70NANB12H175, 70NANB10H168, and
70NANB15H199) from Information Technology Lab of
National Institute of Standards and Technology (NIST).

Disclaimer: Certain software products are identified in this
document. Such identification does not imply
recommendation by the NIST, nor does it imply that the
products identified are necessarily the best available for
the purpose.

9. REFERENCES

[1] R. Abreu, P. Zoeteweij, and A. van Gemund, "An Evaluation of

Similarity Coefficients for Software Fault Localization", In

Proceedings of 12th Pacific Rim International Symposium

on Dependable Computing, pp.39,46, Dec. 2006.

[2] Advanced Combinatorial Testing System (ACTS),

http://csrc.nist.gov/groups/SNS/acts/documents/
comparison-report.html, 2015.

[3] G. K. Baah, A. Podgurski and M. J. Harrold, “The Probabilistic

Program Dependence Graph and Its Application to Fault

Diagnosis,” in IEEE Transactions on Software Engineering, 36(4):

528-545, 2010.

[4] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz and S. Yoo, "The

Oracle Problem in Software Testing: A Survey," in IEEE

Transactions on Software Engineering, 41(5), pp. 507-525, May 1

2015.

[5] BEN: a combinatorial tesing-based fault localization tool,

http://barbie.uta.edu/~laleh/BEN.html, 2015.

[6] M. N. Borazjany, Y. Linbin, Y. Lei, R. Kacker, and D. R. Kuhn,

“T-way testing of ACTS: A Case Study”, In Proceedings of the

IEEE fifth International Conference on Software Testing,

Verification and Validation, pp.591-600, 2012.

[7] The Choco Constraint Solver, http://www.emn.fr/z-

info/choco-solver/index.html

[8] D. Cohen, S. Dalal, M. Fredman, and G. Patton. “The AETG

system: An approach to testing based on combinatorial design”,

In IEEE Transactions on Software Engineering, 23(7):437–444,

1997.

[9] M. B. Cohen, P. B. Gibbons, W.B. Mugridge, C.J. Colbourn.

“Constructing test suites for interaction testing”, In Proceedings

of the 25th International Conference on Software Engineering

(ICSE 2003), pages 38-48, 2003.

[10] D. Coppit and J. M. Haddox-Schatz, “On the use of specification

http://csrc.nist.gov/groups/SNS/acts/documents/comparison-report.html
http://csrc.nist.gov/groups/SNS/acts/documents/comparison-report.html
http://barbie.uta.edu/~laleh/BEN.html
http://www.emn.fr/z-info/choco-solver/index.html
http://www.emn.fr/z-info/choco-solver/index.html

30 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

based assertions as test oracles,” In Proceedings of Annual

IEEE/NASA Software Engineering Workshop, pp. 305–314,

2005.

[11] H. Do, S. Elbaum, and G. Rothermel. “Supporting Controlled

Experimentation with Testing Techniques: An Infrastructure

and its Potential Impact”, In Empirical Software Engineering.

10(4):405-435, 2005.

[12] Empirical study on combinatorial testing,

http://barbie.uta.edu/~laleh/research.html, 2015.

[13] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco,

M. S. Tschantz, and C. Xiao, “The Daikon system for dynamic

detection of likely invariants,” In Proceedings of Science of

Computer Programming, vol. 69, no. 1, pp. 35–45, 2007.

[14] GCC online documentation, https://gcc.gnu.org/onlinedocs,

2015.

[15] L. Ghandehari, M. N. Borazjany, Yu Lei, Raghu Kacker, Richard

Kuhn, “Applying Combinatorial Testing to the Siemens

Suite”, In Proceedings of the IEEE International Conference on

Software Testing, Verification and Validation (ICSTW), 2013.

[16] L. Ghandehari, J. Czerwonka, Y. Lei; S. Shafiee, R. Kacker, R.

Kuhn, "An Empirical Comparison of Combinatorial and

Random Testing," In Proceedings of the IEEE International

Conference on Software Testing, Verification and Validation

Workshops (ICSTW), pp.68-77, 2014.

[17] L. Ghandehari, Jaganmohan Chandrasekaran, Yu Lei, Raghu

Kacker, Richard Kuhn, “BEN: A Combinatorial Testing-Based

Fault Localization Tool”, In Proceedings of the IEEE

International Conference on Software Testing, Verification and

Validation (ICSTW), Graz, Austria, April, 2015.

[18] L. Ghandehari, Y. Lei, D. Kung, R. Kacker, R, Kuhn. “Fault

localization based on failure-inducing combinations,” In

Proceeding of the IEEE 24th International Symposium on

Software Reliability Engineering (ISSRE), 168-177, 2013.

[19] L. Ghandehari, Y. Lei, T. Xie, R. Kuhn, and R. Kacker.

“Identifying Failure-Inducing Combinations in a Combinatorial

Test Set”, In Proceedings of the IEEE International Conference

on Software Testing, Verification and Validation (ICST), 370-379,

2012.

[20] GNU Grep,

http://www.gnu.org/software/grep/manual/grep.
html, 2015.

[21] GNU Gzip,

http://www.gnu.org/software/gzip/manual/gzip.
html, 2015.

[22] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. L. Traon,

“Comparing white-box and black-box test prioritization”,

In Proceedings of the 38th International Conference on Software

Engineering ACM, pp. 523-534, 2016.

[23] J. Jones and M. Harrold, “Empirical evaluation of the tarantula

automatic fault-localization technique”, In Proceeding

IEEE/ACM Automated software engineering, 2005, 273-282.

[24] J. Jones, M. Harrold, and J. Stasko, “Visualization of Test

Information to Assist Fault Localization”, In Proceedings of

International Conference on Software Engineering, 2002, 467-

477.

[25] D. R. Kuhn and V. Okum. “Pseudo-Exhaustive Testing for

Software”, In Proceedings of the 30th Annual IEEE/NASA

Software Engineering Workshop (SEW '06). IEEE Computer

Society, 2006, 153-158.

[26] D.R. Kuhn, D.R. Wallace, A.M. Gallo. “Software fault

interactions and implications for software testing”, In

Proceedings of the IEEE Transaction on Software Engineering,

2004, 30(6), 418–421, 2004.

[27] T.D. B. Le, D. Lo, C. Le Goues, and L. Grunske, “A learning-to-

rank based fault localization approach using likely invariants,”

In Proceedings of the 25th International Symposium on Software

Testing and Analysis (ISSTA 2016), pages 177-188, 2016.

[28] T.D. B. Le, R. J. Oentaryo, and D. Lo, “Information retrieval and

spectrum based bug localization: Better together,” In

Proceedings of the ACM SIGSOFT Symposium on Foundations

of Software Engineering, pp: 579–590, 2015.

[29] Y. Lei, R. Kacker, D. Kuhn, V. Okun, J. Lawrence, “IPOG/IPOD:

Efficient test generation for multi-way software testing”, In

Journal of Software Testing, Verification, and
Reliability, 18(3):125-148, Sept. 2008.

[30] J. Li; C. Nie, and Y. Lei, "Improved Delta Debugging Based on

Combinatorial Testing," In Proceedings of International

Conference on Quality Software (QSIC), pp.102,105, 2012.

[31] Lucia, D. Lo, L. Jiang, A. Budi, “Comprehensive evaluation of

association measures for fault localization”, In Proceedings of

the IEEE International Conference on Software Maintenance, 1-

10, 2010.

[32] C. Ma, Y. Zhang, J. Liu, and M. Zhao, "Locating Faulty Code

Using Failure-Causing Input Combinations in Combinatorial

Testing," In Proceedings of 4th World Congress on of Software

Engineering (WCSE), pp.91,98, 2013.

[33] C. Nie and H. Leung. “A survey of combinatorial testing”, In

ACM Computing Surveys (CSUR), 43(2):11: 1-11: 29, January

2011.

[34] C. Nie, H. Leung, and B. Xu. “The minimal failure-causing

schema of combinatorial testing”, In ACM Transactions on

Software Engineering and Methodology, 20(4) , September 2011.

[35] B. Ozcelik and C. Yilmaz, "Seer: A Lightweight Online Failure

Prediction Approach," In IEEE Transactions on Software

Engineering, 42(1), pp. 26-46, Jan. 1 2016.

[36] A. Panichella, R. Oliveto, M. D. Penta and A. De Lucia,

"Improving Multi-Objective Test Case Selection by Injecting

Diversity in Genetic Algorithms," In IEEE Transactions on

Software Engineering, 41(4), pp. 358-383, April 1 2015.

[37] M. Papadakis and Y. L. Traon, “Metallaxis-FL: mutation-based

fault localization”, In proceeding of Software Testing,

Verification and Reliability, 25(5-7): 605-628, 2015.

[38] J. Petke, S. Yoo, M. B. Cohen, and M. Harman. “Efficiency and

early fault detection with lower and higher strength

combinatorial interaction testing,” In Proceedings of

Foundations of Software Engineering, pages 26–36, 2013.

[39] J. Petke, M. B. Cohen, M. Harman and S. Yoo, "Practical

Combinatorial Interaction Testing: Empirical Findings on

Efficiency and Early Fault Detection," In IEEE Transactions on

Software Engineering, 41(9): 901-924, 2015.

[40] M. Renieris and S. Reiss, “Fault localization with nearest

neighbor queries”, In Proceedings of the International

Conference on Automated Software Engineering, 2003.

[41] J. Röβler, G. Fraser, A. Zeller, and A. Orso. “Isolating Failure

Causes Through Test Case Generation”, In Proceeding of the

International Symposium on Software Testing and Analysis, pp.

309–319, 2012.

[42] R. Saha, M. Lease, S. Khurshid, and D. E. Perry. Improving bug

localization using structured information retrieval. Proceedings

of IEEE/ACM 28th International Conference on Automated

http://www.gnu.org/software/grep/manual/grep.html
http://www.gnu.org/software/grep/manual/grep.html
http://www.gnu.org/software/gzip/manual/gzip.html
http://www.gnu.org/software/gzip/manual/gzip.html

GHANDEHARI ET AL.: A COMBINATORIAL TESTING-BASED APPROACH TO FAULT LOCALIZATION 31

Software Engineering (ASE), pp. 345–355, 2013.

[43] K. Shakya, T. Xie, N. Li, Y. Lei, R. Kacker, and R. Kuhn, "Isolating

Failure-Inducing Combinations in Combinatorial Testing Using

Test Augmentation and Classification," In proceedings of 5th

IEEE International Conference on Software Testing, Verification

and Validation (ICST), pp.620-623, 2012.

[44] P.J. Schroeder, P. Bolaki, V. Gopu, "Comparing the fault

detection effectiveness of n-way and random test suites," In

Proceeding of the International Symposium on Empirical

Software Engineering, pp.49-59, 2004.

[45] L. Shi, C. Nie, B. Xu. “A software debugging method based on

pairwise testing”, In Proceedings of the International Conference

on Computational Science (ICCS2005), pages 1088-1091, 2005.

[46] Software-artifact Infrastructure Repository,

http://sir.unl.edu/portal/index.php, 2012.

[47] J. Sohn and S. Yoo, “FLUCCS: using code and change metrics to

improve fault localization”. In Proceedings of the 26th ACM

SIGSOFT International Symposium on Software Testing and

Analysis, pages 273-283, 2017.

[48] D. R. Wallace, D. R. Kuhn, “Failure Modes in Medical Device

Software: an Analysis of 15 Years of Recall Data”, In Proceeding

of the ACS/ IEEE International Conference on Computer

Systems and Applications, pp. 301-311, 2001.

[49] Z. Wang, B. Xu, L. Chen, and L. Xu. “Adaptive interaction fault

location based on combinatorial testing”, In Proceedings of the

10th International Conference on Quality Software (QSIC 2010),

pages 495–502, 2010.

[50] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. A Survey

on Software Fault Localization. IEEE Transactions on Software

Engineering, 42(8):707–740, 2016.

[51] X. Xia, L. Gong, T. D. B. Le, D. Lo, L. Jiang, and H. Zhang:

“Diversity maximization speedup for localizing faults in single-

fault and multi-fault programs”, In proceedings of Automated

Software Engineering, 23(1): 43-75, 2016.

[52] J. Xuan and M. Monperrus. “Test case purification for improving

fault localization”, In Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software

Engineering, pp. 52-63, 2014.

[53] J. Xuan and M. Monperrus. “Learning to Combine Multiple

Ranking Metrics for Fault Localization”, In proceedings of the

IEEE International Conference on Software Maintenance and

Evolution, pages 191-200, 2014.

[54] C. Yilmaz, M. B. Cohen, A. A. Porter. “Covering arrays for

efficient fault characterization in complex configuration spaces”,

In Proceedings of the IEEE Transaction on Software Engineering,

2006, 32(1): 20-34.

[55] S. Yoo, M. Harman, and D. Clark, “Fault localization

prioritization: Comparing information-theoretic and coverage-

based approaches”. ACM Transactions on Software Engineering

and Methodology, 29 pages, 2013.

[56] A. Zeller and R. Hildebrandt. “Simplifying and isolating failure-

inducing input”, In Proceedings of the IEEE Transactions on

Software Engineering, 2002, pages 183–200.

[57] Z. Zhang, and J. Zhang. “Characterizing failure-causing

parameter interactions by adaptive testing”, In Proceedings of

ACM International Symposium on Software Testing and

Analysis (ISSTA 2011), pp. 331-341, 2011.

[58] J. Zhou, H. Zhang, and D. Lo. Where should the bugs be fixed? -

more accurate information retrieval-based bug localization

based on bug reports. Proceedings of the 34th International

Conference on Software Engineering, pp. 14–24, 2012.

[59] H. Zhu, “A note on test oracles and semantics of algebraic

specifications,” In Proeedings of Conference on Quality

Software, pp. 91–98, 2003.

Laleh Sh. Ghandehari received the PhD
degree in computer science from University
of Texas at Arlington in 2016. She is an
Adjunct Professor in computer science and
engineering department of University of
Texas at Arlington. Her research interests
includes software testing, fault localization,
automatic debugging and program
analysis.

Yu Lei is a Professor in Department of
Computer Science and Engineering at the
University of Texas at Arlington. His
research interests are in the area
of software analysis, testing and
verification, with a special focus on
combinatorial testing. He was a Member of
Technical Staff in Fujitsu Network
Communications, Inc. for about three
years. He received his PhD degree in
Computer Science from North Carolina

State University.

Raghu Kacker is a mathematical statistician
in the National Institute of Standards and
Technology (NIST). His current interests
include development and use of
combinatorial methods for testing software
and systems. He has co-authored over 140
refereed publications and one book. He has
a Ph.D. and has worked in academia
(Virginia Tech), and industrial (AT&T Bell
Laboratories) and government (NIST)
research laboratories. He is a Fellow of the

American Statistical Association and a Fellow of the American
Society for Quality. He has received the Distinguished Technical
Staff Award from AT&T Bell Labs, and Bronze medal and Silver
medal from the US Department of Commerce.

Rick Kuhn is a computer scientist in the
Computer Security Division of the
National Institute of Standards and
Technology and is a Fellow of the IEEE. He
has co-authored three books and more
than 150 papers on information security,
empirical studies of software failure, and
combinatorial methods in software testing,
and co-developed the role based access
control model used worldwide. His awards
include the IEEE Innovation in Societal

Infrastructure Award and Gold medal for scientific/technical
achievement from the US Department of Commerce. Before joining
NIST, he worked as a software developer with NCR Corporation
and the Johns Hopkins University Applied Physics Laboratory. He
received an MS in computer science from the University of
Maryland College Park.

http://sir.unl.edu/portal/index.php

32 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Tao Xie is a full professor and Willett Faculty
Scholar in the Department of Computer
Science at the University of Illinois at
UrbanaChampaign, USA. His research
interests are software testing, software
analytics, software security, and intelligent
software engineering. He is a Fellow of the
IEEE.

Dr. David Kung is a professor of
Department of Computer Science and
Engineering and director of Software
Engineering Research Center at The
University of Texas at Arlington. He received
his BS in mathematics from Beijing
University, and MS and Ph.D. degrees in
computer science from The Norwegian
University of Science and Technology. He
has more than 40 years of combined
research, education and industry

experiences, and collaborates extensively with US industry. He has
published four books titled "Object-Oriented Software Engineering:
An Agile Unified Methodology," "Testing Object-Oriented
Software," "Introduction to Information Systems Engineering" and "
The Role of AI in Databases and Information Systems." He has also
published more than 100 technical articles in journals and
conference proceedings.

