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A Combinatorial Testing-Based Approach 
to Fault Localization  

Laleh Sh. Ghandehari, Yu Lei, Raghu Kacker, Richard Kuhn, Tao Xie, David Kung 

Abstract— Combinatorial testing has been shown to be a very effective strategy for software testing. After a failure 
is detected, the next task is to identify one or more faulty statements in the source code that have caused the failure. 
In this paper, we present a fault localization approach, called BEN, which produces a ranking of statements in terms 
of their likelihood of being faulty by leveraging the result of combinatorial testing. 

BEN consists of two major phases. In the first phase, BEN identifies a combination that is very likely to be failure-
inducing. A combination is failure-inducing if it causes any test in which it appears to fail. In the second phase, BEN 
takes as input a failure-inducing combination identified in the first phase and produces a ranking of statements in terms 
of their likelihood to be faulty. We conducted an experiment in which our approach was applied to the Siemens suite 
and four real-world programs, flex, grep, gzip and sed, from Software Infrastructure Repository (SIR). The experimental 
results show that our approach can effectively and efficiently localize the faulty statements in these programs. 

Index Terms— Combinatorial Testing, Fault Localization, Debugging  

——————————      —————————— 

1. INTRODUCTION 

ombinatorial testing is based on the observation 
that a large number of software failures are caused 
by interactions of only a few input parameters [26]. 
A t-way combinatorial test set, or simply a t-way 

test set, is designed to cover all the t-way combinations, i.e., 
combinations involving any t parameters [8][9][29]. 
Typically, t is a small number and is referred to as the 
strength of a combinatorial test set [25][26]. When the input 
parameters are properly modeled, a t-way test set could 
trigger any failure caused by interaction of at most t 
parameters. Empirical studies have shown that 
combinatorial testing is very effective in 
practice [6][16][25].    

After a failure is detected during combinatorial testing, 
the next task is locating the fault that caused the failure. In 
this paper, we present a fault localization approach called 
BEN that leverages the result of combinatorial testing. BEN 
takes as input a combinatorial test set and the execution 
status, i.e., pass or fail, of each test, and produces as output 
a ranking of statements in terms of their likelihood to be 
faulty.  

Most research in combinatorial testing has focused on 
developing efficient combinatorial test generation 
algorithms [8][29][33], or demonstrating the effectiveness 
of combinatorial testing in different application 
domains [6][15][44][48]. Several approaches have been 
developed to identify failure-inducing combinations in a 
combinatorial test set [49][57]. A failure-inducing 

combination, or simply an inducing combination, is a 
combination that causes all tests containing this 
combination to fail [34][57].  These approaches, however, are 
not designed to locate faulty statements in the source code.   

A significant amount of research has been reported on 
spectrum-based approaches to fault 
localization [1][23][40][50]. A program spectrum records 
information about certain aspects of a test execution [50], 
such as function call counts, program paths, program slices 
and use-def chains [40]. Examples of spectrum-based 
methods include Tarantula [24], set union, set intersection, 
and nearest neighbor [40]. These approaches identify 
faulty statements by analyzing the spectra of passing and 
failing test executions [24][40][31].  These approaches are 
not designed to work with combinatorial testing. However, 
they can be applied to analyze test executions obtained from 
combinatorial testing, provided that the test executions 
were traced. In case that a combinatorial test set is already 
executed without being traced, which is often the case in 
practice considering that testing and debugging are 
fundamentally different activities and are often performed 
separately, the test set must be re-executed before these 
approaches could be applied. In contrast, our approach does 
not require every test execution to be traced and is designed 
to be applied after normal testing is performed where test 
executions are not traced. We will compare our approach, 
i.e., BEN, to these approaches both analytically (Section 6.2) 
and experimentally (Section 5.2.3).    

Our approach consists of two major phases, inducing 
combination identification and faulty statement localization. In 
the first phase, BEN takes as input a t-way combinatorial test 
set. It adopts an iterative framework to identify an inducing 
combination of size t or larger. During each iteration, a set F 
of tests is analyzed. Initially F is the t-way combinatorial test 
set taken as input by BEN. BEN first identifies the set π of 
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all t-way suspicious combinations in F, and ranks them 
based on their likelihood to be inducing. Suspicious 
combinations are candidates of inducing combinations.  

Next, our approach generates a set F′ of new tests. If all 
the tests containing a suspicious combination c in F′ fail, c is 
marked as an inducing combination, and the process stops. 
Otherwise, all the tests in F′ are added to F and the process 
is repeated until a t-way combination is marked as an 
inducing combination or a stopping condition is satisfied. In 
the latter case, no t-way inducing combination is identified 
and we increase the size of inducing combination. That is, 
we try to identify a (t+1)-way inducing combination. This 
process is repeated until an inducing combination is found. 
Note that this process must terminate, as a failing test is by 
definition an inducing combination.  

The novelty of our approach in this phase lies in the fact 
that we rank suspicious combinations based on two 
notions, namely the combination suspiciousness and 
environment suspiciousness of a combination. Informally, 
the environment of a combination consists of parameter 
values that appear in the same test case but do not appear 
in the combination. The higher the combination 
suspiciousness of a combination, the lower its 
environment suspiciousness, the higher this combination 
is ranked. Moreover, new tests are generated for the most 
suspicious combinations. Let f be a new test generated for 
a suspicious combination c. Test f is generated such that it 
contains c and the environment suspiciousness for c is 
minimized. If f fails, it is more likely to be caused by c 
instead of other values in f. 

In the second phase of our approach, i.e., faulty statement 
localization, BEN systematically generates a small group of 
tests from an inducing combination such that the execution 
traces of these tests can be analyzed to quickly locate the 
faults. One of the tests in the group is referred to as the core 
member, which contains the inducing combination and 
produces a failing test execution. The other tests in the 
group are referred to as the derived members, which are 
derived from the core member in a way such that they are 
likely to execute a trace that is very similar to the trace of 
the core member but produce a different outcome, i.e., a 
passing execution. The spectrum of the core member is 
then compared to the spectrum of each derived member to 
produce a ranking of statements in terms of their 
likelihood to be faulty. 

Our approach differs from existing spectrum-based 
approaches, which do not deal with the problem of test 
generation. Instead, they assume that an existing test set is 
generated randomly and/or using other 
techniques [24][40][50]. 

The second phase of BEN is inspired by the notion of 
nearest neighbor [40]. The key idea of nearest neighbor is 
that faulty statements are likely to appear in the execution 
trace of a failing test but not in the execution trace of a 
passing test that is as similar to this failing test as possible. 
If two tests are significantly different, they are likely to 
represent different application scenarios. Thus, the 
differences in the execution traces of these two tests are 
likely due to program logic, instead of faults. The novelty 
of our approach lies in the fact that we generate, in a 

systematic manner, a failing test, i.e., the core member, and 
then derive its nearest neighbors from this failing test, i.e., 
the derived members. This is in contrast with the approach 
in [40], which executes a large number of tests from which 
a failing test and its nearest neighbors are selected. 

We report an experiment in which we applied our 
approach to the Siemens suite and four real-world programs, 
flex, grep, gzip and sed, in the Software Infrastructure 
Repository (SIR) [46]. The Siemens suite has been used in 
several studies to evaluate fault localization 
methods [23][40][50]. It contains seven relatively small 
programs, each of which has a number of faulty versions. 
Similarly, the real-world programs, i.e., flex, grep, gzip and 
sed, have a number of faulty versions and have been used in 
other studies such as [22][35][36][38][39]. Each of the faulty 
versions in SIR contains a single-fault. In order to evaluate 
the performance of BEN with multiple faults, we created 
several faulty versions that contain multiple faults.  

The results show that our approach is effective in 
localizing faulty statements and also efficient in that only a 
small number of tests need to be executed and traced. For 
example, one of the grep programs called grep3 has 18 faulty 
versions. Among these faulty versions, four versions were 
detected by a 2-way test set consisting of 121 tests. On 
average, BEN generated and executed 17.5 additional tests 
and traced 6.75 tests for these four versions. One needs to 
examine only 0.64% (on average) of the code to locate the 
faulty statement.  

Moreover, we compared the results of BEN and two 
other spectrum based approaches, Tarantula [24] and 
Ochiai [31]. Since Tarantula and Ochiai do not deal with test 
generation, they were applied to the initial combinatorial 
test set. Our experimental results show that BEN performed 
better than or as well as Tarantula and Ochiai for all the 
programs, but BEN requires a significantly smaller number 
of test executions to be traced and analyzed.  

The approach presented in this paper is the extension of 
our previous work, which has been presented in [19] 
and [18]. To the best of our knowledge, our work is the first 
to deal with code-based fault localization based on 
combinatorial testing. Existing work in this area, i.e., fault 
localization based on combinatorial testing, has mainly 
dealt with the problem of how to identify inducing 
combinations [34][49][45][57].      

The remainder of this paper is organized as follows.  
Section 2 explains basic concepts and assumptions of our 
approach. Section 3 presents the BEN approach. Section 4 
gives an example to illustrate the approach. Section 5 reports 
the experimental results of applying our approach to the 
subject programs. Section 6 discusses existing work on fault 
localization. Section 7 provides the concluding remarks and 
plans for future work.  

2. PRELIMINARIES 

In this section, we introduce the basic concepts and 
assumptions needed in our approach.  

2.1. Basic Concepts 

Assume that the system under test (SUT) has a set P of k 
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input parameters, denoted by P = {p1, p2, … , pk}. Let di  be 
the domain of parameter pi. That is, di contains all possible 
values that pi  could take. Let D = {d1 ∪ d2 ∪ …∪ dk} . Let 
Π =  d1 × d2 × …× dk . Let S be the set of program 
statements. 

Definition 1. (Test Case)  A test case or simply a test is a 
function that assigns a value to each parameter. Formally, a 
test is a function f: P → D. 

Definition 2. (Constraint) A constraint 𝜓  is a function 
that maps a test case to a Boolean value true or false, 
formally, 𝜓:Π ⟶ {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}. 

The SUT includes a set Ψ = {𝜓1, 𝜓2, … , 𝜓|Ψ|}  of 
constraints. We use Γ ⊆ Π to represent all valid tests for the 
SUT. A test f ∈ Γ is valid if and only if ∀𝜓 ∈ Ψ, 𝜓(f) = true. 
In the rest of the paper, we refer to a valid test simply as a 
test unless otherwise specified. 

Definition 3. (Test Oracle) A test oracle determines 
whether the execution of a test is pass or fail. Formally, a test 
oracle is a function r: Γ → {pass, fail}. 

Definition 4. (Combination) A combination c  is a test f 
restricted to a non-empty, subset M  of parameters in P . 
Formally, c = f|M where M ⊆ P, and |M| > 0. 

In the preceding definition, M is a subset of P. Thus, a test 
is a combination where M = P. We use dom(c) to denote the 
domain of c, which is a set of parameters involved in c. Note 
that dom(c) is the domain of a function, which is different 
from the domain of a parameter.  

A combination of size one is a special combination, which 
we refer to as a component. Since there is only one 
parameter involved, we denote a component o  as an 
assignment, i.e., o = p ← v, where o(p) = v.  

Definition 5. (Component Containment)  A component o =
p ← v is contained in a combination c denoted by o ∈ c, if 
and only if  p ∈ dom(c) and c(p) =  v. 

Definition 6. (Combination Containment) A combination c 
is contained in a test f, denoted by c ⊆  f , if and only if   ∀p ∈
dom(c), f(p) = c(p) . 

Definition 7. (Inducing Combination) A combination c is 
failure-inducing, or simply inducing, if any test f in which c 
is contained fails. Formally,  ∀f ∈ Γ: c ⊆ f ⟹  r(f) = fail. 

Definition 7 is consistent with the definition of inducing 
combinations in previous work [57][45][34][49]. 

Definition 8. (Inducing Probability) The inducing 
probability of a combination c is the ratio of the number of 
all failing tests containing c  to the number of all tests 
containing c. The inducing probability is computed by 

|{f ∈ Γ|r(f) = fail ∧ c ⊆ f}|

|{f ∈ Γ|c ⊆ f}|
 

The computation of inducing probability requires all 
tests containing a combination, which is often not possible 
in practice. This notion is, however, useful to evaluate our 
experimental results. By Definition 7, an inducing 
combination is a combination whose inducing probability is 
one.  

 Definition 9. (Suspicious Combination) A combination c is 
a suspicious combination in a test set F ⊆ Γ if c is contained 
only in failing tests in F. Formally, ∀f ∈ F: c ⊆ f ⇒ r(f) = fail. 

Inducing combinations must be suspicious 
combinations, but suspicious combinations may or may not 

be inducing combinations. 
Definition 10. (Test Spectrum) A test spectrum is a 

membership function γ  that determines whether a 
statement is exercised by a test (or precisely the execution of 
a test). Formally, γ: S ×  Γ → {true, false} , where γ(s, f) =
true  if 𝑠 ∈ 𝑆  is executed by f ∈ Γ , and γ(s, f) = false 
otherwise.  

In the rest of the paper, we also use γ(f) to represent all 
the statements that are executed by f. Formally, γ(f) =
{𝑠 ∈ 𝑆 | γ(s, f) = 𝑡𝑟𝑢𝑒}. 

2.2. Assumptions 

In this section, we present several assumptions that must 
hold to apply BEN.  

     Assumption 1. There exists an input parameter model 
of the SUT.  

This assumption is also required by combinatorial 
testing. Our approach is designed to be applied after 
combinatorial testing has been performed, and our 
approach uses the same input parameter model used to 
perform combinatorial testing. In cases that the SUT has 
multiple points of entry, an input parameter model could be 
created for each entry point, and our approach could be 
applied to one entry point at a time. 

Assumption 2. The output of the SUT is deterministic. In 
other words, the SUT always produces the same output for 
a given test. 

Assumption 3. There exists a test oracle that determines 
the status of a test execution, i.e., pass or fail. 

Assumption 3 is made to simplify the presentation of our 
approach. The construction of a test oracle is an independent 
research problem. Test oracles can be derived automatically 
or semi-automatically from formal or informal 
specifications [10][13][59]. When a test oracle exists, our 
approach can be fully automated. When a test oracle does 
not exist, our approach can still be applied, but the user 
needs to assist in determining the execution status of a test 
case. We note that the test oracle problem is common for 
many testing and fault localization approaches, including 
spectrum-based fault localization approaches such as 
Tarantula. We refer the reader to existing literature for more 
detailed discussion on the test oracle problem [4]. 

Assumption 4. There is at least one failing and one 
passing test in the initial test set.  

If there is no failing test, no fault is detected. Fault 
localization is typically performed when at least one fault is 
detected. If there is no passing test, the fault is likely easy to 
locate. 

3. APPROACH 

In this section, we present the BEN approach. BEN consists 
of two major phases, inducing combination identification 
and faulty statement localization. BEN assumes that a 
combinatorial test set has been executed on the subject 
program. Thus, the execution status of each test is known. 
Also, it assumes that the input parameter model used to 
generate the combinatorial test set is known. An input 
parameter model includes a set of parameters, each of which 
has a set of values, and a set of constraints that must be 
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satisfied for a test to be valid. 
The output of our approach is the ranking of statements 

such that the higher a statement is ranked, the more likely it 
is faulty. In the rest of this section, we explain the details of 
BEN.  

3.1. Phase 1: Inducing Combination Identification  

This phase takes three inputs, including an input parameter 
model Ω, a combinatorial test set F0 created based on Ω, and 
the strength t  of F0 . It produces as output an inducing 
combination, or more precisely the top ranked suspicious 
combination.  

3.1.1. Framework 

As shown in Fig 1, our approach adopts an iterative 
framework in this phase. During each iteration, the identify 
algorithm is used to analyze a set F of test cases and identify 
an l-way inducing combination.  

Initially, F is the initial combinatorial test set F0, and l is 
the strength t of the initial test set. If the identify algorithm 
identifies an l-way inducing combination, c (line 5), the while 
loop stops and reports c as an inducing combination. If no l-
way inducing combination is found, i.e. the identify 
algorithm returns null (line 2), l will be incremented. In the 
next iteration, the framework searches for inducing 
combinations of size l+1. As shown in Fig 2, new tests may 
be added into F by the identify algorithm each time it is 
called. 

 Based on assumption 4, there is at least one failing test in 
the initial test set. Recall that a failing test is an inducing 
combination by definition. Therefore, there is at least one 
inducing combination in the initial test set. Thus, the 

framework must terminate. 

3.1.2.  Algorithm Identify 

 Algorithm identify is shown in Fig 2, and is designed to 
find an l-way inducing combination in the test set F. It takes 
as input the input parameter model, Ω, test set F and l. The 
algorithm consists of two main steps:  

(1) Rank generation: In this step, we first identify all the 
l-way suspicious combinations in F  (line 3). Then, the 
component suspiciousness of each component, combination 
suspiciousness, ρc, and environment suspiciousness,  ρe, of 
each suspicious combination are computed (line 7 and line 
10). The different types of suspiciousness will be defined in 
Section 3.1.3. Finally, a ranking of the suspicious 
combinations is produced (line 12).  

(2) Test generation: In this step, for a user-specified 
number of top-ranked suspicious combinations, a set of new 
tests is generated (line 16).  Note that the user could specify 
the number of top-ranked suspicious combinations and the 
number of tests generated for each top-ranked combination. 
If an inducing combination is not found, all the new tests in 
F’ are added to the test set F to refine the ranking of 

 
Algorithm identify 

1 while ( true ) { 

2 // Step 1. rank suspicious combinations 

3 π ←  𝑙-way suspicious combinations in F 

4 if (π = empty) then return null //No l-way inducing combination is found 

5 let Θ be the set of suspicious components that appear in π 

6 for each component o ∈ Θ { 

7      compute ρ(o) based on formula 1 

8     } 

9 for each combination τ ∈ π { 

10      compute ρc(τ) and ρe(τ) based on formulas 2 and 3, respectively  

11 } 

12 produce a ranking of l-way combinations in π based on ρc and ρe 

13 // Step 2. generate new tests   

14    let Τ be the set containing a user-specified number of top-ranked combinations 

15    for every combination τ ∈ T { 

16        generate a set F′of a user-specified number of new tests that contain τ  
17 if (|F′| == 0 || (∀f ∈ F′, r(f) = fail) )  { 

18     𝑐 ← τ     // an l-way inducing combination is found  

19         return c 

20         } 

21         else { 

22               F ← F  F′   

23         } 

24     } 

25 } 

 
Fig 2. The Identify Algorithm  

The Phase 1 Framework  

1 𝑙 ← t and F ← F0 

2 while ((c ← identify(Ω, 𝑙, F)) = null) { 

3 𝑙 ← 𝑙 + 1 

4 } 

5 return c 

 
Fig 1. The Framework for Identifying Inducing Combination  
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suspicious combinations in the next iteration (line 22). 
The two steps, rank generation and test generation, are 

performed iteratively until one of the following two 
stopping conditions is satisfied:  

(1) The set π of l-way suspicious combinations becomes 
empty (line 4); or   

(2) An l-way inducing combination is found (line 18). An 
l-way suspicious combination τ  is considered to be an 
inducing combination if no new test containing τ  can be 
generated, or all newly generated tests containing τ fail (line 
17). In the former case, it is very likely that all tests 
containing τ have been executed, and all of them must have 
failed (otherwise, τ  is not suspicious). Thus, τ  is the 
inducing combination. In the latter case, τ  is likely to be 
inducing due to the way the new tests are generated as 
explained in Section 3.1.4. Later, we will discuss how BEN 
works when a non-inducing combination is reported as an 
inducing combination.    

In the following subsections, we will explain the two 
major steps, rank generation and test generation. 

3.1.3. Rank Generation 

In this step, we first identify the set π of all l-way suspicious 
combinations in F . Initially, π  contains all the l-way 
combinations covered by F . We then check each l-way 
combination τ in π. If τ appears in at least one passing test, τ 
is removed from π, since it is not suspicious anymore. In the 
subsequent iterations, we do not re-compute π  from the 
scratch. Instead, we only remove from π  all the 
combinations contained by newly added tests that passed. 

If there is no l-way suspicious combination, there is no l-
way inducing combination. In this case, the identify 
algorithm returns null. The main framework, as shown in 
Fig 1, then increases the size of inducing combination by 
one, and calls the identify algorithm again. 

In the first iteration, where F = F0 and l = t, all the t-way 
combinations are covered by F, as F0 is a t-way test set. But, 
when l > t, F does not contain all the l-way combinations. 
Therefore, our approach focuses on l-way combinations that 
appear in F.     

We next discuss how to rank the suspicious 
combinations in π . First, we introduce three important 
notions of suspiciousness, including component 
suspiciousness, combination suspiciousness, and environment 
suspiciousness. 

Component suspiciousness (ρ): This notion is defined such 
that the higher ρ  a component o  has, the more likely o 
contributes to a failure, and the more likely o appears in an 
inducing combination. Let F be the test set that is analyzed 
in the current iteration. In our approach, ρ is computed by 
the following formula: 

ρ(o) =
1

3
( u(o) + v(o) + w(o))                            (1)  

Where 

u(o) =
|{f ∈ F|r(f) = fail ∧ o ∈ f}| 

 |{f ∈ F|r(f) = fail}|
 

v(o) =
|{f ∈ F|r(f) = fail ∧ o ∈ f}| 

 |{f ∈ F|o ∈ f}|


w(o) =
|{τ|o ∈ τ ∧ τ ∈ π}|

|π|


 
The first factor, u(o), shows the ratio of the number of 

failing test cases in which component o appears over the 
total number of failing test cases. The second factor, v(o), 
shows the ratio of the number of failing test cases in which 
component o appears over the total number of test cases in 
which component o appears. The third factor shows the 
ratio of the number of suspicious combinations in which 
component o appears over the total number of suspicious 
combinations. The three factors are averaged to produce a 
value between 0 and 1.  

The motivation behind the first two factors is that the 
more frequently a component appears in failing test cases, 
this component is more likely to contribute to a failure. 

There is an important difference between the first two 
factors. Since the greater the domain size is, the less 
frequently each individual value of this parameter appears 
in a test set and consequently in failing test cases, the first 
factor, u(o) , has a bias towards smaller domain size 
parameters. The second factor, v(o), is used to reduce this 
bias.  

The motivation for the third factor is that components 
of inducing combinations tend to appear more frequently 
in suspicious combinations. For example, assume that 
combination c = (a ← 0, b ← 0)  is inducing. Let f = (a ← 
0, b ← 0, c ← 0, d ← 0)  be a test case. Test case f fails as it 
contains c. Let f ′ = (a ← 1, b ← 1, c ← 0, d ← 0) be another 
test case, which passes since it does not contain c. The set 
of suspicious combinations derived from these two test 
cases is 

π = {(a ← 0, b ← 0), (a ← 0, c ← 0),
(a ← 0, d ← 0), (b ← 0, c ← 0), (b ← 0, d ← 0)}

In this set, the frequencies of a ← 0  and b ← 0  are 
greater than others. The reason is that (c ← 0, d ← 0) 
appears in f ′, which is a passing test case. 

Combination suspiciousness ( ρc ): Combination 
suspiciousness of a combination τ  is defined to be the 
average component suspiciousness of the components that 
appear in τ. 

Formally combination suspiciousness of τ , ρc(τ)   is 
computed by 

ρc(τ) =
1

|𝜏|
∑ ρ(o)

∀ o∈τ

                                             (2)

Environment suspiciousness (ρe): The environment of a 
combination τ in a test f includes all the components that 
appear in f  but do not appear in τ . The environment 
suspiciousness of a combination τ in a test f is the average 
component suspiciousness of the components in the 
environment of τ. If there is more than one (failing) test 
containing τ in a test set, the environment suspiciousness 
of τ  in this test set is the minimum environment 
suspiciousness of τ in all the tests containing τ. Formally, 
environment suspiciousness  ρe  is computed by  
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ρe(τ) = min
 f∈F∧τ⊆f
∧ r(f)=fail

 (
1

|f| − |𝜏|
 ∑ ρ(o) 

o∈f ∧o∉τ

)               (3) 

Now we discuss how to actually rank the suspicious 
combinations based on ρc and ρe . Intuitively, the higher 
the value of c, the lower the value of e, the higher a 
combination is ranked.  

To produce the final ranking, we first produce two 
rankings Rc  and Re of suspicious combinations, where 
Rc is in the non-ascending order of c and Re is in the non-
descending order of e. The final ranking R is produced by 
combining Rc  and Re  as follows. Let τ  and τ′  be two 
suspicious combinations. Assume that τ has ranks rc and 
re in Rc and Re, respectively, and τ′ has ranks rc

′  and re
′  in 

Rc and Re, respectively. In the final ranking R, τ is ranked 
before τ′ if and only if rc + re < rc

′ + re
′ . 

3.1.4. Test Generation 

This step is responsible for generating new test cases for a 
user-specified number of top-ranked suspicious 
combinations. Let 𝜏  be a top-ranked suspicious 
combination. A new test f  is generated for 𝜏  such that f 
contains 𝜏  and the environment suspiciousness for τ is 
minimized in f. When such a test passes, this combination 
is removed from the suspicious set. When such a test fails, 
the failure is more likely due to this combination since its 
environment suspiciousness is minimized. Therefore, the 
suspicious combination should be marked as an inducing 
combination. To increase the confidence, a user-specified 
number of tests can be generated for a top-ranked 
suspicious combination.  

One approach to generating a given number n of new 
tests with minimum ρe for a suspicious combination is to 
generate all possible tests containing this combination, 
remove tests which already exist in F, and then select n 
tests that have the lowest ρe . This algorithm is very 
expensive. We next describe a more efficient, heuristic 
algorithm.  

First, we generate a base test f as follows. For each 
parameter involved in τ, we give the same value in f as in 
τ. Doing so makes sure that f contains τ. For each parameter 
in the environment of τ, i.e., each parameter that is not 
involved in τ, we choose a value (or component) whose 
suspiciousness ρ is the minimum. If there is more than one 
value with minimum ρ, one of them is selected randomly. 

Next, we check whether the base test f is valid and new, 
i.e., making sure that f satisfies all constraints if there is 
any, and has not been executed before. If so, f is returned 
as the new test that contains τ and has minimum ρe. If not, 
we pick one parameter randomly and change its value to a 
value with the next minimum ρ. Again, this test is checked 
to see whether it is a valid and new test. These steps are 
repeated until a new, valid test is found, or the number of 
attempts for finding a new test reaches a predefined 
number. The process is repeated until a desired number of 
new tests are generated.  

If BEN does not find any new, valid test, the 
combination is marked as an inducing combination, 
because it is likely that all the test cases containing this 
combination have been executed (and all of them must 
have failed). 

The newly generated tests, i.e., those in set F′ , are 
executed. If all the tests fail, the suspicious combination, τ, 
is marked as an inducing combination (line 18 - Fig 2). If 
not, F′ is added to the test set (line 22 - Fig 2) to refine the 
suspicious combinations set in the next iteration. By 
adding F′ to the test set the suspicious combination τ and 
all other suspicious combinations appear in passing tests 
of F′  are removed from the suspicious combinations set. 
Therefore, the number of suspicious combinations could 
be reduced by the new tests added into the test set.  

3.1.5. Discussion 

To successfully identify an inducing combination, BEN 
must first identify the combination to be a suspicious 
combination. Assume that c is an inducing combination. 
Let t be the strength of the initial test set. We consider the 
following three cases. 

Case (1): c is a t-way combination. As the initial test set 
is a t-way test set, there is at least one test that contains c, 
and all test cases containing c must fail, since c is inducing. 
Therefore, c is identified to be a suspicious combination. 

Case (2): The size of c  is less than t . All t -way 
combinations containing c are inducing combinations, and 
are identified to be suspicious combinations.  

Case (3): The size of c is more than t. The initial t-way 
test set is not guaranteed to cover every combination 
whose size is larger than t. If c appears in the initial t-way 
test set or the newly generated tests, thus causing a test 
containing it to fail, it is identified to be a suspicious 
combination when l is equal to the size of c.     

Let c be an inducing combination that has been 
identified as a suspicious combination. If it is in the top-
ranked set, i.e., the set of a user-specified number of top-
ranked combinations, all the tests generated for c fail since 
they contain c. Therefore, c is identified to be an inducing 
combination.  

Now consider the case that c is not in the top-ranked 
set. Without loss of generality, assume that every 
combination c’ in the top-ranked set is not inducing. If any 
new test generated for c’ passes, c’ is no longer suspicious 
and is thus removed from π. This will cause c to move up 
in the ranking. With a sufficient number of iterations, c will 
be moved into the top-ranked set and will be identified to 
be an inducing combination.  

If all the tests generated for c’ fail, c’ will be reported as 
an inducing combination. As discussed earlier, a new test 
for c’ is generated such that if it fails, it is likely due to c’. 
Thus, if all the tests generated for c’ fail, c’ is likely to have 
a high inducing probability even if it is not truly inducing.  

BEN provides the user with several options to control 
the cost and effectiveness of the process. First, BEN allows 
the user to specify the number of new tests generated for 
each top-ranked suspicious combination. The more tests 
generated, the more effort it takes to execute them, but the 
more confidence we have about the identified inducing 
combinations. 

Second, BEN allows the user to specify the size of the 
top-ranked set for which new tests will be generated. The 
bigger the top-ranked set, the more effort to generate and 
execute the new tests, but the faster an inducing 
combination may be identified. This is because if an 
inducing combination c is included in the top-ranked set, c 
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is identified to be an inducing combination in the first 
iteration. Otherwise, it may take multiple iterations for c to 
move up into the top-ranked set. 

Finally, BEN allows the user to stop the first phase (and 
move to the second phase) in the following three ways if 
there is limited resource:  
1- The user could define the maximum number of 

iterations for the identify algorithm. That is, if none of 
the two stopping conditions is satisfied after a specified 
number of iterations, the identify algorithm stops and 
returns null. Returning null shows that there is no 
inducing combination of the current size; therefore, the 
main framework increments the size in the next 
iteration.  

2- The user could decide to stop at the end of each iteration 
of the framework. In this case, the top ranked suspicious 
combination would be reported as an inducing 
combination.  

3- The user could define the maximum size of inducing 
combination. If the maximum size is reached but BEN 
still does not find any inducing combination, the top 
ranked suspicious combination in the last iteration is 
reported as an inducing combination. Recall that in the 
worst case, the size of inducing combination is equal to 
the number of parameters.  

3.2. Phase 2: Faulty Statement Localization 

Fig 3 shows the algorithm used by BEN to localize faulty 
statements. It consists of two major steps: (1) Test 
Generation: In this step, we generate a small group of tests. 
The group contains one failing test, which is referred to as 
the core member, and at most l passing tests, where l is the 
size of the inducing combination. The passing tests are 
referred to as the derived members. Each derived member 
is expected to produce a similar execution trace as the core 

member. (2) Rank Generation: In this step, we compare the 
spectrum of the core member to the spectrum of each 
derived member, and then produce a ranking of 
statements in terms of their likelihood of being faulty. 
More details of these two steps are explained in the 
following sections. 

3.2.1. Test Generation 

In this step, as shown in Fig 3 (lines 3-9), a group of tests, 
M, which includes the core member f and at most l derived 
members, are generated. Let c  be the l-way inducing 
combination identified in Phase 1. The core member f is 
created such that it contains c  and the environment 
suspiciousness of c in f is minimized (line 4). To generate 
such a test, the same algorithm used for test generation in 
Phase 1 is applied: For each parameter p involved in c, f 
has the same value for p  as c , i.e. c ⊂ f , and for each 
parameter p that does not appear in c, f takes a value that 
has the minimum suspiciousness value among all the 
values of p. As discussed later, the reason why we want to 
minimize the environment suspiciousness of c is to 
maximize the likelihood of a derived member to be a 
passing test. If such a test does not satisfy system 
constraints, we randomly pick one parameter that does not 
appear in c and change its value to a parameter value that 
has the next minimum suspiciousness value. We repeat 
these steps until a valid test is found, or the number of 
attempts for finding a test reaches a predefined number. In 
the latter case, a test that contains c from the initial test set 
is picked as the core member.  

The core member f is likely to fail, since it contains the 
inducing combination c identified in the first phase. Next, 
for each component o ∈ c , a set of derived member 
candidates, Mo, is generated. A derived member candidate  
m𝑖 ∈ Mo is generated such that it has the same values as f 

 
Algorithm localize 

1  // Step 1. Generate core and derived members 

2 let c be the inducing combination identified in Phase 1  

3 let M be an empty set 

4 generate core member f ∈ Γ such that   c ⊂ f and for all o ∈ f and o ∉ c,  ρ(o) = min
vi∈d

{ρ(p ← vi)}    

5 for (each component o ∈ c) {  

6 generate the derived member candidate set Mo for component o based on Θ and Ω 

7      select derived member mo ∈ Mowhere r(mo) = pass and |γ(f) − γ(mo)| > 0 and 

|γ(f) − γ(mo)| = min
m∈Mo

{|γ(f) − γ(m)|} 

8 M = M ∪ {mo} 

9 } 

10 // Step 2. Rank statements 

11 for each statement s ∈ S { 

12 for all derived members in m ∈ M)  

13 compute ρ(s,m) with respect of core member f, based on formula (5) 

14 ρ(s) =  ρ(s,m)m∈M /|M|  

15 } 

16 Let R be the ranking of statement in the non-increasing order of ρ(s) 
17 return R 

 

 
Fig 3. The Localize Algorithm 
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for all parameters except for one component o ∈ c . The 
component o is replaced with another component, o′, of 
the same parameter with the minimum suspiciousness 
value. Note that a parameter may have multiple least 
suspicious components, i.e., multiple components with the 
minimum suspiciousness value. So, all the tests in Mo are 
different from the core member and from each other in one 
component, o. Moreover, invalid tests are discarded from 
the set.  

Fig 4 shows how the derived member candidate set, or 

simply candidate set Mo1  is generated from the core 

member f. (In the remainder of this paper, we will refer to 

a derived member candidate set as a candidate set if there 

is no ambiguity.) The core member f contains k 

components, o1, o2… , ok , where k is the number of 

parameters. Without loss of generality, assume that the 

first l components in f, i.e., o1, o2… , o𝑙 , are in the inducing 

combination c. As shown in Fig 4, each test in candidate set 

Mo1 is different from the core member f in component o1 ∈

c.  The o1 component is replaced with o1
j
= p1 ⟵ vj where 

o1
j
 is a least suspicious component of p1 . For each least 

suspicious component p1 , one derived candidate test is 

generated. Formally: 

ρ(o1
1 = p1 ⟵ v1) =  ρ(o1

2 = p1⟵ v2)… =  min
∀j∈d1

ρ (p1 ⟵ vj) 

The number of tests in Mo1  depends on the number of 
least suspicious components of parameter p1  and 
constraints, as all tests in Mo1 must be valid, i.e., they must 
satisfy all the system constraints. Candidate tests are likely 
to pass. First, the replacement effectively removes 
inducing combination c from tests. Second, the use of a 
least suspicious component for the replacement and 
having the suspiciousness environment minimized reduce 
the chance of introducing another inducing combination to 
the test. 

Next, a derived member mo  is selected from each 

candidate set Mo (line 7). There are two criteria for derived 

member mo . First, it must pass. Second, it has the 

minimum positive spectrum difference with the core 

member f among all the passing tests in Mo . Formally, 

|γ(f) − γ(mo)| = min
m∈Mo∧

r(m)=pass

{|γ(f) − γ(m)|}  and |γ(f) −

γ(mo)| > 0. 

If there is more than one test that satisfies the two 
criteria, one of them is selected randomly. All the derived 

members are stored in a set called M (line 8). Fig 5 shows 
the core member f and the set M of derived members. 

The execution trace of a derived member mi ∈ M  is 
likely to be very similar to the execution trace of the core 
member, because these two tests only differ in one value, 
and they have the minimum spectrum differences among 
other similar tests. Since all the derived members mi pass 
whereas the core member f fail, the faulty statement is very 
likely to be one of the statements that appear in the 
execution trace of f but do not appear in the execution trace 
of m1, m2… , and m𝑙. 

3.2.2. Rank Generation 

In this step, BEN computes the suspiciousness of each 
statement and then ranks them in terms of their likelihood 
to be faulty by analyzing the spectrums of the core member 
and derived members. The suspiciousness of statement s is 
denoted by ρ(s)  and computed by analyzing the 
spectrums of the core member and derived members. The 
suspiciousness of statement s is the average suspiciousness 
of s with respect to every derived member. Formally:  

ρ(s) =  ρ(s,mi)/(|M|)mi∈M
                                        (4) 

where ρ(s, mi) is the suspiciousness of s with respect to 
a derived member mi  and is computed by the following 
formula: 

 

ρ(s,mi) = {

1        if γ(s, f) =  true  and γ(s,mi) =  false      

0.5    if γ(s, f) =  γ(s,mi) =  true                   (5)

0       if γ(s, f) = false                                              

 

 
The idea behind formula (5) is the following. Statements 

that are only executed by the core member f are most 
suspicious and are given 1 as their suspiciousness value. 
Statements that are executed by both the core member and 
a derived member are less suspicious, and are given 0.5 as 
their suspiciousness value. Note that the execution of a 
faulty statement by a test does not necessarily make the test 
fail. For example, if there exists a fault in a conditional 
expression, this fault can be executed by all the tests but 
only cause some to fail. Finally, statements that are not 
executed by f are not suspicious. 

For example, if there are two derived members in M, m1 
and m2, and the core member is f. Assume that a  statement 
s is executed by f and m2, but not by m1 The suspiciousnes 
ρ(s) of s would be 0.75. This is because ρ(s,m1) = 1 and 
ρ(s,m2) = 0.5 , and the average of ρ(s,m1)  and ρ(s,m2) 

f {o1, o2, … , o𝑙 , o𝑙+1, o𝑙+2… , ok} Core 

 {𝐨𝟏
′ , o2, … , o𝑙 , o𝑙+1, o𝑙+2… , ok}  

M   
{o1, 𝐨𝟐

′ , … , o𝑙 , o𝑙+1, o𝑙+2… , ok}  

…  

 {o1, o2, … , 𝐨𝒍
′, o𝑙+1, o𝑙+2… , ok}  

 

c 

Fig 5. The core and derived members 

f {o1, o2, … , o𝑙 , o𝑙+1, o𝑙+2… , ok} Core 

Mo1 

{𝐨𝟏
𝟏, o2, … , o𝑙 , o𝑙+1, o𝑙+2… , ok}  

{𝐨𝟏
𝟐, o2, … , o𝑙 , o𝑙+1, o𝑙+2… , ok}  

...  

 

c 

Fig 4. Generation of the candidate set 𝐌𝐨𝟏 
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would be 0.75. 
The higher the suspiciousness value of a statement, the 

more likely this statement is faulty. We rank statements by 
a non-ascending order of their suspiciousness value. To 
locate the faulty statement, the statements in the top rank 
are examined first, and then the statements in the next 
rank, until the faulty statement is found.  

3.2.3. Discussion 

The effectiveness of our approach in this phase depends to 
some extent on the quality of the inducing combination c 
identified in the first phase. If combination c is truly 
inducing, the core member generated by our approach, i.e., 
the one that contains this combination and minimizes its 
environment suspiciousness, must fail. However, if c is not 
truly inducing, but with a high inducing probability, the 
core member still has a high probably to fail. The 
experimental results in Section 5.2.1.1 and 5.2.2.1 show that 
Phase 1 of our approach can identify truly inducing 
combinations or combinations that have a high inducing 
probability. 

If the core member generated in the second phase does 
not fail, we pick a test from the initial t-way test set that 
contains c as the core member. Since c is identified as an 
inducing combination, there must exist at least one failing 
test that contains c  in the initial test set. (Otherwise, c 
would not even be a suspicious combination.) In this case, 
the environment suspiciousness of c in this test may not be 
minimized. This may reduce the probability for the 
derived members to pass.  

If BEN could not find any passing test in a candidate set 
Mo  for a component o (in the inducing combination), it 
ignores the candidate set and thus no derived member is 
generated for component o. We note that the existence of 
constraints could reduce the number of possible tests in the 
candidate set and thus increase the chance of being unable 
to find a passing test. In case that no derived member is 
generated for all the components in the inducing 
combination, BEN picks a passing test from the test set 
such that the number of components that differ between 
the passing test and the core member is minimized. In this 
case, the difference between the core member and this 
derived member may not be minimal, which might affect 
the efficiency of our approach. We believe the chance for 
this case, i.e., all the tests in all the candidate sets for all the 
components fail, to occur is small, which is consistent with 
our experiments in which it occurred in 16 out of 171 
single-fault versions of our subject programs. 

3.2.4. Complexity Analysis 

In our analysis, we do not consider the complexity of 
constraint solving and the cost of test execution. Our 
approach uses a third-party solver for constraint solving. 
The cost of test execution depends on the subject program. 

Let k be the number of parameters, t the strength of the 
initial test set and d  the largest domain size of the 
parameters. Let N  be the number of tests in the current 
iteration, which includes the tests in the initial test set and 
the tests generated in the previous iterations. Note that the 
number of tests generated at each iteration depends on two 

user-specified numbers, i.e., the size of the top-ranked set 
consisting of suspicious combinations for which tests are 
to be generated, and the number of tests to be generated 
for each suspicious combination in the top-ranked set. 
Assume that the inducing combination is of size 𝑙, which is 
greater than or equal to t. The maximum number of l-way 
combinations contained in the test set is  η = (k

𝑙
)N. 

To determine whether a combination is suspicious, the 
identify algorithm needs to check if the combination 
appears in any passing test, which takes O(N × 𝑙) . 
Therefore, building the suspicious combination set takes 
η × O(N × 𝑙) . Next, the identify algorithm computes the 
suspiciousness values for all the components, which 
includes computing the frequency of each component in 
the suspicious combination set, test set and failing tests. 
Computing the frequency in the suspicious combination 
set dominates the other two, which takes O(η)  for each 
component. The maximum number of components is k ×
d . Thus, computing suspiciousness values for all the 
components takes k × d × O(η). 

After having suspiciousness values of all the 
components, computing combination suspiciousness of 
each combination (ρc) takes 𝑙, and thus 𝑙 ×  O(η) for all the 
combinations. To compute ρe of a combination, BEN first 
searches in the test set to find all the failing tests that 
contain this combination, which takes 𝑙 × O(N). Next, for 
each of these failing tests, it computes the average 
suspiciousness value of k − 𝑙  components in the 
environment. Therefore, it takes in total 𝑙 × (k − 𝑙) ×
O(η) × O(N) . Finally, BEN finds the minimum 
environment suspiciousness among all these failing tests, 
which takes O(N). Therefore, the complexity of computing 
ρe for all the combination is 𝑙 × (k − 𝑙) × O(η) × O(N). 

The identify algorithm sorts the set of suspicious 
combinations three times, once for each ranking Rc , Re , 
and R , taking O(η × log(η)) . This dominates the 
complexity of the rank generation step, if the number of 
tests N is far less than the number of combinations, η. 

The test generation step needs to select (k − 𝑙) values 
with minimum ρ first, which takes (k − 𝑙) × O(d). Then it 
needs to check whether it is new, which is O(N). Since k, l 
and d  are smaller than  η , O(η × log(η))  dominates the 
complexity of the rank generation and test generation 
steps. Therefore the complexity of the identify algorithm is  
O(η × log(η)). In the worst case, the identify algorithm is 
called (k − t) times. Thus, the complexity of this phase is 
(k − t) × O(η × log(η)).     

In Phase 2, in order to generate the core member, we 
need to select values with minimum suspiciousness for 
(k − 𝑙) components, which takes (k − 𝑙) × O(d). There are 𝑙 
candidate sets, and for each it takes O(d)  to find 
components with minimum ρ . Therefore, generating all 
candidate sets takes 𝑙 × O(d). 

 Each candidate set at most contains d − 1  derived 
members. Selecting a test with minimum difference in the 
spectrum with the core member takes [𝑙 × (d − 1)] × |S|, 
where |S| is the number of statements of the program. The 
complexity of selecting a test, [𝑙 × (d − 1)] × |S|, dominates 
the complexity of this step.   
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In the rank generation step, the complexity of assigning 
a suspiciousness value to each statement with respect to 
the 𝑙 derived members is O(𝑙). So for all the statements S of 
the program, it takes |S| × O(𝑙). Then all the statements 
need to be sorted to rank the statements, which is O(|S| ×
log(|S|)) . Since 𝑙  is typically much smaller than the 
program size |S| , this sorting operation dominates the 
complexity of this part. The complexity of the rank 
generation step, O(|S| × log(|S|)) , dominates the 
complexity of this phase. 

Depending on the programs size, |S| and the number of 
suspicious combinations, η, the complexity of Phase 1 or 
Phase 2 may dominate the complexity of BEN. 

4. EXAMPLE 

In this section, we illustrate our approach using an 
example program shown in Fig 6. Method foo has a fault in 
line 9. The correct statement should be r += (b − d)/(a +
2), but operator “+” is missing. The input parameter model 
consists of P = {a, b, c, d}, and da = {0,1}, db = {0,1}, dc =
{0,1,2}, and  dd = {0,1,2,3}. The faulty statement is reached 
when a is 0 and c is 0 or d is 3. So there are two inducing 
combinations (a ← 0, c ← 0) and (a ← 0, d ← 3).  
 Assume that the program is tested by a two-way test 
set. The test result is shown in Table 1, where three out of 
twelve tests fail. Test cases #1 and #7 fail because they 
contain combination (a ← 0, c ← 0) . Test case #10 fails 
because it contains (a ← 0, c ← 0) and (a ← 0, d ← 3). 

4.1. Phase 1: Inducing Combination Identification  

Table 1 shows a t-way test set with test execution statuses 
for the example program. In the first iteration, the identify 
algorithm identifies nine suspicious combinations (Fig 2, 
line 3) which are listed in the first column of Table 2. Then 
the algorithm computes the suspiciousness values of all the 
(seven) components that appear in one or more of these 
suspicious combinations.   

 For example, component c ← 0  appears in all of the 
three failing test cases, so u(c ← 0) = 1. Also, it appears in 
a total of four tests, three of which are failing tests, so 
v(c ← 0) = 3 4⁄ ; five out of nine members of suspicious 

combinations set contain c ← 0 , so w(c ← 0) = 5 9⁄ . The 
computations for all the seven components are as follows: 

ρ(c ← 0) =
1

3
× (1 +

3

4
+
5

9
) =  0.7685 

ρ(d ← 0) =
1

3
× (
1

3
+
1

3
+
2

9
) =  0.2963 

ρ(d ← 2) =
1

3
× (
1

3
+
1

3
+
2

9
) =  0.2963 

ρ(d ← 3) =
1

3
× (
1

3
+
1

3
+
3

9
) =  0.3333 

ρ(b ← 0) =
1

3
× (
1

3
+
1

7
+
1

9
) =  0.1958 

ρ(b ← 1) =
1

3
× (
2

3
+
2

5
+
3

9
) =  0.4667 

ρ(a ← 0) =
1

3
× (1 +

3

6
+
2

9
) =  0.5741 

Table 3 illustrates the suspiciousness values of all the 
components. The suspiciousness values for the 
components that do not appear in any suspicious 
combination are zero. 

According to formula (2),  ρc  for a suspicious 
combination τ is the average component suspiciousness of 
components that τ contains. For example, in combination 
(a ← 0, c ← 0) , ρc  is (0.5741 + 0.7685) 2 = 0.6713⁄ . After 
computing ρc  for all suspicious combinations, we rank 
them based on the non-ascending order of  ρc. The values 
of ρc and Rc for each suspicious combination are shown in 
the second and third columns of Table 2.  

Next, we compute ρe for each suspicious combination 
using formula (3). For example, there are three test cases, 
test #1, test  #7, and test #10, that contain (a ← 0, c ← 0). 
Therefore, 

ρe(a ← 0, c ← 0) = min ((
ρ(b←0)+ρ(d←0)

2
) = 0.2460 ,

(
ρ(b←1)+ρ(d←2)

2
) = 0.3815, (

ρ(b←1)+ρ(d←3)

2
) = 0.4000) =

0.2460  

TABLE 1 

TWO-WAY TEST SET AND STATUS 

Test # a b c d Status 

1 0 0 0 0 Fail 

2 1 1 1 0 Pass 

3 0 1 2 0 Pass 

4 1 0 0 1 Pass 

5 0 0 1 1 Pass 

6 1 1 2 1 Pass 

7 0 1 0 2 Fail 

8 1 0 1 2 Pass 

9 0 0 2 2 Pass 

10 0 1 0 3 Fail 

11 1 0 1 3 Pass 

12 1 0 2 3 Pass 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 6. An example faulty program 
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Next we rank suspicious combinations by a non-
descending order of ρe, as shown in column Re of Table 2.  

Finally, the two rankings in columns Rc  and Re  are 
combined to produce a final ranking of the suspicious 
components (column R). In this final ranking, inducing 
combination (a ← 0, c ← 0) is ranked on the top, and the 
other inducing combination (a ← 0, d ← 3) is ranked 6th. 

Then, a new test is generated for the top ranked 
suspicious combination (a ← 0, c ← 0). We assign values to 
parameters in its environment, i.e., b and d, such that the 
suspiciousness of each value is minimum. For b , 0 is 
selected, as min(ρ(b ← 0) = 0.1958 , ρ(b ← 1) = 0.4667) =
0.1958 . For d , 1 is selected as min(ρ(d ← 0) =
0.2963, ρ(d ← 1) = 0, ρ(d ← 2) = 0.2963, ρ(d ← 3) =
0.3333) = 0 . So a new test (a ← 0, b ← 0, c ← 0, d ← 1)  is 
generated. 

The newly generated test, (a ← 0, b ← 0, c ← 0, d ← 1) , 
fails. For simplicity of presentation, assume that only one 
test is generated for this combination. (If more tests are 
generated, all of them would fail too in this example.) 
Therefore, suspicious combination (a ← 0, c ← 0)  is 
marked as an inducing combination and returned by the 
identify algorithm. The main framework of the first phase 
stops at the end of the first iteration and reports (a ← 0, c ←
0) as the inducing combination. 

4.2. Phase 2: Faulty Statement Localization 

In the test generation step of the second phase, the core 
member f = (a ← 0, b ← 0, 𝑐 ← 0, d ← 1)  is generated. It 
contains the inducing combination (a ← 0, c ← 0), and two 
components b ← 0  and d ← 1  which have the minimum 
suspiciousness value (among components of the same 
parameter) as shown in Table 3. The core member fails. 

As shown in Fig 7 the candidate set Ma←0 of component 
a ← 0  contains only one test, (a ← 1, b ← 0, c ← 0, d ← 1) , 
since a ← 1  is the only component with minimum 
suspiciousness. The test passes and therefore is selected as 
a derived member, ma←0. 

The second candidate set Mc←0, shown in Fig 8, has two 
tests, where component c ← 0  from the core member is 
replaced with c ← 1  and c ← 2 , since min(ρ(c ← 0) =
0.7685, ρ(c ← 1) = 0, ρ(c ← 2) = 0) = 0  and both 
components c ← 1  and c ← 2  have the minimum 
suspiciousness value, 0.   

To select a derived member mc←0  from candidate set 
Mc←0 , both tests m𝑐←0

1  and m𝑐←0
2  are executed and their 

execution traces are recorded. A test is selected as a derived 

member if it passes and it has minimum spectrum 
difference with the core member. 

Both tests m𝑐←0
1  and m𝑐←0

2  pass. The spectra of the core 

member, f, and two members of candidate set Mc←0  are 
shown in Table 4. The second column of Table 4 shows the 
program statements. The third column shows the 
spectrum of the core member f. The fourth column shows 
the program spectrum of m𝑐←0

1 . The fifth column contains 1 
if a statement is executed by the core member but not by 
 m𝑐←0
1 . Otherwise it contains 0. The sixth column shows the 

program spectrum of  m𝑐←0
2 .  The last column is assigned to 

1 iff the corresponding statement is executed by the core 
member and not by mc←0

2 . The fifth and seventh columns 
are used to compute the spectrum differences of the core 
and m𝑐←0

1  or mc←0
2 . The last row of Table 4 shows the 

spectrum difference of the core and each member of Mc←0, 
which are computed by the summation of fifth and last 
columns. 

Since both tests mc←0
1  and mc←0

2  pass and have the same 
spectrum difference with the core member, test mc←0

1  is 
selected randomly as the derived member mc←0 . Fig 9 
shows the output of the test generation step, the core 
member, f, in the first row and the derived members set M, 
which contains two tests. 

TABLE 2 
 SUSPICIOUS COMBINATIONS AND THEIR CORRESPONDING VALUES 

Suspicious combination 𝝆𝒄 𝑹𝒄 𝝆𝒆 𝑹𝒆 𝑹𝒄 + 𝑹𝒆 𝑹 

𝑎 ← 0, 𝑐 ← 0 0.6713 1 0.2460 1 2 1 

𝑏 ← 1, 𝑐 ← 0 0.6176 2 0.4352 3 5 2 

𝑐 ← 0, 𝑑 ← 0 0.5324 4 0.3849 2 6 3 

𝑐 ← 0, 𝑑 ← 3 0.5509 3 0.5204 4 7 4 

𝑐 ← 0, 𝑑 ← 2 0.5324 4 0.5204 4 8 5 

𝑎 ← 0, 𝑑 ← 3 0.4537 5 0.6176 5 10 6 

𝑏 ← 1, 𝑑 ← 3 0.4000 6 0.6713 6 12 7 

𝑏 ← 1, 𝑑 ← 2 0.3815 7 0.6713 6 13 8 

𝑏 ← 0, 𝑑 ← 0 0.2460 8 0.6713 6 14 9 
 

TABLE 3 
 COMPONENT SUSPICIOUSNESS   

 Parameter Value 𝛒𝐜 Parameter Value 𝛒𝐜 

a 
0  0.5741 

b 
0  0.1958 

1  0 1  0.4667 

c 

0  0.7685 

d 

0  0.2963 

1  0 1  0 

2  0 
2  0.2963 

3  0.3333 

 

 

 

 

 

 

 

 
 

f (a ← 0, b ← 0, c ← 0, d ← 1) Fail  

Mc←0 
m𝑐←0
1 = (a ← 0, b ← 0, 𝐜 ← 𝟏, d ← 1) Pass  

m𝑐←0
2 = (a ← 0, b ← 0, 𝐜 ← 𝟐, d ← 1) Pass  

 
Fig 8. Candidate set of 𝐌𝐜←𝟎 

f (a ← 0, b ← 0, c ← 0, d ← 1)   Fail 

Ma←0 ma←0 = (𝐚 ← 𝟏, b ← 0, c ← 0, d ← 1)   Pass 

Fig 7. Candidate set of 𝐌𝐚←𝟎 

 f (a ← 0, b ← 0, c ← 0, d ← 1) Fail 

M 
ma←0 = (𝐚 ← 𝟏, b ← 0, c ← 0, d ← 1) Pass 

mc←0 = (a ← 0, b ← 0, 𝐜 ← 𝟏, d ← 1) Pass 

 
Fig 9. Core and derived members of the example program 
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In the rank generation step, the spectrum of the core 
member is compared to that of each derived member m ∈
M and the statement suspiciousness with respect to m is 

computed. Table 5 shows the program spectra for the core 
member and two derived members in columns three to 
five. The suspiciousness values for each statement with 

TABLE 4 
  PROGRAM SPECTRA OF CORE AND CANDIDATE SET 𝐌𝐜←𝟎 

 

 Subject Program 𝛄(𝐬, 𝐟) 𝛄(𝐬,𝐦𝒄←𝟎
𝟏 ) 

𝛄
( 𝐟
)
−
𝛄
( 𝐦

𝒄
←
𝟎

𝟏
)  
   

𝛄(𝐬,𝐦𝒄←𝟎
𝟐 ) 

𝛄
( 𝐟
)
−
𝛄
( 𝐦

𝒄
←
𝟎

𝟐
)  
   

 

1 public static int foo(int a,int b, int c,int d){ True True 0 True 0 

2  int r = 1;   True True 0 True 0 

3  b += a + c; True True 0 True 0 

4  switch (a){ True True 0 True 0 

5    case 0 : True True 0 True 0 

6      if (c<1 || d>2) True True 0 True 0 

7        //r += (b-d)/(a+2); - - 0 - 0 

8       //fault:+is missing; - - 0 - 0 

9       r = (b-d)/(a+2); True False 1 False 1 

10      else False True 0 True 0 

11       r = b/(c+2); False True 0 True 0 

12    break; True True 0 True 0 

13    case 1 : False False 0 False 0 

14      r = c*(a-d); False False 0 False 0 

15    break; False False 0 False 0 

16  } True True 0 True 0 

17  return r; True True 0 True 0 

18 } True True 0 True 0 

|γ(f) − γ(mc←0)| - - 1 - 1 

 

TABLE 5 
 PROGRAM SPECTRA AND STATEMENTS SUSPICIOUSNESS VALUES 

 

 Subject Program 

𝛄
( 𝐬
,𝐟
)  

𝛄
( 𝐬
,𝐦

𝐚
←
𝟎
)  

𝛄
( 𝐬
,𝐦

𝐜←
𝟎
)  

𝛒
( 𝐬
,𝐦

𝐚
←
𝟎
)  

𝛒
( 𝐬
,𝐦

𝐜←
𝟎
)  

𝛒(𝐬) Rank 

1 public static int foo(int a,int b, int c,int d){ True True True 0.5 0.5 0.5 3 

2  int r = 1;   True True True 0.5 0.5 0.5 3 

3  b += a + c; True True True 0.5 0.5 0.5 3 

4  switch (a){ True True True 0.5 0.5 0.5 3 

5    case 0 : True False True 1 0.5 0.75 2 

6      if (c<1 || d>2) True False True 1 0.5 0.75 2 

7        //r += (b-d)/(a+2); - - - - - - - 

8       //fault:+is missing; - - - - - - - 

9       r = (b-d)/(a+2); True False False 1 1 1 1 

10      else False False True 0 0 0 4 

11       r = b/(c+2); False False True 0 0 0 4 

12    break; True False True 1 0.5 0.75 2 

13    case 1 : False True False 0 0 0 4 

14      r = c*(a-d); False True False 0 0 0 4 

15    break; False True False 0 0 0 4 

16  } True True True 0.5 0.5 0.5 3 

17  return r; True True True 0.5 0.5 0.5 3 

18 } True True True 0.5 0.5 0.5 3 
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respect to derived tests ma←0  and mc←0  are shown in 
columns six and seven (ρ(s,ma←0) and ρ(s, mc←0) ) of Table 
5, respectively. The last two columns of Table 5 show the 
statement suspiciousness and ranks. The faulty statement 
in line 9 is ranked to be the first. 

Note that this example represents a best-case scenario 
of our approach. In the next section, we provide an 
experimental evaluation of our approach.  

5. EXPERIMENT 

We built a tool called BEN [17] that implements our 
approach. (BEN is a Chinese word that means “root 
cause”.) BEN is available for public download [5]. For our 
experiment, we used the command line version of BEN.  
 The subject programs are selected from SIR [46], 
including seven small programs in the Siemens suite and 
four large real-world programs flex, grep, gzip and sed. 
Furthermore, we conducted an experimental comparison 
between our approach and two well-known spectrum 
based approaches, Tarantula [24] and Ochiai [31]. 

5.1. Experimental Design  

5.1.1. Subject Programs 

The Siemens Suite has been used to evaluate several fault 
localization techniques [23][40][50]. The four real-world 
programs, flex, grep, gzip and sed, are significantly larger 
programs than the Siemens programs and are included to 
evaluate how our approach works on larger programs. 
These programs are also used in other studies such 
as [22][35][36][38][39]. The Siemens suite and the four real-
world programs are among the most widely used subject 
programs for fault localization studies [50]. Note that the 
details of the subject programs as well as the faults in these 
programs can be found in the SIR [44]. 
 
THE SIEMENS SUITE - The Siemens suite contains seven 
programs and each of these programs contains a number 
of faulty versions. The Siemens suite also provides an error-
free version and a test set for each program. Table 6 
represents characteristics of the Siemens programs. The 
second column shows the size of executable code 
computed by Gcov 4.1.2 [14], and the third column 
indicates the number of faulty versions provided for each 
program in SIR. Note that the number of lines of executable 
code is different from the number of lines of code reported 
in [46]. This is because the number of lines of executable 

code does not include commented lines, declaration lines, 
or code in header files.  

Both of the two programs, printtokens and printtokens2, 
are used to tokenize the input file and determine the type 
of each token. A token could be one of the following types: 
identifier, special, keyword, number, comment, character 
constant or string constant.  

The replace program has three inputs, pattern, substitute 
and input text. The program finds every match of pattern in 
the input text and replaces it with substitute. The pattern is a 
restricted form of regular expression. The substitute is a 
string that allows three meta-characters to be used. These 
include “@t”, which matches a tab, @n, which matches the 
end of a line, and &, which represents the string that 
matches the pattern. For example, if the string that matches 
pattern is ab and substitute is a&c, all the occurrences of ab 
in the input file are replaced with aabc. 

 Two programs, schedule and schedule2, take the same 
input and produce the same output, but use different 
scheduling algorithms. The input includes: (1) three non-
negative integers representing the number of processes in 
three different priority queues, low, medium and high; and 
(2) a list of commands that must be executed on queues. 
There are seven commands, new job, upgrade_prio, block, 
unblock, quantum_expire, finish and flush. The output of 
these two programs is a list of numbers indicating the 
order in which the processes exit (from the scheduling 
system).  

The tcas program is an aircraft collision avoidance 
system. It takes as input twelve numbers that represent 
different flight parameters of two aircrafts and generates 
as output a resolution advisory, which can be unresolved, 
upward and downward.  

The totinfo program takes as input a file containing one 
or more tables. The program uses the notions of chi-square 
and degree of freedom to calculate whether the 
distribution of the numbers in these tables is logarithm 
gamma distribution. The output is the total degree of 
freedom of rows and columns and chi-square. 

 
THE FLEX PROGRAM - The flex program is a fast lexical 
analyzer or scanner generator. The flex program reads the 
given input file (or files) and generates a C source file, 
called scanner. The input file includes pairs of regular 
expression and C code, called rules. There are several 
options to control the behavior of the flex program. For 
example, option “-d” is to enable debugging mode in the 
scanner. 

There are five versions of the flex in the benchmark, and 
each has a number of seeded faults. All versions are 
written in C and have four header files and one C file. Table 
7 shows the size of executable code computed by Gcov 
4.1.2 and the number of faulty versions for each release of 
flex. The third column, i.e. the number of lines of executable 
code, shows the number for the error-free version. Note 
that all the faults in a given version of the flex program are 
different from the faults of the other versions, and reside 
in the code that has been modified from the previous 
version. 

 

TABLE 6 
 CHARACTERISTICS OF SIEMENS SUITE 

Program 
# of lines of 

executable code 
# of faulty versions 

printtokens 188 7 

printtokens2 201 10 

replace 242 32 

schedule 154 9 

schedule2 127 10 

tcas 65 41 

totinfo 123 23 
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THE GREP PROGRAM - The grep program has two input 
parameters, patterns and files. It prints lines in each file that 
contain a match of any of the patterns. While the grep 
program can take multiple patterns and files, we only used 
a single pattern and file in this experiment. In addition, 
different options can be used to control the behavior of the 
grep program. For example, option “–w” causes the 
program to print only lines containing whole-word 
matches. 

The grep program can take four different types of 
patterns: (1) basic-regexp: a basic regular expression; (2) 
extended-regexp: an extended regular expression; (3) 
fixed-strings: a list of fixed strings; (4) perl-regexp: a Perl 
regular expression. In this experiment, we only used 
extended-regexp. 

 There are five versions of grep in the benchmark, each 
of which has a number of seeded faults. All the versions 
are written in C consisting of ten header files and one C 
file. Table 8 shows the release number of each version, the 
size of executable code computed by Gcov 4.1.2 and the 
number of faulty versions for each version.  

Note that all the faults in a given version are different 
from the faults of the other versions, and reside in the code 
that has been modified from the previous version. For 
example, for grep2, all the faults reside in the code modified 
from grep 2.2 to grep 2.3.             

 
THE GZIP PROGRAM - The gzip program is used for file 
compression and decompression. The input of gzip 
includes 13 options and a list of files. For example, “-S” 
option is used to define the suffix of the result file, where 
the default is “.gz”.    

There are five versions of gzip, each of which has a 
number of seeded faults. All the versions are written in C, 
consisting of six header files and one C file. Table 9 shows 
the number of lines of executable code computed by Gcov 
4.1.2 and the number of faulty versions for each error-free 
version, in the third and fourth columns, respectively. The 
release number for each program is shown in the second 
column of Table 9. The base version is gzip 1.0.7. The faults 
for different gzip versions are different from each other 
except for one case where the first fault of gzip5 is the same 
as the first fault of gzip2. In addition, all the faults reside in 
the code that has been modified from the previous version, 
except the fault mentioned above. For example, for gzip2, 
all the faults reside in the code modified from gzip 1.1.2 to 
gzip 1.2.2.    

     

THE SED PROGRAM - The sed program reads and performs 
basic transformations on an input stream. The sed program 
takes as input a sed script and one or more text files. The 
script file includes some sed commands, such as append, 
replace, delete and insert. In addition, a number of options 
are available to control the behavior of the sed program. For 
example, the “-r” option is used to have extended regular 
expressions in the script rather than basic regular 
expressions.  

There are seven versions of the sed program, and each 
has a number of seeded and/or real faults. All the versions 
are written in C. Table 10 shows the number of header files, 
the number of C files, the lines of executable code of 
computed by Gcov 4.1.2, and the number of faulty 
versions. Note that the number of lines of executable code 
in Table 10 is the total number of lines of executable code 

 
TABLE 10 

CHARACTERISTICS OF SED PROGRAMS 

Program Release number # of header files # of C files # of lines of executable code # of faulty versions 

sed1 1.08 2 1 1923 3 

sed2 2.04 2 1 3391 5 

sed3 3.01 7 1 2171 6 

sed4 3.02 7 1 2172 4 

sed5 4.0.6 10 5 4540 4 

sed6 4.0.7 8 5 4544 6 

sed7 4.1.5 8 5 4919 4 

 

TABLE 7 
 CHARACTERISTICS OF FLEX PROGRAMS 

Program 
Release 

number 

# of lines of 

executable code 

# of faulty 

versions 

flex1 2.4.6 3393 19 

flex2 2.4.7 3934 20 

flex3 2.5.1 3939 17 

flex4 2.5.2 3965 16 

flex5 2.5.3 3967 9 

 
TABLE 8 

CHARACTERISTICS OF GREP PROGRAMS 

Program 
Release 
number 

# of lines of 
executable code 

# of faulty 
versions 

grep1 2.2 3078 18 

grep2 2.3 3224 8 

grep3 2.4 3294 18 

grep4 2.4.1 3313 12 

grep5 2.4.2 3314 1 

 
TABLE 9 

CHARACTERISTICS OF GZIP PROGRAMS 

Program 
Release 
number 

# of lines of 
executable code 

# of faulty 
versions 

gzip1 1.1.2 1705 16 

gzip2 1.2.2 2006 7 

gzip3 1.2.3 1866 10 

gzip4 1.2.4 1892 12 

gzip5 1.3 1993 14 
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of all the C files in each version.  

5.1.2. Initial Test Set 

The input parameter model of each program is shown in 
Table 11. In [15], we explained how we modeled the input 
parameters of the Siemens programs to apply 
combinatorial testing. The model of the grep program is 
explained in [18]. The detailed models for the Siemens 
programs and the grep program are available in [12]. The 
models for three programs, flex, gzip and sed, are taken 
from [39]. We note that the models presented in [39] are 
also used in other studies, e.g., [22].  

The model column of Table 11 shows the number of 
parameters and their domain sizes. We represent it by 
(d1
k1 × d2

k2 × …) , where di
ki  indicates that there are ki 

number of parameters with domain size as di. Note that 
k1 + k2 +⋯ = k , where k  is the total number of 
parameters. For example, totinfo has six parameters, 
among which three parameters have a domain size of 3, 
two parameters have a domain size of 5, and one 
parameter has a domain size of 6. 

The constraint column shows the number of constraints 
in each model. Constraints exclude invalid combinations 
from the resulting test set. Consider the input model of the 
printtokens program, which contains different positions for 
different tokens. For example, keyword and identifier are 
two types of tokens that could appear at the beginning, 
middle or end of the input stream. A constraint is needed 
to prevent having more than one type of token appear at 
the same position. 

Note that programs printtokens and printtokens2 share 
the same model, and so do programs schedule and 
schedule2. The model of tcas is the same as [25]. Also note 
that the models are built based on the specification of the 
programs, i.e., independent from their implementations.  

 We assume that boundary testing is done before 
combinatorial testing is applied. Combinatorial testing 
focuses on failures caused by interactions between 
parameters, while boundary testing focuses on failure 
caused by boundary values of individual parameters. We 
used the ACTS tool [2] to generate t-way test sets. For each 
(faulty) program, we first test it with a 2-way test set. If a 
faulty program is not detected by a 2-way test set, we 
increase the test strength and then test the program with a 
3-way test set. This process is repeated until we reach 
strength 4.  

To determine whether a test fails or passes for each 
faulty version, we run the test on the error-free version of 
the same program and the faulty version. The test fails if 
the faulty version produces a different output than the 
error-free version. Otherwise, it passes.   

Table 12 shows the number of faulty versions detected 
by our test sets of different strengths for the Siemens suite. 
Note that the number of detected faulty versions by a t-
way test set indicates all the faulty versions that are 
detected by the t-way test set but not by (t − 1)-way test 
set. For example, 17, 12 and 7 faulty versions of tcas are 
detected by the 2-way, 3-way and 4-way test sets, 
respectively. The 12 faulty versions that are detected by the 
3-way test set are different from the 17 and 7 faulty 
versions that are detected by the 2-way and 4-way test set, 
respectively. Therefore, in total, 36 faulty versions of tcas 
are detected. The same information for the flex, grep, gzip 
and sed programs is shown in Tables 13 to 16. 

 We also executed all the tests in the test pool that come 
with each program in SIR. (We will refer to the test pools 
in SIR as the SIR test pools.) These test pools are created 
initially in a black box manner based on the tester’s 
understanding of the program’s functionality and 
knowledge of special and boundary values. Then, white-
box tests are created and added into the pools to ensure 
that each executable statement, branch, and definition-use 
pair in the error-free version was exercised [46]. All the 
faulty versions of the Siemens programs are detected by 
the test pools, except version 9 of schedule2. Combinatorial 
testing does not detect this version either. The results of 
executing the test pools on the flex, grep, gzip and sed 
programs are shown in the last column of Tables 13 to 16.  

For the grep1 program, both test sets, i.e., our 
combinatorial test set and the SIR test pool, detected four 
faulty versions. Three out of these four versions are the 
same, and one is different. The combinatorial test set 
detected version 8 while the SIR test pool detected version 
7. The combinatorial test set did not detect version 7 
because the particular value that triggers the fault was not 
modeled in our model. 

Moreover, version 2 of grep4 was detected by the 
combinatorial test set but not by the test pool. However, 
the test pool detected version 10, which is due to a 
boundary value that is not handled correctly. 

Note that four faulty versions out of eighteen versions 
of grep1 were detected by the 2-way test set. However, in 
one of the detected faulty versions, i.e., version 11, all the 
tests failed. Based on Assumption 4, BEN was not applied 

TABLE 11 
PROGRAMS MODEL 

Program Model 
# of  

constraints 

Si
em

en
s 

Su
it

e 
 printtokens (21 × 31 × 44 × 51 × 101 × 132) 8 

replace (24 × 416) 36 

schedule (21 × 38 × 82) 0 

tcas (27 × 32 × 41 × 102) 0 

totinfo (33 × 52 × 61) 0 

flex (26 × 32 × 51) 12 

grep (27 × 41 × 51 × 63 × 81 × 91 × 131) 1 

gzip (213 × 31) 61 

sed (27 × 31 × 41 × 61 × 101) 50 

 

TABLE 12 
TEST RESULTS FOR SIEMENS SUITE 

Program 
# of faulty 

versions 

# of detected versions 

2-way 3-way 4-way All 

printtokens 7 3 0 0 3 

printtokens2 10 9 0 0 9 

replace 32 32 0 0 32 

schedule 9 7 0 0 7 

schedule2 10 3 0 0 3 

tcas 41 17 12 7 36 

totinfo 23 5 7 0 12 
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to this version. 
In addition, BEN was not applied to four versions out 

of sixteen detected faulty versions of the flex1, four 
versions out of ten detected faulty versions of flex2, two 
versions out of eleven detected faulty versions of flex4 and 
four versions out of five detected faulty versions of flex5, 
as these versions did not have any passing test.  

Moreover, in two versions out of five detected faulty 
versions of gzip1 and one version out of three detected 
faulty versions of gzip2 all the tests failed.      

5.1.3. Multiple-Fault Versions 

To evaluate the effectiveness of our approach when the 
program under test has more than one fault, we create 
several multiple-fault versions for each program. To 
increase the diversity, different multiple-fault versions 

have different numbers of faults. Table 17 shows the 
number of faulty versions with the number of faults 
created for each program. For example, we created three 
versions with two faults and one version with three faults 
for printtokens.   
 To create multiple-fault versions, we randomly pick 
faults from faults that are detected by our combinatorial 
test sets. Consider the schedule program. There are nine 
faulty versions and each version has one fault. The 
combinatorial test set detects seven of them (Table 12), 
versions 1 to 7, and the other two versions, versions 9 and 
10, are not detected. To create multiple-fault versions with 
two faults, two faulty versions from 1 to 7 are selected 
randomly.  

For each program, we generate one or more multiple-
fault versions for a given number of faults. The maximum 
number of multiple-fault versions for each program 
depends on the number of detected faulty versions. When 
the total number of detected faulty versions is large, e.g., 
replace and tcas, we create multiple-fault versions with a 
maximum number of 10 faults. When the total number of 
detected faulty versions is small, e.g., printtokens and 
schedule2, more than one multiple-fault version is created 
for the same number of faults.  

 Since some faults may conflict with each other, 
combining them in one version is not possible. For 
example, the schedule2 program has three detected faulty 
versions, versions 2, 3 and 7. Two faulty versions, versions 
3 and 7, conflict with each other. In version 7, the condition 
of an if statement is changed, while in version 3, the whole 
block that contains the same if statement is removed. 
Therefore, having these two versions in one multiple-fault 
version is not possible. For the schedule2 program, two 
multiple-fault versions with two faults are created. One of 
them contains the faults in versions 2 and 3, and the other 
contains the faults in versions 2 and 7. 

Table 18 shows the result of combinatorial testing on 
multiple-fault versions. All of them are detected by a 2-
way test set except one faulty version of program 
printtokens2 and one faulty version of program tcas, which  
are detected by a 3-way test set. In addition, one version 
of the replace program (the version with 8 faults), five 
versions of the flex1 program (the versions with 5, 7, 8, 9, 
and 10 faults) and six versions of the flex4 program (the 
versions with 4, 5, 6, 7, 8 and 9 faults) are ignored because 
all the tests in the 2-way test set failed for these versions. 

5.1.4. Trace Collection 

We used Gcov 4.1.2 [14] to collect execution traces. Gcov 
reports the number of times a statement is executed by a 
given test. A statement is included in the execution trace of 
a given test if and only if it is executed by the test for one 
or more times.  

Gcov distinguishes between statements that are 
executable but are not executed and statements that are not 
executable. We used this information to compute the 
percentage of executable code that must be inspected to 
find the faulty statement. If a program crashes, Gcov does 
not report any coverage. To deal with this problem, we add 
a statement to call function gcov_flush before every 

TABLE 13 
 TEST RESULTS FOR FLEX 

Program # of faulty 

versions 
# of detected versions # of detected versions 

by SIR test pool 2-way 3-way 4-way All 

flex1 19 16 0 0 16 16 

flex2 20 10 0 0 10 14 

flex3 17 5 1 0 6 9 

flex4 16 11 0 0 11 11 

flex5 6 5 0 0 5 5 

 
TABLE 14 

TEST RESULTS FOR GREP 

Program 
# of faulty 

versions 

# of detected versions # of detected versions 

by SIR test pool 2-way 3-way 4-way All 

grep1 18 4 0 0 4 4 

grep2 8 0 0 0 0 4 

grep3 18 4 0 0 4 7 

grep4 12 2 0 0 2 2 

grep5 1 0 0 0 0 0 

 
TABLE 15 

TEST RESULTS FOR GZIP 

Program 
# of faulty 

versions 

# of detected versions # of detected versions 

by SIR test pool 2-way 3-way 4-way All 

gzip1 16 5 0 0 5  7 

gzip2 7 3 0 0 3 3 

gzip3 10 0 0 0 0 0 

gzip4 12 0 0 0 0 3 

gzip5 14 2 0 0 2 5 

 
TABLE 16 

TEST RESULTS FOR SED 

Program 
# of faulty 

versions 

# of detected versions # of detected versions 

by SIR test pool 2-way 3-way 4-way All 

sed1 3 0 0 0 0  0 

sed2 5 4 0 0 4 5 

sed3 6 3 0 0 3 6 

sed4 4 0 0 0 0 1 

sed5 4 3 0 0 3 4 

sed6 6 6 0 0 6 6 

sed7 4 3 0 0 3 4 
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statement. Note that this is only done after a program 
crashes.  

5.1.5. BEN Configuration 

For our experiments, we configure BEN to generate two 
tests for each of the five top ranked suspicious 
combinations at each iteration. In addition, because of 
resource limitation, the size of an inducing combination is 
limited to 6 for the Siemens suite, and it is limited to 4 for 
the four real-world programs, flex, grep, gzip and sed.  

5.1.6. Metrics  

Recall that the output of BEN is a ranking of statements in 
terms of their likelihood to be faulty. In order to find the 
faulty statement, we inspect statements in the first rank, 
and then statements in the second rank, and continue to do 
so until we find the actual faulty statement. Statements in 
the same rank are inspected in the order that they appear 
in the program. We record the number of statements that 
must be inspected to find the actual faulty statement in 
each program to measure the effectiveness of our 
approach.  
 Moreover, the effectiveness of the first phase, i.e., 
identifying inducing combination, is measured by the 
inducing probability (Definition 8) of the identified 
combination. The higher inducing probability the 
identified inducing combination has, the more effective 
our approach is.  

The efficiency of our approach is measured by two 
factors: the number of tests that are executed and the 

TABLE 17 
MULTIPLE-FAULT VERSIONS 

Program 

# of multiple-fault versions 

2 

faults 

3 

faults 

4 

faults 

5 

faults 

6 

faults 

7 

faults 

8 

faults 

9 

faults 

10 

faults 
ALL 

Siemens Suite 

printtokens 3 1 0 0 0 0 0 0 0 4 

printtokens2 1 1 1 1 1 1 1 0 0 7 

replace 1 1 1 1 1 1 1 1 1 9 

schedule 1 1 1 1 1 0 0 0 0 5 

schedule2 2 0 0 0 0 0 0 0 0 2 

tcas 1 1 1 1 1 1 1 1 1 9 

totinfo 1 1 1 1 1 1 1 1 1 9 

flex 

flex1 1 1 1 1 1 1 1 1 1 9 

flex2 1 1 1 1 1 0 0 0 0 5 

flex3 1 1 1 1 1 0 0 0 0 5 

flex4 1 1 1 1 1 1 1 1 1 9 

grep 

grep1 3 1 0 0 0 0 0 0 0 4 

grep3 3 3 1 0 0 0 0 0 0 7 

grep4 1 0 0 0 0 0 0 0 0 1 

gzip 

gzip1 3 1 0 0 0 0 0 0 0 4 

gzip2 1 0 0 0 0 0 0 0 0 1 

gzip5 1 0 0 0 0 0 0 0 0 1 

sed 

sed2 1 1 1 0 0 0 0 0 0 3 

sed3 3 1 0 0 0 0 0 0 0 4 

sed5 3 1 0 0 0 0 0 0 0 4 

sed6 1 1 1 0 0 0 0 0 0 3 

sed7 3 1 0 0 0 0 0 0 0 4 

 

 
 

TABLE 18 
TEST RESULTS FOR MULTIPLE-FAULT VERSIONS 

Program 
# of faulty 

versions 

# of detected versions 

2-way 3-way All 

Siemens 
Suite 

printtokens 4 4 0 4 

printtokens2 7 6 1 7 

replace 9 9 0 9 

schedule 5 5 0 5 

schedule2 2 2 0 2 

tcas 9 8 1 9 

totinfo 9 9 0 9 

flex 

flex1 9 9 0 9 

flex2 5 5 0 5 

flex3 5 5 0 5 

flex4 9 9 0 9 

grep 

grep1 4 4 0 4 

grep3 7 7 0 7 

grep4 1 1 0 1 

gzip 

gzip1 4 4 0 4 

gzip2 1 1 0 1 

gzip5 1 1 0 1 

sed 

sed2 3 3 0 3 

sed3 4 4 0 4 

sed5 4 4 0 4 

sed6 3 3 0 3 

sed7 4 4 0 4 
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number of test runs that are traced for coverage collection. 
We show the number of tests executed in different stages 
of our approach, i.e., number of tests of the initial 
combinatorial test set, number of tests needed to identify 
inducing combinations (Phase 1), and number of tests 
needed to produce the ranking of faulty statements (Phase 
2). 

We also compare our approach to two approaches, 
Tarantula and Ochiai, in terms of effectiveness, i.e., the 
number of statements that must be inspected to find the 
actual faulty statement, and efficiency, i.e., the number of 
tests executed and the number of tests whose execution 
traces must be collected.  

5.2. Results and Discussion 

In this section, we discuss the results of applying BEN to 
the subject programs. We first report the results of BEN on 
the single-fault programs, followed by the results on the 
multiple-fault programs. Next, we compare the results of 
BEN to two approaches, Tarantula and Ochiai. Finally, the 
threats to validity are discussed.  

5.2.1. Results on Single-Fault Versions 

This section is divided into two subsections. The first 
subsection reports the results of the first phase, identifying 
inducing combination. The second subsection discusses 
the results of the second phase, faulty statement 
localization.   

5.2.1.1. Phase 1: Identifying Inducing Combination 

Table 19 shows the inducing probabilities of inducing 
combinations identified in the first phase. To compute the 
inducing probability for combination c, we generated and 
executed all the tests containing c. Then, inducing 
probability is computed using the formula explained in 
Section 2.1.  

Depending on the input parameter model of the 
program, number of parameters, their domain size and 
constraints, generating all the tests containing a 
combination can be a very expensive task. This is the case 
for the inducing combinations identified for the two 
programs, replace and grep. Thus, inducing probabilities 
are not computed for these two programs. Note that this 
computation is only needed for the evaluation purpose. 
That is, it is not needed when our approach is applied in 
practice. 

In Table 19 the “Test strength (t)” column shows the 
strength of the initial test set, and the next column, i.e., “# 
of detected versions”, indicates the number of faulty 
versions detected using the corresponding test set.  

Column “Avg size of inducing combinations” indicates 
the average size of inducing combinations for faulty 
versions that are detected by the t-way test set. For 
example, the sizes of the inducing combinations for three 
faulty versions, 3, 5 and 6, of printtokens that are detected 
by the 2-way test set, are 2, 4 and 3, respectively. Therefore, 
the average size of inducing combinations is 3. As 
explained in Section 3.1, the size of an inducing 
combination could be greater than the strength of the 
initial test set. The last column of Table 19 shows the 
average of inducing probabilities of inducing 

combinations. 
As shown in Table 19, in most cases, the inducing 

probability is one, which means that the identified 
inducing combination is truly inducing. For printtokens2, 
schedule, sed5 and sed7, the inducing probability is close to 
one. However, the inducing probability is very low in the 
tcas program and in one faulty version of the flex3 
program, which is detected by a 3-way test set.  

Recall that for our experiments, we limit the size of 
inducing combination to six for the Siemens programs and 
four for the four large programs. BEN reports the top 
ranked suspicious combination of size six (or four), if the 
inducing combination of a smaller size was not identified. 
For tcas, the average sizes of inducing combinations 
reported in Table 19 for test sets of different strengths are 
6, 5.82 and 5.92. It is likely that BEN does not find the truly 
inducing combination in many cases. Thus, the average 
inducing probabilities are low. Similarly, for flex3, the 
average sizes of inducing combinations is 4. It is likely that 
BEN does not find the truly inducing combination in this 
case, as BEN limits the size of inducing combination to 4.  

 
TABLE 19 

INDUCING PROBABILITIES FOR SINGLE-FAULT VERSIONS 
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Siemens 
Suite 

printtokens 2 3 3 1 

printtokens2 2 9 2.56 0.93 

schedule 2 7 2.86 0.86 

schedule2 2 3 2 1 

tcas 2 17 5.82 0.09 

3 12 5.92 0.11 

4 7 6 0.06 

totinfo 2 5 4.8 1 

3 7 4.86 1 

flex 

flex1 2 12 2 1 

flex2 2 6 2 1 

flex3 2 5 2.2 1 

3 1 4 0.25 

flex4 2 9 2.11 1 

flex5 2 1 2 1 

gzip 

gzip1 2 3 2 1 

gzip2 2 2 2 1 

gzip5 2 2 2 1 

sed 

sed2 2 4 2.25 1 

sed3 2 3 2 1 

sed5 2 3 2 0.92 

sed6 2 6 2.83 1 

sed7 2 3 3 0.96 
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5.2.1.2. Phase 2: Faulty Statement Localization  

Table 20 shows the results of our approach on each 
program. We will not explain the column headers one by 
one, as they are self-explanatory. Note that in the last eight 
columns, average values are used, since the data could be 
different in different versions. 

Column, “Avg # of tests for identifying inducing 
combination”, shows the average number of tests 
generated in the first phase, i.e., inducing combination 
identification.  

If a combination c identified in the first phase is not 
inducing, there is a probability that the core member does 
not fail. The higher the inducing probability, the more 
likely the core member fails. If the inducing probability is 
1, the core member will definitely fail. However, our 
approach can still apply if the core member does not fail. 
We select as the core member a failing test that contains the 
inducing combination from the initial test set. Column 

“Avg # of times the core member does not fail” shows the 
average number of such cases. For all the seven versions of 
tcas, when the initial test set is 4-way, the core member is 
selected from the initial test set. This is consistent with the 
fact that the inducing probabilities of the identified 
inducing combinations were very small (Table 19). 

 For each version, we compute the total number of tests 
in all the derived member sets, i.e., all the tests executed 
for generating the derived members. The average of this 
number for all versions is shown in the ninth column, 
“Avg # of tests executed for generating derived members”. 
The number includes all the tests, although later some of 
them are discarded since they do not pass. The maximum 
value of this column, 21.35, is for the tcas program with a 
2-way test set. The minimum value, 2, happens for gzip1, 
gzip2, gzip5 and sed5. Note that the number of tests 
executed for generating derived members depends on the 
size of inducing combination, the domain size of inducing 
components, and also system constraints. 

TABLE 20 
RESULTS FOR SINGLE-FAULT VERSIONS 
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Siemens 
Suite 

printtokens 2 170 3 3 20 0 10 0 11 25.66 13.65 

printtokens2 2 170 9 2.56 16.67 0 10.89 0 11.89 13.55 6.74 

replace 2 193 32 3.66 19.37 0.41 4.16 0 5.57 30.91 12.77 

schedule 2 64 7 2.86 17.14 0.14 6.43 0 7.57 18.71 12.15 

schedule2 2 64 3 2 10 0 4.33 0 5.33 59.67 46.98 

tcas 2 100 17 5.82 32.23 0.94 21.35 0 23.29 14 21.54 

3 405 12 5.91 25 0.92 20.83 0 22.75 14.67 22.57 

4 1434 7 6 20 1 18.57 0 20.57 11.14 17.14 

totinfo 2 30 5 4.8 40 0 11.5 0 12.5 20.8 16.91 

3 156 7 4.86 27.43 0 13.5 0 14.5 11.71 9.52 

flex 

flex1 2 26 12 2 10 0 2.25 0.25 3.5 161.58 4.76 

flex2 2 26 6 2 9.5 0 3.17 0 4.17 36.67 0.93 

flex3 2 26 5 2.2 12 0 3.2 0 4.2 316.6 8.04 

3 66 1 4 4 1 7 0 9 88 2.23 

flex4 2 26 9 2.11 11.55 0 2.22 0.11 3.33 240.67 6.07 

flex5 2 26 1 2 10 0 5 0 6 262 6.60 

grep 

grep1 2 121 3 2.67 13.33 0.33 10.67 0 12 347 11.27 

grep3 2 121 4 3 17.5 0.5 5.25 0 6.75 21.25 0.64 

grep4 2 121 2 2 10 0 5 0 6 172.5 5.21 

gzip 

gzip1 2 21 3 2 8.67 0 2 0.67 3.67 339.33 19.90 

gzip2 2 21 2 2 9 0 2 1 4 76.5 3.81 

gzip5 2 21 2 2 8 0 2 1 4 86 4.31 

sed 

sed2 2 58 4 2.25 9 0 5 0.25 6.25 85.5 2.52 

sed3 2 58 3 2 6.33 0 10 0 11 4 0.18 

sed5 2 58 3 2 3.67 0 2 0.67 3.67 4 0.09 

sed6 2 58 6 2.83 6.17 0 7.17 0.5 8.67 160.67 3.54 

sed7 2 58 3 3 13.67 0 7.67 0 8.67 11.67 0.24 
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The column, “Avg # of times derived members are 
selected from initial test set”, shows the number of cases 
that all the derived member candidates failed, and a 
derived member is selected from the initial test set. 

The column, “Avg # of test runs traced for coverage”, 
shows the average number of derived members whose 
traces are collected. Recall from Section 3.2, the tests of a 
candidate set are traced for coverage collection. Note that 
BEN also needs the execution trace of the core member. 
Therefore the total number of test runs traced by the 
coverage tool is the summation of the following four 
numbers: 1) one representing the core member; 2) number 
of times the core member selected from initial test set 
(column eight of Table 20); 3) number of tests executed for 
generating derived members (column nine of Table 20); 
and 4) number of derived members selected from initial 
test set (column ten of Table 20).  

The last two columns show the average number and 
percentage of statements that must be inspected to locate a 
fault. To compute this number, we include statements that 
are ranked higher and statements that are ranked at the 
same rank but appear before the faulty statement. We did 
not perform any dependency analysis, which could reduce 
the number of statements that must be inspected.  

We note that the number of executable statements in 
tcas is 65, less than 100. In this program, when only one 
statement is needed to inspect, it is 1.54% of executable 
code. Therefore, for the tcas program the number of 
statements gives better insight than the percentage of code. 

As shown in Table 20 our approach works better for the 
flex, grep, gzip and sed programs than the Siemens 
programs, i.e. small programs. The best case happens with 
sed5 where only 0.09% of code must be inspected to locate 
the fault. The worst case happens with gzip1 where 19.90% 
of the code must be inspected. For the Siemens programs, 
the best and worst cases happen with printtokens and 
schedule2, where 6.74% and 46.98% of the code must be 
inspected, respectively. 

5.2.2. Results on Multiple-Fault Versions 

In this section, we discuss the results of our experiments 
on the subject programs that have multiple faults.   

5.2.2.1. Phase 1: Identifying Inducing Combination 

Table 21 shows the inducing probabilities for the inducing 
combinations identified in the first phase. To compute 
inducing probability, the same procedure used in 
Section 5.2.1.1 for single-fault versions is performed. 
Again, two programs, grep and replace, are ignored as it is 
very expensive to compute inducing probabilities for these 
programs. 

As shown in Table 21, the inducing probabilities for all 
programs are one or close to one, except for the tcas 
program. In the five faulty versions (four versions detected 
by 2-way test set and one detected by 3-way) of the tcas 
program, BEN does not find any inducing combination of 
size of five or less. Therefore, the most suspicious 
combination whose size is six is reported as an inducing 
combination.  

5.2.2.2. Phase 2: Faulty Statement Localization  

The results are summarized in Table 22, where the 
columns are the same as in Table 20. The last two columns, 
“Avg # of statements inspected to find actual faults” and 
“Avg percentage of statements inspected to locate actual 
faults”, show respectively the number of statements and 
percentage of statements that should be inspected to locate 
the first faulty statement. 

 Similar to the single-fault versions, BEN works better 
for flex, grep, gzip and sed, than for the Siemens programs. 
For the four large programs, the worst case happens in 
flex4, where 10.82% of executable code must be inspected 
to locate the fault. However, the worst case for the Siemens 
programs happens with schedule2, where 25.83% of the 
executable code must be inspected.  

The results in Tables 20 and 22 suggest that BEN works 
better when there are multiple faults. For all the programs, 
BEN is more effective for multiple-fault versions than 
single-fault versions, except flex4, grep3, sed3 and sed7, in 
terms of percentage of code that needs to be inspected. 
Moreover, BEN is more efficient for multiple-fault versions 
than single-fault versions, in terms of the total number of 
tests generated in phases 1 and 2 and the number of test 
runs traced by the coverage tool for multiple-fault 
versions.  This can be explained as follows.  

The more faults a program has, the more likely that a 
test fails. When there are more failing tests in the initial test 
set, it is likely to have more inducing combinations or the 

TABLE 21 
INDUCING PROBABILITIES FOR MULTIPLE-FAULT VERSIONS 
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Siemens Suite 

printtokens 2 4 2.75 0.95 

printtokens2 2 7 2.14 1 

schedule 2 5 2 0.86 

schedule2 2 2 2 1 

tcas 2 8 5.12 0.33 

3 1 6 0.02 

totinfo 2 9 4.67 1 

flex 

flex1 2 4 2 1 

flex2 2 5 2 1 

flex3 2 5 2 1 

flex4 2 2 2 1 

gzip 

gzip1 2 4 2 1 

gzip2 2 1 2 1 

gzip5 2 1 2 1 

sed 

sed2 2 3 2.33 0.85 

sed3 2 4 2 1 

sed5 2 4 2 1 

sed6 2 3 2 1 

sed7 2 4 2.25 1 
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size of inducing combination is smaller. Inducing 
combinations of smaller size are less expensive to identify 
than those of larger size. This is because the smaller the 
inducing combination is, the fewer times the identify 
algorithm is called to identify the combination. Moreover, 
the number of candidate sets equals the size of inducing 
combination. Thus, the smaller the inducing combination 
is, the fewer derived candidate sets and therefore the fewer 
tests are generated in the second phase. 

 

5.2.3. Comparison with Tarantula and Ochiai  

We compared BEN to two spectrum-based approaches, 
Tarantula and Ochiai, in terms of effectiveness and 
efficiency. Experiments suggest that Tarantula and Ochiai 
perform best among spectrum based 
approaches [1][23][31]. Recall that effectiveness is 
measured by the percentage of executable code that must 
be examined to guide the programmer to the faulty 
statement, and efficiency is measured by the number of 
tests executed, the number of tests runs traced for coverage 
collection, and the execution time. 
 Since Tarantula and Ochiai do not deal with test 
generation, we applied them using the initial 

combinatorial test set.  
Tables 23 and 24 show the comparison results for single-

fault versions and multiple-fault versions, respectively. 
We used average to aggregate the results of all the detected 
faulty versions for each program. The third column shows 
the average size of the combinatorial test sets used in the 
testing stage for each program. The fourth column shows 
the number of detected faulty versions.  

The average number of test runs traced for BEN is 
shown in the sixth column. For Tarantula and Ochiai, 
every test run needs to be traced, so the average number of 
test runs traced is the same as the number shown in the 
third column. As shown in Tables 23 and 24, BEN needs to 
trace only a very small number of tests in comparison with 
the other two approaches. However, BEN generates and 
executes a number of tests (in addition to the initial test set) 
to identify the inducing combination. This cost is shown in 
the fifth column of Tables 23 and 24, and it equals the 
seventh column of Tables 20 and 22.  

 We also report the execution time of BEN, Tarantula 
and Ochiai for four large programs flex, grep, gzip and sed. 
Experiments are conducted on a server that has an 
Intel(R) Xeon(R) E5410  @ 2.33GHz (4-cores) processor and 
4 GB memory and that runs Red Hat Enterprise Linux 
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RESULTS FOR MULTIPLE-FAULT VERSIONS 
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Siemens 
Suite 

printtokens 2 170 4 2.75 17.5 0 5 0 6 1.25 0.66 

printtokens2 2 170 7 2.14 11.43 0 3.14 0 4.14 1.86 0.92 

replace 2 193 8 2.5 13 0.12 1.87 0 2.99 12.25 5.06 

schedule 2 64 5 2 10 0.2 2.60 0 3.80 8.2 5.32 

schedule2 2 64 2 2 10 0 4 0 5 45.5 25.83 

tcas 2 100 8 5.12 31.75 0.50 14.37 0 15.87 3.62 5.57 

3 405 1 6 22 1 23 0 25 11 16.92 

totinfo 2 30 9 4.67 36.67 0 9.78 0 10.78 8.67 7.05 

flex 

flex1 2 26 4 2 10 0 2.25 0.75 4 127.5 3.76 

flex2 2 26 5 2 10 0 2 0 3 11 0.28 

flex3 2 26 5 2 10 0 2.2 0 3.2 63 1.60 

flex4 2 26 2 2 10 0 2 0.5 3.5 429 10.82 

grep 

grep1 2 121 4 2.5 15 0 5.5 0 6.5 107.5 3.49 

grep3 2 121 7 3.14 15.71 0.57 3.14 0 4.71 32.86 1 

grep4 2 121 1 2 10 0 3 0 4 23 0.69 

gzip 

gzip1 2 21 4 2 8 0 2 1 4 88.75 5.21 

gzip2 2 21 1 2 10 0 2 1 4 32 1.60 

gzip5 2 21 1 2 4 0 2 1 4 83 4.16 

sed 

sed2 2 58 3 2.33 11.33 0 2.67 0 3.67 64.67 1.91 

sed3 2 58 4 2 8.75 0 6.25 0 7.25 5.75 0.26 

sed5 2 58 4 2 2.75 0 2 0.75 3.75 3.25 0.07 

sed6 2 58 3 2 5 0 2 1 4 38 0.84 

sed7 2 58 4 2.25 10.75 0 5.5 0 6.5 17.5 0.36 
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Server 6.5 (Santiago) (64 bit). Moreover, BEN uses 
Choco [7] as a constraint solver. 

 The last three columns of Tables 23 and 24 show the 
time comparison results for single-fault versions and 
multiple-fault versions, respectively. We used average to 
aggregate the results of all the detected faulty versions for 
each program. The seventh and eighth columns of Tables 
23 and 24 show the average time in seconds to run 
Tarantula and Ochiai, which includes executing tests  to 
collect their spectra and computing the statement ranks 
based on Tarantula or Ochiai formula, respectively. The 
last column of Tables 23 and 24 indicates the average 
execution time of BEN. This time includes time spent in 
both phases, including inducing combination 
identification and faulty statement localization.  

Note that the execution time in Tables 23 and 24 does 
not include the time needed for test evaluation. Recall from 
Section 5.1.2, in our experiments，a test run is evaluated 
by comparing its output to the output produced by 
running the same test against the error-free version. In 
practice, however, we do not have access to the error-free 
version of a program. Thus, it could be misleading to 
include the test evaluation time. As discussed in 
Section 2.2, the test oracle problem is common to many 
testing and fault localization approaches. BEN is most 
effective when there exists an automated test oracle or 
when test evaluation could be performed quickly.   

As shown in Tables 23 and 24, the seventh and eighth 
columns, are almost equal, for single and multiple-fault 
versions of the four programs, flex, grep, gzip and sed. For 
all these programs flex, grep, gzip and sed, single-fault and 
multiple-fault versions, BEN is faster than Tarantula and 
Ochiai. The best case happens in multiple-fault versions of 
grep4 where BEN is 17.3 times faster than Ochiai.  

  In [23][40], a score is used to compare different fault 
localization methods. The score is defined based on the 
percentage of code that must be examined to find the faulty 
statement. The percentage is based on executable code, i.e., 
non-executable code is excluded. Tables 25 and 26 show 
the percentage of all the program versions that achieve 
each score for single-fault and multiple-fault versions, 
respectively. The results of BEN, Tarantula and Ochiai for 
the Siemens programs are aggregated and shown in the 
“Siemens Suite” rows, and the results of these three 
approaches for the flex, grep, gzip and sed programs are 
aggregated in their corresponding rows. 

For single-fault versions (Table 25), on the first score, 
i.e., 99-100%, which means only 1% or less than 1% of code 
must be inspected to find the first faulty statement, BEN 
outperforms Tarantula for the Siemens, flex and grep 
programs, while both have the same results for the gzip 
and sed programs. 

 BEN performs better than Ochiai for the Siemens 
programs and the same for the grep and gzip programs on 

TABLE 23 
EFFICIENCY COMPARISON RESULTS FOR SINGLE-FAULT VERSIONS 

Program 

Avg # of tests 

executed  

in the testing stage* 

# of detected 

versions 

Avg # of tests generated 

and executed in fault 

localization stage by BEN 

Avg # of test runs 

traced for coverage 

collection by BEN 

Avg execution time  

(in seconds) 

Tarantula Ochiai BEN 

Siemens 
Suite 

printtokens 170 3 20 11 - - - 

printtokens2 170 9 16.67 11.89 - - - 

replace 193 32 19.37 5.57 - - - 

schedule 64 7 17.14 7.57 - - - 

schedule2 64 3 10 5.33 - - - 

tcas 461.05 36 27.44 22.58 - - - 

totinfo 103.5 12 32.67 13.67 - - - 

flex 

flex1 26 12 10 3.5 15.61 15.61 4.93 

flex2 26 6 9.5 4.17 18.74 18.78 5.83 

flex3 32.67 6 10.67 5 18.78 18.78 6.89 

flex4 26 9 11.55 3.33 18.79 18.83 4.88 

flex5 26 1 10 6 18.96 18.87 7.05 

grep 

grep1 121 3 13.33 12 94.82 94.65 14.85 

grep3 121 4 17.5 6.75 99.05 99.06 29.32 

grep4 121 2 10 6 98.96 99.06 7.65 

gzip 

gzip1 21 3 8.67 3.67 14.93 14.94 7.52 

gzip2 21 2 9 4 14.69 14.69 8.65 

gzip5 21 2 8 4 16.86 16.84 8.11 

sed 

sed2 58 4 9 6.25 37.58 37.52 11.67 

sed3 58 3 6.33 11 32.75 32.87 12.18 

sed5 58 3 3.67 3.67 49.66 49.69 10.09 

sed6 58 6 6.17 8.67 49.73 49.79 14.10 

sed7 58 3 13.67 8.67 52.96 53.03 15.30 

 
* In Tarantula and Ochiai, all the test runs are traced. Thus, the Avg # of test runs traced for coverage collection is the same as the Avg # of tests 
executed in the testing stage.” 
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the first score. However, Ochiai outperforms BEN for the 
flex and sed programs, in terms of the first score of single-
fault versions. Note that on the second score, i.e., 90-99%, 
BEN outperforms Ochiai for the flex program. 

 For multiple-fault versions of all the programs (Table 
26), on the first score, BEN outperforms Tarantula, except 
for the gzip program. For the gzip program, all three 
approaches, BEN, Tarantula and Ochiai, produce the same 
score. BEN also outperforms Ochiai for the Siemens, flex, 
grep and sed programs. Moreover, the improvement of 
BEN in comparison with the other approaches is greater 
for the multiple-fault versions compared to the single-fault 
versions. The reason is that BEN first identifies one 
inducing combination and it is likely that each inducing 
combination corresponds to one faulty statement. In the 
second phase, BEN generates a group of tests with one 
failing test, i.e., the core member, which likely includes one 
inducing combination and executes only one faulty 
statement. Therefore, even when there is more than one 
fault in the program, BEN focuses on one of them. 
However, when Tarantula and Ochiai are applied on 
multiple-fault programs, they use the initial test set that 
likely includes several failing tests corresponding to 
different faulty statements. Moreover, Tarantula and 
Ochiai do not perform any nearest neighbor analysis. 
Thus, it is likely that very different execution traces are 
compared to each other, which reduces their effectiveness 
of locating the faulty statement. 

Tables 27 and 28 show the comparison between BEN, 
Tarantula, and Ochiai for single-fault and multiple-fault 
versions, respectively, based on number of outperformed 
versions.  There are two groups of columns that show the 
comparison between BEN and Tarantula and the 
comparison between BEN and Ochiai, respectively. 

In each group, the first two columns show cases that 
BEN outperforms the other approach, Tarantula or Ochiai 
(positive numbers). The first column shows the number of 
detected faulty versions that BEN outperforms the other 
approach, and the next one shows the average percentage 
of the differences. For example in the 19 out of 36 detected 
single-fault versions of the tcas program, BEN inspects 
7.94% (of executable code) less than Tarantula. 

The third column of each group shows the number of 
detected faulty versions that BEN and the other approach, 
Tarantula or Ochiai, produce the same results. In addition, 
the last two columns of each group show the number of 
versions that the other approach outperforms BEN and the 
average percentage of the differences (negative numbers). 
For example for five out of 36 detected single-fault versions 
of the tcas program, BEN inspects about 3.38% (of 
executable code) more than Tarantula. 

Five rows, Siemens suite, flex, grep, gzip and sed, are 
added to summarize the results of all the Siemens 
programs, all the different versions of flex, grep, gzip and 
sed versions, respectively. 

TABLE 24 
EFFICIENCY COMPARISON RESULTS FOR MULTIPLE-FAULT VERSIONS 

Program 

Avg # of tests 

executed  

in the testing stage* 

# of detected 

versions 

Avg # of tests generated 

and executed in fault 

localization stage by BEN 

Avg # of test runs 

traced for coverage 

collection by BEN 

Avg execution time  

(in seconds) 

Tarantula Ochiai BEN 

Siemens 
Suite 

printtokens 170 4 17.5 6 - - - 

printtokens2 170 7 11.43 4.14 - - - 

replace 193 8 13 2.99 - - - 

schedule 64 5 10 3.80 - - - 

schedule2 64 2 10 5 - - - 

tcas 133.89 9 30.67 16.88 - - - 

totinfo 30 9 36.67 10.78 - - - 

 flex 

flex1 26 4 10 4 15.71 15.68 5.60 

flex2 26 5 10 3 18.75 18.76 5.11 

flex3 26 5 10 3.2 18.64 18.65 5.05 

flex4 26 2 10 3.5 18.78 18.77 5.51 

 grep 

grep1 121 4 15 6.5 94.32 94.42 9.88 

grep3 121 7 15.71 4.71 98.95 98.98 32.86 

grep4 121 1 10 4 98.67 98.79 5.71 

 gzip 

gzip1 21 4 8 4 12.63 12.63 7.94 

gzip2 21 1 10 4 15.37 15.40 9.12 

gzip5 21 1 4 4 14.8 14.8 8.88 

 sed 

sed2 58 3 11.33 3.67 37.34 37.34 10.55 

sed3 58 4 8.75 7.25 32.79 32.63 10.16 

sed5 58 4 2.75 3.75 49.61 49.74 9.72 

sed6 58 3 5 4 49.74 49.64 10.17 

sed7 58 4 10.75 6.5 52.89 52.88 12.30 

 
* In Tarantula and Ochiai, all the test runs are traced. Thus, the Avg # of test runs traced for coverage collection is the same as the Avg # of tests executed 
in the testing stage.” 
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For single-fault versions (Table 27), BEN outperforms 
Tarantula in all the five cases, Siemens suite, flex, grep, gzip 
and sed, which is consistent with Table 25. However, the 
difference between BEN and Tarantula is very small (less 
than one percent) for the gzip program, and thus it is not 
reflected in Table 25. According to Table 27, BEN 
outperforms Ochiai for the Siemens programs, while 
Ochiai works better than BEN for the flex, grep, gzip and sed 
programs, for single-fault versions. Note that the 
difference between BEN and Ochiai is very small for the 

grep and gzip, and it is not reflected in Table 25.     
For multiple-fault versions (Table 28), BEN outperforms 

Ochiai for three cases, Siemens Suite, grep and gzip, 
although the difference between the two approaches is 
very small for the Siemens programs. For the flex program, 
Ochiai works better than BEN in more versions while BEN 
makes greater average of difference percentage than 
Ochiai. 

In Siemens, flex and sed programs, Tarantula is more 
effective than BEN; however, BEN is much more effective 

TABLE 25 
COMPARISON RESULTS FOR SINGLE-FAULT VERSIONS BASED ON PERCENTAGE OF CODE INSPECTED  

Program Approach 
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Siemens Suite 

BEN 23.53 30.39 22.55 4.90 3.92 9.80 1.96 1.96 0.98 0 

Ochiai 20.59 34.31 14.71 11.76 4.90 5.88 5.88 1.96 0 0 

Tarantula 18.63 33.33 16.67 11.76 3.92 3.92 8.82 0.98 1.96 0 

flex 

BEN 35.30 50.00 11.76 2.94 0 0 0 0 0 0 

Ochiai 55.88 23.53 14.71 5.88 0 0 0 0 0 0 

Tarantula 32.36 44.12 8.82 8.82 5.88 0 0 0 0 0 

grep  

BEN 66.67 11.11 22.22 0 0 0 0 0 0 0 

Ochiai 66.67 11.11 22.22 0 0 0 0 0 0 0 

Tarantula 55.56 11.11 22.22 11.11 0 0 0 0 0 0 

gzip 

BEN 14.29 57.14 14.29 14.28 0 0 0 0 0 0 

Ochiai 14.29 57.14 14.29 14.28 0 0 0 0 0 0 

Tarantula 14.29 57.14 14.29 14.28 0 0 0 0 0 0 

sed 

BEN 78.95 21.05 0 0 0 0 0 0 0 0 

Ochiai 89.47 10.53 0 0 0 0 0 0 0 0 

Tarantula 78.95 15.79 5.26 0 0 0 0 0 0 0 

TABLE 26 
COMPARISON RESULTS FOR MULTIPLE-FAULT VERSIONS BASED ON PERCENTAGE OF CODE INSPECTED 

Program Approach 
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Siemens Suite 

BEN 38.64 40.91 18.18 0 0 0 0 0 2.27 0 

Ochiai 31.82 52.27 13.64 0 0 0 0 2.27 0 0 

Tarantula 31.82 61.36 4.55 0 0 0 0 0 2.27 0 

flex 

BEN 56.25 37.5 6.25 0 0 0 0 0 0 0 

Ochiai 43.75 25 6.25 18.75 6.25 0 0 0 0 0 

Tarantula 37.5 62.5 0 0 0 0 0 0 0 0 

grep 

BEN 91.67 0 8.33 0 0 0 0 0 0 0 

Ochiai 75.00 16.67 8.33 0 0 0 0 0 0 0 

Tarantula 58.33 33.33 8.33 0 0 0 0 0 0 0 

gzip 

BEN 50 33.33 16.67 0 0 0 0 0 0 0 

Ochiai 50 33.33 16.67 0 0 0 0 0 0 0 

Tarantula 50 33.33 16.67 0 0 0 0 0 0 0 

sed 

BEN 94.44 5.56 0 0 0 0 0 0 0 0 

Ochiai 88.89 11.11 0 0 0 0 0 0 0 0 

Tarantula 83.33 16.67 0 0 0 0 0 0 0 0 
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in the grep and gzip programs.  
We investigated all the four versions of totinfo in which 

Tarantula outperforms BEN. In all cases the faulty 
statement localized by BEN is different from the one 
localized by Tarantula. The faulty statement detected by 
Tarantula is not even executed by the core member 
generated by BEN. Thus, it is not considered suspicious by 
BEN. The same situation happens for two out of three 
versions of the tcas program that Tarantula outperforms 
BEN (Table 28).  

As we mentioned, BEN focuses on one inducing 
combination, which is likely due to one faulty statement. 
BEN stops searching for inducing combinations, as soon as 
the first one is identified, in the first phase. Therefore, BEN 
localize the faulty statement related to the identified 
inducing combination.  

5.2.4. Threats to Validity  

Threats to internal validity are factors that may be 
responsible for the experimental results, without our 

knowledge. One of the key steps in our experiments is 
modeling the input parameters, which may affect the 
correctness of the result. To reduce this threat, for three 
programs, flex, gzip and sed, we used the models from [39]. 
For the other programs, we have modeled the input 
parameters by using the program specifications and if they 
are not available, the error-free versions, without having 
any knowledge about the faults. All the models, except the 
grep model, have been used in other studies [18][15]. 
In [15], the models are used to compare the effectiveness of 
combinatorial testing and random testing.  
 In addition, we automated the experimental procedure 
as much as possible, as an effort to remove human errors. 
In particular, all the steps are automated except counting 
the number of statements that should be inspected to find 
the faulty statement. Further, consistency of the results has 
been carefully checked to detect potential mistakes made 
in the experiments. For example, the higher the average of 
inducing probability, the more likely the core member 
fails. In the extreme case, if the inducing probability is 1, 

TABLE 27 
COMPARISON RESULTS FOR SINGLE-FAULT VERSIONS BASED ON NUMBER OF OUTPERFORMED VERSIONS 
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Siemens 
Suite 

printtokens 3 +1 +8.51 1 -1 -0.53 +1 +4.79 1 -1 -0.53 

printtokens2 9 +3 +5.97 2 -4 -3.98 +1 +9.45 4 -4 -7.21 

replace 32 +14 +8.56 4 -14 -9.80 +14 +8.21 4 -14 -11.16 

schedule 7 +2 +1.30 1 -4 -13.47 +2 +1.30 1 -4 -13.47 

schedule2 3 +2 +5.91 1 0 0 0 0 1 -2 -3.54 

tcas 36 +19 +7.94 12 -5 -3.38 +19 +7.61 12 -5 -3.38 

totinfo 12 +4 +27.85 6 -2 -13.82 +3 +4.07 6 -3 -10.03 

Siemens Suite 102 +45 +9.40 27 -30 -8.40 +40 +7.21 29 -33 -8.90 

flex 

flex1 12 +9 +5.39 2 -1 -5.30 +1 +8.52 1 -10 -2.12 

flex2 6 +3 +0.75 2 -1 -0.64 0 0 4 -2 -1.72 

flex3 6 +3 +5.64 0 -3 -0.12 +2 +6.42 0 -4 -1.21 

flex4 9 +8 +8.53 0 -1 -0.66 +2 +8.20 1 -6 -1.14 

flex5 1 0 0 0 -1 -0.10 0 0 0 -1 0.10 

flex 34 +23 +5.91 4 -7 -1.01 +5 +7.52 6 -23 -1.57 

grep 

grep1 3 +1 +3.77 2 0 0 0 0 1 -2 -1.14 

grep3 4 +1 +6.80 1 -2 -0.09 +1 +0.24 1 -2 -0.09 

grep4 2 +1 +3.08 0 -1 -0.12 0 0 0 -2 -0.98 

grep 9 +3 +4.55 3 -3 -0.10 +1 +0.24 2 -6 -0.73 

gzip 

gzip1 3 +1 +1.11 1 -1 -0.35 +1 +1 1 -1 -1 

gzip2 2 +2 +1.10 0 0 0 +1 +0.25 0 -1 -1.45 

gzip5 2 +2 +0.25 0 0 0 0 0 0 -2 -0.75 

gzip 7 +5 +0.76 1 -1 -0.35 +2 +0.62 1 -4 -0.98 

sed  

sed2 4 +2 +8.42 0 -2 -2.62 0 0 0 -4 -1.81 

sed3 3 +1 +0.69 1 -1 -0.32 0 0 2 -1 -0.32 

sed5 3 +2 +0.09 1 0 0 +1 +0.04 1 -1 -0.11 

sed6 6 +3 +0.17 0 -3 -5.22 0 0 0 -6 -2.78 

sed7 3 +1 +0.73 0 -2 -0.15 0 0 0 -3 -0.16 

sed 19 +9 +2.11 2 -8 -2.69 +1 +0.04 3 -15 -1.65 
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the core member must fail. To check the consistency of the 
results, we checked the inducing probability whenever the 
core member did not fail. For instance, in one out of seven 
detected faulty versions of the schedule program, the core 
member did not fail. We checked the inducing probability 
for this version, which is relatively small, 0.25.  
 Threats to external validity occur when the 
experimental results could not be generalized to other 
programs. We use subject programs from the Siemens 
suite [11]; these programs are created by a third party and 
have been used in other studies [23][40][31]. However, the 
subject programs are programs of relatively small size with 
seeded faults. To mitigate this threat, the flex, grep, gzip, 
and sed programs were added to the experiments, but more 
experiments on larger programs with real faults can 
further reduce this threat.  
 Each of the Siemens program has multiple versions, 
each of which has a single-fault. However, programs in 
practice could have multiple faults. To mitigate this threat, 
we created several multiple-fault versions that combined 
randomly selected faults and conducted an experiment on 

these versions. More experiments on programs with real 
faults can further reduce this threat. 

6. RELATED WORK  

In this section, we first discuss existing work on identifying 
failure-inducing combination, i.e., the first phase of BEN. 
Then, we focus on existing work on fault localization, 
which is related to the second phase of BEN.  

6.1. Related Work on Identifying Inducing 
Combinations  

Existing approaches to identifying inducing combinations 
can be classified into two groups. The first group takes as 
input a single failing test and tries to identify inducing 
combinations in the test. 

 Two techniques, called FIC and FIC_BS [57], try to 
identify all the inducing combinations contained in a 
failing test. These approaches take one failing test from a 
combinatorial test set, then generate and execute a small 
number of tests in a systematic manner to identify 
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Siemens 
Suite 

printtokens 4 0 0 3 -1 -0.53 0 0 4 0 0 

printtokens2 7 +6 +3.73 1 0 0 +3 +1.33 4 -2 -0.50 

replace 8 0 0 1 -7 -4.25 +2 +3.10 1 -5 -4.96 

schedule 5 +1 +2.60 1 -3 -5.41 +4 +2.27 0 -1 -9.74 

schedule2 2 +1 +3.94 1 0 0 0 0 1 -1 -0.79 

tcas 9 +1 +4.62 5 -3 -4.62 +2 +2.31 4 -3 -4.10 

totinfo 9 +2 +2.85 3 -4 -11.18 +4 +10.30 3 -3 -1.36 

Siemens Suite 44 +11 +3.57 15 -18 -5.84 +15 +4.34 17 -15 -3.51 

flex 

flex1 4 +2 +3.45 0 -2 -3.58 +2 +23.56 0 -2 -3.08 

flex2 5 +4 +3.80 0 -1 -0.61 +4 +20.93 1 0 0 

flex3 5 0 0 0 -5 -1.04 0 0 0 -5 -0.85 

flex4 2 +1 +1.21 0 -1 -16.95 0 0 0 -2 -5.69 

flex 16 +7 +3.33 0 -9 -3.32 +6 +21.81 1 -9 -2.42 

grep 

grep1 4 +3 +0.64 1 0 0 +2 +13.97 1 -1 -4.00 

grep3 7 +4 +2.13 0 -3 -0.10 +4 +0.24 0 -3 -0.10 

grep4 1 0 0 0 -1 -0.12 0 0 0 -1 -0.12 

grep 12 +7 +1.49 1 -4 -0.10 +6 +4.82 1 -5 -0.89 

gzip 

gzip1 4 +1 +1.23 3 0 0 +1 +1 3 0 0 

gzip2 1 +1 +0.5 0 0 0 +1 +0.25 0 0 0 

gzip5 1 +1 +1.96 0 0 0 +1 +0.45 0 0 0 

gzip 6 +3 +1.23 3 0 0 +3 +0.57 3 0 0 

sed 

sed2 3 +2 +5.13 0 -1 -3.27 +2 +2.33 0 -1 -1.77 

sed3 4 0 0 2 -2 -0.41 +1 +0.05 1 -2 -0.41 

sed5 4 +1 +0.13 3 0 0 0 0 1 -3 -0.06 

sed6 3 +2 +0.18 0 -1 -0.22 0 0 0 -3 -0.47 

sed7 4 +1 +0.73 0 -3 -0.26 0 0 0 -4 -0.33 

sed 18 +6 +1.91 5 -7 -0.72 +3 +1.57 2 -13 -0.42 
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inducing combinations in the failing test. New tests are 
generated such that one value, 𝑣𝑖 , of the failing test is 
changed to another possible value. When the newly 
generated test passes, 𝑣𝑖 is part of an inducing combination 
because its removal makes the test pass. FIC generates k 
tests, where k is the number of parameters, for each failure 
inducing combination.  

FIC_BS is the binary search version of FIC. To generate 
a new test, FIC_BS changes the values of k/2 parameters 
of the failing test. If the newly generated test passes, 
FIC_BS searches for inducing combinations in the changed 
values (k/2). The process continues until all inducing 
combinations are found. FIC and FIC_BS assume that no 
new inducing combinations are introduced when a value 
is changed to create a new test.  

 Li et al. [30] introduced two approaches, RI and SRI, for 
identifying inducing combinations. These techniques use a 
method called delta debugging [56] in an iterative 
framework. The RI approach takes one failing test from the 
initial combinatorial test set, and adopts a similar approach 
to FIC_BS to generate a small number of tests.   The SRI 
approach is an improved version of RI, and it takes as 
input one failing test, f. Then it tries to generate a passing 
test similar to f. SRI uses the fact that the inducing 
combination appeared in the failing test f, but not in the 
similar passing test. Therefore, it focuses on the 
parameters, which are different in the failed and passing 
tests. SRI could identify inducing combination by 
generating fewer tests than RI.  

The second group of approaches for identifying 
inducing combinations takes a set of tests as well as their 
execution statuses.  

The AIFL and InterAIFL approaches in [45][49] first 
identify a set A of suspicious combinations as candidates 
for being inducing. Second, it generates a group of tests for 
each failing test using the SOFOT strategy [34]. Let k be the 
number of parameters.  For each test f, the SOFOT strategy 
generates k tests by changing the value of one parameter 
at a time. Each test is different from the original test f in 
one value; the value is selected randomly from the 
corresponding parameter’s domain. After executing the 
newly generated tests, combinations that appeared in the 
passing tests are removed from the suspicious set A. The 
InterAIFL approach improves AIFL by adopting a 
framework in which the suspicious set A is iteratively 
generated and refined until it becomes stable. 

BEN also tries to identify inducing combinations in a 
combinatorial test set, instead of a single failing test. Thus, 
BEN belongs to the second group. There are two 
advantages resulting from using the whole test set rather 
than a single test. First, a test set contains more information 
than a single test. Second, it would be possible to identify 
inducing combinations that appear in different tests.  

BEN identifies suspicious combinations in the same 
way as AIFL and Inter-AIFL. However, BEN produces a 
ranking of suspicious combinations and focuses on the 
most suspicious combinations. Moreover, BEN 
significantly differs from AIFL and Inter-AIFL in the way 
of generating new tests. BEN generates tests for a top-
ranked suspicious combinations based on the notions of 

combination suspiciousness and environment 
suspiciousness. This is in contrast with the SOFOT strategy 
used in AIFL and Inter-AIFL. 

We mention that Yilmaz et al. proposed a machine 
learning approach to identify failure-inducing 
combinations [54]. The approach analyzes the 
combinatorial test set and tests statuses and builds a 
classification tree. The classification tree is used to predict 
inducing combinations. Shakya et al. in [43] made some 
improvements in identifying failure-inducing 
combinations based on Yilmaz’s work. 

6.2. Related Work on Fault Localization 

In Section 5, we already mentioned two fault 
localization approaches, Tarantula [23][24] and Ochiai [1]. 
Similar to BEN, Tarantula and Ochiai use statement 
coverage information to compute suspiciousness of each 
statement. Statement coverage is computed by multiple 
execution traces of failed and passing tests. 

In Tarantula, the suspiciousness value of each statement 
is the ratio of failing tests that execute the statement 
divided by the ratio of failing tests that execute the 
statement plus the ratio of passing tests that execute the 
statement. Ochiai computes the suspiciousness value of 
each statement by dividing the number of failing tests that 
execute the statement by the square root of the product of 
the number of all failing tests and the number of all tests 
that execute the statement. 

Then, Tarantula and Ochiai look for the faulty 
statement in a non-increasing order of their suspiciousness 
values. 

Three spectrum-based approaches, set union, set 
intersection and nearest neighbor, are proposed by 
Renieris and Reiss [40]. These approaches assume that 
there is one failed run (the spectrum of a failing test) and a 
large number of passed runs (the spectra of passing tests). 

Each of the three approaches has a different way to 
identify highly suspicious statements for being faulty, and 
these statements are then checked to find the actual faults. 
Let f be the program spectrum of a failing run and S be a 
set of program spectra of passed runs. The set union 
method computes f −  sS , where  sS  is the union spectra 
of a set of passed runs. The statements in the spectrum of 
the failed run but not in the union spectra of the passed 
runs are highly suspicious. In the intersection method, the 
highly suspicious statements are in the intersection spectra 
of a set of passed runs but not in the spectrum of the failed 
run, ⋂ sS − f.   

In the nearest neighbor approach, one passed run 
whose spectrum is the most similar to the failed spectrum 
is selected from 𝑆. The statements in the difference set of 
these two spectra have the highest suspiciousness of being 
faulty.  

If the fault is not found in the highly suspicious 
statement set, the program dependence graph is built. The 
nodes corresponding to the highly suspicious statements 
are marked as blamed nodes. Then, in both directions, 
backward and forward, a breadth-first search is performed 
from the blamed nodes. The statements corresponding to 
the nodes at a distance of one are also suspicious and must 
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be checked. This process is repeated until the faulty 
statement is found. 

Empirical evaluation in [23] shows that for the Siemens 
suite, Tarantula is more effective and efficient than the 
other methods, including set union, set intersection, and 
nearest neighbor. Lucia et al. in [31] reported the 
experiments that show Tarantula and Ochiai are 
comparable to each other for the Siemens programs. 
However, the work reported in [1] suggests that Ochiai 
outperforms Tarantula. The former work used statement 
coverage spectra while the latter used branch coverage 
spectra. Both works, i.e., [1] and [31], applied fault 
localization methods using the test pools provided for each 
program by the benchmark [11].  

Our experimental results also show that Ochiai is 
slightly better than Tarantula. BEN used combinatorial test 
sets and statement coverage spectra. 

The fundamental difference between BEN and the 
above spectrum-based approaches is that BEN 
systematically generates a small group of tests, and then 
analyzes their spectra to produce a ranking of statements. 
The existing approaches do not deal with test generation. 
Instead, they assume an existing test set that is generated 
randomly or using other techniques. In addition, they 
require every test execution to be traced. As a result, they 
cannot utilize the testing results if the test executions were 
not traced. In contrast, our approach is designed to work 
after normal testing is performed where test executions are 
not traced. Our approach only needs to trace the execution 
of a small number of tests that are generated in the second 
phase of our approach. As shown in Section 5, our 
approach can significantly reduce the number of tests that 
need to be traced but still produce results that are 
competitive to or better than Tarantula and Ochiai.   
 One approach, called LCEC [32], was reported that also 
leverages the result of combinatorial testing to localize the 
faulty statement. LCEC was published after our original 
work in [18][15]. LCEC selects a failing test from the initial 
combinatorial test set, and generates a group of passing 
tests by changing values of failing test involved in the 
inducing combination. The execution traces of failed and 
passing tests are analyzed to derive cause-effect chains of 
statements. A depth-first search is performed for all cause-
effect chains to locate the faulty statement. Then, if the 
faulty statement is not found, a breath-first search is 
performed in the dynamic backward slice, associated with 
the incorrect output value.  LCEC is applied to four small 
programs, with a maximum of 220 lines of code, including 
the tcas program. The cost of applying LCEC is not 
reported in [32]. The LCEC tool is not publicly available. 

We mention several other publications in fault 
localization literature.  Roßler et al. [41] propose a 
technique, BUGEX, which adopts a dynamic symbolic 
execution approach to generate tests with a minimal 
difference from a single failing test in terms of facts, i.e., 
branches or state predicates. Based on the generated tests, 
the facts that are executed by more failing tests but fewer 
passing tests are more likely to cause the failure. The 
proposed approach is different from BEN, as BEN does not 
analyze code to generate tests. Instead, BEN generates tests 

in a black box manner and uses an input model to find 
values for each parameter. 

In [52], Xuan and Monperrus proposed an approach to 
purify test cases that are written as xUnit-style test 
methods. A test method typically contains one or more 
assertions that are used to evaluate each test run. In their 
approach, when a test method containing multiple 
assertions fails, it generates purified test methods of this 
failing test method such that each of these purified 
methods only contains one assertion and relevant 
statements, i.e., statements that may affect this assertion. 
These purified test methods are executed to refine the 
statement ranking generated by spectrum based fault 
localization approaches. Their work is complementary to 
ours in that additional tests generated by our approach can 
be written as xUnit-style test methods to which their 
approach can be applied. Note that while both approaches 
generate additional tests for fault localization, these tests 
are generated in very different ways. Specifically, the 
approach in [52] generates additional tests based on 
assertions, whereas our approach generates additional 
tests based on inducing combinations. 
 Metallaxis [37], is a fault localization approach based on 
mutation analysis. The basic idea is the following: The 
more failing tests that kill a mutant, the more likely the 
statement that is changed by the mutant is faulty. In 
Metallaxis, a suspiciousness value is computed for each 
mutant, and thus for its corresponding statement, using 
the same Tarantula formula, except that the number of 
failing (passing) tests that kill the mutant is used, in place 
of the number of failing (passing) tests that execute the 
statement, in the formula. 
 Baah et al. [3] presented a PPDG, a probabilistic 
graphical model based on the program dependence graph 
to capture the statistical dependences among program 
elements. The PPDG could be used to analyze the program 
behavior and then generate a ranking of statements for 
fault localization. 
 Le et al. [28] proposed a multi-modal technique called 
AML, that considers bug reports and program spectra to 
locate bugs. AML uses Vector Space Model [28] and 
Tarantula as the information retrieval and spectrum-based 
technique, respectively. Then, it integrates their output 
and produces the final ranking. 

BEN is different from the above approaches as it is a 
spectrum-based fault localization approach based on 
combinatorial testing. BEN does not perform any program 
dependency analysis.  
 In [55] a new approach to prioritize tests for efficient 
fault localization is proposed. It used Tarantula as a fault 
localization approach. After finding the first failing test, it 
prioritizes tests such that tests that could potentially 
produce greater suspiciousness for the faulty statement are 
executed first. Moreover, Xia et al. [51] proposed a test case 
selection strategy to maximize the effectiveness of the 
Ochiai approach, while minimizing the cost of test oracle 
construction. These approaches are complementary to 
BEN in that they could be used to further improve the 
effectiveness of BEN.   
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7. CONCLUSION  

In this paper, we presented an approach called BEN to 
localizing faults that leverages the result of combinatorial 
testing. Our approach combines black-box combinatorial 
test generation with white-box spectrum analysis for fault 
localization. Our approach consists of two phases. The first 
phase identifies a failure-inducing combination, which is 
used in the second phase to localize the faulty statement in 
the source code.  
 In the first phase, BEN adopts an iterative framework 
that ranks suspicious combinations and generates new 
tests repeatedly until an inducing combination is 
identified. The novelty of this phase lies in the fact that we 
rank suspicious combinations and generate new tests 
based on the notions of combination suspiciousness and 
environment suspiciousness. The higher the combination 
suspiciousness of a combination, the lower its 
environment suspiciousness, the higher this combination 
is ranked. New tests are generated for a user-specified 
number of top-ranked suspicious combinations such that 
the environment suspiciousness of a combination is 
minimized in each test. Our approach starts with searching 
for inducing combinations whose size is equal to the 
strength t of the initial test set. If it is not found, the 
approach expands its search to combinations whose size is 
greater than t.  
 The key idea of the second phase of BEN is that we 
systematically generate a group of tests from an inducing 
combination such that the spectra of these tests can be 
analyzed quickly to identify the faulty statement. This 
group of tests consists of a core member that is a failing test 
and a number of derived members that are passing tests 
but are very similar to the core member. The 
suspiciousness values of statements are computed by 
analyzing the spectra of the core member and the derived 
members.  
 We applied BEN to the Siemens suite and also the flex, 
grep, gzip and sed programs. Our experimental results 
show that our approach requires a very small number of 
tests to be generated while significantly reducing the 
number of statements to be inspected for fault localization. 
In particular, our approach achieves results that are 
competitive to or better than those of Tarantula [24] and 
Ochiai [1] while requiring significantly fewer test runs to 
be traced.  
 We emphasize that our approach has an important 
advantage over existing spectrum-based approaches such 
as Tarantula and Ochiai. Existing spectrum-based 
approaches require every test execution be traced. If a test 
set is already executed without being traced, the test set 
must be re-executed to collect traces before they can be 
used by approaches like Tarantula and Ochiai. In contrast, 
our approach only requires a small number of tests 
generated in the second phase of our approach to be traced. 
Our approach is designed to work after normal testing is 
performed where test executions do not need to be traced.  
 We plan to conduct more empirical studies to further 
evaluate the performance of our approach. In particular, 
we plan to evaluate our approach using other metrics such 
as acc@N and also compare our approach to information 

retrieval [28][42][58] or learning-to-rank based 
approaches [27][47][53]. We also plan to investigate how to 
adapt our approach to work with an arbitrary test set. Our 
current approach assumes that a combinatorial test set is 
used to test a program. This will further increase the 
applicability of our approach. That is, we will try to 
identify inducing combinations from an arbitrary test set 
and then use them to generate tests for fault localization. 
The challenge is to deal with the fact that unlike a 
combinatorial test set, an arbitrary test set does not 
guarantee that all t-way combinations are covered. This 
might reduce the effectiveness of our approach.  
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