IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. X, FEB 2017 1

Understanding Diverse Usage Patterns from
Large-Scale Appstore-Service Profiles

Xuanzhe Liu, Member, IEEE, Huoran Li, Xuan Lu, Tao Xie Senior Member, IEEE, Qiaozhu Mei,
Feng Feng, and Hong Mei Fellow, IEEE

Abstract—The prevalence of smart mobile devices has promoted the popularity of mobile applications (a.k.a. apps). Supporting
mobility has become a promising trend in software engineering research. This article presents an empirical study of behavioral service
profiles collected from millions of users whose devices are deployed with Wandoujia, a leading Android app-store service in China. The
dataset of Wandoujia service profiles consists of two kinds of user behavioral data from using 0.28 million free Android apps, including
(1) app management activities (i.e., downloading, updating, and uninstalling apps) from over 17 million unique users and (2) app
network usage from over 6 million unique users. We explore multiple aspects of such behavioral data and present patterns of app
usage. Based on the findings as well as derived knowledge, we also suggest some new open opportunities and challenges that can be
explored by the research community, including app development, deployment, delivery, revenue, etc.

Index Terms—mobile apps, app store, user behavior analysis

1 INTRODUCTION

THE release of iPhone in 2007 has opened a new era
of mobile computing. Currently, smart devices such as
iPhones, iPads, and Android devices have played an indis-
pensable role in our daily lives. The increasing popularity
of mobile devices and apps has induced an evolution of
software industry. One of the currently inspiring trends is
the emergence of online app stores (e.g., the Apple App
Store, Google Play, and Microsoft Marketplace) for distribut-
ing mobile software applications (a.k.a., apps) [1]. For the
first time in the history of software development, individual
developers and small companies can access distribution
infrastructures that allow them to sell (mobile) apps to
millions of potential customers at the tap of a finger.

The emergence of mobile apps and online app stores
has been a game changer to breed a new “mobile app
ecosystem” [2] constituting stakeholders such as app devel-
opers, marketplace operators, end-users, network service
providers, and advertisers. Such an ecosystem also creates
new opportunities and challenges for software engineer-
ing research. Recently, a few efforts have been proposed,

e Xuanzhe Liu, Huoran Li, and Xuan Lu are with the Key Laboratory of
High Confidence Software Technologies (Peking University), Ministry
of Education, Beijing, China, 100871. Email: {liuxuanzhe, lihuoran,
luxuan}@pku.edu.cn

o Tao Xie is with the University of Illinois Urbana-Champaign, USA. Email:
taoxie@illinois.edu

o Qiaozhu Mei is with the University of Michigan. Email: gmei@umich.edu

e Feng Feng is the co-founder and Chief-Technology Officer of Wandoujia.
Beijing, China, 100084. Email: jackfeng@wandoujia.com

e Hong Mei is with both Beijing Institute of Technology and the Key
Laboratory of High Confidence Software Technologies (Peking University),
Ministry of Education, Beijing, China. Email: meih@pku.edu.cn.

Manuscript received Oct. 29, 2016; accepted Feb. 27, 2017. Recommended for
acceptance by S. Malek.

covering aspects including requirement analysis [3], [4],
code/library analysis [5], [6], [7], 8], [9], version evolu-
tion [10]], and system/tool supports [11]], [12].

Other than the preceding efforts, in software engineering
research, understanding user behaviors is a natural and
effective channel to align software development activities
with user requirements. However, in practice, app devel-
opers have quite limited communications with their users,
and thus have difficulties to comprehensively identify target
users and understand their needs. Although developers can
receive user ratings and reviews towards their apps, the
reviews and ratings can be quite sparse and even low-
quality for some apps [13], and only very few successful
apps can receive useful user feedback [3]. Previous in-
field user studies have made efforts to understand user
behaviors towards using apps [3], [14], [15], [16], [17], but
most of these studies were conducted using rather limited or
biased datasets, typically based on subjects such as college
students and questionnaire volunteers. Other behavioral
signals were collected through a monitoring app voluntarily
installed on the subjects” devices. Such a study cannot be
widely applied by a variety of crowds because of security
and privacy concerns. Certainly, app stores and network-
service providers can have a lot of data on app usage, but
no evidence shows that such data has been accessed and
studied by external researchers. Due to the absence of user
behavioral data, it is currently difficult for the research
community to directly extrapolate existing results and
make representative understandings of how, where, and
when the apps are actually used at scale, and thus explore
what knowledge can be derived for apps development,
maintenance, revenue, etc., accordingly.

The main goal of the work presented in this article is
to bridge this knowledge gap. We are fortunate to collect
a variety of user behavioral data from millions of users
with a leading Android app-store service provider. We
then conduct our study from three main folds. First, we

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. X, FEB 2017 2

make an empirical study to characterize the diverse app-
usage behaviors. To this end, we propose various research
questions in terms of app popularity, management activities,
and network usage. We conduct a series of measurements
over the dataset covering 17 million users, 0.28 million
apps, with various metrics. Second, we exploit the derived
knowledge from our measurement study and provide some
helpful implications to current app-centric software engi-
neering research, ranging from better understanding user
requirements and needs, to improving the workload and
ranking system of app stores, and to affecting the app’s
development activities and revenue strategies, etc. Last,
although this article does provide some primitive answers
and implications, researchers can go much deeper into each
of these research questions and conduct a much more in-
depth study. In addition, we expect that our dataset can
establish a valuable resourceﬂ for the research community
to explore more potential research topics and opportunities.

Our dataset comes from a leading Android app store in
China, called Wandouj i;ﬂ Similar to Google Play and Apple
AppStore, Wandoujia provides its own services with a na-
tive management app that facilitates users to search, browse,
download, install, update, and uninstall apps. Additionally,
compared to Google Play and AppStore, Wandoujia can
provide advanced monitoring services and features that can
be optionally enabled by its users. Once these features are
enabled, the Wandoujia management app runs as a back-
ground system-wide daemon service but without requiring
the “root” privilege, and is able to collect network-activity
information per app, e.g., data traffic and access time under
Wi-Fi and cellular, respectively.

Our dataset covers millions of active users who fre-
quently use Wandoujia. The dataset contains two types
of service profiles reflecting user behaviors: (1) app-
management activities (i.e., installation, updating, and unin-
stallation) from over 17 million (17,303,122) unique users; (2)
app-network usage from 6 million (6,632,303) unique users.
Based on this extensive dataset, we conduct a systematic
analysis that includes the distributions of app popularity,
possible reasons of app selection, life cycles of abandoned
apps, fine-grained network analysis of apps, and the impact
of device-specific factors on app usage. In total, our dataset
covers over 0.28 million (283,922) Android apps. Although
the apps provided by Wandoujia are all free, such a large-
scale dataset can provide useful knowledge on app usage
patterns.

Part of this work was previously presented in our IMC
2015 conference paper [18]. The main extension presented
in this article is that we employ a larger dataset spanning
five months (May 1, 2014 to September 30, 2014) instead
of the previous one-month data. The two datasets have the
same kinds of information, but the new dataset contains
more users (17 million instead of 8 million) and more apps
(0.28 million instead of 0.26 million) and thus can enable
more comprehensive analysis. In this way, our new dataset
can overcome some limitations of the previous one-month

1. Part of our dataset has been released along with the publication
of our IMC 2015 paper [18], and one can find the brief description
from http:/ /sei.pku.edu.cn/~liuxzh/appdata/| The dataset can be re-
quested by the researchers who have the IRB approval.

2. http:/ /www.wandoujia.com

data such as impacts by release time and update frequency
of apps. We conduct the same measurements proposed in
our IMC 2015 conference paper [18] over our new dataset,
i.e., the app popularity, app management, and network
usage. Additionally, we extend some entirely new statistical
measurements, i.e., how the user reviews can correlate to app
popularity (Section [5.4), and how app usage is affected by the
choice of device models (Section [7). Most of results are quite
consistent with those made over the old dataset. In addition,
the new longer-timespan dataset also enables us to explore
more insights.

This article includes new suggestions on how our find-
ings and implications can help explore open opportunities
and problems for software engineering research (Section [§).
We also provide more discussions (Section E]), such as limi-
tations of our dataset and threats to validity of our study.

Based on the unique dataset, we conduct a systematic
empirical study from various perspectives. We not only con-
firm some results derived from previous studies that were
conducted over relatively small datasets or limited users,
but also derive some new knowledge and implications from
diverse user behavioral patterns on app usage. More specif-
ically, this article makes the following main contributions:

e We characterize the popularity of apps with various
ranking metrics including the number of downloads,
the number of unique users, the volume of data
traffic, and the length of network-access time. We val-
idate the Pareto-like principle and further explore the
power-law of apps’ popularity distribution. Addi-
tionally, we also find some “clustered” apps that are
frequently to be requested together, indicating their
locality on the servers. These findings suggest the
significant improvement for cache placement where
the copy of some apps can be placed on the app
store’s servers. We then simulate the request traces
on various typical cache mechanisms and devise an
adaptive mechanism for optimizing the app store’s
workload.

o We describe how users perform app-management ac-
tivities such as downloading, updating, uninstalling,
and rating their apps. We reveal the diurnal regular-
ities of app-management activities and the lifecycle
of those abandoned apps. We demonstrate how to
find the apps having possible “fake” downloads, e.g.,
some apps have an abnormal number of downloads.
In particular, we surprisingly find that the user rat-
ings of an app are not always consistent with the
numbers of downloads and unique users of this
app, especially for apps with very few ratings. These
findings suggest that app-store operators should in-
corporate new ranking mechanisms to predict the
adoption of an app.

o We investigate the network usage including the vol-
ume of data traffic and the length of access time
under cellular and Wi-Fi as well as at foreground
and background, respectively. We find that apps
from specific categories (e.g., VIDEO) can account for
substantial traffic under different networks. We are
especially surprised to find that numerous apps keep
“long-live” TCP connections and produce data drain

http://sei.pku.edu.cn/~liuxzh/appdata/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. X, FEB 2017 3

at background after they are launched but without
user interaction. These findings suggest that both de-
velopers and end-users need to justify whether such
dynamic behaviors (especially those at background)
and potentially extra cost are really reasonable with
respect to the regular functionality of the apps.

o Wereveal that the choice of device models can lead to
significantly diverse usage patterns of apps. We find
that the device models are heavily “fragmented”,
i.e., the number of users per device model varies
significantly. Additionally, the user behaviors of app
download & uninstall and network-access time are
affected by the choice of device models. These
findings suggest that Android developers need to
carefully prioritize device models. Furthermore, the
users holding different device models have quite dis-
tinct preferences of selecting “competing apps”. For
instance, lower-end users prefer the Opera Mini
browser while higher-end uses prefer Chrome, since
the latter claims to reduce data traffic with advanced
compression services. These findings suggest that
app developers should take into account the device-
specific features in releasing their apps to gain more
users and potential revenues.

We approach our study from perspectives with the inten-
tion that interested readers could focus on parts relevant to
their research. In addition, various open opportunities can
be explored over our dataset and findings. Although most
users studied in our work are from China, the measurement
approach and derived knowledge from such an extensive
dataset can be generalizable to the populations from other
app stores.

The remainder of this article is organized as follows.
Section [2| describes the dataset. Sections [3| presents the
measurement approach by proposing some research ques-
tions. Sections [[B] [6} and [7] describe the inferred diverse
app-usage patterns in four aspects: app popularity pat-
terns, management patterns, network patterns, and device-
sensitive patterns, respectively. Section 8| summarizes the
findings and implications to different stakeholders in the
app-centric ecosystem. Section] discusses some possible
limitations of our study. Section [L0jmakes comparisons with
related work, and Section [TT] concludes the article.

2 DATASET

In this section, we briefly introduce the Wandoujia app store
and describe the information covered by our dataset. To
protect the user privacy and assure the academic ethics of
our research, we also discuss how the data is processed with
a rigorous workflow.

2.1 Wandoujia

Wandoujiaﬂ is a free Android app store in China. Wandoujia
was founded in 2009 and has grown to be a leading An-
droid app store [19]. Similar to other app stores, third-party
app developers can upload their apps to Wandoujia and
get them published by passing Wandoujia’s authentication

3. Visit its official site via http://www.wandoujia.com,

200 QS-S e den]
o RN]
—HER! SERTHERARSS
8 a - Obliviate | KSHFFHIEIT RARITE | B, EHRESDE
2 W AR WO EF
I~ x & SRR 2 SERBATIN SAEAEFREMED T
= W R ETANER (5.
e TOOLS M=AEE Background (RS R BT
- process =&
E L = FHE management EAR, S, W BAREE
i, R | B
=54 -
=6, FABEXAE -+
8-
TRSHR T e
N . Gt LSRRI
EELELCTE) =2 QR
EAHEEE .
= network traffic
HBEEERE statistics
— ELE] ——

(a) (b) (©

Fig. 1. Screenshots of advanced settings in the Chinese version of the
Wandoujia management app (the advanced settings is not supported
in the current English version). (a) is the homepage of the Wandoujia
management app, where users can navigate to “settings” by clicking the
text circled by red; (b) refers to the background management service
setting, which is highlighted by the red rectangle; (c) is to toggle whether
to allow Wandoujia to collect the data of network activities.

systenﬁ Wandoujia also provides a categorization system,
in which each app is annotated with a category tag, such as
COMMUNICATION, GAME, MEDIA, MUSIC. Developers
can choose the category by themselves or Wandoujia can
annotate the app’s category informatiorﬂ Compared to
other app stores such as Google Play, apps on Wandoujia are
all free, but apps are fully allowed to have “in-app purchase”.

Our dataset comes from Wandoujia’s management app.
The Wandoujia management app is a native Android app
that provides various services, by which people can man-
age their apps, e.g., searching, downloading, updating, and
uninstalling apps. The logs of these management activities
are all automatically recorded.

Besides these basic features, the Wandoujia management
app is developed with some advanced but optional services
that can monitor and optimize a device. These services
include network activity statistics, permission monitoring,
content recommendation, etc. All services are developed
upon standard Android system APIs and do not require the
“root” privilege. Users can decide whether to enable these
features, as shown in Figure |1} However, these services are
supported only in the Chinese version.

When installed, the Wandoujia management app is au-
tomatically launched and it works as a system-wide service
after the device starts up. The data collected by such a
service per device are uploaded to the Wandoujia server
when Wi-Fi is available.

2.2 Data Collection

As of 2014, Wandoujia has over 350 million usersﬂ Each
user is actually identified by a unique Android device,
which could be either a smartphone or tablet computer. In
the study described in this article, we collected five-month
usage data from May 1, 2014 to September 30, 2014.

4. The authentication system of Wandoujia checks whether uploaded
apps contain illegal contents and performs basic anti-virus tasks.

5. Apps not belonging to any category are annotated as “MISCS”.

6. http:/ /www.chinatechnews.com/2014/05/07/

20496-chinese-android-app-store-inks-deal-with-japanese-messaging-app

http://www.wandoujia.com
http://www.chinatechnews.com/2014/05/07/20496-chinese-android-app-store-inks-deal-with-japanese-messaging-app
http://www.chinatechnews.com/2014/05/07/20496-chinese-android-app-store-inks-deal-with-japanese-messaging-app

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. X, FEB 2017 4

TABLE 1
Chosen apps by category.

App Catego Apps Users Downloads Traffic | Access Time C- C- W- W-
PP gory pp (10° devices) (10° times) (GB) (107 hours) Traffic Time Traffic Time
BEAUTIFY 38,072 2.71 5.82 43,060.85 4.24 0.54% | 11.96% 0.69% | 11.33%
COMMUNICATION 1,745 8.13 18.76 863,020.84 17.21 42.18% 48.32% 10.12% 46.08%
EDUCATION 22,849 341 7.19 41,186.12 1.51 1.16% 4.87% 0.58% 3.48%
FINANCE 3,634 0.90 1.76 3,143.70 0.08 0.26% 0.27% 0.02% 0.20%
GAME 80,762 7.61 34.24 51,854.80 2.00 3.01% 5.88% 0.55% 5.14%
IMAGE 2,738 0.25 0.35 2,309.98 0.00 0.04% 0.01% 0.04% 0.01%
LIFESTYLE 30,623 297 6.67 27,542.35 0.29 1.74% 0.83% 0.28% 0.78%
MOTHER_AND_BABY 743 0.22 0.38 4,797.12 0.04 0.16% 0.06% 0.07% 0.13%
MUSIC 1,002 5.22 8.86 190,438.70 0.67 4.23% 2.15% 2.84% 1.55%
NEWS_AND_READING | 18,583 2.73 5.80 120,835.76 1.40 4.48% 3.48% 1.59% 4.13%
PRODUCTIVITY 6,155 1.78 343 18,439.92 0.07 0.52% 0.18% 0.26% 0.21%
SHOPPING 4,664 3.90 10.03 194,146.89 0.72 5.52% 1.17% 2.75% 2.69%
SOCIAL 6,474 5.13 11.25 235,489.22 1.33 6.69% 3.01% 3.34% 417%
SPORTS 1,852 0.50 0.65 883.37 0.01 0.04% 0.03% 0.01% 0.03%
SYSTEM_TOOL 9,818 7.30 18.86 231,470.89 1.12 3.92% 3.01% 3.60% 3.11%
TOOL 29,808 8.20 25.44 692,746.52 422 | 11.39% | 12.16% | 10.80% | 11.05%
TRAFFIC 930 0.19 0.27 637.16 0.01 0.05% 0.02% 0.01% 0.01%
TRAVEL 3,381 3.56 743 59,791.09 0.17 1.92% 0.75% 0.82% 0.21%
VIDEO 15,321 6.50 17.47 | 3,588,326.52 141 | 12.02% 1.82% | 61.56% 5.66%
MISCS 4,768 0.12 0.14 5,884.40 0.01 0.13% 0.02% 0.09% 0.02%

The users, downloads, traffic, and access time are all computed by aggregating the data of each app in the category
The percentage of W-Traffic (C-Traffic) and W-Time (C-Time) refer to the data traffic and foreground access time over Wi-Fi
(W) and cellular (C) network, respectively. For each category, the percentage value is computed based on the apps from this

category relative to all apps in our dataset.

To avoid “zombie” users who contribute little to the
analysis, our five-month dataset chooses only users who
are actively using Wandoujia. To this end, the users should
launch and use the Wandoujia app for more than 120 days,
according to the service profile logs generated by the Wan-
doujia management app. The data reflecting user behaviors
consist of two types of service profiles: (1) the profile of
app-management activities (i.e., installation, update, and
uninstallation) (2) the profile of app-network usage (i.e.,
the traffic and access time per app). Finally, we obtain
the behavioral data from more than 0.28 million (283,922)
Android apps. The overall statistical information of our
dataset is described in Table |1} which contains aggregated
information including the number of apps, users, traffic, and
network access time per category. Such a dataset occupies
about 5.6 TB disk space.

As the network activity monitoring is an optional service
of the Wandoujia management app, we distinguish the two
kinds of service profiles as “App-Management Activities”
and “App-Network Usage Activities”. In addition, we col-
lect the user rating (against an app) and device model
information.

2.2.1 App-Management Activities

App-management activities consist of downloading, up-
datinéﬂ and uninstalling apps. The monitoring of app-
management activities is always enabled when the Wan-
doujia management app is installed on device. When an
app is installed or updated via the Wandoujia management
app, its installation counter is automatically incremented
by one and a log entry of this activity is created. The
logs of uninstallation via the Wandoujia management app
are processed similarly, and the count of uninstallations is
incremented automatically.

7. In the Wandoujia management app, a pop-up of installation wizard
is presented to users when an app is successfully downloaded or
updated. So we simply treat “download” and “installation” equally,
if not specifically distinguished.

Unlike the Apple App Store, the Android platform al-
lows users to install various app stores other than Google
Playﬁ hence, our dataset focuses on only the apps that are
operated by the Wandoujia management app. To this end,
we maintain a list of popular app stores in China such as
360, Baidu, Tencent, and Xiaomi, and filter out all users who
install these app stores out of our dataseﬂ Finally, we collect
the management activity logs from 17,303,122 unique users
(unique devices in fact). We denote the dataset as “Universal
User Set.” The logs of management activities are used to
explore an app’s popularity, and can implicitly reflect the

app’s quality.

2.2.2 App-Network Usage Activities

When the advanced features are enabled, the Wandoujia
management app collects daily network statistics of each
app, when the app is connected to network either from Wi-
Fi or cellular (2G/3G/LTE). If an app is never launched or
generates no network connections, the app is not recorded
in the network statistic logs.

To reduce the overhead of runtime monitoring, the Wan-
doujia management app does not record network details
of each session of an app. Instead, it summarizes the total
daily traffic drain and access time of an app by examining
flows at the TCP level. The traffic drain and access time are
accounted for Wi-Fi and cellular, respectively. In particular,
the traffic drain and access time generated from foreground
and background are accounted separately. To this end, the
Wandoujia management app determines whether an app is
running at “foreground” by probing the Android system
stack for every 2 seconds. In this way, the “foreground”
access time can imply how long the user interacts with an
app. The Wandoujia management app checks whether an
app running at “background” every minute. If any network

8. In fact, the access to Google Play is currently banned in China.
9. Essentially, these app stores are also native apps that can be
monitored by Wandoujia.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. X, FEB 2017 5

activity is detected during this interval, this app is regarded
to be “online” and its “background” access time is increased
by a minute. Such a time interval is reasonable to initiate and
release a TCP connection.

In summary, the statistic of network activities provides
8 dimensions of information, i.e., 2 metrics (access time
and traffic) * 2 networks (Wi-Fi and Cellular) * 2 states
(foreground and background).

As the statistic of network activities is an optional
feature for end-users, the covered users are a subset of
the “Universal User Set.” We take into account only the
users who successively contributed the statistics for more
than three weeks. In our five-month dataset, the network
activities cover 6,632,303 unique users from our 0.28 million
apps. We denote such a dataset as “Networked User Set.”

2.2.3 User Ratings

Most app stores allow users to commit their user reviews
and make ratings to an app. Compared to Google Play
where an app is ranked by a 5-star model, Wandoujia’s users
can simply rank an app with a binary-metric voting model
of “like” or “dislike”, i.e. a user who installs an app can vote
“like” if he/she is in favor of the app, or “dislike” otherwise.
To encourage user participation, Wandoujia allows multi
ratings of an app per user. But, to prevent possible “fake”
ratings, Wandoujia now restricts that each user can rate only
once every 3 days. Note that currently Wandoujia does not
associate the rating towards a specific version of the app,
but just the app generally. Hence, it is possible that users
installing an older version of an app can still rate this app
even after the app has released updates. In practice, on most
app stores such as Apple App Store and Google Play, users
can have the information of ratings of an app from its profile
page, but it is observed that the ratings are usually provided
as an overall score, not specific to versions. In this way, we
aggregate the ratings given to an app in our five-month
dataset.

In addition, users can optionally commit textual reviews.
In this article, we collect only the number of “like” (and
“dislike”) that can be publicly collected from the profile
page of an app on Wandoujia.

2.2.4 Device-Model Information and Price

The Wandoujia management app also records the manufac-
tural information of each device, e.g., Samsung Galaxy
Note 2, Google Nexus. We employ the information of
device models to classify users. There are 19,147 different
device models in total. Such a result immediately implies
the heavy fragmentation of Android device models. To
better organize these models, we collect their on-sale price
information when they were firstly put onto market. We
provide details of clustering the device models against their
subscribers in Section

2.3 Ethical Considerations

Undoubtedly, collecting user behavioral data always needs
to be very careful. As an app-store service provider, Wan-
doujia explicitly declares what and why the preceding
data should be collected in its privacy policy statement.
We take a series of steps to preserve the research ethics

and user privacy of involved users in our dataset. First,
all raw data collected for this study are kept within the
Wandoujia’s data warehouse servers, which are placed be-
hind the company firewall. Second, our data-collection logic
and analysis pipelines are completely governed by three
Wandoujia employeed™|to ensure compliance with the com-
mitments of Wandoujia privacy policy in the Term-of-Use
statements. Finally, the Wandoujia employees take charge of
anonymizing the user identifiers. The dataset includes only
the aggregated statistics for the users covered by our study
period. No actual users can be traced at all.

2.4 Limitations

Some limitations should be also addressed before we per-
form our measurement, as they can have potential impacts
on the analysis and may narrow the generalization of re-
sults. First, the collected data come from only a single app
store in China, and the covered users are mainly Chinese.
As a result, the demographical differences can occur in other
app stores or other countries. Second, the dataset currently
cannot trace an app’s versions where the data come from,
and thus cannot capture the impact of app release, which
is proposed to be a factor to affect the app’s success [20].
Third, apps published on the Wandoujia app store are free,
and hence we cannot infer the users” payment behaviors on
the paid apps. Indeed, it is reported that user behaviors can
be a bit different on free and paid apps [2].

However, our dataset is quite unique in terms of both
the scale of users and behavior dimensions. As presented
in the subsequent sections, our study not only validates or
contradicts some results derived from a small scale of users,
but also provides new findings. In addition, we discuss how
to alleviate the preceding limitations in Section 9}

3 RESEARCH QUESTIONS

Starting from this section, we demonstrate how our dataset
can be useful for general research on the diverse user-
behavior patterns of Android apps. In particular, we pro-
pose a series of research questions, which are concerned
with the popularity, management activities, and network
characteristics of using apps. We show that these research
questions are rather interesting and can inspire various
potential research projects; if answered, these research ques-
tions can provide many insights on app-usage behaviors.
Although in this article we do provide preliminary answers,
researchers can go much deeper into each of these research
questions and conduct a much more in-depth study. Our
goal is to provoke the interest of the research community to
study these questions (based on such a dataset).

3.1 RQ1: How can we identify the multi-dimensional
popularity distribution of apps?

For app-store operators, a fundamental task is to identify
and determine which apps are actually popular or un-
popular, so that the operators can improve their ranking
and recommendation system, allocate server-side resources,

10. One co-author serves as a co-founder and the current CTO
of Wandoujia. He supervises the process of data collection and de-
identification.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. X, FEB 2017 6

and place ads for the most popular apps. Currently, the
popularity of an app is usually measured by the number of
downloads of this app. Such a metric should not be always
sufficient or accurate enough in some cases. For example,
it is quite possible that some apps can be purposely re-
downloaded by automatic programs. In addition, down-
loading an app does not mean that the app could be actually
used. To this end, we aim to make a comprehensive study
of app popularity from multiple aspects, i.e., the download
times, the unique subscribers, and the network usage. In-
deed, all these aspects are meaningful, but no previous
study can synthesize them comprehensively. Hence, we
aim to understand the distribution of app popularity from
various indicators. Additionally, we can further examine the
consistency of these indicators, and thus provide a represen-
tative genre of the apps that can substantially account for all
indicators. Such a genre can be released to researchers who
can explore further topics.

3.2 RQ2: How do the users manage their apps?

The app-management activities include downloading,
updating, and uninstalling apps. Exploring app-
management activities is motivated for various reasons.
Essentially, the management activities can reflect the user
attitudes towards an app, i.e.,, downloading and updating
can mean that the user needs this app, while uninstalling
can imply that the user does not need or even dislikes this
app. In addition, we can associate the app-management
activities with the publicly available user ratings, and infer
users” attitudes towards the app in a more comprehensive
way. On the other hand, as the app-management activities
are usually made manually, they can implicitly reflect
the density and frequency of user interactions with the
app stores. This information can help app-store operators
better understand when a large number of concurrent user
requests arrive, so that the operators can optimize their
servers for faster app delivery and more reliable network
bandwidth. Therefore, we plan to break down RQ2 to the
following questions.

RQ 21: How do the wusers perform their diurnal
management activities of apps?

RQ 2.2: What apps are more likely to be selected and liked
by users?

RQ 2.3: How can we identify an app that is more likely to
be disliked by users?

RQ 2.4: Are the user ratings of an app consistent with the
app-management activities, with respect to the user attitude
towards this app?

3.3 RQ3: How do apps perform in terms of access time
and traffic drain over network?

Understanding network activities of apps is always a
highly interesting topic. Undoubtedly, most of current
smartphone apps heavily rely on the network to function
and provide features. End-users would like to know
how their data plan is spent by an app, and whether

some potentially unnecessary “hidden” or even “stealthy”
network behaviors may occur. To avoid the low ratings
or even user loss, the developers should carefully check
the design/implementation such as improperly granting
permissions, or fix some possible bugs. As our dataset
contains the detailed information of access time and
traffic volume generated at foreground /background under
cellular/Wi-Fi, respectively, we decompose the network
characteristics of apps by exploring the following questions.

RQ 3.1: Which apps are the users likely to interact with,
when these apps are under Wi-Fi and cellular networks,
respectively?

RQ 3.2: Which apps are more “traffic-intensive” and how
much traffic is generated by these apps?

RQ 3.3: How much “hidden” traffic is consumed when
using an app?

3.4 RQ4: How does the choice of device models affect
the app usage?

Intuitively, the answers to RQs 2-3 can reflect the overall
knowledge of app usage from millions of users. To break
down whether the classification of users can have impact
on the app usage, we categorize the users according to the
device models that they hold, i.e., high-end, medium-end,
and low-end, ranked by the on-sale price. Hence, we revisit
some important aspects of RQ2 and RQ3, such as app
selection, app abandonment, and network usage.

As an empirical study, we employ descriptive and sta-
tistical analysis of our dataset to answer the preceding re-
search questions. We apply some well-established statistical
metrics such as the Spearman correlation coefficient and
linear regression model. The large-scale dataset enables our
findings to be comprehensive.

4 APP POPULARITY PATTERNS WITH DIFFERENT
METRICS

In this section, we first analyze the apps’ popularity distri-
bution. Essentially, the app store can be viewed as a special
kind of system for sharing web contents and resources.
Indeed, it is demonstrated that analyzing the exact form
of popularity distribution not only helps understand the
underlying mechanisms (i.e., cache, bandwidth, etc.), but
also helps improve important design solutions in other sys-
tems of sharing web contents and resources such as search
engines, online video systems, e-commerce systems [21].
For instance, the scale-free nature of web requests has been
used to improve search engines, advertising policies, and
recommendation systems.

In a previous study [2], app popularity is usually mea-
sured by only the number of app downloads on the app
store. To make a comprehensive analysis, we employ four
metrics for an app in this article: (1) the number of
unique devices that ever used the app; (2) the number
of downloads of the app; (3) the aggregated data traffic
generated by the app; (4) the aggregated access time that

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. X, FEB 2017 7

100% . 107
10°
c 90% _ 10°
£ 8o% i
3 70% g 10 210°
= o %] 4
§ 60% 102 2 10
> 50% b e 3.
= Q.2 Q10
£ 40% o 10 5
K < O .2
2 30% s # 10
1
3 20% # 10 . T 10!
10%
0 10° : 10°
° 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 10° 10" 10®° 10° 10* 10° 10° 10’ 10’ 10° 10° 10* 10° 10° 107

App Ranking by # of Downloads

(a) Percentage of downloads against rank

of Downloads (Log Scale)

(b) Power-law of app downloads

o
£

of Users
om

100 _—_—_—.__. , om ®os oo
10° 10*

10' 10 0°
of Apps the User Owns

(d) Power-law of apps per user

CDF

of Users

(c) Correlation between numbers of downloads
and users

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

1 2 >5

3 4
Average D&P Per App

(e) Average numbers of downloads and up-
dates per app

Fig. 2. App popularity by unique users and downloads. Figure[2(a)|to Figure|[2(d)|demonstrate that the number of downloads and the number of
unique users for a single app are observed to follow the “Pareto-like” principle and power law. Figure [2{€]]indicates that users do not very frequently

update their apps.

users interacted with the app. The former two metrics can
indicate how widely an app is owned by users, and the latter
two can indicate how much an app is really used.

4.1

We investigate the most intuitive metric of app popular-
ity, i.e., the number of downloads of an app. Many app
stores take the number of downloads (i.e., accumulatively
total, monthly, or weekly) as the key indicator to rank app
popularity. We then investigate app downloads from the
management activities of the Universal User Set.

Various data points show that the Pareto principle exists
in networked application domains such as web content,
audio, and video downloads [21], i.e., 20% of objects account
for about 80% number of downloads. In practice, the Pareto
principle can be extended as “a small proportion of the objects
account for a substantial proportion of downloads.” Figure 2(a)]
demonstrates the cumulative distribution function (CDF) of
the percentage of app downloads against app ranking by
downloads. It indicates that the distribution of app down-
loads exactly follows the “Pareto-like” principle, or more
specifically, 3% of apps account for about 95% downloads of
all apps.

Other than the Pareto principle, the power-law distri-
bution was discovered to be one basic law of the net-
worked systems [22], [23], and has been increasingly used
to explain various statistics appearing in computer science
and networking applications, such as Youtube [24] and
search engines [21]. Therefore, we next explore whether
the number of app downloads can follow the power-law.

Popular Apps by Downloads

A distinguished feature of power law is a straight line in
the log-log plot of views versus frequency. However, there
are other distributions (e.g., log-normal) with a very similar
shape. In the real world, the shape of the natural distribution
can be affected for various reasons. In fact, it has been found
that many distributions whose underlying mechanism is
power law fail to show clear power-law patterns, especially
at the two ends of the distribution: the most popular and
the least popular items [23]]. Hence, the distribution of app
downloads is yet another typical presence of power law in
collective behaviors.

The easiest way to spot a power law is observing a
straight line on a log-log plot: the power-law exponent is
essentially the slope of the straight line. As illustrated in
Figure 2(b)} the apps are ranked by the number of their
downloads (in X-Axis). The result indicates that the main
trunk follows a quite linear slope, and is truncated at both
ends. While there are many techniques to estimate the slope,
the best way of estimating the power-law exponent is using
a maximum likelihood estimator [25]. In practice, such an
exponent (r = 1.699) can be obtained by Python E} At the
curve’s head, some extraordinarily popular apps, such as
WeChat (having over 6 million downloads) and QQ (having
about 7 million downloads), gain substantial proportion of
downloads than other apps. In contrast, about 80% of the
apps are downloaded fewer than 10 times, and 30% of the
apps are even downloaded only once. We can then validate

11. More specifically, we use the Fit function provided by the
powerlaw package. More details can be found at https://pypi.python.
org/pypi/powerlaw.

https://pypi.python.org/pypi/powerlaw
https://pypi.python.org/pypi/powerlaw

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. X, FEB 2017 8

that the “fetch-only-once” principle [24] still applies for app
stores.

In a sense, the power law can be a guiding indicator
for content-service providers to allocate the server resources
and bandwidth [26]. Therefore, a straightforward implica-
tion that can be immediately taken away from the popu-
larity of apps is that app-store operators can optimize the
resource allocation (e.g., more bandwidth or servers) to the
apps that are more frequently downloaded and updated.
Indeed, it is quite possible that most app stores have already
found and applied such knowledge. However, in Section
we synthesize the power law and the app-management
patterns to further help the design and optimization of an
app store’s workload in terms of cache mechanisms.

4.2 Popular Apps by Unique Users

Usually, many app stores take the number of an app’s
downloads to indicate the app’s popularity. However, it is a
common observation that people can update their installed
apps, and the updates can be affected by the app’s release
time [20]. In addition, some apps can be possibly down-
loaded or updated with “faking” behaviors. For example,
apps can be downloaded and updated by automated pro-
grams to increase their ranks on an app store.

In our opinion, the number of an app’s unique users is
an intuitive and straightforward indicator that cannot be
affected by the preceding factors. We then aggregate the
unique users (devices) that ever downloaded, updated, or
uninstalled an app in our dataset, and each user is counted
once and only once. Such processing can involve more
users who ever used this app, because some apps were
downloaded in advance to the starting time of our dataset
but the updates and uninstallations can still be captured.
Figure shows the correlation between the number of
downloads & updates and the number of unique users per
app; the correlation is linearly positive. In other words, apps
having more users can gain more downloads & updates.
Note that there are some outliers at the left top. These
outliers actually refer to the apps that have substantially
more downloads against the number of the unique users
that the apps have.

Figure plots the distribution of the number of apps
that a user installs on the device. Intuitively, many users
use only a few apps, while a few others try out a large
number of apps. The distribution obeys the power law in
its tail distribution. We need to mention that the number of
apps installed on a device is likely to be underestimated as
a lot of devices have pre-loaded apps, and users can install
apps directly from the app developers” websites other than
Wandoujia. As a result, the distribution somewhat does not
strictly follow the power law.

We then investigate how frequently an app is down-
loaded and updated by its users. Computed by Formula
we can observe the user preferences of an app and the
possibility of adopting its released new versions. As shown
in Figure we are surprised to find that more than 95%
apps received only one download & update in our five-
month dataset. Such a finding indicates that users do not

tend to update apps very frequently@

Number of Downloads & Updates
Number of Unique Users

Avg.D& Pperapp =
M

This simple metric can help identify some apps that re-
ceive an extraordinary number of downloads & updates. We
find that 408 apps receive more than 5 downloads & updates
per user in our dataset, i.e., at least one operation per month.
These apps include some popular apps such as Q0. Such
a finding confirms that more-popular apps usually have
more updates [20]. However, we are surprised to observe
that some apps can have extremely abnormal behaviors. For
example, an app has only 18 unique users, but receives 3,581
downloads & updates, and 3,563 downloads & updates
come from only one user. In addition, we find that some
apps receiving an extraordinary number of downloads &
updates per user can share quite similar behaviors: (1) the
management activities are mostly “downloading” but very
few “updating”; (2) the user reviews are quite sparse, but
most user ratings are marked as “like”. Such a finding
indicates that some app developers may purposely increase
the number of downloads in possibly “faking” ways, e.g.,
by automatic programs. We plan to release the detailed
information of these apps, including the apk name and
the exact number of downloads & updates per unique user.
Some of these apps can still be accessed on Wandoujia, as we
cannot make sure that they are problematic ones. However,
these apps are moved to the watchlist, and their rankings
are tuned down accordingly.

4.3 Popular Apps by Network Usage

The preceding analysis can identify popular apps based on
their numbers of downloads and their unique users. But
at the same time, we do not want to discriminate against
those apps with few users but with a significant impact on
the network, i.e., generating a lot of traffic or accessing the
network for long time periods. Indeed, either the number of
downloads or that of unique devices of an app can indicate
only that this app is downloaded and installed, but we
cannot judge whether the app is “really” used by users.
From the logs of the Networked User Set, an app cannot
generate network logs if it is never launched by users.
Hence, we use the network activities to examine whether the
app is really used. Although we may miss some apps that
are usually used offline, e.g., PDF readers or dictionaries, it
is a common sense that most of current smartphone apps
heavily rely on network.

To illustrate the usage of network, we distinguish the
aggregated data traffic and the network-access time from all
users that an app owns, respectively. The data traffic comes
from both foreground and background. In contrast, we take
into account only the access time from foreground, because
such a metric indicates how long users really interact with
the app when they are connected to the network.

12. On the Android system, some apps can notify the users the release
of updates and navigate them to directly download the updates from
their websites rather than an app store. Such a behavior cannot be
captured by our dataset.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. X, FEB 2017 9

100% 10°
90%
80% 104 4+
[y
70% S 10?
60% o
w =
g 5% 5 10°
40% '(:ﬁ 2
" £ 10°
300/0 k]
20% 104
10%
0% 106 PEmmmmEet
10% 102 10" 10° 10" 10® 10° 10* 10° 10° 10’ 10° 10° 1

Traffic Volume (MB)

(a) Aggregated data traffic of apps
users and traffic drain

Fig. 3. App popularity by traffic drain

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

CDF
Total Browsing Time (Hour)

10* 10° 102 10" 10° 10' 10° 10° 10* 10° 10’ 10° 10°
Access Time (Hour)

(a) Aggregated access time of apps

Fig. 4. App popularity by access time

Figures and illustrate the distribution of ag-
gregated traffic/access time of apps, respectively. We can
find that the Pareto-like principle still holds for the network
activities of investigated apps. We can observe that about
90% apps consume less than 100 MB traffic volume in five
months, and about 94% apps are used less than 100 hours.
Considering that our dataset comes from five months, we
can regard that most of apps are not quite active over
network.

Intuitively, the more users an app has, the more traffic
and access time the app accounts for. Such an intuition can
be reflected in Figures and [4(b)} respectively. Further-
more, if the number of unique users is a good metric for
filtering, the top X apps based on the number of unique
users should contribute similar amount of data traffic and
access time as the top X apps based on the data traffic
and access time. We compare the contribution of the top
X apps based on these two metrics. Figure B(c)] compares
the contribution of the top X apps based on the number
of unique users against the top X apps based on the data
traffic. We can observe that the cumulative contributions of
the top X apps based on traffic and the top X apps based on
number of unique users are quite close, by comparing the
“data traffic from all apps” and the “data traffic from top
apps.” Likewise, the contributions of the top X apps based
on the network-access time and the number of unique users
are still close in Figure although a little difference does
exist. We note that over 90% of the total data traffic and
access time is accounted for around the top 2,500-3,000 apps
based on the number of unique users.

The preceding analysis studies the app popularity from

of Users

of Users

(b) # of users and access time

100%!
90%

c
£ 8%
5
2 70%
S 60%
O 50%
[}
2 40%
3 a0% — Traffic Volume
E 2% — Traffic by # of Users
© 0%
0%
0* 10° 10° 10’ 10° 10' 10° 10° 10* 10°

Top Apps (#)

(b) Correlation between number of owned (c) Contributions of the top X apps to total

data traffic

100%
90%

c
£ 80%
3
2 70%
S 60%
O 50%
[}
2 40%
% 30% — Access Time
E 209 — Access Time by # of Users
© 0%
0%
10* 10° 10° 107 10° 10’ 10° 10° 10 10°

Top Apps (#)

(c) Contributions of the top X apps to total
access time

various metrics including the number of downloads, the
number of unique users, data traffic, and access time. The
immediate finding is summarized as follows.

Finding (F1): The popularity of apps can typically follow
the Pareto principle. Furthermore, the distributions of the
numbers of downloads and unique users even follow the
power law. By exploring the average number of downloads
& updates of an app per user, some possibly faking behav-
iors can be detected.

4.4 Released Popular Apps

Indeed, for researchers who are interested in our dataset,
it is not realistic or necessary to make the data for all 0.28
million apps released, as a substantial percentage of them
have a very limited number of downloads or unique users.
We plan to release the information of some representative
apps. Hence, we should define a reasonable threshold in-
stead of releasing all the apps. We choose the intersection
of apps having at least 50 downloads, 50 unique users,
aggregated 100-hour foreground network access time, and
100-MB traffic from users, as the genre of “Popular App
Set.” In total, we have around 3,500 apps in this set. Indeed,
it is known that app sampling can have selection bias [27].
Nevertheless, the released data of the chosen apps have
sufficient information that can help explore more research
topics.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. X, FEB 2017 10

8%
7%
E 5%
84%
453%

RX2%

— Download & Update
1% ot - = Uninstallation

0%

CraumTnonoo S NOILONROS TN

-

Hours—of-day

Fig. 5. Distribution of diurnal app-management activities. Each point
on the curve represents the percentage of activities performed during
the one-hour time interval against the total activities, during the whole
day. For example, activities during 10:00 am-11:00 am account for about
6% of all activities.

5 APP MANAGEMENT PATTERNS

In this section, we study how users manage their apps,
i.e.,, which apps are frequently installed, and when they
are installed, which apps are more likely to be uninstalled,
etc. In addition, we also explore whether the users’ app-
management activities are consistent with the ratings of the

apps.

5.1 Diurnal Patterns of App Management

We first investigate RQ 2.1, i.e., how do the users perform their
diurnal management activities of apps? To this end, we investi-
gate the diurnal downloading, updating, and uninstallation
distribution. We aggregate the activities of downloading
and updating per app, because these two kinds of activities
both reflect the users’ interest towards this app and access
to the app store. Each entry of activity log is associated
with the smartphone’s local timestamp to indicate when the
activity is performed. We align the timestamp to avoid the
inconsistencies caused by different time zones.

As shown in Figure [5| the app-management activities
are “periodically and regularly” performed during a day.
The extent of app downloading and updating activities
keeps growing from 6:00 am and reaches the first peak
around 11:00 am. The downloading and updating activities
decline slightly between 11:00 am to 12:00 pm. It is not very
surprising because users may take lunch at this time. The
same observation can be found between 4:00 pm to 6:00
pm, i.e., the time on the way back home or at dinner. We
can also find that about 32% of downloading and updating
activities are performed from 7:00 pm to 11:00 pm, where
they reach the maximum around 8:00 pm-9:00 pm. Such a
distribution is quite consistent with human regularity. After
9:00 pm, the downloading and updating activities decline
quite sharply, and reach the minimum around 5:00 am.
However, at midnight, downloading and updating activities
occupy about 7% in total, implying that there are still a
considerable number of active users at this time.

The preceding results indicate the temporal patterns
when users access the app store. Hence, the app-store op-
erators should reserve sufficient bandwidth at the peak to

100%
90%
80%
70%
60%
500/0
40%
30%
20%
10%

0%

Top 100

Top 500
= Top 1000
= Top 2000

Top 3500

CDF

0.0 0.1 0.2 0.3 0.4 0.5
Co-efficient

Fig. 6. Jaccard coefficient of co-installed apps

reduce user-perceived latency. In addition, app developers
can leverage this finding in their release planning, e.g.,
pushing the update notifications to their users at the right
time.

Activities of uninstalling apps present a similar
distribution to those of downloading/updating apps.
However, knowing when wusers uninstall apps may
be less useful, because the uninstallation activities do not
have interactions with app-store operators or app providers.

Finding (F2): The app-management activities can reach
fixed peaks and are performed quite periodically during
a day.

5.2 App Selection Patterns

Then we explore RQ 2.2, i.e., what apps are more likely to be
selected and liked by users? Such activities can imply the user
interests and needs towards apps. For app-store operators,
such information can help improve the recommendation
systems.

In fact, some previous studies investigated how users
select apps [2[], [14], [28], [29], and some findings were
reported. A straightforward metric is to check the “cluster
effect”: which apps are more likely to be selected together.
We adopt a similar metric, but explore the study at two
levels: the micro-level of co-installed apps, and the meso-
level of correlated app categories.

From our previous analysis, a substantial percentage of
apps are rarely downloaded and updated. Therefore, we
choose only the top 3,500 apps mentioned in Section 4.4}

5.2.1 Clustering Co-Installed Apps

We study the frequently co-installed apps. Given two apps
appm and app,, we employ the Jaccard Similarity Coef-
ficient (denoted as \) to measure the possibility of how
they are installed together by users. We denote the number
of unique devices that install either app,, or app, as D
(appm Uappy,), and the number of unique devices that install

both app, and app,, as D (app., N appy,). We compute A as

D(appmNappn)

D(appmUappy) C . . .
Flgurefé] shows the Jaccard Similarity Coefficient of the

top-N apps, where N varies from 100 to 3,500. With the in-

creasing number of N, the value of A decreases significantly.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. X, FEB 2017 11

The CDF indicates that the A value of over 95% of app pairs
is lower than 0.1. In other words, there are a very small
fraction of apps that are frequently co-installed together.

To better demonstrate which apps are frequently co-
installed, we employ the metric of Point-wise Mutual Infor-
mation (PMI), which is widely used in information retrieval
to identify co-occurrence of objects. Formally, let us assume
that n; represents the number of downloading and updating
activities that contain app;, n;; represents the number of
activities that contain both app; and app;, and N denotes
the total number of activities, and thus the PMI is computed
as follows:

. Pij nij /N
PMI =1 =1 (o IND) = (1. /N 2
(,7) Og(pi*pj) Og((m/N)*(nj/N)) @)
ng *xn;
= log(N) + log(n‘nfﬁ_) 4
i k1

The larger PMI that two apps hold, the more probably
they are co-installed. We visualize the network structure of
co-installed apps based on the PMI, and employ a force
vector algorithm [30] to detect the community structure. As
shown in Figure E there exist some significant clusters, i.e.,
the apps WeChat, QQ, QQMusic, Dianping are more
likely to be co-installed. To make further exploration, we
find that apps from some big clusters share some character-
istics, i.e., developed by the same vendor or from the same
category.

Fig. 7. Network structure of co-installed apps

The vendor information of an app can reflect who de-
velops this app. Usually, the naming rules of an Android
app can reflect the vendor information. For example, the
package com.tencent .mm can be processed by removing
the general stopword “com” and the app’s feature word

“mm”, and the vendor information “tencent” is extracted.
We find that a number of co-installed apps with high A
values come from the same vendor. For example, the pair
of < Huawei Backup (used by 555,332 devices), Huawei
Account Manager (used by 151,541 devices) > has the A
value of 0.274, and these two apps are both provided by
Huawei. Furthermore, the A\ value can be much higher,
if two apps developed by the same vendor also belong
to the same category. For example, the pair of < WeChat
(used by 3,048,557 devices), QQ (used by 7,225,074 devices)>
holds the A value of 0.43, and the two apps are provided by
Tencent.

There are many possible reasons why apps from the
same vendor are often co-installed. A vendor usually fo-
cuses on a specific application domain, e.g., Tencent is
the largest messaging service provider in China. Tencent
QQ is the most popular instant messaging app in China;
WeChat not only supports instant messaging, but also
provides social communication features such as content
sharing. Another reason is that there might be “in-app
bundled installation” in some apps. For example, when
users install an app, the app’s vendor may implicitly or
explicitly recommend the users to install their other apps.
For simple validation, we make field studies by selecting
50 apps from well-known app developers such as Qihoo,
Baidu, and Tencent, and install them manually. 14 apps
out of the 50 apps recommend installing other apps in
their installation wizard, and 8 apps of these 14 “bundled”
installations are provided by the same vendor.

5.2.2 Correlation of App Categories

The category information of an app indicates the function-
ality and application domains of the app. We can infer the
users’ needs and interests according to their selected app’s
category. Given two app categories M and N, we denote the
number of unique users who install an app either from M
or N as D (M UN), and the number of unique devices that
install apps from both M and N as D (M N N). We then
compute %((]‘J@%]J\Q to indicate how likely that the apps in M
and N are installed together. We also take into account the
special case where M =N, indicating how many users install
more than one app in the same category.

Figure[8[shows the probability distribution that the apps
from different categories are selected together. The cate-
gories are sorted by the descending order of the number of
apps (in X-axis). Apps providing related functionalities are
more likely to be selected together. For example, users may
want to share a video from a video-player app to friends in
a communication app (e.g., correlation between COMMU-
NICATION and VIDEO is 0.77), or use a viewer app to open
a document that is received by an instant messenger app
(e.g., correlation between TOOL and COMMUNICATION is
0.88).

It is not surprising that users may install more than
one app in the same category. For example, in GAME and
COMMUNICATION, the correlations are both more than
0.8. The result suggests that users have more interests and
needs in these categories.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. X, FEB 2017 12
TRAFFIC- 0.05 006 005 005 005 0.5 0.6 006 007 005 009 005 006 0.07 0.04 005 004 005 007
IMAGE-{ 006 0.07 006 005 005 006 0.07 007 007 007 007 005 007 008 007 0.06 004 0.10 0.05
SPORTS-{ 0.08 0.07 007 007 007 007 007 0.07 0.07 007 006 007 007 007 004 0.07 009 004 0.04
MusiC - o8l o.43 ORGSO INGEAN 051 052 o048 o038 o019 oA 0527 029 006 029 007 006 005
MOTHER_AND_BABY-{ 006 007 006 006 006 0.6 007 008 007 007 007 006 008 007 020 006 004 007 004
PRODUCTIVITY- 027 031 030 029 029 030 034 032 034 022 025 028 034 030 007 029 007 008 0.07
I SHOPPING-{/ 053 045 057 0.55 054 054 047 054 051 034 025 055 058 034 0.08 052 007 0.07 0.06
O COMMUNICATION - J0%8) o.44 o7 JUBEINO0BAN 070 053 055 051 037 o018 [OBIN 055 028 006 04N 007 005 005 0.8
‘6 FINANCE-{ 018 023 020 019 019 020 022 024 024 016 031 018 025 025 0.7 019 0.06 0.07 0.09 IO.G
O PERSONALIZATION4 038 030 0.38 037 037 037 032 034 030 033 016 037 034 022 007 038 0.07 007 0.05 0'4
B TRAVEL- 049 043 051 052 051 050 046 050 039 030 024 051 051 034 007 048 007 007 007 0'2
8 LIFESTYLE- 053 044 0.55 056 0.55 052 047 046 050 034 024 055 054 032 008 0.52 007 0.07 0.06
EDUCATION- 051 041 053 053 052 051 046 047 046 032 022 053 047 034 007 | 051 0.07 007 0.06
SOCIAL - 0.44 054 051 052 050 037 0.20 054 030 0.06 [0.64 0.07 0.06 0.05
SYSTEM_TOOL 0.45 052 055 051 037 0.19 054 029 0.06 0.07 0.05 0.05
TOOL 0.45 053 056 0.52 037 0.19 0.55 029 0.06 0.07 0.05 0.05
VIDEO | 0.45 053 055 051 038 0.20 0.57 030 0.06 0.07 0.06 0.05
NEWS_AND_READING- 043 041 045 045 045 044 041 044 043 030 023 044 045 031 007 043 007 007 0.06
GAME - [J08#l] 043 [[073 0077010574} 065 o051 053 049 038 o018 [J0W8N 053 027 006 0681 008 006 005
Q
3 5 3 g
[a) = = o
5 S .5 w _ &k .2 9 &3 .
w x O 4 F Z E =@ N 9 ¢ Z £ 2 v g w 2
= w0 = > IJ 2 $ & o £ w < 9
T 2 26 3 8 3 g 33z 22 35 3 2 9 g
() z s = w o > W = P 2 o) o s a = §
< = 2} a w - o T = I w n = ~
| %) '}) o
%) > w %] = 4 T
= n o o o =
i} g o]
= =
Categories

Fig. 8. Heatmap of the category-level relationships of co-installed apps.

Finding (F3): In terms of app installation, apps from some
app categories are frequently installed together such as
COMMUNICATION and TOOL. Additionally, apps that
come from the same vendor or category are more likely
to be installed together.

trend that an app would be abandoned by users during our
dataset’s time span, we still simply rely on the preceding
computation.

The lower value of Q(app;) an app holds, the higher
likelihood that this app could be abandoned. {2 can tell how

5.3 Uninstallation Patterns

We next explore RQ 2.3, i.e., how can we identify an app that is
more likely to be disliked by users? Such a question is quite
crucial to app developers and app-store operators. App
developers can know whether their apps are appreciated
by users or not, so that they can examine their apps in time
to avoid losing users. App-store operators can improve their
recommendation systems to filter unpopular, low-quality, or
even malware apps.

However, to answer the question, only the absolute num-
ber of unistallations of an app may not be a good indicator.
For example, apps with a high number of uninstallations
may also have a high number of downloads. So we compute
the metric of installation/uninstallation ratio, or “1/U ratio”
for short, denoted as Q(app;), to indicate how likely an
app could be abandoned. Given an app app;, we com-

pute Q(app;) as %, where > lgevice; and > Ugevice,
represent the number of devices that install and uninstall
app;, respectively. We extract all devices that appear in both
installation and uninstallation activity logs of app; from the
Universal User Set.

Note that there may be some biases when computing
Q(app;), ie., we cannot capture how many installations
have already existed for an app before the starting time of
our dataset, nor can we know how many uninstallations
would be performed for this app after the ending time of
our dataset. However, our analysis aims to derive the overall

much an app is actually abandoned by users. For better
illustration, Figure shows the scattered distribution of
Q(app;). The mean and median values of) are 7.89 and
5.875, respectively. However, the value of Q(app;) seems to
be irrelevant to the number of downloads, indicating that
Q(app;) is at least not a good signal to comprehensively
reflect how much an app is disliked by users, because users
may not always uninstall an app even if they do not need
the app any longer.

To further infer the users’ attitude towards apps, we
evaluate the lifecycle of abandoned apps by combining
the temporal information with 2. Such an evaluation
is motivated by an intuition that an app is likely to
be a disliked one if it is uninstalled shortly after being
installed. To this end, we compute the app’s lifecycle by
the timestamps of installation and uninstallation. We have
two immediate observations. First, from Figure if an
app is uninstalled, its lifecycle can be identified. About 60%
of abandoned apps can “survive” for only less than 1.5
days, and about 80% of abandoned apps can “survive” for
less than a week. Such results are largely consistent with
the ones derived from the one-month data in our previous
work [18], i.e., 60% abandoned apps can “survive” for only less
than two days, and about 93% abandoned apps can “survive”
for less than a week. Second, from Figure we can find
a quite weak positive correlation between (2 and the
lifecycle of abandoned apps. In other words, apps with a
lower 2 seem to be a bit more probably uninstalled within

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. X, FEB 2017 13

50 100%
45 90%
40 . o 80%
35 R . 70%
£30 L 60%
@ 25 O 50%
=) O 4o
220 40%
15 30%
10 20%
5 10%
0 0%
15000 0

5000 10000
Top N Apps (Sorted by Download Times)

(a) Possibility of app abandonment

Fig. 9. Lifecycle of abandoned app.

a shorter interval. However, such a finding implies that we
should find more meaningful indicators. In practice, we
have devised some new signals to more accurately predict
how an app could be adopted by users [31].

10 20 30 40 50 60 70 80 90 100 o]
Average Lifecycle (Day)

(b) Lifecycle of abandoned apps

Finding (F4): An app’s installation/uninstallation ratio ex-
hibits a weakly positive correlation to its lifecycle. Most
“abandoned” apps are often uninstalled within 1.5 days
after they are installed.

5.4 User Rating Patterns

Usually, on most app stores such as Apple App Store and
Google Play, the users’ attitudes towards an app can be
somewhat reflected by the ratings of the app. End-users
may be simply attracted by the overall ratings of an app
at their first sight, before scrolling down the page to see
textual user reviews. To some extent, the ratings of an app
can imply the quality of the app. For example, Google Play
allows users to rate apps with a 5-star model, where 1-star
refers to the lowest rating and 5-star refers to the highest
rating. In contrast, Wandoujia allows users to simply tag an
app with a binary metric, i.e., “like” or “dislike.”

Intuitively, an app is considered to be of higher quality
if it receives a higher average rating from its users. Previous
study reported that the score of ratings can have positive
correlation with the app rank by downloads [32]]. In practice,
there are many issues of directly using this simple and
straightforward metric. Online ratings can suffer from the
sparseness of some apps. To this end, we argue that the
management activities may be more objective, e.g., down-
loading and updating an app can reflect positive attitudes
of this app, while uninstalling the app can reflect negative
attitudes. In this way, we are interested in investigating
whether user ratings of an app are typically consistent with
management activities of the app.

To this end, we then move to RQ 24, i.e., are the user
ratings of an app consistent with the app-management activities,
with respect to the user attitude towards this app?

We compute the average rating of an app on Wandoujia,
namely likerate, as denoted in Equation [5| In other words,
the higher likerate an app holds, the more possibly it is
preferred by the users. We then correlate the number of
downloading and updating activities (actually the instal-
lations) to the likerate of apps. Indeed, the likerate metric
reflects only the general attitude of an app by its users, but

O 5 s
I/U Ratio

(c) Lifecycle of frequently abandoned apps

suffers from the absence of the attitude towards a specific
version of the app.
number of likes

likerate = number of likes + number of dislikes ©)

5.4.1

In Figure we rank all apps that have received at least
5 ratings during our five-month period, split them into
equally-sized binﬂ and demonstrate the mean and stan-
dard deviations of their likerates. As the number of down-
loads follows the power law, we plot the results at the log
scale (X-axis). We then run a regression process to derive
the correlation between the likerates and the number of
downloads, and use the seaborn package of Python to
plot the results, as shown in Figure

Correlation between Rating and Selection

0.9
9
o
£o6/
-
0.3 1
10! 102 103 10% 10°

of Downloads

Fig. 10. The number of downloads against likerate. The number
of downloads is weakly correlated with likerate for popular apps and
negatively correlated for unpopular apps.

Some immediate observations can be reached. Surpris-
ingly, when the number of downloads is less than 1,000, it
is negatively correlated with the likerate. In other words,
the more times an app is downloaded, the more likely it
is disliked by users. Such an observation is rather counter-
intuitive. One explanation is that the apps not frequently
downloaded may be sensitive to fake “like” ratings, while
some frequently downloaded apps may be maliciously

13. We employ the regplot function provided by Python’s
seaborn package, where one can control the size of bins by the
parameter x_bins.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. X, FEB 2017 14

rated down by their competitors. It reminds that app-store
operators should pay attention to address such an issue in
their ranking and recommendation system. When the num-
ber of downloads exceeds 10,000, the correlation becomes
quite weakly positive. In either case, the result indicates
that only the number of downloads is weak as a guiding
indicator for ranking apps. In particular, it may not be
valid for the apps that are not popular, with few ratings,
or newly published on an app store.

One may argue that the ratings are given to all versions
of an app rather than a specific version. To alleviate the bias,
we explore the likerate and the number of users (devices)
that ever used the app in our five-month dataset. From
Figure we can observe that the number of users (devices)
installing an app is even negatively correlated with its
likerate, although the correlation is quite weak either. From
a macro perspective, it indicates that the app’s versions do
not have very significant impact on its ratings.

0.9 1
9
o
£o6/
-
0.3 1
10! 102 10° 10* 10°

of Users

Fig. 11. The number of unique users against likerate of apps. The
number of unique users seems not to be a positive indicator of likerate.

5.4.2 Correlation between Rating and Abandonment

Another intuition is that an uninstallation may indicate that
a user dislikes an app. Although most app stores usually
do not report this statisticc, we can compare the number
of uninstallations of an app with its user ratings. Instead
of using the raw number of uninstallations, we still use
the metric of €2, which is computed as the total number of
downloads divided by the total number of uninstallations.
Intuitively, the lower € an app holds, the more likely the
app is disliked. We plot the correlation of Q2 of an app and
the corresponding likerate in Figure [12} Again, we rank all
apps with at least 5 ratings by) and split them into equally-
sized bins.

Interestingly, when) is below 1, a quite weakly
positive correlation is observed between (2 and the likerate.
However, when (2 is over 10, the correlation becomes more
negative. In either case, the correlation is not significant
and presents a long error bar. Apparently, the I/U ratio is
also at best a weak indicator of user preferences. To infer
user preferences from activities, new signals need to be
conducted. In practice, our recent work [31] explored how
app-management sequences can be a promising indicator
with machine learning algorithms. Due to page limit, the

0.9

Likerate
o
o
-

0.3 A

/U Ratio

Fig. 12. I/U ratio against likerate of apps. I/U ratio is not a promising
indicator of likerate.

details are not included in this article.

Finding (F5): Neither the number of unique users nor the
users’ attitudes towards an app (installing and uninstalling)
can exhibit significant correlation of users’ ratings towards
this app. Such a finding is somewhat inconsistent with a
previous study [32], which reported that the score of user
ratings can be positively correlated with the app ranking
determined by the number of downloads of the app. For
apps that have few or spare reviews, new indicators are
required to judge the user attitudes.

6 NETWORK ACTIVITY PATTERNS

Previous studies have already revealed some observations
on network usage of apps, e.g., by the TCP flows on tier-
1 network [28], or usage logs by field studies [15], [33]. In
contrast, our study is performed at a much finer granular-
ity. First, we distinguish the daily data traffic and access
time from Wi-Fi and cellular network, respectively. Second,
we distinguish the daily data traffic and access time from
foreground and background, respectively.

Based on the granularity of network activities, our study
aims to explore some issues that are not covered by previ-
ous efforts. End-users can know which apps are network-
intensive, and thus result in more data traffic and battery
consumption. In this way, end-users can identify the apps
that generate “undesirable” traffic, pay attention to granted
network permissions, or even uninstall these apps. App-
store operators can identify some potentially problematic
apps. App developers can fix possible bugs, and OS vendors
can patch their frameworks to avoid potential threats.

6.1 Access Time Patterns

First, we aim to answer RQ 3.1, i.e., which apps are the
users likely to interact with, when these apps are under Wi-Fi
and cellular networks, respectively? We investigate the access
time of the network activity log. Intuitively, access time may
reflect two important insights. First, the foreground access
time of an app indicates how long a user stays in this app
when he/she is connected to the Internet. Therefore, such
a metric can somewhat imply how much the user likes

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. X, FEB 2017 15

TABLE 2
Network summary of all app categories

App Cat C-Time | W-Time | C-Time | W-Time | C-Traffic | W-Traffic | C-Traffic | W-Traffic

PP o esory (B) (B) (F) (F) (B) (B) (F) (F)
BEAUTIFY 43.49% | 43.28% 6.33% 6.90% 4.56% 71.48% 4.03% 19.94%
COMMUNICATION 42.56% | 51.39% | 2.88% 3.17% 10.88% 18.71% 22.33% 48.08%
EDUCATION 43.26% | 53.76% 1.63% 1.34% 9.78% 34.36% 9.38% 46.48%
FINANCE 42.26% | 57.07% 0.37% 0.31% 29.13% 20.80% 26.68% 23.39%
GAME 47.23% | 50.52% 1.12% 1.13% 12.95% 20.90% 26.44% 39.71%
IMAGE 44.15% | 55.64% 0.09% 0.12% 7.11% 64.61% 4.42% 23.85%
LIFESTYLE 41.36% | 58.38% 0.13% 0.14% 30.25% 31.42% 12.61% 25.72%
MOTHER_AND_BABY 34.25% | 65.21% 0.15% 0.39% 11.26% 23.59% 11.23% 53.91%
MUSIC 46.14% | 52.83% 0.56% 0.47% 6.89% 34.21% 8.20% 50.70%
NEWS_AND_READING | 42.24% | 56.07% 0.71% 0.97% 7.85% 15.85% 17.36% 58.94%
PRODUCTIVITY 41.55% | 58.14% 0.13% 0.18% 15.42% 63.69% 3.64% 17.25%
SHOPPING 38.05% | 61.50% 0.12% 0.33% 8.29% 15.17% 11.04% 65.50%
SOCIAL 42.94% | 55.97% 0.42% 0.67% 6.67% 20.06% 12.62% 60.65%
SPORTS 41.49% | 57.83% 0.33% 0.36% 17.72% 23.06% 14.93% 44.29%
SYSTEM_TOOL 46.51% | 53.18% 0.14% 0.17% 9.56% 77.83% 1.95% 10.67%
TOOL 46.19% | 52.50% 0.64% 0.67% 5.11% 49.30% 6.06% 39.53%
TRAFFIC 40.91% | 58.94% 0.10% 0.05% 31.17% 29.41% 17.41% 22.01%
TRAVEL 43.57% | 56.28% 0.11% 0.04% 14.15% 46.65% 7.69% 31.51%
VIDEO 40.84% | 58.38% 0.17% 0.61% 0.93% 35.69% 1.34% 62.04%
MISCS 48.19% | 51.74% 0.03% 0.04% 11.11% 55.40% 3.86% 29.63%

W and C refer to Wi-Fi and Cellular, respectively.

B refers to background and F refers to foreground.

or needs the app. Second, similar to the background data at background.

traffic, the background access time indicates how long an
app connects to network when users do not interact with
it. Therefore, the background access time can imply the
“liveness” of the app after it is launched.

We illustrate the access time distribution among app
categories, as shown in Table [I] (in Section [2). When the
foreground access time is explored, it is not surprising
that the COMMUNICATION apps account for 48.32% of
cellular time and 46.08% of Wi-Fi time against all apps. It
is also interesting to find that users spend a lot of time
on BEAUTIFY (11.96% under cellular and 11.33% under
Wi-Fi) to personalize their smartphones (typical BEAUTIFY
apps include choosing themes, background, icon types, and
rings), and TOOL (12.16% under cellular and 11.06% under
Wi-Fi) to optimize the smartphones (typical TOOL apps
can include battery manager, third-party input method, and
weather).

We then break down the access time spent at foreground
and background under cellular and Wi-Fi of all apps of a
category, respectively. From Table 2 (Columns 2-5), we are
surprised to observe that foreground time accounts for only
less than 2% (by aggregating W-Time(F) and C-Time(F)) in
most categories, but the background time occupies more
than 98% (by aggregating W-Time(B) and C-Time(B)). Even
for the COMMUNICATION apps, the background time ac-
counts for more than 94% of all network time. In other
words, most apps still keep “long-and-live” TCP con-
nection at background after being launched, even users
do not interact with them. The background time may
be reasonable for the apps that heavily rely on network,
e.g., COMMUNICATION and SOCIAL. Most of these apps
require auto synchronization or notification. However, it is
hard to confirm whether many apps from other categories
should have “reasonable” continuous network connection

Indeed, the background TCP connection does not
always indicate data traffic loss, as our dataset can monitor
the actual data transmission. In other words, the live TCP
connection can probably generate no data traffic. This
finding also indicates that currently most Android apps
could stay silently in memory even when they are switched
to background. Such a mechanism can be useful, as the app
can be quickly “waken up” and the network connection can
be fast restored. However, it can also lead to large memory
occupation and have side effect of system performance.
In fact, many Android users complain that their devices
become too sluggish to respond to user interaction, and
the user experiences really are unsatisfying. It would be
interesting to explore whether keeping “long-live” network
connection at background could be a potential factor of
such unsatisfactory user experiences.

Finding (F6): A large number of apps keep long-lived TCP
connection when they are not currently “used” by users.
It is not quite sure whether the background connection is
always reasonable.

6.2 Data Traffic Patterns

We then move to RQ 3.2, i.e., which apps are more “traffic-
intensive” and how much traffic is generated by these apps?
We identify the apps that consume substantial data traffic.
We aggregate apps by their categories and summarize the
total traffic consumption (in GB) from Wi-Fi and cellular,
respectively. As shown in Table |1, VIDEO apps are the
most “traffic-intensive”. Apps from VIDEO category con-
sume 61.56% of Wi-Fi traffic and 12.02% of cellular traffic
against all apps. Interestingly, apps from TOOL and SYS-
TEM_TOOL consume a lot of data traffic. The apps in these
two categories include input method, anti-virus, and app

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. X, FEB 2017 16

TABLE 3
Categorization of device models

management. It indicates that Android users heavily rely
on these apps to manage, optimize, and personalize their
devices.

We then classify data traffic into two dimensions: (1) Wi- Group hﬂg::al]é:;:: Representative Devices
Fi and cellular; (2) foreground and background. Such classi- High-End > 3,000 RMB 177 | Samsung N7100, Samsung S4
fications can provide more details of traffic consumption. Medium-End | 1,000-3,000 RMB 239 | XIAOMI 3, Google NEXUS 4
P P Low-End < 1,000 RMB 84 | COOLPAD 7231, LENOVO A278T

6.2.1 Traffic from Wi-Fi and Cellular

As shown in Table 2| (Column 6-9), in most categories,
it is not surprising that the data drain generated under
Wi-Fi accounts for more than 70% of total traffic. In the
categories of TOOL, MUSIC, SYSTEM_TOOL, SHOPPING,
and EDUCATION, more than 75% of data traffic is from Wi-
Fi. For VIDEO, almost 97% of traffic drain comes from Wi-
Fi. A possible reason is that most of these apps are usually
used in places with stable Wi-Fi connection, e.g., at home or
cafe. The situation is a bit different in COMMUNICATION,
GAME, LIFESTYLE, FINANCE, and TRAFFIC, where the
traffic from cellular network accounts for more than 30%.
Such results can be consistent to the purposes of the apps.
For example, users may use COMMUNICATION apps such
as instant messaging and LIFESTYLE apps such as searching
restaurant whenever a network connection is available, and
need to synchronize to the servers for latest stock informa-
tion when using FINANCE apps.

6.2.2 Traffic from Foreground and Background

We then move to RQ 3.3, i.e., how much “hidden” traffic is
consumed when using an app?. We distinguish the foreground
and background traffic of an app, respectively. Often, the
foreground traffic is generated when users interact with the
app. In the Android OS, a foreground app can be identified
if the app is currently at the top of the activity stack. In
contrast, the background traffic implies that the app is still
connecting to network even when users do not interact with
it. From Table 2} the foreground traffic accounts for more
than 60% in many categories. Foreground traffic accounts
for less than 50% in some categories, i.e., SYSTEM_TOOL
(12.62%), TRAVEL (39.2%), LIFESTYLE (38.33%), TRAFFIC
(39.42%), BEAUTIFY (23.97%), PRODUCTIVITY (20.89%),
and IMAGE (28.27%). It indicates that some apps in these
categories keep consuming a large amount of traffic, when
users switch to use other apps, or the screen-off traffic
occurs with device sleeping. Hence, the background traffic
of these apps could be necessary. Some apps can reasonably
have background network activities. For example, the SYS-
TEM_TOOL management apps such as anti-virus apps often
need downloading or updating activities at background.
Compared to the data generated at background un-
der Wi-Fi (abbreviated as WBD), the data generated at
background under cellular (abbreviated as CBD) can bring
potential loss of data plan for end-users. We demonstrate
the CBD according to the app’s category in Figure [13] The
median values of CBD of COMMUNICATION and VIDEO
apps are relatively higher than the ones of apps from other
categories. The results provide strong evidence of “hidden”
data drain generated at background. Hence, we focus on the
average daily CBD of an app from all users that use this app.
From our dataset, we have 2,697 apps that produce at least
2 MB daily CBD per user. Given the average daily CBD of
2 MB, the monthly data drain can reach up to 60 MB, which

cannot be ignored for those who have rather limited data
plan.

The immediate take-away message of this study reminds
end-users to alert or kill background network activities after
launching an app. Indeed, there are various possible reasons
why an app produces data drain at background. One reason
is that ad-libraries are widely used in a lot of apps, and
may download and update advertisements according to
user contexts [34]. Another reason is that the background
data drain is required by the apps’ features, e.g., VIDEO
and NEWS_AND_READING apps may download contents
and cache them locally. Such behaviors are reasonable under
Wi-Fi, but are not desired under cellular, especially for users
who have limited data plan. Last but not the least, the
misuses or even malicious granting of network permissions
cannot be neglected. For example, as found in our confer-
ence paper [18], some TOOL apps such as f1lashlight and
namecard scanning were detected to collect the location
information of their users.

However, it is really very difficult to justify whether
the background data drain generated by an app is really
necessary with respect to the functionalities of this app.
To the best of our knowledge, some preceding efforts such
as CHABADA [7] and WHYPER [5] can help check whether
the app’s granted permissions or behaviors are abnormal
against their descriptions. However, existing efforts are not
adequate to validate whether the background data drain
is reasonable for apps, as background traffic is a dynamic
behavior that can be monitored only at runtime. In addition,
background data drain from in-app ads are needed for
developers’ revenue, but end-users may be annoyed by such
a loss and thus annotate low rating of the app or even
uninstall it.

Another immediate outcome of this study is that we can
find some apps consuming exceptionally high cellular data
at background. For example, on average, the GAME app
“DJMax Ray” with 134 users generates the daily CBD of 58
MB per user, and the TRAFFIC app “N5 Navigator” with
72 users generates the daily CBD of 43 MB. Undoubtedly,
such a large volume cannot be ignored under cellular
network, as end-users have to pay for the data plan. We
believe that these apps can be an interesting genre for the
research community to explore possible reasons why such
substantial CBD occurs and assess whether the background
data drain is “really” necessary.

Finding (F7): Some apps can consume a considerable
amount of traffic at background, but it is challenging to
determine whether such dynamic behaviors are really rea-
sonable or necessary.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. X, FEB 2017 17

R AL

Average Background Cellular Traffic (MB)

MUSIC
OTHER
SHOPPING
SOCIAL
SPORTS
TooL
TRAFFIC
TRAVEL
VIDEO

EDUCATION

BEAUTIFY
CCOMMUNICATION
FINANCE
GAME
IMAGE
LIFESTYLE
MISCs
MOTHER_AND_BABY
NEWS_AND_READING
PRODUCTIVITY
SYSTEM_TOOL

Category

Fig. 13. The background data traffic generated under cellular

7 DEVICE-SPECIFIC PATTERNS

The preceding measurements provide information on some
patterns of app selection and network usage. However, the
patterns are derived from the global distribution instead of
the classification of users. It would be interesting to explore
the diverse preferences of different users. In practice, the
users can be categorized from different aspects, i.e., gender,
age, country, and economic background. In this article, we
select a different signal, i.e., the price of the device model
that a user holds. Such a signal is motivated by two aspects.
First, the price of a device model can generally reflect
the hardware specifications of a device model when it is
released onto market. Second, such a metric can somewhat
imply a user’s economic background, which can influence
the user behaviors at the demographic level. Indeed, such an
assumption cannot be always reliable, as it cannot identify
the users who buy second-hand “high-end” devices, or
those who use two (or more) devices, e.g., one is low-end
while the other is high-end. However, from a general trend,
we can rely on the device models’ price as an indicator to
classify users in our dataset.

We then categorize the device models according to their
on-market price, and revisit the research questions RQ 2 and
RQ 3, respectively.

7.1 Device Model Fragmentation

First, we compute the distribution of the number of unique
users that a device model has. The result is shown in
Figure[14} In the treemap of Figure each colored block
corresponds to a specific device model, and its area’s size
depends on the number of users. Given over 19,000 distinct
device models in our dataset, such a visualized result
indicates the heavy “fragmentation” of Android devices. In
addition, for the distribution of users per device model in
Figure[T4(b), we can find that more than 83% device models
have only fewer than 100 unique users, while about 1%
device models own more than 10,000 unique users.

Finding (F8): The on-market Android device models
present a heavy fragmentation, i.e., more than 19,000 dis-
tinct device models in our dataset.

(a) Treemap of the number of unique users per device model

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

CDF

10° 10 102 10® 10* 10°
of Users of the Device Model

(b) Distribution of the number of users against device models

Fig. 14. Heavy fragmentation of Android devices

7.2 Device Model Clustering

We then study the first-release price of a device model so as
to classify users. In China, on the price systems of popular
e-commerce web sites such as Jd, Amazon, and Taobao, the
price of device models is usually segmented at every 1,000
RMB level, i.e., < 1,000 RMB, 1,000 RMB-2,000 RMB, 2,000
RMB-3,000 RMB, 3,000 RMB-4,000 RMB, and >4,000 RMB.
Hence, we roughly categorize the device models into three
groups according to their on-sale price information that is
published on Jd, i.e., the High-End (>3,000 RMB, about 500
USD), the Medium-End (1,000 RMB-3,000 RMB, about 150-
500 USD), and the Low-End (< 1,000 RMB, about 150 USD).
We choose the top 500 device models according to their
number of unique users, and manually check their price-
history evolution on Jd as well as looking up some third-
party data sources such as Dong—Donﬂ and XitieEl Most
of the device models were first released to market after 2012,
and can still fall into the preceding coarse-grained groups
as of May 1, 2014 (the starting time of our data set). Very
few device models cannot meet this criterion, e.g., the first-
release price of Galaxy S2 was 4,399 RMB, but the price
fell down to about 2,700 RMB as of July 2014. For this case,

14. https:/ /itunes.apple.com/us/app/dong-dong-gou-wu-zhu-shou/
1d868597002?mt=8, is an app for inquiring history price of products on
Jd.

15. http:/ /www.xitie.com, is a website for inquiring price history of
products on popular e-commerce sites.

https://itunes.apple.com/us/app/dong-dong-gou-wu-zhu-shou/id868597002?mt=8
https://itunes.apple.com/us/app/dong-dong-gou-wu-zhu-shou/id868597002?mt=8
http://www.xitie.com

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. X, FEB 2017 18

we still categorize the device models by the first-release
price. Luckily, only 19 exceptions out of 500 device models
occur in our dataset. We list the categorization results in
Table 3l

We then revisit RQ2 and RQ3, by considering the choice
of device models. We adopt the Spearman correlation coef-
ﬁcien Statistically, the Spearman correlation coefficient is
a non-parametric metric of statistical dependence between
the ranking of two variables, X and Y. Such a metric
assesses how well the relationship between two variables
can be described, and it does not make any assumption
on the distribution of the data. Commonly, the Spearman
correlation coefficient is represented by the Greek letter p.
For a sample of size n, the n raw scores X;, Y; are converted
to ranks rg.X;, rgY;. Then, p is computed from the following
equation:

_cov(rgx,rgy)

Orgx9rgy

where cov is the covariance, and o is the standard devi-
ation. In our measurement, X represents the price of device
models, and Y represents the usage patterns including the
numbers of downloads, updates, and uninstallations, the
traffic volume, and the access time, respectively. For each
pattern, we compute the Spearman correlation coefficient
with packages provided by Pythorm The results are shown
in Table[d

7.3 Apps Selection against Device Models

We investigate whether the choice of device models can
impact the app selection. From our previous study of
the global distribution of apps [18], we find that users
can have quite high overlap in selecting the popular
apps, such as WeChat, QQ, and Map, by counting the
number of unique users of these apps relative to the total
number of users in the dataset. Hence, we explore the
diverse requirements of apps. For simplicity, we cluster
the apps according to their category information provided
by Wandoujia, e.g., Game, NEWS_AND_READING. We
compute the contributions of downloads and updates
from every single device model relative to a specific app
category. For example, if there are 1,000,000 downloads of
GAME apps and 50,000 of these downloads and updates
come from the device model Samsung S4, we assign the
contributions made by this device model as 5%. Then we
make the correlation analysis of app selection and the price
of device, by means of the Spearman correlation co-efficient.
We find that as the price of device models increases, the
users are more likely to choose apps from the categories
of TRAFFIC (r=0.542, p = .000) , LIFESTYLE (r = 0.565,
p = .000), NEWS_AND_READING (r = 0.552, p = .000),
SHOPPING (r = 0.659, p = .000), FINANCE (r = 0.655, p =
.000), and TRAVEL (r = 0.719, p = .000). In contrast, the
correlation analysis indicates that as the price of device
models increases, the users are less likely to choose the apps
from GAME (r = -0.707, p = .000) and MUSIC (r = -0.477, p

16. Spearman Correlation Coefficient. https://en.wikipedia.org/
wiki/Spearman%?27s_rank_correlation_coefficient

17. https:/ /docs.scipy.org/doc/scipy-0.14.0/ reference / generated /
scipy.stats.spearmanr.html

= .000). Such observations imply that the choice of device
models could significantly influence the app selections,
and infer the characteristics and requirements of the users.
For example, users with high-end smartphones are more
likely to care about the apps from NEWS_AND_READING,
FINANCE, TRAVEL, and SHOPPING. Users holding lower-
end device models care more about the entertainment apps
such as GAME and MUSIC.

Finding (F9): The selection of device models has significant
correlations with the selection of apps, implying the various
user needs and requirements.

7.4 App Abandonment against Device Models

The uninstallation can indicate the users’ negative attitudes
towards an app, i.e., the users do not like or require the app
any longer. We then perform the correlation analysis in a
similar way of downloads and updates. In most categories,
the correlation is not quite significant.

Although the uninstallation does not take significant
correlation to the choice of device models at the level of
app category, investigating the individual apps that are
possibly abandoned by a specific device model is still
meaningful, as such investigation can help developers
identify some device-specific problems. To this end, we
explore the apps that have been uninstalled for more
than 500 times in our dataset, and obtain 6,736 apps. We
then examine the distribution of uninstallations according
to the device model. An interesting finding is that the
manufacturer-customized or preloaded apps are more
possibly uninstalled on the lower-end device models. For
example, the app Huawei News Reader is a preloaded
app on almost all device models produced by Huawei.
This app has received 20,985 uninstallations, while 17,461
uninstallations come from the lower-end devices of
Huawei. The similar findings can be found in other device
models produced by Samsung, Lenovo, and ZTE. Such
an observation implies that the lower-end users are less
likely to adopt these customized or preloaded apps. Besides
the preloaded apps, some apps are also more likely to
be uninstalled by a specific device model. For example,
two device models Samsung Galaxy S5 and Motorola
Defy account for 72% of the uninstallations of an HD-Video
calling app called CIPSimple (com.hh.csipsimple).
Such a finding implies that these apps can probably suffer
from device-specific incompatibilities or bugs. Although
our current finding cannot tell the root causes for such
abandonments, it can help the app developers better locate
some “attention-needing” device models where their apps
may encounter possible loss of users.

Finding (F10): Some apps are more likely to be uninstalled
on specific device models, indicating users’ negative atti-
tudes towards preloaded or vendor-customized apps, or
some potential device-specific problems. Such findings can
help developers accurately locate some device models with
more care.

7.5 Access Time against Device Models
Figures [15(a)| and [15(b)| describe the distribution of daily

access time at foreground under Wi-Fi and cellular, respec-

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.spearmanr.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.spearmanr.html

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. X, FEB 2017

y (Log) (Min)
e

2

Wi-Fi Conneciion Time Per Da
5

g

WMiddle-End
Price Level

(a) WiFi time

Low-End High-End

ay (Log) (Min)
5

T

cion Time
A

Low-End

Cellular Conny
<

[|
Middl d

iddle-En
Price Level

High-End

(b) Cellular time

Fig. 15. Daily network activity comparison among user groups

& &8 & & §

Wi-Fi Traffic Usage Per Day (Log) (MB)

Low-End

—/ =4

Middle-End
Price Level

High-End

(c) Wi-Fi traffic volume

TABLE 4
The Spearman correlation co-efficient of every singe app category. The format of each cell is “coefficient/p-value”. Cells denoted with “*” indicate
statistical significance.

Cellular Traffic Usage Per Day (Log) (MB)

Low-End

10° |
g 10°)
: 104
g 10°

1071

iddle-End
Price Level

High-End

(d) Cellular traffic volume

19

Category Download & Uninstallation Celll.llar Wi-Fi Cellule'lr Wi-l.?i
Update Time Time Traffic Traffic

BEAUTIFY -0.471/0.000% 0.000/0.997 -0.085/0.056 | -0.054/0.230 | -0.191/0.000 | 0.363/0.000*
COMMUNICATION -0.204/0.000 -0.132/0.003 0.141/0.002 | -0.001/0.977 | -0.158/0.000 | 0.372/0.000*
EDUCATION -0.102/0.022 -0.315/0.000* -0.382/0.000* 0.013/0.774 -0.309/0.000* 0.243/0.000
FINANCE 0.655/0.000* 0.426/0.000* 0.325/0.000* 0.274/0.000 0.366/0.000* 0.398/0.000*
GAME -0.707/0.000* -0.163/0.000 -0.016/0.714 | 0.084/0.062 | -0.429/0.000* | -0.091/0.043
IMAGE 0.304/0.000* 0.307/0.000* 0.424/0.000* 0.381/0.000* 0.394/0.000* 0.496/0.000*
LIFESTYLE 0.565/0.000* 0.299/0.000 0.365/0.000* 0.374/0.000* 0.443/0.000* 0.580/0.000*
MOTHER_AND_BABY 0.333/0.000* 0.228/0.000 0.301/0.000* 0.292/0.000 0.243/0.000 0.306/0.000*
MUSIC -0.477/0.000* -0.361/0.000* 0.159/0.000 0.097/0.031 | -0.411/0.000* | 0.220/0.000
NEWS_AND_READING 0.552/0.000* 0.249/0.000 0.220/0.000 0.318/0.000* 0.372/0.000* 0.477/0.000*
PRODUCTIVITY 0.369/0.000* 0.187/0.000 0.508/0.000* | 0.424/0.000* | 0.576/0.000* | 0.553/0.000*
SHOPPING 0.659/0.000* 0.241/0.000 0.640/0.000* 0.590/0.000* 0.601/0.000* 0.658/0.000*
SOCIAL 0.219/0.000 0.240/0.000 0.407/0.000* 0.422/0.000* 0.424/0.000* 0.451/0.000*
SPORTS -0.087/0.052 0.136/0.002 0.293/0.000 0.354/0.000* 0.261/0.000 0.408/0.000*
SYSTEM_TOOL -0.030/0.501 -0.127/0.004 0.076/0.090 0.302/0.000* 0.127/0.004 0.406/0.000*
TOOL 0.111/0.013 0.047/0.297 -0.103/0.021 | 0.006/0.890 | -0.257/0.000 | -0.042/0.350
TRAFFIC 0.542/0.000* 0.320/0.000* 0.459/0.000* | 0.436/0.000* | 0.514/0.000* | 0.558/0.000*
TRAVEL 0.719/0.000* 0.382/0.000* 0.562/0.000* 0.446/0.000* 0.589/0.000* 0.516/0.000*
VIDEO 0.413/0.000* 0.001/0.981 0.285/0.000 | -0.313/0.000* | 0.034/0.448 | -0.383/0.000*
MISCs -0.163/0.000 0.026/0.555 0.091/0.043 0.203/0.000 0.099/0.027 | 0.350/0.000*

tively. For access time at foreground, we are surprised to
find that users rely less on the cellular network when the
price of device model increases. In other words, the higher-
end users typically spend less time under cellular network.
For the average daily access time at foreground, the low-end
users (< 1,000-RMB device models) spend about 20 minutes
more than the high-end users (> 3,000-RMB device models)
under cellular, while the high-end users spend 2 hours more
than the low-end users under Wi-Fi. Immediately, we can
infer that the network conditions could probably vary a
lot among different users, i.e., the lower-end users are less
likely to stay in the places with stable Wi-Fi connections.
In contrast, the higher-end users tend to have better Wi-Fi
connections.

We then investigate whether the choice of device models
can affect the usage of “network-intensive” apps. Similar
to the preceding analysis of the management activities,
we compare the distribution of access time at foreground
against the device models over each app category, under
cellular and Wi-Fi, respectively. As shown in Table [}
the cellular time of apps has no significant correlation
with the price of device models, except the categories of
PRODUCTIVITY (r = 0.508, p = .000) and SHOPPING (r =
0.640, p = .000). It is interesting to see that users holding
lower-end smartphones are more likely to use EDUCATION

(r =-0.382, p = .000) apps under cellular network. Such a
finding suggests that a considerable proportion of lower-
end users may be in-school students.

Finding (F11): The selection of device models can have
significant correlations with the spent access time under
different networks. For example, higher-end device users
heavily rely on Wi-Fi. In contrast, lower-end device users
are likely to use more cellular than lower-end device users
do.

The correlation between the choice of device models
and the access time at foreground under Wi-Fi does not
seem be quite significant, either. Only in the category of
SHOPPING (r = 0.590, p = .000), the choice of device models
seems to take positive correlation with the price of device
models. Such an observation can be expected, as higher-end
users are supposed to have better economic background
and spend more time on shopping.

7.6 Traffic Volume against Device Models

The distribution of daily Wi-Fi and cellular traffic con-
sumption among device models is shown in Figures
and [15(d)} respectively. Interestingly, although the higher-
end users are observed to spend the least time under cellular

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. X, FEB 2017 20

network, they spend the most traffic. In other words, we
can infer that the higher-end users are more likely to use
those “traffic-intensive” apps. On average, a high-end user
can spend 100 MB data plan more than a low-end user in a
month. For carries such as China Mobile, such a difference
of data plan can lead to 15-RMB extra data plan fee.

It is quite meaningful to identify which apps consume
more traffic on specific device models. Similar to the pre-
ceding analysis, we compute the correlation coefficients
between the choice of device models from every single user
and the apps on which the traffic is consumed. The cellular
data traffic consumed over the apps from SHOPPING (r =
0.601, p = .000) and TRAVEL (r = 0.589, p = .000) presents a
quite significantly positive correlation to the choice of device
models. In contrast, the correlations seem to be significantly
negative in GAME (r = -0.429, p = .000) and MUSIC (r =
-0.411, p = .000) apps. In these app categories, users with
lower-end smartphones tend to spend more cellular traffic.

The traffic generated under Wi-Fi presents significant
correlations with the device models in some categories.
The lower-end users tend to spend a large number of Wi-
Fi traffic on the VIDEO apps. In contrast, the higher-end
users are more likely to rely on the apps of COMMUNICA-
TION, PRODUCTIVITY, SYSTEM_TOOL, TRAVEL, BEAU-
TIFY, NEWS_AND_READING, LIFESTYLE, and SHOPPING
under Wi-Fi. Such a difference in the Wi-Fi traffic usage can
indicate the requirements and preferences of users holding
different device models.

7.7 Competing Apps against Device Models

Finally, we study how the choice of device models impacts
the selection of “competing” apps with the same or similar
functionalities. We choose three typical apps: News Reader,
Video Player, and Browser, as these apps are observed to be
commonly used in daily life. For each app, we select the
top apps according to the access time at foreground that the
users spend on them. The reason why we employ the access
time at foreground instead of the number of downloads is
that access time at foreground can be computed only when
the users interact with the app. The selected competing
apps are as follows. The News Reader contains Phoenix
News, Sohu News, Netease News, Today’s Top
News, and Tencent News; the Video Player contains
QVOD, Lenovo Video, Baidu Video, Sohu Video,
and 1iQiyi Video; the Browser contains more apps, i.e.,
Chrome, UC Web, Jinshan, Baidu, Opera Mini,
Sogou, Aoyou, FireFox, Tencent,and 360.

First, we want to figure out the distribution of the user
preferences against the app according to the device model.
We employ the cumulative distribution function (CDF) to
demonstrate such distributions, as shown in Figure For
each app, the X-Axis represents the price of device models
that are sorted in the ascending order, and the Y-Axis refers
to the percentage of the app’s users holding such a device
model. An app tends to be used by more higher-end users
if the curve is close to the right bottom.

We can observe that the choice of device models sig-
nificantly impacts the selection of competing apps. For the
News Readers, we can see that the Phoenix News and
Netease News are more likely to be adopted by higher-
end users. In contrast, the Sohu News tends to be more

preferred by the lower-end users, possibly because Sohu
is famous for its entertainment channels in China. The
impact of device models is even more significant for the
Video players. The Lenono Video takes a very significant
difference compared to other 4 apps, indicating most of
its users are lower-end. One possible reason is that the
Lenovo Video is a preloaded app that is used mainly on
smartphones manufactured by Lenovo, and most of these
smartphones are categorized into medium-end and low-end
groups.

Finally, in the Browser group, the similar findings can
be observed. The most preferred browser of higher-end
users is the Chrome browser, followed by the FireFox
browser, and the Jinshan browser. The Opera Mini
and the Baidu browser are more likely to be adopted by
the low-end users. One reason leading to the diversity is
that an app can provide specific features beyond common
functionalities that its competitors also provide, so as to
meet requirements of specific user groups. For example,
when examining the textual profile of the ten browsers,
we find that the Opera Mini is said to save traffic by
offloading computation onto cloud. As a result, more than
77% of its users are those who hold medium-end and
low-end devices. In summary, such a finding implies that
the choice of device model has impacts on competing-app
selection and usage, and probably reflects the different
user interests and needs.

Finding (F12): Users holding different device models could
have various needs of specific apps or preferences against
some “competing” apps. For example, lower-end device
users prefer the Opera Mini browser as it is said to save
traffic.

8 IMPLICATIONS AND SUGGESTIONS

So far we have investigated the user behaviors from a large-
scale dataset and inferred some patterns. Besides confirming
and validating some findings that have been reported in pre-
vious studies based on a relatively small scale of users, our
study results can further imply some new, open challenges
and opportunities of the development, maintenance, and
management of apps. In this section, we discuss some impli-
cations and suggestions that can be taken away by relevant
stakeholders in the mobile-app ecosystem, including app-
store operators, app developers, end-users, and network-
service carriers. For ease of presentation, we denote the pre-
ceding findings as F1, F2, ..., F12, and discuss the problems
and opportunities resulted from these findings.

8.1 Efficient App-Store Management

App stores play as the core in the whole app ecosys-
tem to connect all related stakeholders. We provide some
implications to improve the recommendation quality and
performance of an app store. In particular, we intend to
point out some gaps that may not be well addressed by
app-store operators.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. X, FEB 2017

100%

100% — 100% 90%
= 1%}
D 90% A B 90% 8 80% 360 Browser
g 80% g 80% 5 70% Aoyou Browser
8 70% 8 70% 9 5o% Baidu Browser
- o
S 60% “— 60% g 50% —E_h“:me
— Firefox
g, 50% o S0% f . g 40% — Jinshan Browser
2 40% Netease News 2 40% Baidu Video € .
g ’ Phoenix News b iQiyi g 30% — Opera Mini
& 30% — Sohu News G 30% — Lenovo Video 5 20% Sogou Browser
© 20% — Tencent News © 20% —QVOoD o Tencent Browser
D 10% Today's Top News & o Sohu Video 10% UC Web
0% 0% 0%
2500 7500 10000

2500 5000 7500
Device Price (RMB)

(a) Newsreader apps

10000

2500 5000 7500
Device Price (RMB)

(b) Video apps

10000

5000
Device Price (RMB)

(c) Browser apps

21

Fig. 16. Similar app preferences among user groups

8.1.1 Improving Workloads of App Stores

From the preceding macro-level finding of popularity dis-
tribution (F1), we can conclude that the app popularity
generally follows the “Pareto-like” principle. Such a finding
confirms the results reported in previous work [28]. In
addition, we also validate that the numbers of downloads,
updates, and unique users per app can follow the power
law.

Indeed, the distribution of user requests to servers can
help optimize the workloads of servers for better content
delivery. However, to the best of our knowledge, so far very
few published papers have comprehensively discussed the
current practice of managing an app store’s workload [35].
One reason can be the lack of actual user-request traces
of app stores. A recent study [2] assumed that the time
submitting a user review can be an immediately subsequent
behavior of downloading an app. Based on such an assump-
tion, this effort clustered the apps whose comments were
posted in a given time interval, and simulated the possible
workload for predicting which apps will be downloaded.
However, such an assumption may not be always reliable.
It is reported that users may not write reviews when/after
downloading an app [3]. Additionally, users may not imme-
diately submit their reviews when downloading an app, but
submit their reviews after they try or use the app sometime
later.

Although we do not have knowledge of how app stores
other than Wandoujia design their workload models, the
traces of app download and update activities can help us
improve the current design of the Wandoujia app store’s
workload, e.g., placing the . apk files of most popular apps
in the server-side fast memory or local network cache. In
practice, Wandoujia currently relies on the derived power
law to place the . apk files on its Content Delivery Network
(CDN) servers. We then simulate the workload performance
from the server’s point of view, by synthesizing power law
and co-installation patterns.

For simplicity, we assume that the size of each app
is the same, and assign the size of cache as the number
of apps. Certainly, the size of every single app can vary
in practice. We consider the following three conventional
cache schemes, and simulate these schemes by replaying a
successive one-week request traces of app download and
update. We use request traces of the final week (September
24-September 30) in our dataset.

e The first mechanism is the power-law-driven static
finite cache. At day zero, we fill the cache with the
.apk copies of the most popular apps. We populate
the static cache with the apps accounting for the most
downloads and updates in Figure We use the
power-law exponent (1.69) for overall app ranking
against the number of downloads and updates, and
obtain 8,260 apps accounting for 95% of downloads
and updates. The static cache is not changed during
the one-week trace period. Such a cache is rather
similar to the current design of Wandoujia, i.e., only
the . apk files of the most popular apps are put in the
cache, and the cache size is not tuned very frequently.

e The second mechanism is the dynamic infinite cache.
At day zero, the cache is filled with all apps that are
ever requested before day zero (not limited to the
0.28 million apps in our dataset but those who had
ever existed on Wandoujia server), and thereafter ac-
cumulatively stores any other apps requested during
the trace period.

o The third mechanism is the co-installed and LRU-
based finite cache. At day zero, the cache is popu-
lated with the top pairs of co-installed apps (before
day zero), whose Jaccard co-efficient exceeds 0.01.
Suppose that two apps A and B both have 2,000
unique users, and such a value indicates that they
have 20 shared users. As the co-installation pattern
essentially implies the locality of accessing two apps,
it indicates that these two apps are accessed subse-
quently for 20 times. After day zero, we compute the
daily top co-installed apps whose Jaccard coefficient
is over 0.01, and replace those who are “Least Recently
Used” at the previous day.

In Table [5, we report the cache size (the number of apps
placed in cache) and hit ratio of each cache design. Note
that the “hit ratio” refers to how many requests are exactly
matched instead of the matched apps. Undoubtedly, the
dynamic infinite cache reaches the highest hit ratio, but
the cache size is tremendously large as well. In contrast,
we can see that the simple static finite cache with the top
popular apps can reach a very high hit ratio (around 95%).
In contrast, we see a significantly lower hit ratio (around
80%) for the cache built upon the co-installation with LRU.
It indicates that, although the typical LRU cache can ex-
ploit locality of user downloads and updates to improve

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. X, FEB 2017 22

TABLE 5
Synthetic cache performance

Static Finite Cache Dynamic Infinite Cache | Co-Installed and LRU-based Cache | Adaptive Hybrid Cache
Date | Cache Size Hit Ratio | Cache Size Hit Ratio | Cache Size Hit Ratio | Cache Size Hit Ratio
Day 0 8,260 95.1% 579,108 99.9% 3,787 81.2% 8,260 95.1%
Day 1 8,260 95.7% 580,335 99.9% 6,612 80.9% 12,635 97.5%
Day 2 8,260 94.7% 581,562 99.9% 6,781 79.9% 14,981 97.7%
Day 3 8,260 94.4% 582,750 99.9% 6,873 79.6% 12,631 97.7%
Day 4 8,260 94.9% 584,200 99.9% 7.027 80.1% 13,132 98.2%
Day 5 8,260 95.0% 585,516 99.9% 7,322 79.9% 13,165 97.1%
Day 6 8,260 94.9% 586,585 99.9% 6,989 80.4% 12,343 97.4%

the performance, it does not work very well with the co- 8.1.2 Improving App Recommendation

installation patterns. Some new replacement mechanisms
should be exploited to fit the behaviors of co-installation.

To balance the hit ratio and the cache size, we then
aim to improve the LRU mechanism for app-store work-
loads by synthesizing the knowledge of power law and co-
installation. We design a cache mechanism called adaptive
hybrid finite. At day zero, the cache is first populated with
the top popular apps just like the static cache, and such
a space will be tunable during the trace period. At day
one, the cache reserves space for the top popular apps, and
allocates some extra space for two kinds of apps: (1) the apps
from the daily popular apps accounting for 95% of down-
loads and updates; (2) the apps from the daily app pairs
whose Jaccard co-efficient is over 0.01. If an app appears in
either of the preceding cases, we assign its cache for only
once. After day one, the cache daily reallocates the cache
by replacing the apps that were “Least Recently Used” at the
previous day. From Table[5| we can find that this mechanism
requires the cache size up to around 15,000, which is nearly
doubled compared to the static cache and co-installated
LRU-based cache. However, the hit ratio can be significantly
improved to over 97%. Such a hybrid cache is efficient,
as it compensates the limitations of co-installation patterns
that can miss some very popular apps but preserves the
benefits of locality. Suppose that the average size of .apk
file is about 10 MB, and such a cache usually requires about
150 GB space for one CDN node. As there can be various
concurrent requests for the same app, we need to assign
more copies for the most frequently accessed apps, and the
actual cache size should be a bit larger.

Indeed, the preceding simulation can be further explored
by leveraging the diurnal patterns reported in F2. The cache
can be more dynamically adapted when more concurrent
requests arrive at the server at a fixed point, e.g., 9:00 pm in
our preceding findings. In practice, app-store operators can
optimize the cache adaptation on CDN servers for specific
areas. In addition, we plan to further explore the timestamp
of user download/update sequences for possible temporal
patterns of accessing the server. In this way, the popular
apps or the most probably “co-installed” apps that have not
been downloaded by the user can be prefetched to a nearby
place so as to improve user experience and app-delivery
performance. We plan to test these workload mechanisms
on Wandoujia and evaluate the efficiency in real-world
practices [36].

The fundamental responsibility of an app store is to rec-
ommend proper and high-quality apps to end-users. A
recommendation system can benefit apps and developers
by identifying the apps that need to be recommended to
increase their popularity, and by identifying users’ interests
in the respective app category. If an app is downloaded by
most users in a group, then it is likely to be of interest
for another user (in the same group) who has not yet
downloaded it. In this way, finding F3 can suggest the most
“co-installed” pairs of apps that can be pushed to users.
Additionally, finding F3 also suggests that some frequently
co-installed apps may come from the same category and
vendor. Although such a pattern could be reasonable from
the vendor’s aspect and thus increase downloads, it may
not be always desirable or necessary for end-users, as app
vendors can purposely “induce” the bundling downloads of
some apps.

Another useful implication for app recommendation can
be derived from F9, i.e., users with different device mod-
els can have quite various preferences towards apps with
similar functionalities. For example, lower-end users prefer
the “Opera Mini” browser while higher-end users prefer
the “Chrome” browser. However, based on our investiga-
tions of the most popular app stores such as Wandoujia,
Google Play, and Tencent, device-specific recommendation
is not well explored. As most app-store operators can gather
information of device models, our finding can help achieve
more accurate recommendation of apps for specific users.

From F1, we can also detect that some possibly “fake”
downloads can exist by the metric of “average down-
load/update per user.” For example, an app has only 18 unique
users but receives 3,581 downloads & updates, and 3,563
downloads come from only one user. This metric can be
generally applied for any app stores that collect similar
information. The apps that are downloaded by a limited
number of unique devices in a short interval could be
alerted to app-store operators and end-users.

8.1.3 Predicting the App Ranking

An immediate result can be taken away from our study
is the “I/U” ratio and the lifecycle of an app presented
in F4. Indeed, we do not have the knowledge of other
app stores except Wandoujia. Previously, Wandoujia used
to rank an app according to the number of its downloads.
However, only the download count can possibly prioritize
the ranking of an app with “bursting” downloads in a
short time interval. When adding the uninstallation count,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. X, FEB 2017 23

Wanoudjia now leverages the “I/U” ratio and the lifecycle
to more accurately evaluate an app. Indeed, other app
stores recording uninstallation information can extrapolate
the ranking accordingly.

Generally, the sentiment of an app’s user ratings can
reflect its users’ attitudes towards the app, and may provide
useful information for app ranking. As a result, the rating
of an app can influence the user downloads and thus is
quite significant to the revenue of the app developers and
the ranking strategy of app-store operators. In a previous
study [32], it was observed that an app can probably gain
higher ranking if it receives a number of “good” ratings.
However, from F5, we are surprised to find that such an
observation may not always hold for large-scale users, at
least in China. Additionally, we find that the abandonment
of apps does not have strong correlation with the number of
“bad” (negative) ratings.

Such findings enable us to design new indicators for
predicting an app’s popularity. An important understanding
about user activities is that the activities are not indepen-
dent but always appear as sequences of events. Indeed,
when search engines utilize user activities as the implicit
feedback about the relevance of documents, the sequences
of actions are usually more indicative than single clicks.
Analogically, we anticipate that some sequential patterns of
the app-management activities may be better indicators of
app quality than downloading actions alone. In practice,
our recent work [31] made the first step to mine some
sequential patterns of app-management activities that are
actually correlated with online ratings of apps. Multiple
time-aware management sequences were combined with
several machine-learning algorithms such as Lasso Regres-
sion (Lasso) [37], Random Forrest Regression (RF) [38], and
Gradient Boosted Regression Tree (GBRT) [39]. From the
activities, we derived some patterns that are surprisingly
accurate to be used to produce the general rankings of an
app, and may be used to effectively predict those new and
high-quality apps. Given that the user reviews are sparse
or even do not exist in some apps, such an effort can be
useful for both app-store operators to rank an app, and for
app developers to estimate the potential revenues. Due to
page limit, we do not discuss more details in this article.
However, this experience shows that “mandatory” app-
management activities can be a promising metric to reflect
user attitudes and intensions. It would be interesting to
further apply recent deep learning techniques over our user-
behavioral data.

8.2 Avoiding Unexpected Cost

From the finding F7, it is observed that the background
data traffic pervasively exists, and may not be always rea-
sonable with respect to the app’s claimed functionalities.
More seriously, F6 suggests that most apps can keep “long-
live” TCP connections at background. This finding indicates
that currently most Android apps could stay silently in
memory even when they are switched to background. The
background network connection can be useful, as the app
can be quickly “awaken” and the network connection can be
fast restored. However, these apps can also lead to memory
occupation and have side effect of system performance. In

fact, it is reported that many Android users complain that
their devices become slower and slower to respond to user
interaction [40]. It would be interesting to explore whether
such “long-live” network connection could be a factor. In
addition, our recent work [41] made an empirical study
of 1,000 apps from three third-party app stores (including
Wandoujia, Baidu, and Tencent), and surprisingly found
that some apps can have “collusion” behavior, i.e., they can
awake one another at background but users are never aware
of such behavior. The hidden cost of collusion behaviors,
including computation resources and energy drain, can be
too significant to be ignored. Hence, such finding reminds
that end-users should employ some tools to periodically
“clean up” their devices or terminate threads of unused
apps running at background.

The findings also imply that these apps can bring hidden
and unexpected cost for users, such as the loss of data-plan
traffic and energy. The findings call for efficient solutions to
determine whether the undesirable cost is really necessary
for an app. Preliminary efforts revealed that the undesirable
cost can originate from the improper granting of permis-
sions [9]], the use of third-party ad-network libraries [9], or
the unreasonable API usage [7], etc. However, only static
analysis is not sufficient [42]. Determining whether the
additional cost is “really” unreasonable or malicious is quite
difficult. For example, the additional data drain may not be
always “purposely” malicious, as the developers may want
to collect some information such as location in order to push
context-aware ads. A possible way can be combining the
user-behavioral data with other analytic techniques such as
natural language processing, static code analysis, library-
dependency analysis, and network-trace analysis, to deeply
understand the app semantics and comprehensively evalu-
ate the cost against the functionality of apps. Additionally,
it would be also appreciated to provide lightweight system
services that can identify the cost of the necessary functional
features from other features, respectively. Hence, we can
display such information to end-users who launch the app,
and let themselves decide whether to prevent some unnec-
essary cost. However, such a “separation-of-concern” solution
is not easy and must be performed very carefully, because
preventing some features may also affect the normal func-
tionality. Our findings can provide a genre of apps that
have substantial background traffic drain, and researchers
can focus on these apps for further study.

In practice, the findings have already motivated us to
apply the metric of CBD in the current Wandoujia app store.
We can help identify some “suspicious” apps to which both
app-store operators and end-users need to pay attention,
because users may suffer from a lot of unnecessary loss
of data-plan traffic and the possible overhead leading to
unexpected CPU and energy cost [40]. For example, our
previous study [18] found that an alarm clock app daily
consumes about 13 MB CBD and an LED flashlight app
daily consumes about 7 MB CBD. These apps were put onto
the watchlist of the Wandoujia app store, and then evaluated
more comprehensively and rigorously. In fact, some of these
apps have been forced off the shelf accordingly.

Additionally, the undesirable cost of apps suggests that
developers should optimize their apps, because users can
give low rating and even abandon these apps when per-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. X, FEB 2017 24

ceiving the undesirable cost. Developers need to configure
the use of network connection at a finer granularity, e.g., dis-
abling background data transfer under cellular. Developers
also need to explicitly make end-users aware of the potential
cost, e.g., popping up alert information at the installation
wizard or displaying on the app’s information webpage.

8.3 Addressing Device-Specific Features

From F10, we can find that some apps are more frequently
uninstalled on some device models. Such a finding implies
that there may be some problems such as compliance with
hardware, device-specific drivers, or API evolution. As re-
ported on the StackOverflow [43], some camera-related bugs
have been found on Samsung Galaxy Note2.Indeed, the
finding currently cannot comprehensively trace the root
causes of these problematic issues; however, we can at
least locate a genre of device models and help developers
explore possible device-specific problems or bugs, especially
for apps that have sparse user reviews and cannot be well
amenable to existing techniques [44].

Other than knowing only the device-specific problems,
app developers have to face the challenge introduced by
Android fragmentation. According to our finding F8, there
are more than 19,000 device models in our dataset. Such
a fragmentation brings significant challenges to software
engineering practices for mobile apps, such as app design,
development, maintenance, quality assurance, and revenue
generation [45], [46], [47], [48]. A recent study [49] (in 2013)
showed that 94% of mobile-app developers who avoid the
Android platform cite fragmentation as the main reason.
Android app developers need to identify the major device
models out of the wide selection space to validate an app’s
functionality, usability (such as the GUI effects), and even
revenues.

As a result, prioritizing device models can be an impor-
tant topic, especially before the release of an app. Devel-
opers need to buy some device models or use some cloud-
based emulators such as Appthwac and Testir@ In fact,
due to the lack of usage data, most developers currently
rely on popular device models from public market-share re-
ports such as AppBrain [50]. However, such reports are too
coarse-grained to be precise enough, and the major device
models for different individual apps can be quite different.
A recent study [47] showed that major device models from
which the users may post positive/negative reviews of a
specific app can vary a lot. Given very limited resources
to buy device models or cloud services, developers have
strong desire to more accurately locate and invest those
major device models.

As our dataset contains detailed usage data of an app
per distinct device model, we can design some prediction
techniques for prioritizing device models. In practice, our
recent PRADA work [51] made a first step to prioritize An-
droid device models for individual apps, based on mining
large-scale usage data from our dataset. PRADA adapts
the concept of operational profiling [52] and includes a
collaborative filtering technique to predict the usage of an
app on different device models, even if the app is entirely

18. https:/ /appthwack.com/
19. Testin. http:/ /www.testin.cn

new (without its actual usage in the market yet), based on
the usage data of a large collection of apps. Compared to
the coarse-grained market-share based metric, PRADA can
accurately predict the device models where a new app could
be used. In addition, the preceding analysis indicates that
the distribution of uninstallation behaviors of an app among
device models can be a more objective indicator compared
to user reviews or ratings. We are currently extending the
PRADA approach to prioritize device models where an app
is more likely to be uninstalled.

8.4 Addressing Various Requirements

Our findings F9-F12 demonstrate that users holding differ-
ent device models may have quite various requirements.
Given that a device model used by a user can imply possible
preferences of the user to some extent, the diversity of user
needs towards apps must be further explored.

First, the preference of selecting “routine apps” can
be diverse. For example, the users holding higher-end
device models tend to more use the FINANCIAL and
NEWS_AND_READING apps, while the users holding
lower-end device models tend to more use the GAME and
EDUCATION apps. The developers have to identify which
users are more worth focusing on, and provide optimal
services or customized features.

Second, the preference of selecting “competing apps”
can be diverse. Here, we refer to the “competing apps” as
the apps that have similar functionalities. For example, the
users holding lower-end device models prefer the Baidu
browser and the Opera Mini browser (rather than the
Chrome browser). We inspect the textual profiles of these
two browser apps to identify attractive features provided
by the apps. For example, the Opera Mini browser claims
that it can save the traffic by compressing the content and
resizing the images in a front-end cloud before the page is
loaded on the user side. Such a diversity can motivate the
developers to address more personalized features in their
release planning so as to retain the user base.

Note that F9 to F12 are derived from only the “device-
model” based categorization of users. In practice, the users
can be categorized in different ways, e.g., by region, sex,
and age. Additionally, the diversity of requirements can be
more complex. As a result, addressing the various user re-
quirements is challenging. The traditional product-oriented
software delivery model often provides a large number of
features that aim to meet all potential user requirements.
However, mobile apps are published and delivered in a
quite different “user-oriented” model. There is a strong
need of new requirements-engineering approaches to better
explore the specific requirements of a user. One of the
significant issues is to build up a precise, fine-grained, and
extensive user profile. To this end, an important trend in
requirements elicitation is to rely on the comprehensive data
analytics of user reviews, bug reports, social networks, and
app stores such as our Wandoujia dataset. In addition, as
the release of new versions or features of an app can be
quite frequent, e.g., weekly or monthly, the gap between
requirements elicitation and app development needs to be
greatly shortened.

If the app developers can know that some users holding
a specific device model spend more cellular time rather than

https://appthwack.com/
http://www.testin.cn

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. X, FEB 2017 25

Wi-Fi, the app developers can provide some customized
features to these users. To this end, some approaches such as
end-user configuration/programming and context aware-
ness can be useful. For example, apps can be developed to
enable end-users to manually “turn-on” and pay for only
the features or contents that the users need (commonly
implemented via in-app purchase), or to disable the down-
loading of contents under cellular network. Also, an app
can prefetch contents under Wi-Fi network for the lower-
end users who may have limited cellular data plan.

8.5 Exploring Potential Revenues from App

A large number of popular apps, especially Android apps,
are free instead of paid ones. Mobile apps heavily rely
on other revenue channels such as in-app purchase and
ads, especially for specific types of apps (e.g., game and
media apps). App developers should accurately target the
users who are likely to use/buy their apps and increase
potential revenue. For example, finding F10 suggests that
the users holding lower-end device models are more likely
to select GAME apps. As it was reported that a lot of GAME
apps are paid ones [14], the GAME app developers could
provide the “try-out-first” feature to encourage these lower-
end users to use their apps. Indeed, in practice, a lot of Game
app developers have adopted such a strategy, i.e., making
the first-level play free. Besides the “try-out-first” strategy,
our findings can further recommend app developers how
to better place their in-app advertisements, which are the
major revenue channel for mobile apps. From finding F11,
the choice of device models can correlate to the network
access time, so app developers can know which users more
possibly spend time in their apps. From the experiences of
advertisement on the Web [53], longer staying time usually
implies more possibility to click advertisements. In this way,
developers can more precisely target potential users and
increase ads-clicking opportunities. Here, one feasible way
is to negotiate with the device manufacturers and make their
apps preloaded on these devices. Furthermore, by learning
the access-time usage among different device models from
F11, our recent PRADA work [51] has designed efficient
machine learning techniques to predict which users are
more likely to spend more time on a specific app.

In addition, although we cannot make very strict hy-
pothesis testing, it might be a common sense that the choice
of device models can possibly reflect the economic status
or other background of users. For example, users with a
better economic status are more likely to use higher-end
device models. In this way, developers can further provide
more “personalized” advertisements to fit the users’ interests.
Similarly, ad network providers can also leverage our find-
ings to know which apps a specific group of users are more
likely to spend time on, i.e., users with higher-end device
models tend to use the NEWS_AND_READING and TRAVEL
apps. Therefore, ad network providers can negotiate with
these developers to import their ad-network libraries.

We can also observe that the users holding lower-end
device models are more likely to pay more traffic on the
MUSIC apps under the cellular network. Given that these
users may have relatively low economic background, their
data plan could be a bit limited. However, the network ser-

vice providers can leverage this finding and provide “app-
specific” data plans. For example, some carriers in China
make a special data-plan contract with the MUSIC apps
(such as Baidu Music com.ting.mp3.oemc.android and
Kuwo Music cn.kuwo.player) and video apps (such as
Youku com.cibn.tv), and users can pay for this data
plan independently and enjoy unlimited cellular data-traffic
to download video/audio files. Indeed, such a new “app-
specific” data plan requires supports such as independent
traffic accounting.

9 LIMITATIONS AND DISCUSSIONS

As an empirical measurement study, considerable care and
attention should be given to ensure the rigor. However, as
with any chosen research methodology, it is hardly without
limitations. In this section, we discuss major limitations and
threats to validity of our study.

Single Dataset. The first limitation is that our dataset is
collected from only a single app store. Such a limitation
may have introduced some selection biases caused by the
app store’s specific policies. In this way, some of our results,
such as the popularity distribution of apps, may not always
hold on other app stores. For example, the same app can
be ranked to be quite popular on the Wandoujia app store,
but may be unavailable on other app stores such as Google
Play. In addition, the features provided on different OSes
can be various. One feature of an Android app may not be
available in the corresponding iOS and Windows version
of this app. As a result, care should be given to generalize
our findings to other app stores or platforms. To address
this issue, we plan to validate some results by leveraging
public data such as the number of downloads, user ratings,
and reviews from other app stores such as Google Play
and Apple App Store. For example, for a specific app, we
can investigate the differences of user attitudes towards
the same app. However, the information of network traffic,
online time, and device model cannot be easily captured on
other app stores, and thus the limitation caused by a single
app store cannot be completely solved. In a sense, due
to the uniqueness of our dataset, some potentially useful
results can be further leveraged by the research community.

Demographical Differences. Another major limitation is
the demographical differences. The users under study are
mainly from China, so the regional differences should be
considered. For example, it is reported that users from
different countries can perform variously in giving reviews
against apps [3]. However, the same limitation also exists
in most of previous studies that were conducted over users
from a specific region, e.g., the study conducted on some
states in US [28]]. In practice, collecting multi-dimensional
usage data of large-scale users from various regions can
be quite difficult. As our study was made over millions of
users, the derived findings can still be useful. In addition,
we can find that the usage patterns from only Chinese
users can share commonalities with the users from other
countries. For example, the power-law distribution of
app popularity and the user interests of co-installed apps
could also exist on other app stores, and can be further

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. X, FEB 2017 26

generalized to improve the design of app/content delivery.

Time and Versions. Another limitation is the time
sensitivity. Because the analysis of our conference
version [18] is done on only one-month usage data,
some of our findings may not be promisingly generalized to
the latest released versions of some apps. It is well known
that mobile apps are updated very frequently, and some
potential bugs of some apps, e.g., misuse or over-granting
of network permissions, might be already fixed in the
up-to-date app versions. Indeed, we realize that the one-
month data is not sufficient to comprehensively capture
app quality and user behaviors. As a result, this article
employs a new extensive five-month dataset to reproduce
the research questions, and most of the results remain
consistent. In this way, the time limitation is somewhat
alleviated. However, some limitations need to be further
addressed, e.g., the user ratings are not identified to a
specific version of an app. It is possible to align the time
when a rating is committed to an app with the release time
of this app, so that one can determine whether the ratings
are given to a specific version. However, in fact, on some
app stores, one can arbitrarily commit ratings to an app,
even when he/she does not install the latest version of this
app. In the future, we plan to consider adding other data
sources such as bug reports and textual user reviews to
judge the user attitudes of a specific app version.

User Classification. We categorize users according to the
device models that they hold, or more specifically, the
price of device models. Indeed, such an indicator cannot
be always reliable for some users. It is true that we cannot
well address some limitations, including the users holding
second-hand or multiple device models and the inaccurate
estimation of device model’s prices regarding the release
date. To alleviate the threats, we employ various sources
to segment the device models into coarse-grained brands.
Given the large scale of users involved, such a classification
can possibly reflect the diversity of usage patterns. We plan
to explore other classifiers such as screen size estate or
resolution level, by which the derived knowledge could be
particularly useful to GUI designs of an app.

Free Apps and Paid Apps. As mentioned previously,
the apps on Wandoujia are all free. Certainly, it would
be possible that user behaviors on paid apps are a bit
different [20]. Unfortunately, our current dataset inherently
cannot address such a limitation.

Correlation vs. Causation. We made various correlation-
analysis studies, such as ratings and the number of down-
loads/users, the user ratings, the network usage, and the
choice of device models. It should be noted that not all
of the analysis results can be fully interpreted. In other
words, these analyses have only correlation instead of cau-
sation. Indeed, comprehensively interpreting causation is
often rather difficult for most empirical research studies.
However, correlation is the first step ahead of causation,
and is very meaningful to attract the focus from relevant
stakeholders. As presented previously, one goal of this ar-
ticle is to motivate relevant researchers in exploring more

opportunities, such as finding the underlying “causation”
and even proposing new solutions.

10 RELATED WORK

The prevalence of mobile apps significantly changes soft-
ware development, deployment, delivery, maintenance, and
evolution. Supporting mobility becomes a promising trend
in software engineering research [1]. In the past years, vari-
ous efforts have been made, covering almost all lifecycles of
apps, such as requirement analysis [3]] [4] [18], code/library
analysis [54] [5] [6] [7] [8] [9], version evolution [10], and a
number of system-level supports [11] [55] [12].

In a sense, empirical studies of user behaviors can be

quite useful to the software engineering research of apps.
Understanding user behaviors of mobile apps establishes a
foundation for different stakeholders in the research com-
munity of mobile computing, e.g., app developers, network
providers, app-store operators, and OS vendors. A plethora
of empirical studies have been made from different perspec-
tives.
Understanding User Behaviors by Field Studies. Given
that collecting large-scale user data is hardly feasible for
most studies, learning user behaviors by field studies is
always a straightforward way. A lot of studies were per-
formed over specific user groups. Rahmati et al. [14], [56]
performed a four-month field study of the adoption and
usage of smartphone-based services by 14 novice teenage
users. Tossell et al. [15] applied a naturalistic and longitu-
dinal log-based approach to collect real usage data from 24
iPhone users in the wild. Sani et al. [33] collected data from
387 Android users in India, where users pay for cellular
data consumed, with little prevalence of unlimited data
plans. Falaki et al. [4] found that web browsing contributed
over half of the traffic at that time (2010), but currently
users can enjoy more Web services via apps. Using detailed
traces from 255 volunteer users, Falaki et al. [16] conducted
a comprehensive study of smartphone use and found im-
mense diversity of users, by characterizing intentional user
activities. Lim et al. [3] made a questionnaire-based study to
discover the diverse usages from about 4,800 users across 15
top GDP countries. Yan et al. [57] developed and deployed
an app to collect usage logs from over 4,600 users to find
their similar interests and explore recommendation systems
for smartphone apps. For a study closely related to ours,
Xu et al. [28] presented usage patterns by analyzing IP-level
traces of thousands of users from a tier-1 cellular carrier
in U.S. They identified traffic from distinct apps based on
HTTP signatures and present aggregate results on their
spatial and temporal prevalence, locality, and correlation.

Some field studies were made on specific apps. Bohmer
et al. [58], [59] made a field study over three popular apps
such as Angry Bird, Facebook, and Kindle. Patro et al. [60]
deployed a multiplayer RPG app game and an education
app, respectively, and collected diverse information to
understand various factors affecting app revenues.

Mining App Store Data. Some types of app related data
like user reviews, star ratings, and like/dislike voting are
publicly accessible. Chen et al. [61] presented AR-Miner
to extract informative user reviews and group them using

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. X, FEB 2017 27

topic modeling. Fu et al. [13] presented WisCom, a system
that can analyze tens of millions user ratings and comments
in mobile app markets. Petsas et al. [2] monitored and
mined four popular third-party Android app stores and
showed that the app-popularity distribution deviates from
a commonly observed Zipf-like model. User reviews are
significant assets in software engineering research. Lorenzo
et al. [44] presented CLAP to make release planning based
on clustering the meaningful topics from user reviews and
aligning these topics to developers’ bug reports.

Predicting Apps Usage. Baeza et al. [62] made field
studies on the sequence of launching apps, and provided
a solution to predict the “next-to-be-used” apps. Shin
et al. [63], [64] collected a wide range of smartphone
information from 23 users, extracted and analyzed features
related to app prediction. Liao et al. [29], [65] proposed a
temporal-based app predictor to dynamically predict the
apps that are most likely to be used. Montoliu et al. [66]
presented a framework to discover places-of-interest from
multimodal mobile phone sensory data. Do et al. [67]
presented a framework for predicting where users will go
and which app they are to use in the next ten minutes from
the contextual information collected by smartphone sensors.

Compared to these studies, the major differences of
our study include the unique dataset covering millions of
users, some unique information such as app installation,
uninstallation, and diverse network usage. Although Chi-
nese users take up majority of all users in our dataset,
we believe that behavior patterns inferred from millions
of users under study should be more comprehensive than
those from volunteers. With our dataset, we also validate
some results that were reported over a smaller scale of users.
For example, a small set of apps account for substantial
portion of downloads [2] and unique users [28], some apps
are more likely to be installed together [4], [16], [28], and
some functionality-similar apps may vary in terms of per-
formance [33]. However, besides using a different dataset
collected from millions of users, our study explores uniquely
new findings that were unaddressed previously, but useful
for software engineering towards mobility:

e First, we make multi-dimensional measurement
of app popularity from various aspects including
downloads, users, and diverse network activities.
Such a measurement can present a comprehensive
ranking of apps rather than download times only,
and can help improve the quality of app recommen-
dation.

e Second, we explore which apps are likely to be unin-
stalled and the lifecycle of the abandoned apps. In
particular, we report the inconsistency of user ratings
and the management activities of apps. The results
can help improve the quality assurance of apps.

o Third, beyond reporting the co-installation of apps,
we further explore the possible reasons why these
apps are selected together. The results can be help-
ful to improve recommendation quality and explore
new value-added apps.

o Fourth, we make a fine-granularity analysis of net-

work activities to identify the “network-intensive”
apps and “problematic” apps that consume traffic at
background. Such results can be very significant to
identify possible bugs or problems while reducing
the threats to end-users.

o Finally, we study the impact by the price of device
models, and explore how it impacts on user behav-
iors on apps usage. Such results can help address
various requirements of users, and increase the po-
tential revenue of apps.

11 CONCLUSION

We have conducted a systematic descriptive analysis of a
large collection of app-store service profile from millions of
Android users. Diverse usage patterns are with respect to
the aspects such as app popularity, app management, app
selection, app abandonment, network usage, and device-
specific preferences. Our findings provide implications for
various stakeholders in the mobile app ecosystem, and
cover a number of issues for app development, deployment,
delivery, revenue, evolution, etc.

Indeed, this article mainly focuses on the descriptive
analysis of the data. However, we believe that this article
can make the initiative step for the research on data-driven
software engineering of mobile apps. Many findings of
the analysis lead to potential research questions or oppor-
tunities. In fact, some research topics such as optimizing
an app store’s performance, predicting an app’s quality
and popularity [31]], [68], and prioritizing the fragmented
Android devices for specific apps [51], have already been
explored based on our dataset.

Along with opening our dataset in this article, we expect
that we can contribute a valuable resource for the research
community, and promote the development of new research
topics to benefit researchers, practitioners, and users.

ACKNOWLEDGMENT

This work was supported by the National Basic Research Pro-
gram (973) of China under Grant No. 2014CB347701, the Natu-
ral Science Foundation of China (Grant No. 61370020, 61421091,
61572051, 61528201, 61529201). Tao Xie's work was supported
in part by National Science Foundation under grants no. CCF-
1409423, CNS-1434582, CNS-1513939, CNS-1564274. Qiaozhu
Mei’s work was supported in part by the National Science
Foundation under grant no. I1IS-1054199 and an MCubed grant
at the University of Michigan. Xuanzhe Liu is the correspond-
ing author of this work.

REFERENCES

[1] G. P. Picco, C. Julien, A. L. Murphy, M. Musolesi, and G. Roman,
“Software engineering for mobility: reflecting on the past, peering
into the future,” in Proceedings of the on Future of Software Engineer-
ing, FOSE 2014, 2014, pp. 13-28.

[2] T. Petsas, A. Papadogiannakis, M. Polychronakis, E. P. Markatos,
and T. Karagiannis, “Rise of the planet of the apps: a systematic
study of the mobile app ecosystem,” in Proceedings of ACM Internet
Measurement Conference, IMC 2013, 2013, pp. 277-290.

[3] S.L.Lim, P.]. Bentley, N. Kanakam, F. Ishikawa, and S. Honiden,
“Investigating country differences in mobile app user study be-
havior and challenges for software engineering,” IEEE Transactions
on Software Engineering, vol. 40, no. 5, pp. 40-64, 2014.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. X, FEB 2017

(4]

(5]

6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]
[23]

[24]

H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Es-
trin, “A first look at traffic on smartphones,” in Proceedings of
the 10th ACM SIGCOMM Conference on Internet Measurement, IMC
2010, 2010, pp. 281-287.

R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “"WHYPER:
towards automating risk assessment of mobile applications,” in
Proceedings of the 22th USENIX Security Symposium, USENIX Secu-
rity 2013, 2013, pp. 527-542.

J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, “AsDroid:
detecting stealthy behaviors in Android applications by user
interface and program behavior contradiction,” in Proceedings of
the 36th International Conference on Software Engineering, ICSE 2014,
2014, pp. 1036-1046.

A. Gorla, I. Tavecchia, FE. Gross, and A. Zeller, “Checking app
behavior against app descriptions,” in Proceedings of the 36th
International Conference on Software Engineering, ICSE 2014, 2014,
pp. 1025-1035.

K. Thomas, A. K. Bandara, B. A. Price, and B. Nuseibeh, “Distilling
privacy requirements for mobile applications,” in Proceedings of
the 36th International Conference on Software Engineering, ICSE 2014,
2014, pp. 871-882.

J. Gui, S. Mcilroy, M. Nagappan, and W. G. J. Halfond, “Truth in
advertising: the hidden cost of mobile ads for software develop-
ers,” in Proceedings of the 37th IEEE/ACM International Conference
on Software Engineering, ICSE 2015, 2015, pp. 100-110.

G. Hecht, B. Omar, R. Rouvoy, N. Moha, and L. Duchien, “Tracking
the software quality of Android applications along their evolu-
tion,” in Proceedings of the 30th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2015, 2015, pp. 236-247.

X. Chen, A. Jindal, N. Ding, Y. C. Hu, M. Gupta, and R. Van-
nithamby, “Smartphone background activities in the wild: origin,
energy drain, and optimization,” in Proceedings of the 21st Annual
International Conference on Mobile Computing and Networking, Mobi-
Com 2015, 2015, pp. 40-52.

J. Crussell, R. Stevens, and H. Chen, “MAdFraud: investigating ad
fraud in Android applications,” in Proceedings of the 12th Annual
International Conference on Mobile Systems, Applications, and Services,
MobiSys 2014, 2014, pp. 123-134.

B. Fu, J. Lin, L. Li, C. Faloutsos, . I. Hong, and N. M. Sadeh, “Why
people hate your app: making sense of user feedback in a mobile
app store,” in Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 2013,
2013, pp. 1276-1284.

A. Rahmati and L. Zhong, “Studying smartphone usage: lessons
from a four-month field study,” IEEE Transactions on Mobile Com-
puting, vol. 12, no. 7, pp. 1417-1427, 2013.

C. Tossell, P. T. Kortum, A. Rahmati, C. Shepard, and L. Zhong,
“Characterizing web use on smartphones,” in Proceedings of
SIGCHI Conference on Human Factors in Computing Systems, CHI
2012, 2012, pp. 2769-2778.

H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govin-
dan, and D. Estrin, “Diversity in smartphone usage,” in Proceedings
of the 8th International Conference on Mobile Systems, Applications, and
Services, MobiSys 2010, 2010, pp. 179-194.

A. Apaolaza, S. Harper, and C. Jay, “Understanding users in the
wild,” in Proceedings of the International Cross-Disciplinary Confer-
ence on Web Accessibility, W4A 2013, 2013, pp. 1-4.

H. Li, X. Lu, X. Liu, T. Xie, K. Bian, E X. Lin, Q. Mei, and
F. Feng, “Characterizing smartphone usage patterns from millions
of Android users,” in Proceedings of the 2015 Internet Measurement
Conference, IMC 2015, 2015, pp. 459-472.

Wandoujia, “Wandoujia In-App Search,” http:/ /techcrunch.com/
2014/01/12/wandoujia-120m/.

M. Nayebi, B. Adams, and G. Ruhe, “Release practices for mobile
apps — what do users and developers think?” in Proceedings of
22nd IEEE International Conference on Software Analysis, Evolution,
and Reengineering, SANER 2016, 2016, pp. 552-562.

M. E.]J. Newman, “Power Laws, Pareto Distributions and Zipf’s
Law,” Contemporary Physics, vol. 46, p. 323, 2005.

L. A. Adamic and B. A. Huberman, “Power-law distribution of the
world wide web,” Science, vol. 287, no. 5461, pp. 2115-2115, 2000.

A.-L. Barabasi and R. Albert, “Emergence of scaling in random
networks,” science, vol. 286, no. 5439, pp. 509-512, 1999.

M. Cha, H. Kwak, P. Rodriguez, Y. Ahn, and S. B. Moon, “I tube,
you tube, everybody tubes: analyzing the world’s largest user
generated content video system,” in Proceedings of the 7th ACM

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

(34]

[35]

[36]

[37]

[38]
[39]

(40]

[41]

[42]

[43]

(44]

[45]

28

SIGCOMM Internet Measurement Conference, IMC 2007, 2007, pp.
1-14.

A. Clauset, C. R. Shalizi, and M. E. Newman, “Power-law distribu-
tions in empirical data,” SIAM review, vol. 51, no. 4, pp. 661-703,
2009.

F. Figueiredo,]. M. Almeida, M. A. Gongalves, and F. Benevenuto,
“On the dynamics of social media popularity: a YouTube case
study,” ACM Transactions on Internet Technology, vol. 14, no. 4, pp.
24:1-24:23, 2014.

W. Martin, M. Harman, Y. Jia, F. Sarro, and Y. Zhang, “The app
sampling problem for app store mining,” in Proceedings of 12th
IEEE/ACM Working Conference on Mining Software Repositories, MSR
2015, 2015, pp. 123-133.

Q. Xu, J. Erman, A. Gerber, Z. M. Mao, J. Pang, and S. Venkatara-
man, “Identifying diverse usage behaviors of smartphone apps,”
in Proceedings of the 11th ACM SIGCOMM Conference on Internet
Measurement, IMC 2011, 2011, pp. 329-344.

Z. Liao, Y. Pan, W. Peng, and P. Lei, “On mining mobile apps
usage behavior for predicting apps usage in smartphones,” in
Proceedings of the 22nd ACM International Conference on Information
and Knowledge Management, CIKM 2013, 2013, pp. 609-618.

M. Jacomy, T. Venturini, S. Heymann, and M. Bastian, “ForceAt-
las2, a continuous graph layout algorithm for handy network
visualization designed for the Gephi software,” PloS One, vol. 9,
no. 6, p. 98679, 2014.

H. Li, W. Ai, X. Liu, J. Tang, F. Feng, G. Huang, and Q. Mei, “Voting
with their feet: inferring user preferences from app management
activities,” in Proceedings of 25th International World Wide Web
Conference, WWW 2016, 2016, pp. 1351-1361.

M. Harman, Y. Jia, and Y. Zhang, “App store mining and analysis:
MSR for app stores,” in Proceedings of IEEE Working Conference on
Mining Software Repositories, MSR 2012, 2012, pp. 108-111.

A. A. Sani, Z. Tan, P. Washington, M. Chen, S. Agarwal, L. Zhong,
and M. Zhang, “The wireless data drain of users, apps, & plat-
forms,” Mobile Computing and Communications Review, vol. 17,
no. 4, pp. 15-28, 2013.

W. Li, H. Li, H. Chen, and Y. Xia, “AdAttester: secure online
mobile advertisement attestation using TrustZone,” in Proceedings
of the 13th Annual International Conference on Mobile Systems, Appli-
cations, and Services, MobiSys 2015, 2015, pp. 75-88.

M. C. Calzarossa, L. Massari, and D. Tessera, “Workload charac-
terization: a survey revisited,” ACM Computing Surveys, vol. 48,
no. 3, pp. 143, 2016.

H. Wang, B. Ding, D. Shi, J. Cao, and A. T. S. Chan, “Auxo:
an architecture-centric framework supporting the online tuning
of software adaptivity,” SCIENCE CHINA Information Sciences,
vol. 58, no. 9, pp. 1-15, 2015.

R. Tibshirani, “Regression shrinkage and selection via the lasso:
a retrospective,” Journal of the Royal Statistical Society. Series B
(Methodological), vol. 58, no. 1, pp. 267-288, Jan. 1996.

L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5-32, 2001.

J. H. Friedman, “Stochastic gradient boosting,” Computational
Statistics & Data Analysis, vol. 38, pp. 367-378, 2002.

X. Chen, A. Jindal, N. Ding, Y. C. Hu, M. Gupta, and R. Van-
nithamby, “Smartphone background activities in the wild: origin,
energy drain, and optimization,” in Proceedings of the 21st Annual
International Conference on Mobile Computing and Networking, Mobi-
Com 2015, 2015, pp. 40-52.

M. Xu, Y. Ma, X. Liu, F. X. Lin, and Y. Liu, “AppHolmes: detect-
ing and characterizing app collusion among third-party Android
markets,” in Proceedings of the 26th International World Wide Web
Conference, WWW 2017, 2017, p. accepted to appear.

Z.Fang, Q. Liu, Y. Zhang, K. Wang, Z. Wang, and Q. Wu, “A static
technique for detecting input validation vulnerabilities in Android
apps,” SCIENCE CHINA Information Sciences, vol. 60, no. 5, pp.
052111:1-052111:16, 2017.

StackOverflow, “Android camera fails.” http://stackoverflow.
com/search?q=android+camera+samsung-+fail, 2014.

L. Villarroel, G. Bavota, B. Russo, R. Oliveto, and M. D. Penta,
“Release planning of mobile apps based on user reviews,” in Pro-
ceedings of the 38th International Conference on Software Engineering,
ICSE 2016, 2016, pp. 14-24.

D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and E. Stroulia,
“Understanding Android fragmentation with topic analysis of
vendor-specific bugs,” in Proceedings of the 19th Working Conference
on Reverse Engineering, WCRE 2012, 2012, pp. 83-92.

http://techcrunch.com/2014/01/12/wandoujia-120m/
http://techcrunch.com/2014/01/12/wandoujia-120m/
http://stackoverflow.com/search?q=android+camera+samsung+fail
http://stackoverflow.com/search?q=android+camera+samsung+fail

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. X, FEB 2017

[46]

[47]

[48]

[49]

(50]
[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang, “The
peril of fragmentation: security hazards in Android device driver
customizations,” in Proceedings of 2014 IEEE Symposium on Security
and Privacy, S&P 2014, 2014, pp. 409-423.

H. Khalid, M. Nagappan, E. Shihab, and A. E. Hassan, “Priori-
tizing the devices to test your app on: a case study of Android
game apps,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on the Foundations of Software Engineering, FSE 2014,
2014, pp. 610-620.

J. H. Park, Y. B. Park, and H. K. Ham, “Fragmentation problem
in Android,” in Proccedings of 2013 International Conference on
Information Science and Applications, 2013, pp. 1-2.

“Android fragementation problem,” |http://www.greyheller.
com/Blog/androids-fragmentation-problem.

“Appbrain,” http:/ /www.appbrain.com/, 2015.

X. Lu, X. Liu, H. Li, T. Xie, Q. Mei, G. Huang, and F. Feng,
“PRADA: prioritizing Android devices for apps by mining large-
scale usage data,” in Proceedings of 38th International Conference on
Software Engineering, ICSE 2016, 2016, pp. 3-13.

J. D. Musa, “Operational profiles in software-reliability engineer-
ing,” IEEE Software, vol. 10, no. 2, pp. 14-32, 1993.

R. H. Ducoffe, “Advertising value and advertising on the web,”
Journal of advertising research, vol. 36, no. 5, pp. 21-21, 1996.

N. Viennot, E. Garcia, and J. Nieh, “A measurement study of
Google Play,” in Proceedings of ACM SIGMETRICS / International
Conference on Measurement and Modeling of Computer Systems, SIG-
METRICS 2014, 2014, pp. 221-233.

K. Fukuda, H. Asai, and K. Nagami, “Tracking the evolution and
diversity in network usage of smartphones,” in Proceedings of the
2015 ACM Internet Measurement Conference, IMC 2015, 2015, pp.
253-266.

A. Rahmati, C. Tossell, C. Shepard, P. T. Kortum, and L. Zhong,
“Exploring iPhone usage: the influence of socioeconomic differ-
ences on smartphone adoption, usage and usability,” in Proceedings
of the 14th International Conference on Human-Computer Interaction
with Mobile Devices and Services, Mobile HCI 2012, 2012, pp. 11-20.
B. Yan and G. Chen, “AppJoy: personalized mobile application
discovery,” in Proceedings of the 9th International Conference on
Mobile Systems, Applications, and Services, MobiSys 2011, 2011, pp.
113-126.

M. Bohmer, B. Hecht, J. Schoning, A. Kriiger, and G. Bauer,
“Falling asleep with Angry Birds, Facebook and Kindle: a large
scale study on mobile application usage,” in Proceedings of the 13th
Conference on Human-Computer Interaction with Mobile Devices and
Services, Mobile HCI 2011, 2011, pp. 47-56.

M. Bohmer and A. Kriiger, “A study on icon arrangement by
smartphone users,” in 2013 ACM SIGCHI Conference on Human
Factors in Computing Systems, CHI 2013, 2013, pp. 2137-2146.

A. Patro, S. K. Rayanchu, M. Griepentrog, Y. Ma, and S. Banerjee,
“Capturing mobile experience in the wild: a tale of two apps,”
in Proceedings of Conference on emerging Networking Experiments and
Technologies, CONEXT 2013, 2013, pp. 199-210.

N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang, “AR-
Miner: mining informative reviews for developers from mobile
app marketplace,” in Proceedings of the 36th International Conference
on Software Engineering, ICSE 2014, 2014, pp. 767-778.

R. A. Baeza-Yates, D. Jiang, F. Silvestri, and B. Harrison, “Predict-
ing the next app that you are going to use,” in Proceedings of the
Eighth ACM International Conference on Web Search and Data Mining,
WSDM 2015, 2015, pp. 285-294.

C. Shin, J. Hong, and A. K. Dey, “Understanding and prediction
of mobile application usage for smart phones,” in Proceedings of
the 2012 ACM Conference on Ubiquitous Computing, UbiComp 2012,
2012, pp. 173-182.

C. Shin and A. K. Dey, “Automatically detecting problematic use
of smartphones,” in Proceedings of the 2013 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, UbiComp 2013,
2013, pp. 335-344.

Z. Liao, S. Li, W. Peng, P. S. Yu, and T. Liu, “On the feature
discovery for app usage prediction in smartphones,” in Proceedings
of the 2013 IEEE 13th International Conference on Data Mining, ICDM
2013, 2013, pp. 1127-1132.

R. Montoliu, J. Blom, and D. Gatica-Perez, “Discovering places of
interest in everyday life from smartphone data,” Multimedia Tools
and Applications, vol. 62, no. 1, pp. 179-207, 2013.

[67]

[68]

29

T. M. T. Do and D. Gatica-Perez, “Where and what: using smart-
phones to predict next locations and applications in daily life,”
Pervasive and Mobile Computing, vol. 12, pp. 79-91, 2014.

X. Liu, W. Ai, H. Li, J. Tang, G. Huang, E. Feng, and Q. Mei,
“Derive user preferences of mobile apps from their management
activities,” ACM Transactions on Information Systems, vol. XX, no. X,
pp- XX=-XX, Accepted to appear.

Xuanzhe Liu is an associate professor in the
School of Electronics Engineering and Com-
puter Science, Peking University, Beijing, China.
His research interests are in the area of services
computing, mobile computing, web-based sys-
tems, and big data analytics.

Huoran Li is now a Ph.D. student in the School
of Electronics Engineering and Computer Sci-
ence of Peking University, Beijing, China. His re-
search interests include mobile computing, soft-
ware engineering, and human computer interac-
tion.

Xuan Lu is now a Ph.D. student in the School
of Electronics Engineering and Computer Sci-
ence of Peking University, Beijing, China. Her
research interests include mobile computing and
software analytics.

Tao Xie is an associate professor and Willett
Faculty Scholar in the Department of Computer
Science at the University of lllinois at Urbana-
Champaign, USA. His research interests are
software testing, program analysis, software an-
alytics, software security, and educational soft-
ware engineering. He is a senior member of the
IEEE.

http://www.greyheller.com/Blog/androids-fragmentation-problem
http://www.greyheller.com/Blog/androids-fragmentation-problem
http://www.appbrain.com/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING , VOL. XX, NO. X, FEB 2017

Qiaozhu Mei is an associate professor at the
University of Michigan School of Information. His
major research interests include data mining and
information retrieval.

Feng Feng is a co-founder of Wandoujia. He is
the head architect of the Wandoujia marketplace
and management app. He leads the engineering
department and has developed dozens of prod-
ucts around Wandouijia.

30

Hong Mei is a full professor of Beijing Institute of
Technology and an adjunct professor of Peking
University, Beijing, China. His current research
interests are in the area of software engineer-
ing and operating systems. He is a Member of
Chinese Academy of Sciences, and a Fellow
of China Computer Federation (CCF). He is a
Fellow of the IEEE.

	Introduction
	Dataset
	Wandoujia
	Data Collection
	App-Management Activities
	App-Network Usage Activities
	User Ratings
	Device-Model Information and Price

	Ethical Considerations
	Limitations

	Research Questions
	RQ1: How can we identify the multi-dimensional popularity distribution of apps?
	RQ2: How do the users manage their apps?
	RQ3: How do apps perform in terms of access time and traffic drain over network?
	RQ4: How does the choice of device models affect the app usage?

	App Popularity Patterns with Different Metrics
	Popular Apps by Downloads
	Popular Apps by Unique Users
	Popular Apps by Network Usage
	Released Popular Apps

	App Management Patterns
	Diurnal Patterns of App Management
	App Selection Patterns
	Clustering Co-Installed Apps
	Correlation of App Categories

	Uninstallation Patterns
	User Rating Patterns
	Correlation between Rating and Selection
	Correlation between Rating and Abandonment

	Network Activity Patterns
	Access Time Patterns
	Data Traffic Patterns
	Traffic from Wi-Fi and Cellular
	Traffic from Foreground and Background

	Device-Specific Patterns
	Device Model Fragmentation
	Device Model Clustering
	Apps Selection against Device Models
	App Abandonment against Device Models
	Access Time against Device Models
	Traffic Volume against Device Models
	Competing Apps against Device Models

	Implications and Suggestions
	Efficient App-Store Management
	Improving Workloads of App Stores
	Improving App Recommendation
	Predicting the App Ranking

	Avoiding Unexpected Cost
	Addressing Device-Specific Features
	Addressing Various Requirements
	Exploring Potential Revenues from App

	Limitations and Discussions
	Related Work
	Conclusion
	References
	Biographies
	Xuanzhe Liu
	Huoran Li
	Xuan Lu
	Tao Xie
	Qiaozhu Mei
	Feng Feng
	Hong Mei

