
Locating Need-to-Externalize Constant Strings
for Software Internationalization with

Generalized String-Taint Analysis
Xiaoyin Wang, Lu Zhang, Tao Xie, Senior Member, IEEE,

Hong Mei, Senior Member, IEEE, and Jiasu Sun

Abstract—Nowadays, a software product usually faces a global market. To meet the requirements of different local users, the

software product must be internationalized. In an internationalized software product, user-visible hard-coded constant strings are

externalized to resource files so that local versions can be generated by translating the resource files. In many cases, a software

product is not internationalized at the beginning of the software development process. To internationalize an existing product, the

developers must locate the user-visible constant strings that should be externalized. This locating process is tedious and error-prone

due to 1) the large number of both user-visible and non-user-visible constant strings and 2) the complex data flows from constant

strings to the Graphical User Interface (GUI). In this paper, we propose an automatic approach to locating need-to-externalize constant

strings in the source code of a software product. Given a list of precollected API methods that output values of their string argument

variables to the GUI and the source code of the software product under analysis, our approach traces from the invocation sites (within

the source code) of these methods back to the need-to-externalize constant strings using generalized string-taint analysis. In our

empirical evaluation, we used our approach to locate need-to-externalize constant strings in the uninternationalized versions of seven

real-world open source software products. The results of our evaluation demonstrate that our approach is able to effectively locate

need-to-externalize constant strings in uninternationalized software products. Furthermore, to help developers understand why a

constant string requires translation and properly translate the need-to-externalize strings, we provide visual representation of the string

dependencies related to the need-to-externalize strings.

Index Terms—Software internationalization, need-to-externalize constant strings, string-taint analysis

Ç

1 INTRODUCTION

IN this era of globalization, a software product is often
distributed to different regions of the world. To be better

used by users in a certain region, the software product
should have a corresponding local version for local users in
the region. Typically, in a local version of a software product,
user-visible texts should be in the local language, and other
locale-related elements such as measures and dates should
also be in the local formats. For example, for the English
version, all user-visible texts should be in English, the length
measure should be in miles, feet, inches, etc., and the dates
should be in the format of MM/DD/YYYY or DD/MM/
YYYY. To generate and manage all the local versions, a
typical process is to internationalize the software product.
During software internationalization, all the locale-related
elements in the source code are externalized to resource files.
After a software product is internationalized, developers can

generate a different local version via automatically synthe-
sizing the corresponding set of local resource files together
with the internationalized version.

In some software products, developers consider inter-
nationalization in the beginning of the development
process. That is to say, developers need to avoid hard-
coding locale-related elements (e.g., constant strings) from
the beginning of the development process. However,
developers sometimes need to apply internationalization
on existing code in two major situations. First, many
popular software products originate from open source
prototypes or research prototypes. When these prototypes
were developed, developers usually did not expect the
improved versions of their prototypes to be distributed to
the global market so that they might write hard-coded
constant strings in the code for coding efficiency. When
developers improved these prototypes and planned to
distribute improved versions to the global market, they then
needed to perform internationalization on the existing code.
Second, due to the adoption of software reuse, developers
of an internationalized software product may reuse some
uninternationalized software components. In such a situa-
tion, they may have to internationalize the existing code of
these reused components. Furthermore, in an internationa-
lized software product, there may also exist some mis-
externalized locale-related elements for the following two
reasons. First, since the GUI and the program structure can
be very complex, the developers may forget to externalize

516 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 4, APRIL 2013

. X. Wang, L. Zhang, H. Mei, and J. Sun are with the Key Laboratory of
High Confidence Software Technologies (Peking University), Ministry of
Education, and the Institute of Software, School of Electronics Engineering
and Computer Science, Peking University, Beijing 100871, P.R. China.
E-mail: {wangxy06, zhanglu, meih, sjs}@sei.pku.edu.cn.

. T. Xie is with the Department of Computer Science, North Carolina State
University, Raleigh, NC 27695. E-mail: xie@csc.ncsu.edu.

Manuscript received 17 Aug. 2011; revised 26 Apr. 2012; accepted 18 May
2012; published online 5 June 2012.
Recommended for acceptance by F. Tip.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2011-08-0243.
Digital Object Identifier no. 10.1109/TSE.2012.40.

0098-5589/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

some need-to-externalize elements or make wrong deci-
sions on whether an element needs to be externalized.
Second, for relatively large software products, developers
writing the code of the GUI and developers writing the code
of the back-end logic may be different. In such a case,
imperfect interaction between developers may also result in
misexternalized elements. For example, the back-end
developers believe that a certain field of a certain Java class
will not be output to the GUI, so they do not externalize all
the constant strings that flow to the field. However, the GUI
developers may output this field later for some reasons and
forget to inform the back-end developers.

Therefore, developers need to locate those need-to-
externalize elements when they want to internationalize
an existing software product or to check for the misexter-
nalized elements in an internationalized software product.
The need-to-externalize elements typically include constant
strings, time/data objects, number objects, measures, and
culture-related objects (e.g., color), etc. [5], [19]. Among all
these need-to-externalize elements, need-to-externalize con-
stant strings are the most tedious and error-prone to locate.
This is because both the number of constant strings and the
number of need-to-externalize constant strings are often
very large, but not all constant strings need to be
externalized.

To help developers locate need-to-externalize constant
strings, many Integrated Development Environments
(IDEs) (e.g., Eclipse) provide support to locate all the
constant strings in source code. However, according to the
results of our empirical study (see Table 2 in Section 4), only
11-42 percent of the constant strings actually need to be
externalized. Therefore, if all the constant strings are
externalized, translators would put much more efforts into
the localization process for each new region. Furthermore,
some constant strings must not be externalized and
translated. For example, the constant strings that are used
as keys for a database must not be externalized and
translated; otherwise, an internal error will occur. There-
fore, existing support to locating need-to-externalize con-
stant strings is insufficient and there is a strong need for
more tool support that can differentiate need-to-externalize
constant strings from other constant strings.

In this paper, we propose an automatic approach to
locating need-to-externalize constant strings. Our approach
is mainly based on generalized string-taint analysis and the
basic idea is as below. Before we process any software
product, we collect a list of GUI-related API methods that
output values of their string argument variables to the GUI.
With the list of collected API methods, for a given software
product, we identify all the invocation sites of these API
methods, and trace back from the output string variables
related to these method invocations to find constant strings
that flow to the GUI-related API methods in the source code
based on four techniques. We deem the found constant
strings as need-to-externalize constant strings and report
them to the developers.

The four techniques in our tracing approach are as
below.

. The first technique generalizes string-taint analysis
[25] to trace from the output string variables to their

data sources. We report the data sources that are
constant strings as need-to-externalize constant
strings. We choose to base our approach on string-
taint analysis instead of basic data-flow analysis
because string-taint analysis can further analyze
contents of strings through formulating string assign-
ments and concatenations. Actually, due to the variety
and complexity of string operations, it is likely that
constant strings participating in some string opera-
tions may not have their values flow to the final result
of the string operations. If the final result of the string
operations further flows to the GUI, without string-
taint analysis, such constant strings will be mistakenly
determined as need-to-externalize constant strings
(see the example in Section 2).

. The second technique handles those software pro-
ducts that include network communication features.
In such software products, constant strings may be
transmitted from one side of the network to the other
side. So we further develop string-transmission
analysis to analyze the transmission of values of
string variables across the network to locate those
hard-coded constant strings that are in the source
code of one side of the network but may appear on
the GUI of the other side of the network.

. The third technique handles the comparisons be-
tween string variables. Some need-to-externalize
constant strings located via the preceding two
techniques are compared with other string constants
or variables. If these compared string constants or
variables are not externalized in the internationa-
lized software product, the result of the comparison
may be wrong and some internal errors may occur.
So we further develop string-comparison analysis to
locate the data source of the string variables that are
compared with need-to-externalize constant strings.

. The fourth technique handles trivial constant strings
that do not require translation. Some constant strings
(e.g., strings that contain only arabic numbers) do
not require translation even if they may appear on
the GUI and visible to the users. So we further
develop a filter to remove trivial constant strings.

In summary, this paper makes the following main

contributions:

. We propose an automatic approach to locating need-
to-externalize constant strings in source code based
on collecting GUI related API methods and tracing
from their output string variables. Specifically, our
approach is based on generalized string-taint analy-
sis, and involves three practical techniques that
handle string transmission, string comparison, and
trivial constant strings.

. We conducted an empirical evaluation on seven real-
world open source software products that demon-
strates the effectiveness of our approach on locating
need-to-externalize constant strings in uninternatio-
nalized software products. The empirical results
show that our approach not only locates most of the
strings that the developers externalized, but also
finds some strings that the developers missed. We

WANG ET AL.: LOCATING NEED-TO-EXTERNALIZE CONSTANT STRINGS FOR SOFTWARE INTERNATIONALIZATION WITH GENERALIZED... 517

reported in a bug report 17 missed strings that are
still missing in the latest version of the Megamek
application.1 All 17 strings were confirmed and later
translated by Megamek developers.

. We designed and implemented visualization of the
string dependencies related to the need-to-externa-
lize constant strings so that the developers can better
understand how these constant strings go to the GUI
and how to externalize and translate them.

This paper is an extended and revised version of our
previous conference paper [22]. The main differences
between this paper and our previous conference paper are
as follows: First, we generalize string-taint analysis to
formulate generalized string-taint analysis. Although gen-
eralized string-taint analysis is technically similar to string-
taint analysis, it extends string-taint analysis by allowing
various types of taints. Thus, the generalized string-taint
analysis provides a more general application scenario of
string-taint analysis, and enables us to present our approach
in a more clear and precise way. Second, on top of the
empirical study on software products of editors and games
that we reported in our previous paper, we further applied
our approach on two other categories of software products:
content-presentation applications and GUI-related libraries.
Specifically, we applied our approach on two content-
presentation applications (i.e., TV-Browser and StoryBook)
and one GUI-related library (i.e., JFreeChart). Our new
empirical evidence confirms most conclusions in our pre-
vious paper and reveals some new categories of false
negatives. Third, we designed and implemented GUI tool
support to visualize the string dependencies related to a
need-to-externalize constant string to further help devel-
opers to externalize and translate these strings. Furthermore,
we use a string example graph to simplify the string
dependencies to help developers explore them. Fourth, we
present the time and memory usage of applying our
approach on the studied subjects to evaluate the perfor-
mance of our approach.

The rest of this paper is organized as follows: We present
an example of locating need-to-externalize constant strings in
Section 2. We present our approach in detail in Section 3. We
report the empirical evaluation of our approach on locating
need-to-externalize constant strings in Section 4. We describe
our visualization support in Section 5. In Section 6, we further
discuss related issues. In Section 7, we discuss related work,
and in Section 8, we conclude with future work.

2 EXAMPLE

We next present an example to illustrate the situation that a
developer may face when manually locating need-to-
externalize constant strings in source code. The example
comes from Risk (Version 1.0.7.5), a real-world open source
project used in our empirical evaluation. Consider the
following code portion in Risk:

1 public class Risk{

2 private RiskController gui;

3 private String message;

4 private RiskGame game;

5 public void GameParser(String mem){

6 message=mem;

7 StringTokenizer StringT=new

StringTokenizer(message,“ ”);

8 String addr = StringT.nextToken();

...

9 if(addr.equals(“CARD”)){

10 if(StringT.hasMoreTokens()){

11 String name = StringT.nextToken();

12 String cardName;

...

13 if(name.equals(“wildcard”))

14 cardName = name;

15 else cardName = card.getName() +

“ ” + name;

16 gui.sendMessage(“You got a new

card:n””
17 + cardName + “n””, false , false);

}

...

}

}

18 public void DoEndGo(String mem){

...

19 GameParser(“CARD ”+game.getDeserved

Card());

...

}

}

20 public class RiskGame{

21 public String getDesrvedCard(){

22 Card c = cards.elementAt(r.nextInt(

cards.size()));

23 if(c.getCountry() == null)

24 return “wildcard”;

25 else

26 return c.getCountry().getName();

...

}

}

In the preceding code portion, lines 16-17 include an

invocation of RiskController.sendMessage(...),

and the expression “You got a new card:\”“ +

cardName +”\“” corresponds to parameter output in

RiskController.sendMessage(...), which sends the

value of output to the GUI. Now the developer knows that

“You got a new card:” needs externalization. In addition,

the value of variable cardName also appears on the GUI. So

the developer needs to further trace to the sources of

cardName. Line 14 indicates that name is a source of the

value of cardName. Furthermore, the value of name comes

from a token of StringTokenizerStringT as shown in

line 11. In lines 6-7, the value of StringT comes from

parameter mem of Risk.GameParser(String), and the

tokenizer splits mem into two parts. The first part is used for

the branch condition in line 9, while the second part is

518 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 4, APRIL 2013

1. http://sourceforge.net/projects/megamek/.

passed to variable name and output to the GUI. Only the
second part needs externalization.

Then the developer finds an invocation of Risk.Game-
Parser(String) in line 19, which passes the actual
argument “CARD ”+game.getDeservedCard() to the
method. Furthermore, the developer needs to look into the
implementation of RiskGame.getDeservedCard() and
finds that it returns two possible values: “wildcard” and
c.getCountry.getName(). A possible value of the latter
is actually a country name from a data file, and the related
code is not shown here for simplicity. Thus, two possible
values of the actual argument in line 19 and the parameter
in line 5 can be “CARD wildcard” and “CARD XXXX”,
where “XXXX” is a country name from the data file.

From the preceding analysis, the developer can know that
the first part of StringTokenizer StringT is “CARD” and the
second part is either “wildcard” or “XXXX”. Therefore, the
constant string “CARD” in line 19 is used for only the branch
condition and does not need externalization, while the
constant string “wildcard” in line 24 is passed to the GUI
and needs externalization. Furthermore, the developer can
know that “CARD” in line 9 does not need externalization,
because “CARD” in line 9 is compared to only the first part of
StringT. However, “wildcard” in line 13 needs externa-
lization because “wildcard” in line 13 is compared to the
second part of StringT and the second part needs
externalization because it is passed to the GUI.

From this example, we can see that a developer needs to
perform a tedious and error-prone analysis to determine
which string needs externalization and which string does
not, and the developer needs to be experienced enough to
do so. It should be noted that analyzing contents of string
variables and comparisons of strings may also be
necessary. Such analysis helps determine that constant
strings “wildcard” in lines 13 and 24 need externaliza-
tion while constant strings “CARD” in lines 9 and 19 do
not. In contrast, basic data-flow analysis cannot detect the
value change of StringT at line 8, so it cannot decide that
StringT at line 11 does not contain “CARD” as a part of
its value. Therefore, basic data-flow analysis would
erroneously determine all the four constant strings as
need-to-externalize. To avoid such imprecision, we choose
to base our approach on string-taint analysis, which is able
to analyze the contents of string variables. Furthermore,
we need some new techniques to handle various complica-
tions such as string comparisons.

3 APPROACH

There are three main steps in our approach. The first step of
our approach is to collect a list of API methods that output
strings to the GUI. This step is a preparation step before we
begin to locate need-to-externalize strings in source code.
These API methods are referred to as output API methods in
the rest of this paper. The second step of our approach is to
search in the source code for invocations of the output API
methods and identify the actual arguments that are output to
the GUI. These actual arguments are referred to as initial
output strings in the rest of the paper. The third step of our
approach is to trace from each initial output string to places
that may contain need-to-externalize constant strings.

In particular, the third step includes four techniques:
generalized string-taint analysis (which is adapted from
string-taint analysis [25]), string-transmission analysis,
string-comparison analysis, and filtering of trivial constant
strings.

3.1 Collecting Output API Methods

We observe that, in the API libraries of most programming
languages, there are typically only a small number of GUI-
related packages and modules containing output API
methods. For example, in the standard API libraries for the
Java language, packages java.awt.* and javax.

swing.* are the main sources of output API methods for
general Java programs, and package org.eclipse.swt.*
is the main source of output API methods for Java programs
running on Eclipse. Therefore, when manually collecting
the output API methods, we need to consider only a small
number of packages/modules. That is to say, the collecting
effort should be limited.

In our collected list of output API methods, we use the
signature of the method with its class name and full
package path to represent an API method. The reason is
that method names may be overloaded and classes in
different packages may have the same name. Furthermore,
for each output API method, we also specify the method
parameters that are output to the GUI and these parameters
are referred to as visible parameters in the rest of the paper.

3.2 Locating Initial Output Strings

To locate initial output strings, we search for all possible
invocations of each output API method in the source code
and record locations of the invocations. Due to polymorph-
ism, such an invocation may not appear as an invocation of
an output API method syntactically. We consider all the
invocations that may be bound to an output API method.
Note that searching for possible invocations of a given
method under polymorphism is a mature technique and
has been implemented in IDEs such as Eclipse. Therefore,
we can directly use a method-invocation search engine in
IDEs in our approach.

After we locate the invocations of output API methods, we
trace to the actual arguments corresponding to the visible
parameters of the output API methods. These actual arguments
are the initial output strings.

3.3 Generalized String-Taint Analysis

To locate the possible data sources of each initial output
string, we generalize string-taint analysis and apply the
generalized string-taint analysis for data-source tracing.

3.3.1 Generalizing String-Taint Analysis

String-taint analysis [25], proposed by Wassermann and Su,
is a recent improvement of string analysis [1], [15] whose
purpose is to predict the possible values of a certain string
variable in the code. Wassermann and Su adapted string
analysis to further analyze whether some substrings in the
string variable might come from insecure data sources (e.g.,
user inputs). With source code, a string variable, and
insecure locations as input, string-taint analysis predicts the
given string variable’s possible values and determines
whether the possible values might contain insecure sub-
strings (i.e., those substrings from insecure data sources).

WANG ET AL.: LOCATING NEED-TO-EXTERNALIZE CONSTANT STRINGS FOR SOFTWARE INTERNATIONALIZATION WITH GENERALIZED... 519

String analysis contains the following three main steps:
First, the program is changed to the Static Single Assignment
(SSA) [3] form. Second, string assignments and concatena-
tions that the string variable under analysis depends on are
abstracted as an extended Context Free Grammar (CFG) with
string operations (i.e., library methods managing strings
such as String.subString(int,int) in Java) on the
right-hand side. The arguments of the string operations are
nonterminals of the extended CFG. Third, these string
operations are simulated with Finite-State Transducers
(FSTs) [15], and the extended CFG is converted to a normal
CFG through FST-CFG intersection. The language of the
normal CFG generated in the third step includes all the
possible values of the string variable under analysis.

String-taint analysis adapts string analysis by adding a
Boolean annotation (i.e., the taint) to each string data source
(corresponding to each terminal in the extended CFG) that
is involved in string analysis. If the string data source is
secure (e.g., supporting files, constant strings), the value of
the annotation is false (denoting security). Otherwise, the
value of the annotation is true (denoting insecurity). For a
string variable whose value is the operation/concatenation
result of some string data sources, the value of the
annotation is temporarily false to represent not found to
be insecure. Then these annotations are propagated through
the extended CFG along with the string analysis process.
Specifically, when performing FST-CFG intersection, the
annotation values of the data sources in the extended CFG
are assigned to the corresponding data sources in the
generated normal CFG. Then, in the normal CFG, annota-
tion values are propagated from the right-hand side to the
left-hand side for each production. The propagation is
iteratively executed until the annotation values of all
nonterminals become stable. Thus, we can determine
whether a string variable contains insecure substrings by
examining whether its corresponding nonterminal in the
CFG is annotated with true.

For the ease of applying string-taint analysis to our
problem, we generalize string-taint analysis to allow
propagations of more complex annotations. Compared to
string-taint analysis, our generalized string-taint analysis
allows user-defined annotations and user-defined propaga-
tion operations on the annotations from the right-hand-side
to the left-hand-side of a production in the CFG. Besides the
Boolean type, user-defined annotations in our generalized
string-taint analysis can also be of the integer type, the string
type, the set of a basic type, or even user-defined complex
structural types. Furthermore, we explicitly define a propa-
gation operation, which is a function specifying how the
annotation of the left-hand-side nonterminal of a production
can be derived from the annotations of all the nonterminals/
terminals in the production. Note that such a propagation
operation may take the current annotation of the left-hand-
side nonterminal as one of its inputs. Specifically, during the
FST-CFG intersection phase, our approach leverages exactly
the same technique as string-taint analysis to assign the
annotation values of the data sources in the extended CFG to
the corresponding data sources in the generated normal
CFG, except that the assigned annotation values can be of
user-defined annotation type. Then, in the normal CFG (with

no string operations), we calculate the annotations of the left-
hand-side nonterminal in each production according to the
user-defined propagation operations. Similarly, this calcula-
tion process is iteratively performed until the annotation
values on all the nonterminals become stable. It should be
noted that, like many other iterative processes in program
analysis, to ensure the termination of this iteration, all the
possible values of the user-defined annotation should form a
lattice with finite height, and the result of a user-defined
propagation operation should be larger than or equal to its
inputs in the lattice (see lattice-based program analysis [16]).

Existing string-taint analysis is actually a special case of
our generalized string-taint analysis using the following
definition of annotations and propagation operations: First,
the annotation of any terminal or nonterminal in the CFG is
of the Boolean type. Second, the propagation operation is as
follows: If any terminal or nonterminal at the right-hand
side of a production is annotated as true, the nonterminal at
the left-hand side should also be annotated as true.

3.3.2 Applying Generalized String-Taint Analysis

As we are interested in locating hard-coded constant strings,
we apply our generalized string-taint analysis using the
following definition of annotations and propagation opera-
tions. First, each terminal or nonterminal is annotated with a
set of locations, and each location specifies a unique location
in the source code, including the enclosing file path, the
offset, the string length, and a flag to mark the category of the
data source (i.e., “constant” for constant strings, “transmit”
for function invocations reading from the network, “fileIn-
put” for function invocations reading from a file, and
“databaseInput” for function invocations reading from the
database). Second, we use the following propagation opera-
tion: The resulting annotation of the left-hand side non-
terminal is the union of the existing annotation of the left-
hand side and the existing annotation of each right-hand side
terminal or nonterminal. Note that the main difference
between the generalized string-taint analysis used in our
approach and the original string-taint analysis lies in that the
propagation of annotations in our approach is able to
distinguish all possible data sources of each terminal.

To illustrate the process of applying our generalized
string-taint analysis, we next describe how our technique
analyzes the code in Section 2. First, we transform the code
to the SSA form as below. In the SSA form presented below,
for simplicity we use “&FileInput” to represent the method
call c.getCountry().getName(), whose return value
comes from an input from supporting files through several
assignments.

if(c.getCountry==null){

return1 = “wildcard”;

}else{

return2 = &FileInput;

}

return3 = �(return1, return2);

parseCard = “CARD”+return3;

message = �(parseCard,{other actual

arguments});

StringT = new StringTokenizer(message, “ ”);

addr = StringT.nextToken();

520 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 4, APRIL 2013

if(addr.equals(“CARD”)){

name = StringT.nextToken();

output = You got a new card: +name;

}

Then, we transform the SSA form to the extended CFG as
below. In the transformation, we add the exact location of
each constant string to the annotation of the terminal
corresponding to the constant string. For example, for string
wildcard, we add “RiskGame.java:6767” (“wildcard”
starts from the 6767th character in RiskGame.java) as its
annotation. For each nonterminal, we initially set its
annotation as the empty set. We do not show empty sets
as annotations in the following grammar for simplicity of
presentation.

return1 ! wildcard

return2 ! &FileInput

return3 ! return1|return2

parseCard ! CARD return3

message ! parseCard|...

StringT ! message

addr ! getToken(stringT, “ ”)

StringT1 ! reduceToken(StringT, “ ”)

name ! getToken(stringT1, “ ”)

StringT2 ! reduceToken(StringT1,“ ”)

output ! You got a new card: name

In the SSA code, there are two types of string operations
for StringTokenizer: the constructor StringTokeni-

zer() and nextToken(). StringTokenizer is a string-
manipulating class in Java and is initialized with a string
and a delimiter (denoted as delim), and the string is divided
into segments with the delim as the separator. Then we can
obtain the segments using the method nextToken(). In
the grammar, the constructor StringTokenizer() is
treated as an ordinary string assignment, and nextTo-

ken() is replaced by two continuous operations: getTo-
ken() and reduceToken(). In the two operations,
getToken() returns the value of the first token while
reduceToken() returns the remaining string after cutting
the first token off the head. The two operations are
simulated by two FSTs2 shown in Fig. 1.

Then, we propagate the annotations from the terminals
to the nonterminals according to our predefined propaga-
tion rule for the task. Specifically, the propagation process is
presented in Algorithm 1. The inputs of the process include
C½N;T; S; P �, which denotes the CFG with operations
extracted from the code. N , T , S, and P denote the
nonterminal set, the terminal set, the start nonterminal,
and the production set, respectively. The other input of the
process is Map, which denotes a mapping between each
terminal and its location in the code. The output of the
process is Res, which denotes the set of code locations as
the final annotation of C:S (i.e., the start variable of C). In
the process, Lines 1-6 depict the initialization of the
annotations. C:T denotes the terminal set of C, and
x:annot denotes the annotation of x (x can be a terminal
or a nonterminal). The get method of Map returns the
corresponding code location of a given terminal. Therefore,
in the initialization phase, the annotations of each terminal
are initialized as a singular set whose element is the
corresponding code location of the terminal. The annota-
tions of each nonterminal is initialized as an empty set.
Line 7 in the process uses the string-operation-resolving
technique in string-taint analysis to resolve all the string
operations in C and generate C0. The string-operation-
resolving technique in string-taint analysis guarantees that
the generated C0 is equivalent to C. Lines 8-14 depict the
iterative propagation of annotations. C0:N 0 and C0:P 0 denote
the nonterminal set and the production set of C0, respec-
tively. Moreover, p0:left and p0:right denote the left-hand
side nonterminal and the right-hand side of production p0,
respectively. Thus, as shown in the algorithm, in one
iteration, for each of all the productions, we merge the
annotations of all the (non)terminal of the production to the
annotation of its left-hand side nonterminal. The iteration
ends when the annotations of all nonterminals become
stable and do not change any more.

Algorithm 1. The process of propagating annotations

Input: C½N;T; S; P �: The CFG with operations extracted
from the code. Map: The map between any terminal

t and its code location loc.

Output: Res: The set of code locations as the annotation of

C:S

1: for each terminal t in C:T do

2: t:annot ¼ fMap:getðtÞ};
3: end for

4: for each nonterminal n in C:N do

5: n:annot ¼ {};

6: end for

7: Resolve operations in C½N;T; S; P �) and generate

C0½N 0; T 0; S0; P 0�;
8: repeat

9: for each p0 in C0:P 0 do

10: for each (non)terminal v in p0:right do

11: p0:left:annot ¼ p0:left:annot [v:annot;
12: end for

13: end for

14: until n0:annot does not change for all n0 in C0:N 0

15: res ¼ C0:S0:annot;
16: return res;

WANG ET AL.: LOCATING NEED-TO-EXTERNALIZE CONSTANT STRINGS FOR SOFTWARE INTERNATIONALIZATION WITH GENERALIZED... 521

2. In Fig. 1, the character before “/” is the input to the FST and the
character after “/” is the output from the FST.

Fig. 1. FSTs for StringTokenizer.nextToken() (where A denotes
any character except delim.

In our example, for the first production in the CFG, the
annotation of return1 after propagation is the union of
the annotation of return1 before propagation (i.e.,
initially the empty set) and the annotation of “wildcard”
(i.e., {RiskGame.java:6767}). For the last production in the
CFG, the annotation of output after propagation is the
union of the annotation of “You got a new card:” and
the annotation of name. We do the propagation until all the
annotations do not change any more. Then, we check the
annotation of output, and find the locations of two
constant strings “You got a new card:” and “wild-

card” in its annotation. So, we mark these two constant
strings as need-to-externalize.

3.4 String-Transmission Analysis

Using generalized string-taint analysis in Section 3.3, we are
able to trace to string variables whose values are trans-
mitted across the network. We next present our technique to
further trace the transmitted strings. A straightforward idea
for tracing a transmitted string on one side of an application
over the network is to locate the corresponding string
variable on the other side of the application, and use
generalized string-taint analysis to trace the corresponding
string variable on the other side.

However, string variables holding transmitted strings are
typically also used to hold strings that do not appear on the
GUI. Let us consider a piece of code that implements data
transmission between a client and a server. The transmitted
data are encapsulated in a class defined as below.

1 class Packet {

2 int command;

3 String data;

4 public Packet(int command, String data)

5 {this.command=command; this.data=

data;}

6 public int getCommand()

7 {return command;}

8 public String getData()

9 {return data;}}

On the server side, the following code portion is used to
send two different objects of the Packet class to the client
side.

10 Packet packet = new packet(Packet.

ENDOFGAME, “Automatic Shuts Down”)

...

11 Packet packet = new packet(Packet.CHAT,

“Game saved to”+sFilename);

12 ObjectOutputStream out = new

13 ObjectOutputStream(socket.getOutput

Stream());

14 out.writeObject(packet);

On the client side, the following code portion is used to
receive objects of Packet transmitted from the server side.

15 ObjectInputStream in =

16 new ObjectInputStream(socket.getInput

Stream());

17 Packet packet = (Packet)in.readObject();

18 switch(packet.getCommand()){

19 case Packet.CLOSECONNECTION:

20 disconnected(); break;

...

21 case Packet.CHAT:

22 Output(packet.getData()); break;

...

23 case Packet.ENDOFGAME:

24 saveEntityStatus(packet.getData());

break;}

From the preceding code portions, we know that the
client side may receive different objects of Packet.
However, only when the value of command in Packet is
Packet.CHAT is the value of data in Packet output to
the GUI on the client side. In the preceding code portions,
“Game saved to” (line 11), which is sent with Pack-

et.CHAT, is passed to the GUI and thus needs externaliza-
tion, while “Automatic Shuts Down” (line 10), which is
sent with Packet.ENDOFGAME, does not need externaliza-
tion. Thus, if we continue to trace data in Packet on the
server side using generalized string-taint analysis, we may
trace to some constant strings that are assigned to data in
Packet when the value of command in Packet is not
Packet.CHAT. The reason is that string-taint analysis does
not analyze different values of command in Packet.

In fact, the preceding way of data transmission repre-
sents a typical mechanism used in object-oriented software
for data transmission. First, data for transmission is
implemented as objects for transmission. Second, in the
class definition of objects for transmission, there is a
member variable (i.e., command in the preceding code)
serving as the label member of the data for transmission. In
addition, there is another member variable (i.e., data in the
preceding code) holding the data for transmission, which
we refer to as data member. If there are strings for
transmission, one or more such member variables are
defined as strings. Third, after receiving a transmitted
object, the receiver needs to check the value of the label
member before using the data member, as the receiver
needs to interpret the meaning of the data according to the
value of the label member.

To make more precise analysis of transmitted strings, we
propose string transmission analysis, which is presented as
Algorithm 2. The inputs of Algorithm 2 are C, the code
base, and DSo, the data origins of Initial Output Strings
acquired with generalized string-taint analysis. The output
is DSn, the data origins of Initial Output Strings at the other
side of the network.

Algorithm 2. Procedure of string transmission analysis

Input: C: Project Code Base. DSo: Data Origins of Initial

Output Strings acquired with generalized

string-taint analysis

Output:DSn: Data Origins of Initial Output Strings at the

other side of network
1: Locate all received variables Setr;

2: Dsn ¼ {};

3: for each r in Setr do

4: if r relates to DSo then

5: Get the data flows dfs from r to the GUI;

522 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 4, APRIL 2013

6: Generate Enabling Constraint cons from dfs;
7: Locate all sent variables Sets;

8: for each s in Sets do

9: if s is a String then

10: Locate data origins dsv of s;

11: DSn ¼ DSn [dsv;
12: else if s is an Object with actual non-final

members then

13: Locate data origins dsv of the data member
of s;

14: DSn ¼ DSn [dsv;
15: else

16: Locate initializations inis of s;

17: for each ini in inis does not violate cons do

18: Locate data origins dsv of the data

member initialization in ini;

19: DSn ¼ DSn [dsv;
20: end for

21: end if

22: end for

23: end if

24: end for

25: return DSn;

In line 1 of Algorithm 2, we determine the objects that are
transmitted through the network. To achieve this purpose,
we locate in the source code all the API method invocations
for socket output, and acquire all the variables that receive
the return value of these invocations (e.g., the packet in
line 19 of the above code). We mark such variables as
received variables. Line 2 of Algorithm 2 just initializes the
output set as an empty set.

For each received variable r that is related to the known
data origins of Initial Output Strings,3 lines 5-22 locate all
the data origins from the other side of the network that
flows to Initial Output Strings via r.

Specifically, the locating process includes three phases.
The first phase is to build the enabling constraint of r that

is or whose member is a data origin of Initial Output Strings.
This phase is presented in Lines 5-6 of Algorithm 2. In this
phase, we first extract the data flow path from the received
variable or its member variables to the Initial Output String.
The member variables involved in this process are recorded
as data members. Then we gather all the branch conditions
that enable the data flow and contain the transmission
variable or its member variables (e.g., the condition pack-

et.command==Packet.CHAT combined by Lines 20 and
23). Finally, we generate an enabling constraint by combining
the gathered branch conditions. We record the member
variables involved in the constraint as label members.

The second phase (line 7 of Algorithm 2) is to locate all
the API method invocations for socket input, and acquire all
the variables (we ignore variables which are of primitive
types) that are sent into the sockets (e.g., packet in line 16),
which we refer to as sent variables.

The third phase (lines 8-22 of Algorithm 2) is to decide
which sent variables will flow to the GUI through the
network, and locate the data origins of these sent variables.

Specifically, if a sent variable s is of the string type, we
simply apply generalized string-taint analysis on it (lines 10-
11 of Algorithm 2). If s is not of the string type, we check
whether all its label members are declared as final variables
or are actually final variables (i.e., no assignments to them
except at the initialization). If they are, we check the
initializations inis of the sent variable to decide whether to
apply generalized string-taint analysis on its data member
based on the value of its label member and the enabling
constraint (lines 16-20 of Algorithm 2). Otherwise, we
simply apply generalized string-taint analysis on its data
members (lines 13-14 of Algorithm 2).

It should be noted that we make conservative decisions
in the above steps. For the string transmissions, we
consider all the socket inputs/outputs and all possible
data flows from the received variable to Initial Output
Strings, while, for the enabling constraint, we add only
confirmed branch conditions (i.e., inner-procedure guard
conditions), and we decide the data member of a sent
variable as not flowing to the GUI, only if its corresponding
label member is final (so that it will not be changed) and its
assigned value at the initialization is a constant that will
violate the enabling constraint for sure.

3.5 String-Comparison Analysis

In Sections 3.3 and 3.4, our aim is to trace constant strings that
may be visible on the GUI. However, more constant strings
than those visible strings on the GUI need externalization for
software internationalization. In the example presented in
Section 2, “wildcard” in Line 24, which is a source of name,
needs externalization. Since the constant string“wildcard”
in line 13 is compared to name, this “wildcard” also needs
externalization. Therefore, after we locate constant strings
visible on the GUI, we need to further locate the strings that
are compared with these visible strings.

To address this issue, we first locate all the comparisons
between strings in the source code. In particular, we locate
comparisons between strings through identifying invoca-
tions of string-comparison methods provided by the
supporting libraries (e.g., String.endWith() in Java
and strcmp() in C). Then for each side of each comparison,
we perform generalized string-taint analysis to locate all the
constant strings that are the sources of the side. If any
constant string located as a source for one side is in the set of
visible strings located with the techniques in Sections 3.3
and 3.4, we include all the constant strings located as sources
for the other side as need-to-externalize constant strings. We
iteratively add need-to-externalize constant strings until we
cannot locate any more need-to-externalize constant strings.

3.6 Filtering

As a practical matter, not all the strings located with the
techniques described in Sections 3.3, 3.4, and 3.5 require
translation. Some strings should remain the same in most or
even all local languages (e.g., strings composed of arabic
numbers), while some other strings may be intentionally
reserved as untranslated (e.g., trademarks). Therefore, as
the final technique of our approach, we further filter out
some located constant strings that may not need translation.
Currently, we use two simple heuristics. First, we filter out
any constant string that does not include any letter. Second,

WANG ET AL.: LOCATING NEED-TO-EXTERNALIZE CONSTANT STRINGS FOR SOFTWARE INTERNATIONALIZATION WITH GENERALIZED... 523

3. Note that here “related to a data origin” means that a received variable
(if it is of the string type) or its member variables (if it is an object with
member variables) is a known data origin of Initial Output Strings.

we filter out any constant string that is equal (in a case
insensitive way) to the name of the project. For example, we
filter out the constant string “\”“ in Line 17 in the code
portion in Section 2 according to the first heuristic.

4 EMPIRICAL EVALUATION

4.1 Tool Implementation

To perform our empirical evaluation, we implemented an
Eclipse plug-in called TranStrL for our approach [23].4 We
chose Java as the target language because Java is a widely
used programming language among open source applica-
tions. For TranStrL, we collected output API methods from
two packages: java.awt.* and javax.swing.*. So
TranStrL currently supports analysis of Java applications
that use only these two packages to implement their GUI.

4.2 Evaluation Setup

In our empirical evaluation, we used seven real-world open
source applications as subjects: ArtOfIllusion, JFreeChart,
Megamek, Risk, RText, StoryBook, and TV-Browser. All
seven applications are accessible from the website of
sourceforge,5 and the versions used in our empirical
evaluation are packaged and downloadable from our project
website.6 Among the seven applications, ArtOfIllusion is a
3D editor for designers to build and edit various 3D models
and animations, JFreeChart is a library for drawing various
charts from datasets, Megamek is a large real-time strategy
game, Risk is a turn-based board game, RText is a
programmer-oriented text editor, StoryBook is a writing
support software that helps authors organize scenes,
chronological lines, characters and so on, and TV-Browser
is an electronic TV guide that provides information about
future TV programs for a large number of TV channels.
Table 1 depicts the basic information of these applications. In
Table 1, the first column presents the name of the applica-
tion, the second column presents the short description of the
application, the third column presents the month in which
the application is registered to sourceforge, and the fourth
column presents the number of developers involved in the
development of the application. Since sourceforge counts all
the people who contributed to a project during its life cycle as
developers, the presented number of developers may be
larger than the number of developers who are active
simultaneously at a certain time of the project’s life cycle.

We chose these seven applications for two main
reasons. First, the seven applications are among the most

downloaded programs that meet the requirement of our
evaluation (i.e., having versions before and after inter-
nationalization, and having GUIs built on java.awt.*

and javax.swing.*) in their own domains. Second, the
seven applications represent software in different cate-
gories and their GUI structures are different. ArtOfIllusion
and RText are both editors and they have typical
component-based GUIs (i.e., GUIs built with menus,
buttons, and edit panels). As ArtOfIllusion is a 3D editor,
it includes more operations on canvas and graphs.
JFreeChart is a library with no standalone GUI, but it
may generate GUI components in the GUIs of the
applications that invoke JFreeChart APIs to draw charts.
So we chose JFreeChart to explore the results of our
approach on such GUI-related libraries. Megamek and
Risk are two different kinds of games with more stylized
components and complex GUI structures. StoryBook and
TV-Browser are two content-presentation applications
with rich GUI components to show complex structures
of elements with structured text descriptions and pictures.
We chose two games and two content-presentation
applications because the GUIs of these applications are
typically more complex than other types of applications
and it would be interesting to see how our approach
performs on different applications of these types.

The developers of all seven of these applications did not
consider internationalization at the beginning, and they
used many hard-coded constant strings in their native
languages (i.e., English and German in the seven applica-
tions used in our empirical evaluation) in early versions of
theses applications. For all seven applications, the devel-
opers began to internationalize them some time later, and
during the internationalization, the developers externalized
some hard-coded constant strings to resource files and
translated the externalized constant strings to the target
languages during internationalization. To evaluate the
usefulness of our approach for real-world internationaliza-
tion tasks, for all seven applications we applied our
approach to their versions as they were right before the
internationalization and compared the results achieved by
our approach with the actual changes for the internationa-
lization made by the developers in their versions right after
the internationalization. For StoryBook and TV-Browser,
where no source code package of early released versions is
available, we applied our approach on the SVN versions
submitted before internationalization and checked the
change with the SVN versions submitted after the inter-
nationalization,7 while, for other applications, we used the
source code package of the released versions right before
and after the internationalization.

In Table 2, we present the information of the software
versions from right before internationalization and to which
we applied our approach. For each software version,
Columns 1-5 show the application name and the version
number, the date when the version is released, the number
of the lines of code (LOC) in the software version, the
number of files in the software version, and the number of
constant strings in the software version, respectively.8 Note

524 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 4, APRIL 2013

TABLE 1
Basic Information of the Subjects

4. TranStrL can be downloaded from http://sourceforge.net/projects/
transtrl/files/TranStrL/.

5. http://sourceforge.net/, accessed on 20 June 2011.
6. http://sourceforge.net/projects/transtrl/files/Evaluation/.

7. Internationalization may take a number of code submissions to finish.
We determined that the internationalization ended after a code submission
if none of the 30 subsequent code submissions are related to the
internationalization.

8. The statistics for Ver 0.8.6.9 of RText are only for package org.

fife.rtext, as the developers internationalized only this package.

that for StoryBook and TV-Browser, the month of their
internationalization is the same as their starting month
(when they are registered to sourceforge). However, their
sizes show that they were being developed for some time
before their registration. So our approach is still applicable
to them. Column 6 shows the number of the need-to-
externalize constant strings, which serve as the golden
solution in our empirical evaluation. We obtained our
golden solution as follows: First, we deemed constant
strings in the version before internationalization as need-to-
externalize constant strings if the developers externalized
them in the subsequent internationalized version. Second,
since our approach did find a number of need-to-externa-
lize constant strings that were not externalized in the
subsequent internationalized version for each subject, we
also deemed as need-to-externalize constant strings the
constant strings that were located by TranStrL and
manually verified by us to be need-to-externalize.

In particular, when TranStrL located a constant string not
externalized in the subsequent internationalized version,
we further checked versions later than the subsequent
internationalized version. If the constant string was
externalized in a later version, we also deemed it as need-
to-externalize. If not, we carefully analyzed the source code
to determine whether the constant string is visible the GUI
and whether the untranslated version of this constant string
hinders users’ comprehension of using the application. In
principle, we adopted a conservative policy to avoid
misclassifying constant strings that do not need translation
as need-to-externalize. That is to say, we tried to avoid
biasing our evaluation favorably to our approach.

4.3 Empirical Results

In our empirical evaluation, we are interested in answering
the following four research questions:

. How effective is our approach when applied on real-
world applications for locating need-to-externalize
constant strings?

. What are the reasons for the false positives and false
negatives?

. What is the performance of our approach?

. What is the impact of the different techniques on the
result of our approach?

To answer these four research questions, we collect the
results of applying our approach on the seven real-world
open source applications and analyze the results. Specifi-
cally, we present and analyze our evaluation results to
answer the first and second research questions in Sec-
tion 4.3.1. We present and analyze our evaluation results to
answer the third research question in Section 4.3.2, and we
present and analyze our evaluation results to answer the
fourth research question in Section 4.3.3.

4.3.1 Overall Results and Analysis

Overall results. We present the overall results of applying
TranStrL to the seven subjects in Table 3. In this table, we
refer to constant strings that need translation but are not
located by TranStrL as false negatives, and constant strings
that are located by TranStrL but actually do not need
translation as false positives. From the table, we have the
following observations.

First, our approach (using all the tracing techniques) is
able to locate most of the need-to-externalize strings. In
RText, our approach locates all the need-to-externalize
strings, while in ArtOfIllusion, JFreeChart, Megamek, Risk,
StoryBook, and TV-Browser, our approach locates 1,215 of
1,221, 129 of 130, 1,724 of 1,734, 491 of 509, 201 of 202, and
177 of 187 need-to-externalize constant strings, respectively.

Second, for each subject, our approach does produce a
few false positives. In ArtOfIllusion, JFreeChart, Megamek,
Risk, StoryBook, and TV-Browser, the numbers of strings
that are located by our approach but do not need translation
is 65, 1, 41, 7, 37, 22, and 39, respectively. Compared to the
numbers of need-to-externalize strings in the seven subjects,
the numbers of false positives are quite small.

WANG ET AL.: LOCATING NEED-TO-EXTERNALIZE CONSTANT STRINGS FOR SOFTWARE INTERNATIONALIZATION WITH GENERALIZED... 525

TABLE 2
Basic Information of the Software Versions to Which We Apply Our Approach

TABLE 3
Overall Results of Applying Our Tool on the Seven Applications

Third, for each subject, our approach is able to locate
some constant strings that the developers did not externa-
lize in the subsequent internationalized version but which
were verified by us as need-to-externalize. The developers
might have either missed them or did not externalize them
at that time due to time or workload limit. In both cases,
locating such strings should be helpful for the developers
to produce a version with better quality of internationali-
zation earlier.

In total, our approach locates 1,696 such strings in the
seven subjects. We used version tracking and code
difference tools to trace the changes on these strings in
the versions later than the internationalization, and we find
that, among the 1,696 strings, 1,429 (746 in ArtOfIllusion,
579 in Megamek, 10 in Risk, 87 in RText, 6 in StoryBook, and
1 in TV-Browser) were externalized and translated in a later
version and 267 strings still remained hard-coded in all the
later versions or were removed due to modifications other
than internationalization. We next present two examples of
the two preceding situations.

The first example is from RText. In the subsequent
internationalized version (i.e., 0.8.7.0), the text editor shows
the position of the cursor at the lower right corner of the
panel in the form of “Line xx, Col. xx”. However,
constant strings “Line” and “Col.” are not externalized.
The developers of RText externalized and translated the
two strings 11 months later in Version 0.9.1.0.

The second example is from Megamek shown in the
following piece of code:

public MechView(Entity entity) {

...

StringBuffer sBasic;

sBasic.append(Messages.getString

(“MechView.Movement”))

...

sBasic.append(entity.getMovementTypeAs

String())}

public String getMovementTypeAsString(){

switch (getMovementType()) {

...

case Entity.MovementType.TRACKED:

return “Tracked”;

case Entity.MovementType.WHEELED:

return “Wheeled”;

...}}

Variable sBasic in the method Mechview() (in mega-

mek.client.Mechview.java) is finally passed to the

GUI as the description of weapons in the game. Therefore,
the developers externalized the first part of sBasic as
Messages.getString(“MechView.Movement”), and
added an item “Mechview.Movement” in the resource
file (i.e., “Movement:” for English and “Bewegung:” for
German). But even in the latest version before our study,
they did not externalize the second part, which is a return
value from method getMovementTypeAsString().
Therefore, a strange string with its first part translated to
German but the second part remaining in English appears
on the GUI of the German version of the game. We reported
all 17 unexternalized need-to-externalize strings located by
TranStrL to the Megamek developers as bug report
#2085049 and all 17 of these strings were confirmed and
fixed by the developers. We next further discuss the reasons
for the false negatives (i.e., need-to-externalize constant
strings not located by TranStrL) and the false positives (i.e.,
located need-to-externalize strings that actually do not need
translation).

Analysis of false negatives. Generally, the false nega-
tives fall into five categories, and Table 4 presents the
distribution of the false negatives in different subjects.

The first category includes constant strings that are output
to GUI through API invocations in the library code or that are
compared with visible strings in the library code. This
category includes all 6 false negatives from ArtOfIllusion,
the 1 false negative from JFreechart, all 10 false negatives
from Megamek, 3 of the 18 false negatives from Risk, the
1 false negative from StoryBook, and 3 of the 10 false
negatives from TV-Browser. In principle, generalized
string-taint analysis and string-comparison analysis
should be able to locate strings in this category. The
reason that our tool failed to do so in our empirical
evaluation is as follows: This category involves some
string assignments, Output API invocations, and string
comparisons implemented in library code. Our tool cannot
trace into libraries whose source code is unavailable, but
after extending our implementation to analyze library
code, we should be able to address this category of false
negatives.

The second category includes constant strings related to
the names of language-related file folders (e.g., maps and
cards). Specifically, 10 of the 18 false negatives in Risk
belong to this category. Let us take map folders as an
example. Since Risk is a game application, various maps are
used. As maps may contain texts specific to particular
languages, versions for different languages may require
different sets of maps. To internationalize maps, the
developers used different folders to store maps for different

526 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 4, APRIL 2013

TABLE 4
The Distribution of False Negatives

languages. Thus, when switching from one language to
another, the names of map folders should also be switched.

The third category includes constant strings that did not go
to the GUI in the version before the internationalization, but
are sent to the GUI by the developers with some code changes
on the version after the internationalization. In TV-Browser,
6 of the 10 false negatives belong to this category. The reason
for this category of false negatives is that the developers
perform some other development tasks along with the
internationalization. Since it is impossible to predict what
other tasks the developers will perform along with the
internationalization, our approach cannot detect this cate-
gory of false negatives. However, we believe that the
developers should know that they are performing these tasks
along with internationalization, so they should keep these
affected strings in mind and so that they may not miss these
strings during the internationalization. Furthermore, if the
developers apply our approach on their application again
after they finish the tasks, they can still find these constant
strings.

The fourth category includes debugging messages visible
on the console but not output through output API methods.
In Risk, 5 of the 18 false negatives belong to this category.
Note that developers may choose to or not to internationa-
lize debugging messages. For RText, our approach located
2 debugging messages (which are output through API
methods), but the developers did not externalize them and
we counted them as false positives. However, the devel-
opers of Risk externalized 5 debugging messages, which we
counted as 5 false negatives.

The fifth category includes only 1 false negative from TV-
Browser, being the application name “TV Browser,” which
appears as the label of the main menu of the application.
Since we remove application names in our filtering process,
we miss this constant string. However, since most devel-
opers choose not to translate application names, our
filtering is still reasonable. Actually, the constant string
“TV Browser” that appears as the title of the main window
of the same application remains unexternalized.

Analysis of false positives. Generally, the false positives
fall into four categories, and Table 5 presents the distribu-
tion of the false negatives in different subjects.

The first category of false positives consists of strings that
are visible on the GUI but may be intentionally left as not
translated. Such strings include version information, copy-
right information, acronyms, etc. Since we used a conserva-
tive policy when verifying strings located by our approach
but not externalized by the developers, we counted these
strings as false positives. In total, 4 of 65 false positives in

ArtOfIllusion, the 1 false positive in JFreeChart, 6 of 41 false
positives in Megamek, 3 of the 7 false positives in Risk, 18 of
37 false positives in RText, 20 of 22 false positives in
StoryBook, and 4 of 39 false positives in TV-Browser belong
to this category.

The second category of false positives consists of strings
that are visible on the GUI but cannot be translated. For
example, file-extension or directory names (such as “*.txt”
or “C:/abc”) appear in dialogs related to file selection, but
these names should be the same for different languages.
Other examples include the names of fonts (e.g., Times New
Roman) and the TV channel names in TV-Browser. These
names may also appear on the GUI, but should remain the
same for different languages. Furthermore, string-compar-
ison analysis introduces more false positives if strings are
compared with false positives in this category. In total, 61 of
65 false positives in ArtOfIllusion, 35 of 41 false positives in
Megamek, 4 of 7 false positives in Risk, 14 of 37 false
positives in RText, and 35 of 39 false positives in TV-
Browser belong to this category.

The third category includes 3 of 37 false positives in
RText and both of the 2 false positives in StoryBook. These
strings are HTML tags. They are passed to some texts in the
HTML format and these texts are then passed to a window
that displays HTML files. That is to say, the texts are for
display on the GUI, but translating these HTML tags may
result in improper display.

The fourth category is those used for debugging. This
category includes 2 false positives in RText. That is to say,
these 2 strings can appear in windows for displaying
debugging information. As the developers may not be
familiar with multiple languages, translating these strings
may impact the debugging process negatively.

Summary. For all seven subjects, our approach is able to
locate most of the need-to-externalize strings while produ-
cing only a small number of false negatives and a small
number of false positives. Among the false negatives, the
first category may result in untranslated strings on the GUI
but can be addressed by extending our tool implementation
to analyze libraries. The second category can be easily
detected by analyzing the file system. The third category
can be addressed by applying our approach to the
application again after the outputting of constant strings
to the GUI is implemented. The fourth and fifth categories
are relatively trivial for users to detect.

Among the false positives, the first category actually can
be removed by translators who know about the customs of
local users. The second and the third categories of false

WANG ET AL.: LOCATING NEED-TO-EXTERNALIZE CONSTANT STRINGS FOR SOFTWARE INTERNATIONALIZATION WITH GENERALIZED... 527

TABLE 5
The Distribution of False Positives

positives are project-specific and can be easily detected by
users’ inspection or user-defined heuristics. The fourth
category is trivial for users to detect. Furthermore, for each
subject, our approach is able to locate some need-to-
externalize strings that the developers did not locate when
internationalizing the subject.

The preceding results demonstrate that our approach is
useful in at least the following two scenarios: First,
developers can use our approach to generate candidates
for externalization since our approach achieves acceptable
results for developers to start internationalization. Second,
since our approach can find some strings that developers
cannot easily find by themselves, they can use our approach
to check internationalized versions and find missed need-
to-externalize constant strings.

4.3.2 Execution Time and Memory Consumption

To study the performance of our approach, we record
execution time and memory consumption of our approach
when applied to the seven subjects in our empirical
evaluation, and present the data in Table 6. In Table 6, the
first column presents the name of the subject. The second,
third, and fourth columns present the execution time of the
whole approach, the execution time of the generalized
string-taint analysis (including the string transmission
analysis), and the execution time of the string comparison
analysis, respectively. The fifth column presents the max-
imal memory usage during the execution. Note that we did
not record the execution time of the string transmission
analysis solely. This is because string transmission analysis
is not an independent step, but is invoked whenever
generalized string-taint analysis locates strings read from
the network. Furthermore, after string transmission analysis
locates the string data source on the server side, generalized
string-taint analysis is invoked again to trace string data
flows on the server side. Therefore, it is not easy to exactly
record execution time of merely string transmission
analysis. It should also be noted that there are the class
loading process and the filtering process, so the execution
time of the whole approach is slightly larger than the sum of
the execution time of the generalized string-taint analysis
and the string comparison analysis.

From Table 6, we have the following two observations:
First, the time and memory usage of our approach is
reasonable on all the subjects in our empirical evaluation.
For the largest and most complex project (i.e., Megamek),
the execution time of our approach is less than 13 minutes,
and the memory consumption is less than 700 MB. Second,
the execution time and memory consumption may not

positively correlate with the size of the application. For
example, JFreeChart is much larger than RText, but our
approach costs less time and memory on JFreeChart. The
reason is that our approach focuses on only the string
variables, constants, and operations related to the GUI.
Therefore, the main factor that affects the performance of
our analyses is not the size of the whole application that we
apply our approach on, but the number of GUI-related
string variables, constants, and operations. Furthermore, the
most time-consuming part in the generalized string-taint
analysis is the handling of string operations (i.e., using FSTs
to approximate string operations in the CFG and propagate
taints through FSTs). So, for an application whose GUI-
related string data flows involve very complex string
operations, our approach will spend more time on it. As
an instance, Risk takes more time than ArtOfIllusion
although it has fewer need-to-translate constant strings.

4.3.3 Impacts of Different Techniques

In our approach, the basic tracing technique is generalized
string-taint analysis, and we also develop three other
techniques (i.e., string-transmission analysis, string-compar-
ison analysis, and filtering) to cope with practical complica-
tions. To evaluate the impacts of the three techniques in our
approach, we performed a series of experiments. The baseline
was to use all of the three techniques with generalized string-
taint analysis, and we turned off each technique at a time to
observe how each specific technique impacts the results.

Impacts of string-transmission analysis. We show the
results of turning string-transmission analysis on and off in
Table 7. Since only Megamek transmits strings across the
network, turning string-transmission analysis on or off
impacts the result of only this subject. We considered two
ways of turning off string-transmission analysis. In the first
way, we did not analyze string variables whose values are
transmitted across the network. In the second way, we used
generalized string-taint analysis to analyze all string vari-
ables whose values are transmitted across the network
without considering the label variable in transmitted objects.

528 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 4, APRIL 2013

TABLE 6
Execution Time and Memory Consumption of Our Approach

TABLE 7
Turning String-Transmission Analysis On and Off

In Table 7, the line marked with “(NT)” presents the
results of our approach with turning string-transmission
analysis off in the first way, while the line marked with
“(ALL)” presents the results of our approach with turning
string-transmission analysis off in the second way.

From the table, we observe that, compared to the first way
of turning off string-transmission analysis, string-transmis-
sion analysis helps find 575 more need-to-externalize strings
(i.e., reduce 575 false negatives) in Megamek, introducing
only 2 false positives (falling into the second category of false
positives discussed in Section 4.3.1). Compared to the second
way of turning off string-transmission analysis, string-
transmission analysis helps reduce 12 false positives.

Impacts of string-comparison analysis. We show the
results of turning string-comparison analysis on and off in
Table 8, in which the lines marked with “(NC)” present the
results of turning string-comparison analysis off. Since only
Megamek and Risk contains string comparisons that
involve need-to-externalize constant strings, turning
string-transmission analysis on or off impacts the result of
only these two subjects.

First, string-comparison analysis is helpful to find more
need-to-externalize strings (i.e., reduce false negatives) in
the two subjects (i.e., 24 in Risk and 26 in Megamek).
Second, string-comparison analysis brings in 9 false
positives in Megamek. Specifically, these 9 false positives
belong to the second category of false positives. That is to
say, string-comparison analysis locates these 9 strings
because they are compared directly or indirectly to some
strings visible on the GUI but cannot be translated.

Impacts of filtering. We show the results of turning
filtering on and off in Table 9, in which the lines marked with
“(NF)” present the results of turning filtering on and off.

From Table 9, we observe that, for most of the subjects,
filtering can effectively reduce the numbers of false
positives. Furthermore, since we use conservative heuristics
in filtering, there is only one false negative caused by
filtering among all seven subjects. The reason for the false
negative has been discussed in Section 4.3.1. Actually, if we
use some aggressive heuristics, we may further reduce the
number of false positives, but the number of false negatives
may also increase.

4.4 Threats to Validity

The main threats to internal validity lie in the way we verify
constant strings not externalized in the subsequent inter-
nationalized version to be need-to-externalize strings for
each subject. First, it may be error-prone to verify constant
strings as need-to-externalize in versions later than the
subsequent internationalized version because the later
versions involve various modifications for other purposes.

Second, manually verifying constant strings not externalized
in any later version as need-to-externalize may be prone to
accidental mistakes or personal perspectives to the notion of
being “need-to-externalize.” To reduce these threats, for
each subject, we examined all these strings in all later
versions carefully, executed the internationalized subject to
see whether these strings appear on the GUI, and decided
whether they are not understandable to a user not familiar
with English using a conservative policy. In fact, some of the
false positives are due to the conservative nature of this
policy. The second threat to internal validity is that we did
not consider the strings that were missed by both the
developers and our approach. To reduce this threat, we
chose popular software applications to carry out our
evaluation so that the quality of manual string externaliza-
tion would be high. The third threat to internal validity is
that we collected output API methods manually and the
collected list may not be complete. Although an incomplete
list is not in favor of our results, it may affect the numbers of
false positives and false negatives in our evaluation.

The main threats to external validity are as follows: First,
the results of our evaluation may be specific to the
applications used in the evaluation. To reduce this threat,
we chose applications from various domains and their GUI
structures are different from one another. Second, the seven
subjects used in our empirical evaluation are all open
source applications written in Java, and all of them are of
moderate sizes. Therefore, the findings of our empirical
evaluation may be specific to open source applications in
Java with moderate sizes, and may not be generalized to
other applications. Third, we evaluated the impacts of
string-transmission analysis and string-comparison analysis
only on a few subjects among the seven subjects. Therefore,
the findings on string-transmission analysis and string-
comparison analysis in our empirical evaluation may not be
generalized to other applications. To further reduce these
threats, we may need to apply our approach to more
applications, especially those for commercial use, with
larger code bases, having strings transmitted across the
network, and/or having string comparisons involving
need-to-externalize constant strings.

WANG ET AL.: LOCATING NEED-TO-EXTERNALIZE CONSTANT STRINGS FOR SOFTWARE INTERNATIONALIZATION WITH GENERALIZED... 529

TABLE 8
Turning String-Comparison Analysis On and Off

TABLE 9
Turning the Filter On and Off

5 EXTENSION FOR VISUALIZATION

When applying our approach to software internationaliza-
tion, software developers may encounter the following two
issues: First, as our approach does concede some false
positives, developers may not be confident enough on
whether a particular constant string needs externalization.
They may need more information about how the constant
string goes to the GUI to make sure that the path is feasible at
runtime. Second, when translating a particular externalized
constant string, developers may need to know the string’s
concatenation pattern with other strings. For example, in the
following code portion, the pattern of the output to the GUI
should be “You get [number] [jobs done]” in which
“[number]” is for any number, and “[jobs done]” is for some
done jobs such as “car(s) fixed.” Without the context, it is
difficult to correctly translate the phrase “You get” because
the word “get” has broad meanings. In the code portion, the
word “get” is a sign for the perfect tense, while in the
sentence “You get 3 cars,” the word “get” means “acquire.”
In many languages such as Chinese, a single word cannot
represent these different meanings, so developers may need
to check concatenation patterns when translating located
need-to-externalize constant strings.

JTextArea ta = new JTextArea();

int number = getNumber();

String out = “You get ” + number + getTask();

ta.append(out);

...

private String getTask()

...

Switch(this.currentTask)

...

case Task.CarFix: return “car(s) fixed.”;

...

To help developers tackle these two issues, we imple-
mented a tool named TransVis as an extension of our
TranStrL tool to visualize the context of a given constant
strings located by TranStrL.9 In particular, TransVis
provides two kinds of visualization support.

Given a constant string (denoted as Str) located by
TranStrL, the first kind of visualization support in TransVis
is to visualize each String Flow Graph [1] that Str may be
involved in. The nodes in a String Flow Graph represent all
the string elements that may flows to a certain hot spot. Note
that a hot spot is an initial output string in our problem. Here,
a string element can be a string constant, a string variable, or
a string expression with a string operation (such as
concatenation). The edges in a String Flow Graph represent
all the flows among these string elements. Given a node
(denoted asA) in a String Flow Graph, there are two ways of
strings from other nodes (e.g.,B andC) flowing intoA. In the
first way, A can be assigned with the value of either B or C.
We denote this way as a solid triangle in the String Flow
Graph. In the second way, A is assigned with the result of a
string operation (e.g., concatenation) over B and C. We
denote this way as a solid rhombus in the String Flow Graph.
Note that, for any node in the String Flow Graph, there is only

one way for the strings from other nodes to flow into the
node. Supposing Str may go to only one initial output string
(denoted as Output), TransVis is able to calculate and
visualize the String Flow Graph (denoted as G) of Output.
From G, developers may know visually how Str goes to
Output and how Str is concatenated with other strings.

Fig. 2 depicts a simple example of a String Flow Graph.
In visualization of the String Flow Graph, we use a square
with a string label to denote a node in the string flow graph.
The string label of the squire presents the string form of the
node’s corresponding string element in the code. Further-
more, we use an edge with an arrow to denote an edge in
the String Flow Graph. The direction of the arrow indicates
the direction of the data flow, and the shape of the
arrowhead indicates the type of the data flow. Specifically,
we use a triangle arrowhead to indicate an assignment and
we use a diamond arrowhead to indicate the participation
in a string operation.

However, in some cases, a String Flow Graph may be
very complex and contain a large number of nodes. Fig. 3
shows the String Flow Graph for a located need-to-
externalize constant string (i.e., “You have”) in the Risk
application. The graph contains more than 800 nodes. In
such a case, visualizing the whole String Flow Graph can
hardly provide substantial help for the developers due to
the complexity of the String Flow Graph. Therefore,
TransVis provides the second kind of visualization support
to visualize the String Example Graph, which is a subgraph
of the String Flow Graph.

Given a constant string (denoted as Str) that may flow to
an initial output string (denoted as Output). We define the
example value set (denoted as EVS) of Str and Output as all
possible values of Output that contain Str (i.e., each value in
EVS has Str as one of its data origins). Each element in EVS
is an example value (denoted as EV) of Str and Output. A

530 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 4, APRIL 2013

Fig. 2. A string flow graph for the need-to-externalize constant string
“manual.”

9. TransVis is downloadable from http://sourceforge.net/projects/
transtrl/files/TransVis/.

String Example Graph (denoted as EG) of EV is the
subgraph of the String Flow Graph that is related to the
generation of EV. Thus, EG demonstrates how Str is
concatenated with other strings to form a value of Output.
Actually, a String Flow Graph can be viewed as the visual
presentation of the CFG with string operations generated by
the generalized string-taint analysis for Output, while a
String Example Graph can be viewed as the visual
presentation of a deduction tree of the CFG with string
operations, making sure that the deduction has Str as one of
its leaves. The rationale behind String Example Graph is
that the concatenation pattern of one constant string should
typically be consistent in different examples. Thus, String
Example Graphs can still provide a large part of the context
information Str, compared to String Flow Graphs that
provide the whole context information.

Given the String Flow Graph (i.e., G) of Output, TransVis
calculates one String Example Graph (i.e., EG) of Str, Output
in the following way: First, TransVis calculates the path
from Str to Output in G. Second, for each node in the path,
TransVis further traces the origins of the node in G. For any
node (denoted as A) during this tracing, if the strings from
other nodes flow into A in the first way (i.e., through a flow
with a solid triangle), we randomly trace one node if none
of the nodes have been traced, and trace none of them if one
node has already been traced. If the strings from other
nodes flow into A in the second way (i.e., through a flow
with a solid rhombus), we further trace each of these nodes.
The String Example graph generated by TransVis for the
need-to-externalize constant string “You have” is shown in
Fig. 4. From the figure, we can observe that the String
Example Graph is much simpler than its corresponding
String Flow Graph, and much easier for the developer to
explore. Furthermore, for the convenience of the devel-
opers, we add quick links from each node in the String
Example Graph to its corresponding code elements in the
code (e.g., the corresponding code of the left node “output”
in Fig. 4 is highlighted after a click on it).

To further study the effectiveness of building String
Example Graphs, for each subject in our empirical study,

we acquire a String Flow Graph and a String Example
Graph for each located need-to-externalize string. There-
fore, for each subject, we have two sets of graphs. Then, for
each graph set, we derive three measures: the maximal
number of nodes in a single graph in the graph set, the
average number of nodes in the graph set, and the number
of large graphs (with more than 50 nodes) in the graph set.
Finally, we compare these measures to observe whether
String Example Graphs are effective in reducing the sizes of
String Flow Graphs for better usability. We present the
results in Table 10.

From Table 10, we can observe that for many need-to-
externalize strings (1 in JFreeChart, 17 in RText, 43 in
ArtofIllusion, 209 in Risk, more than 1,000 in Megamek),
String Flow Graphs can be quite large (with more than
50 nodes) and may not be easy for developers to understand.
By contrast, among all the String Example Graphs for the
need-to-externalize strings in all the subjects in our empiri-
cal evaluation, there are only 7 String Example Graphs in
Megamek that have more than 50 nodes. Therefore, for a
significant number of need-to-externalize constant strings
that correspond to large String Flow Graphs, String Example
Graphs provide a good way for developers to understand
about how the externalized string flows to the GUI and how
it is concatenated with other strings.

6 DISCUSSION

In this section, we discuss several important issues that are
related to our research.

6.1 Limitations of Our Approach

The basis of our approach is string-taint analysis, which is
based on data-flow analysis. Since string-taint analysis is
not path-sensitive (assuming all paths are feasible), a data
source D of an initial output string S determined by string-
taint analysis may not be a real data source of S as the data
flow from D to S may be based on an infeasible path.
Furthermore, for a string operation whose inputs cannot be
determined statically, we can build only an approximate
FST for it that generates an overestimation of the output of
the string operation. In both of the above cases, string-taint
analysis may have to concede with inaccuracy, which then
may result in some false positives.

One possible way to further reduce this kind of false
positives is to use dynamic analysis [2]. The main
disadvantage of using dynamic analysis for locating need-
to-externalize constant strings is that dynamic analysis
requires a set of test data to cover possible usages of the
software application under analysis. In fact, developers
seldom use variables of other types to determine whether a
particular value of an initial output string is output to the
GUI. Thus, this disadvantage of string-taint analysis may
not result in many false positives in practice.

Another limitation is about transmitted strings, where a
label variable is used to determine which values of a
transmitted string are output to the GUI and which are not.
To deal with this situation, we developed a technique for
transmitted strings. Currently, our string-transmission
analysis is able to deal with the situation of string
transmission via objects through sockets. However, there

WANG ET AL.: LOCATING NEED-TO-EXTERNALIZE CONSTANT STRINGS FOR SOFTWARE INTERNATIONALIZATION WITH GENERALIZED... 531

Fig. 3. A complex string flow graph.

are still other ways to transmit strings across the network.

One popular way to transmit strings is to use a remote

function call such as RPC and RMI. Our approach can

address this situation with minor adaptation by matching

object names rather than socket numbers. Other transmis-

sion strategies such as SOAP and EventBus may require

more specific techniques.

6.2 String-Taint Analysis versus Data-Flow Analysis

In our approach, we leverage string-taint analysis to trace the
flows of string data from string constants to output API
methods. As indicated by the example in Section 2,
compared to the basic data-flow analysis, string-taint
analysis is able to precisely handle data-flows going through
string operations and thus reduce some false positives (e.g.,
the “CARD” in the example in Section 2). In the meantime,

string-taint analysis is also more expensive because it

requires the computation of possible values of strings and

FST simulation when handling string operations. According

to the performance results in Section 4.3.2, the cost of string-

taint analysis is acceptable for many real-world software

systems. However, it is still an open problem whether string-

taint analysis is more cost-effective than the basic data-flow

analysis for the target problem. To investigate this problem,

we need to implement an approach based on the basic data-

flow analysis and quantitatively compare the cost and

effectiveness of these two analyses for the target problem.

Furthermore, it is also unclear whether it is feasible to add

some lightweight string-operation-handling mechanisms to

the basic data-flow analysis to achieve both high precision

and high efficiency for the target problem.

6.3 String Splitting

One outstanding issue related to locating need-to-externa-

lize constant strings is string splitting. This issue comes

from the situation when a need-to-externalize constant

string is also involved in some internal processing logic in

the software. In such a situation, developers need to refactor

the code before actual translation of the constant string. An

illustration of typical string splitting cases are as below.

String item = “Header”;

String header = database.fetch(item);

panel.append(item+“:”+header);

532 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 4, APRIL 2013

Fig. 4. A string example graph for the need-to-externalize constant string “You have.”

TABLE 10
The Size Reduction from String Dependence Graphs

to String Example Graphs

The preceding code portion tries to create a panel with the
label of “Header:xxx,” in which “xxx” is the actual header
retrieved from the database. The developer uses the constant
string “Header” as both part of the panel label and a key to
fetch the actual header. Thus, if we translate “Header” to
another language, the statement String header = data-

base.fetch(item); may not execute properly.
In our empirical evaluation, string splitting cases are not

common, and for most of the need-to-externalize constant
strings, the developers simply replace the constant string
with a method call that read a string from supporting files.
But we do find string splitting cases. For example, the
17 strings that are reported to and verified by the
developers of Megamek are of string splitting cases. That
is to say, these 17 strings are used elsewhere besides being
presented on the GUI.

To address string splitting, we may need additional
analysis to locate those need-to-split constant strings.
Furthermore, it might also be possible to automate code
refactoring related to need-to-split constant strings for
software internationalization.

6.4 Soundness of Our Approach

The factors that will affect the soundness of our approach
are as follows.

First, for the part of generalized string-taint analysis, we
use the same underlying technique to propagate annota-
tions through FSTs as string-taint analysis, which is proven
to be sound [25]. Furthermore, our propagation rule on
productions is to update the annotation of the left-hand-
side nonterminal as the union of the annotations of all
nonterminals in the production, which is conservative.
Therefore, given the set of output API methods, this part of
our approach is sound, and is able to locate all the constant
strings and external inputs (user inputs, file inputs, network
inputs, etc.) that will flow to the GUI.

Second, string-transmission analysis can detect all the
network transmissions through explicit socket function
invocations. Our approach assumes that only objects are
transmitted through the network, so we may miss some
transmitted values of primitive type. When deciding
whether a transmitted string flows to the GUI, we con-
servatively exclude only the strings that are impossible to
flow to the GUI. However, if network transmission techni-
ques other than sockets are used in the application or the
transmission through sockets are implicit10 (as we discussed
in Section 6.1), our approach will not be able to detect such
transmissions and the soundness of the string transmission
analysis part in our approach will be compromised.

Third, for the part of string-comparison analysis, our
approach also leverages a conservative strategy that
locates all the string comparisons in the application and
reports a constant string to be need-to-externalize when-
ever it is compared with a known need-to-externalize
string. Therefore, if our string-taint analysis part and
string-transmission analysis part both generate sound
results, our string-comparison analysis is also sound and

is able to locate all the constant strings that are compared
with need-to-externalize strings.

Fourth, the soundness of our approach is related to our
basic assumption that only constant strings flowing to GUI
are need-to-externalize strings. From our empirical evalua-
tion, we discover that this assumption is generally correct,
but is not always sound. For example, in the Risk project,
we find that the filenames of those language-specific maps
are also need-to-externalize.

Finally, our filtering strategies also affects the soundness
of our approach. Although our approach does not use
aggressive filtering strategies, it is still difficult to ensure
that these strategies cannot filter out some need-to-
externalize constant strings.

To sum up, the three analysis parts of our approach are
sound if all the network transmissions are implemented
with sockets. Our basic assumption is not always sound due
to some project-specific issues, but the developers may add
new project-specific output API methods to make it sound
to their project. The soundness of filtering strategy is also
project-specific. Actually, developers can define project-
specific filtering strategies or even remove the filtering step
to ensure soundness.

Furthermore, due to the existence of string-splitting
cases, it may not always be safe to directly replace a need-
to-externalize constant string located by our approach with
a method call that reads the string from support files. To
detect string-splitting cases, it may be required to further
analyze destinations (e.g., database queries) other than the
GUI. If a constant string flows to both the GUI and some
other destination, there may be a string-splitting case. Due
to the rarity of string-splitting cases and expensiveness of
analyzing all the destinations besides the GUI, we do not do
systematic investigate string-splitting in this paper. Note
that the false positives reported in our empirical evaluation
are not related to string-splitting and may be easy for
developers to identify in practice.

6.5 Dealing with Other Programming Languages

Although our approach currently focuses on Java, it should
be principally feasible for us to extend our approach to
other programming languages, such as C#, C++, and C. In
those languages, it should be also be feasible to locate need-
to-externalize constant strings through tracing back from
output arguments. However, some adjustments may be
required. For example, in the C language, strings are
represented as arrays of characters, and more advanced
techniques to handle arrays may be needed. Furthermore,
as different languages have different library methods to
handle string operations, different techniques dealing with
string operations may also be needed.

7 RELATED WORK

In this section, we introduce research efforts that are related
to our work. These research efforts fall into the following
three categories: support for software internationalization,
research on string analysis, and dependence-based code-
element localization.

7.1 Support for Software Internationalization

Our work is an extension of the first reported effort directly
focusing on automatically locating need-to-externalize

WANG ET AL.: LOCATING NEED-TO-EXTERNALIZE CONSTANT STRINGS FOR SOFTWARE INTERNATIONALIZATION WITH GENERALIZED... 533

10. Implicit transmissions through sockets are transmissions through
socket-based techniques and libraries such as jRMI.

constant strings [22]. In this extension, we formulate our
adaptation of string-taint analysis as generalized string-
taint analysis, add new experimental subjects, and intro-
duce the visualization support of the approach. Based on
our initial work on software internationalization, we also
proposed a tool demo [23] which mainly focus on the
structure and implementation of the TranStrL tool, while in
this paper, we focus on the technical extensions on the
approach, the empirical study and the visualization.
Another recent work on locating need-to-externalize con-
stant strings in software internationalization [24] tries to
tackle the special difficulty of locating need-to-externalize
constant strings in web applications, which is based on the
technique in this paper, but its technical contribution is
about determining the appearance order of the constant
strings in the HTML texts, which is totally different from
this paper.

There have been a couple of books published on how to
internationalize a software application [5], [19]. These books
provide some guidelines on how to find need-to-externalize
constant strings and externalize them. Some researchers
analyzed the process of internationalization and presented
issues to be considered during the process, including
locating need-to-externalize strings [11], [4]. However, none
of them provides any automatic approach to locating need-
to-externalize strings.

There exist tools (e.g., GNU gettext,11 Java internationa-
lization API12) to help developers externalize need-to-
externalize constant strings after developers locate them.
Other tools such as KBabel13 help developers edit and
manage resource files (called PO files in KBabel) contain-
ing externalized constant strings. Some development
environments (e.g., Eclipse) provide help to locate and
externalize all constant strings in the code of an applica-
tion. However, not all of the constant strings need
translation. Our empirical results in Section 4 show that
in the real-world software applications studied, less than
half of the constant strings need translation. Thus, it will be
a waste of time for translators to translate all the constant
strings. Even worse, translation of some constant strings
may introduce bugs. For example, if the name of a field in
an SQL query for a database is translated into another
language, the software application may suffer from
runtime failures when retrieving data from the database.

7.2 Research on String Analysis

There are extensive research efforts on both the techniques
and the applications of string analysis.

7.2.1 Techniques

String analysis is a recent advance in static data-flow
analysis [13]. Christensen et al. [1] first proposed string
analysis, which is an approach for obtaining possible values
of a string variable. Minamide [15] suggested to simulate
string operations in an extended CFG with FSTs, and
implemented a string analyzer for PHP code to check
contents of dynamically generated web pages. Based on

Minamide’s work, Wassermann and Su developed string-
taint analysis [25] to determine whether the value a string
variable may come from insecure source. Most recently,
Tateishi et al. [18] further developed path-sensitive and
index-sensitive string analysis based on monadic second-
order logic to more precisely predict the possible values of
string variables. Veanes et al. [20] proposed symbolic finite-
state transducers and related algorithms which may
provide the basis for further enhancement on string
analysis. Compared to these efforts, the work in our paper
is most related to the string-taint analysis. Specifically, we
extend string-taint analysis conceptually to allow non-
Boolean annotations so that we can determine the locations
of all the data sources of a string variable.

7.2.2 Applications

The existing applications of string analysis mainly fall into
two categories: software security enhancement and under-
standing dynamically generated strings.

In the category of software security enhancement, there
have been a number of efforts trying to detect SQL-injection
vulnerabilities [10], [29], [25], [14], and cross-site scripting
vulnerabilities [26], [14]. More recently, Yu et al. used string
analysis to summarize the signatures of possible vulner-
abilities [30] and provide patches to fix them [31].
Hooimeijer et al. [12] developed BEK, which is able to
check whether a given santinizer can effectively block
illegal string values.

In the category of understanding dynamically generated
strings, Gould et al. [8] used string analysis to check the
correctness of dynamically generated SQL query strings.
Geay et al. [7] proposed to use string analysis and slicing to
precisely acquire access-control permissions of software
components. Their approach also used annotations to label
the program locations related to the generation of string
variables. However, their approach annotated both string
variable/constants and string operations and did not use
the taint-propagation technique of string-taint analysis to
propagate annotations through FSTs.

Compared to these research efforts on the applications of
string analysis, we apply string-taint analysis on a new
problem (i.e., locating need-to-externalize constant strings)
and we further develop techniques to cope with practical
complications in the problem.

7.3 Dependence-Based Code-Element Localization

Our approach can also be viewed as determining a subset of
constant strings that have certain data dependencies with
the GUI. From this perspective, our approach is also related
to the research efforts on dependence-based code-element
localization. Program slicing techniques try to locate a
number of code elements that have data or control
dependencies with a certain variable [27]. O’Callahan and
Jackson [17] proposed a technique called abstract type
determination to decide the semantic role of a variable in
the code from its dependence on other variables. Guo et al.
[9] further improved the approach to the same problem
using dynamic data-flow analysis. More recently, Gabel
et al. [6] proposed dependence-based code clone detecting
techniques which can locate code element groups with
similar dependence structure. Wang et al. [21] proposed the

534 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 4, APRIL 2013

11. http://www.gnu.org/software/gettext/manual/gettext.html.
12. http://java.sun.com/docs/books/tutorial/i18n/index.html.
13. http://kbabel.kde.org/.

Dependence Query Language to describe dependence-
related constraints and proposed an approach to locate all
the code elements that satisfy given constraint. Our
approach differs from all these preceding approaches in
two main aspects. First, our approach targets at a specific
task in software development and deals with only depen-
dencies related to the task, while all these approaches are
general-purpose approaches and may be applicable for
different tasks in software development. Second, our
approach is based on various techniques to analyze strings
in source code, while these approaches do not focus on
analyzing strings.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we present an approach to automatically
locating need-to-externalize constant strings. Our approach
is based on generalized string-taint analysis, and includes
three practical techniques to cope with complications in the
targeted problem. We evaluated our approach on seven
real-world open-source applications: ArtOfIllusion, JFree-
Chart, Megamek, Risk, RText, StoryBook, and TV-Browser.
The empirical results demonstrate that our approach is able
to locate most of the constant strings externalized by the
developers, with a small number of false positives and false
negatives. We also demonstrate that it is feasible to
visualize the results in our analysis to provide further help
for developers to internationalize software applications.

In future work, we plan to extend our approach to
address the following research issues. First, as indicated in
Section 6.2, we plan to quantitatively compare string-taint
analysis and data-flow analysis, and investigate techniques
specific to the target problem to achieve better cost-
effectiveness. Second, we plan to extend our tool for
analyzing Java library code because the current inability
to trace into Java library code causes some false negatives.
Third, we plan to extend our approach to support other
ways of string transmission across the network. Fourth, we
plan to further automate the collection of the output API
methods required by our approach. In particular, we plan to
mine the list of output API methods from existing inter-
nationalized software applications in which we can trace
forward from the externalized strings to the methods that
eventually send the strings to the GUI. Fifth, as there are
factors other than text translation that affect the quality of
software internationalization (e.g., date/time, number for-
mats, different colors for emphasis in different cultures), we
plan to further address such problems. Finally, we also plan
to systematically investigate the string splitting issue.

ACKNOWLEDGMENTS

The authors from Peking University are sponsored by the
National Basic Research Program of China (973) No.
2009CB320703, the Science Fund for Creative Research
Groups of China No. 61121063, and the National Science
Foundation of China No. 90718016. Tao Xie’s work is
supported in part by US National Science Foundation (NSF)
grants CNS-0720641, CCF-0725190, CCF-0845272, CCF-
0915401, CNS-0958235, and US Army Research Office grant
W911NF-08-1-0443. This research is supported by the
National Science Foundation of China No. 61228203.

REFERENCES

[1] A. Christensen, A. Møller, and M. Schwartzbach, “Precise
Analysis of String Expressions,” Proc. Static Analysis Symp.,
pp. 1-18, 2003.

[2] J.A. Clause, W. Li, and A. Orso, “Dytan: A Generic Dynamic Taint
Analysis Framework,” Proc. Int’l Symp. Software Testing and
Analysis , pp. 196-206, 2007.

[3] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck,
“Efficiently Computing Static Single Assignment Form and the
Control Dependence Graph,” ACM Trans. Programming Languages
and Systems, vol. 13, no. 4, pp. 451-490, Oct. 1991.

[4] V. Dagiene and R. Laucius, “Internationalization of Open Source
Software: Framework and Some Issues,” Proc. Int’l Conf. Informa-
tion Technology: Research and Education, pp. 204-207, 2004.

[5] B. Esselink, A Practical Guide to Software Localization: For
Translators, Engineers and Project Managers. John Benjamins
Publishing Co, 2000.

[6] M. Gabel, L. Jiang, and Z. Su, “Scalable Semantic Code Clone,”
Proc. Int’l Conf. Software Eng., pp. 321-330, 2008.

[7] E. Geay, M. Pistoia, T. Tateishi, B. Ryder, and D. Julian, “Modular
String-Sensitive Permission Analysis with Demand-Driven Preci-
sion,” Proc. Int’l Conf. Software Eng., pp. 177-187, 2009.

[8] C. Gould, Z. Su, and P.T. Devanbu, “Static Checking of
Dynamically Generated Queries in Database Applications,” Proc.
Int’l Conf. Software Eng., pp. 645-654, 2004.

[9] P. Guo, J.H. Perkins, S. McCamant, and M.D. Ernst, “Dynamic
Inference of Abstract Types,” Proc. Int’l Symp. Software Testing and
Analysis, pp. 255-265, 2006.

[10] W.G.J. Halfond and A. Orso, “AMNESIA: Analysis and Monitor-
ing for Neutralizing SQL-Injection Attacks,” Proc. IEEE/ACM Conf.
Automated Software Eng., pp. 174-183, 2005.

[11] J. Hogan, C. Ho-Stuart, and B. Pham, “Current Issues in Software
Internationalisation,” Proc. Australian Computer Science Conf., 2003.

[12] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes,
“Fast and Precise Sanitizer Analysis with BEK,” Proc. USENIX
Conf. Security, 2011.

[13] J. Kam and J. Ullman, “Global Data Flow Analysis and Iterative
Algorithms,” J. ACM, vol. 23, no. 1, pp. 158-171, Jan. 1976.

[14] A. Kie _zun, P.J. Guo, K. Jayaraman, and M. Ernst, “Automatic
Creation of SQL Injection and Cross-Site Scripting Attacks,” Proc.
Int’l Conf. Software Eng., pp. 199-209, 2009.

[15] Y. Minamide, “Static Approximation of Dynamically Generated
Web Pages,” Proc. Int’l Conf. World Wide Web, pp. 432-441, 2005.

[16] F. Nielson, H. Nielson, and C. Hankin, Principles of Program
Analysis. Springer, 1999.

[17] R. O’Callahan and D. Jackson, “Lackwit: A Program Under-
standing Tool Based on Type Inference,” Proc. Int’l Conf. Software
Eng., pp. 338-348, 1997.

[18] T. Tateishi, M. Pistoia, and O. Tripp, “Path- and Index-Sensitive
String Analysis Based on Monadic Second-Order Logic,” Proc.
Int’l Symp. Software Testing and Analysis, pp. 166-176, 2011.

[19] E. Uren, R. Howard, and T. Perinotti, Software Internationalization
and Localization: An Introduction. Van Nostrand Reinhold, 1993.

[20] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N. Bjorner,
“Symbolic Finite State Transducers: Algorithms and Applica-
tions,” Proc. ACM SIGPLAN-SIGACT Symp. Principles of Program-
ming Languages, pp. 137-150, 2012.

[21] X. Wang, D. Lo, J. Cheng, L. Zhang, H. Mei, and Y. Jeffery,
“Matching Dependence-Related Queries in the System Depen-
dence Graph,” Proc. IEEE/ACM Conf. Automated Software Eng.,
pp. 457-466, 2010.

[22] X. Wang, L. Zhang, T. Xie, H. Mei, and J. Sun, “Locating Need-to-
Translate Constant Strings for Software Internationalization,”
Proc. Int’l Conf. Software Eng., pp. 353-363, 2009.

[23] X. Wang, L. Zhang, T. Xie, H. Mei, and J. Sun, “TranStrL: An
Automatic Need-to-Translate String Locator for Software Inter-
nationalization,” Proc. Int’l Conf. Software Eng., pp. 555-558, 2009.

[24] X. Wang, L. Zhang, T. Xie, H. Mei, and J. Sun, “Locating Need-to-
Translate Constant Strings in Web Applications,” Proc. Int’l Symp.
the Foundations of Software Eng., pp. 87-96, 2010.

[25] G. Wassermann and Z. Su, “Sound and Precise Analysis of Web
Applications for Injection Vulnerabilities,” Proc. ACM Conf.
Programming Language Design and Implementation, pp. 32-41, 2007.

[26] G. Wassermann and Z. Su, “Static Detection of Cross-Site
Scripting Vulnerabilities,” Proc. Int’l Conf. Software Eng., pp. 171-
180, 2008.

WANG ET AL.: LOCATING NEED-TO-EXTERNALIZE CONSTANT STRINGS FOR SOFTWARE INTERNATIONALIZATION WITH GENERALIZED... 535

[27] M. Weiser, “Program Slicing,” Proc. Int’l Conf. Software Eng.,
pp. 439-449, 1981.

[28] R. Wilson and M. Lam, “Efficient Context-Sensitive Pointer
Analysis for C Programs,” Proc. ACM SIGPLAN Conf. Program-
ming Language Design and Implementation, pp. 1-12, 1995.

[29] Y. Xie and A. Aiken, “Static Detection of Security Vulnerabilities
in Scripting Languages,” Proc. USENIX Security Symp., pp. 176-
192, 2006.

[30] F. Yu, M. Alkhalaf, and T. Bultan, “Generating Vulnerability
Signatures for String Manipulating Programs Using Automata-
Based Forward and Backward Symbolic Analyses,” Proc. ACM/
IEEE Conf. Automated Software Eng., pp. 605-609, 2009.

[31] F. Yu, M. Alkhalaf, and T. Bultan, “Patching Vulnerabilities with
Sanitization Synthesis,” Proc. Int’l Conf. Software Eng., 2011.

Xiaoyin Wang received the BS degree from the
Department of Computer Science at the Harbin
Institute of Technology in July 2006. Since
September 2006, he has been working toward
the PhD degree in the School of Electronic
Engineering and Computer Science at Peking
University. His research interests include the
area of software engineering, including software
maintenance, software mining, and software
refactoring.

Lu Zhang received the BS and PhD degrees
in computer science from Peking University in
1995 and 2000, respectively. He is a professor in
the Institute of Software, School of Electronics
Engineering and Computer Science, Peking
University, P.R. China. He was a visiting
postdoctoral researcher in the School of Com-
puting and Mathematical Sciences, Oxford
Brookes University, United Kingdom, from Sep-
tember 2000 to February 2001. From April 2001

to January 2003, he worked as a postdoctoral researcher in the
Department of Computer Science, University of Liverpool, United
Kingdom. His research interests include testing of software components
and component-based software, program comprehension, software
maintenance and evolution, software reuse, and component-based
software development.

Tao Xie received the BS degree from Fudan
University in 1997, the MS degree from Peking
University in 2000, and the PhD degree from
the University of Washington in 2005. He is an
associate professor in the Department of Com-
puter Science at North Carolina State University.
His primary research interest is software en-
gineering, with an emphasis on software testing,
program analysis, and software analytics. He is
a senior member of the IEEE and the ACM.

Hong Mei received the BA and MS degrees in
computer science from the Nanjing University of
Aeronautics and Astronautics, in 1984 and 1987,
respectively, and the PhD degree in computer
science from Shanghai Jiaotong University in
1992. From 1992 to 1994, he was a postdoctoral
research fellow at Peking University. Since
1997, he has been a professor and PhD advisor
in the Department of Computer Science and
Engineering at Peking University. He has also

served as dean of the School of Electronics Engineering and Computer
Science and the Capital Development Institute at Peking University,
respectively. His current research interests include software engineering
and software engineering environment, software reuse and software
component technology, distributed object technology, software produc-
tion technology, and programming language. He is a senior member of
the IEEE.

Jiasu Sun received the BS and MS degrees
from Peking University. He is a professor in the
Institute of Software, School of Electronics
Engineering and Computer Science, Peking
University, P.R. China.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

536 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 4, APRIL 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

