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Abstract—Comparing behaviors of program versions has become an important task in software maintenance and regression testing.
Black-box program outputs have been used to characterize program behaviors and they are compared over program versions in
traditional regression testing. Program spectra have recently been proposed to characterize a program’s behavior inside the black box.
Comparing program spectra of program versions offers insights into the internal behavioral differences between versions. In this paper,
we present a new class of program spectra, value spectra, that enriches the existing program spectra family. We compare the value
spectra of a program’s old version and new version to detect internal behavioral deviations in the new version. We use a deviation-
propagation call tree to present the deviation details. Based on the deviation-propagation call tree, we propose two heuristics to locate
deviation roots, which are program locations that trigger the behavioral deviations. We also use path spectra (previously proposed
program spectra) to approximate the program states in value spectra. We then similarly compare path spectra to detect behavioral
deviations and locate deviation roots in the new version. We have conducted an experiment on eight C programs to evaluate our
spectra-comparison approach. The results show that both value-spectra-comparison and path-spectra-comparison approaches can
effectively expose program behavioral differences between program versions even when their program outputs are the same, and our

value-spectra-comparison approach reports deviation roots with high accuracy for most programs.

Index Terms—Program spectra, regression testing, software testing, empirical studies, software maintenance.

1 INTRODUCTION

EGRESSION testing retests a program after it is modified.

In particular, regression testing compares the behavior
of a new program version to the behavior of an old program
version to assure that no regression faults are introduced.
Traditional regression testing techniques use program
outputs to characterize the behaviors of programs: When
running the same test on two program versions produces
different outputs (the old version’s output is sometimes
stored as the expected output for the test), behavior
deviations are exposed. When these behavior deviations
are unexpected, developers identify them as regression
faults, and may proceed to debug and fix the exposed
regression faults. When these behavior deviations are
intended, for example, being caused by bug-fixing program
changes, developers can be assured so and may update the
expected outputs of the tests.

However, an introduced regression fault might not be
easily exposed: Even if a program-state difference is caused
immediately after the execution of a new faulty statement,
the fault might not be propagated to the observable outputs
because of the information loss or hiding effects. This
phenomenon has been investigated by various fault models
[20], [7], [29], [28]. Recently, a program spectrum has been
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proposed to characterize a program’s behavior inside the
black box of program execution [2], [24]. The name of
spectrum comes from path spectrum, which is a distribution
of paths derived from a run of the program. Some other
program spectra, such as branch, data dependence, and
execution trace spectra, have also been proposed in the
literature [2], [13], [24].

In this paper, we propose a new class of program spectra
called value spectra. The value spectra enrich the existing
program spectra family [2], [13], [24] by capturing internal
program states during a test execution. An internal program
state is characterized by the values of the variables in scope.
Characterizing behavior using values of variables is not a
new idea. For example, Calder et al. [3] propose value
profiling to track the values of variables during program
execution. Our new approach differs from value profiling in
two major aspects. Instead of tracking variable values at the
instruction level, our approach tracks internal program
states at each user-function entry and exit as the value
spectra of a test execution. Instead of using the information
for compiler optimization, our approach focuses on regres-
sion testing by comparing value spectra from two program
versions.

When we compare the dynamic behavior of two
program versions, a deviation is the difference between the
value of a variable in a new program version and the
corresponding one in an old version. We compare the value
spectra from a program’s old version and new version, and
use the spectra differences to detect behavioral deviations in
the new version. We use a deviation-propagation call tree to
show the details of the deviations.

Some deviations caused by program changes might be
intended such as by bug-fixing changes and some devia-
tions might be unintended such as by introduced regression
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faults. To help developers determine if the deviations are
intended, it is important to present to developers the
correlations between deviations and program changes. A
deviation root is a program location in the new program
version that triggers specific behavioral deviations. A
deviation root is among a set of program locations that
are changed between program versions. We propose two
heuristics to locate deviation roots based on the deviation-
propagation call tree. Identifying the deviation roots for
deviations can help to understand the reasons for the
deviations and determine whether the deviations are
regression-fault symptoms or just expected. Identified
deviation roots can be additionally used to locate regression
faults if there are any.

A program state at a specific execution point can be
approximated by using the path that the program execution
traverses from the beginning of the program to the
execution point. Then, in value spectra, we can replace
the state representation using variable values with the state
representation using traversed paths. The resulting path
spectra correspond to complete-path spectra proposed in
previous work [2], [13], [24]. We can similarly compare path
spectra for exposing behavioral deviations and locating
deviation roots.

This paper makes the following main contributions:

e We propose a new class of program spectra, called
value spectra, to enrich the existing program spectra
family [2], [13], [24] and extend the value profiling
[3] used in compiler optimization. We present three
variants of value spectra.

e  We compare the value spectra from a program’s old
version and new version to detect behavioral
deviations in the new version. We use a deviation-
propagation call tree to show the details of the
deviations.

e We propose two heuristics to locate deviation roots
based on the deviation-propagation call tree.

e We extend previously proposed path spectra [2],
[13], [24] to approximate value spectra and compare
path spectra for detecting behavioral deviations and
locating deviation roots.

e We conducted an experiment on eight C programs to
evaluate our new approach. The experimental
results show that our spectra-comparison approach
can effectively report internal behavioral differences
between program versions even when their program
outputs are the same. Our deviation-root localization
based on value-spectra comparison reports devia-
tion roots with high accuracy for most programs.

The next section presents background information on
regression testing and program spectra. Section 3 proposes
value spectra. Section 4 describes how we exploit the
differences between value spectra of the same test on two
program versions. Section 5 proposes an approximation of
value spectra by extending previously proposed path
spectra [2], [13], [24]. Section 6 describes how we compare
path spectra of the same test on two versions. Section 7
describes the experiment that we conducted to evaluate our
spectra-comparison approach. Section 8 discusses related
work and, then, Section 9 concludes.
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2 BACKGROUND

2.1 Regression Testing

Regression testing validates a modified program by retest-
ing it. Regression testing is used to ensure that no new
errors are introduced to a previously tested program when
the program is modified. Because it is often expensive to
rerun all tests after program modifications, one major
research effort in regression testing is to reduce the cost of
regression testing without sacrificing the benefit or sacrifi-
cing as little benefit as possible. For example, when some
parts of a program are changed, regression test selection
techniques [4], [25], [12] select a subset of the existing tests
to retest the new version of the program. A safe regression
test selection technique [25] ensures that the selected subset
of tests contain all the tests that execute the code that was
modified from the program’s old version to new version.
Sometimes the available resource might not even allow
rerunning the subset of regression tests selected by
regression test selection techniques. Recently, regression
test prioritization techniques [33], [27], [8] have been
proposed to order regression tests such that their execution
provides benefits such as earlier detection of faults.
Regression-test quality is not always sufficient in ex-
hibiting output differences caused by newly introduced
errors in a program. Some previous test-generation ap-
proaches generate new tests to exhibit behavior deviations
caused by program changes. For example, DeMillo and
Offutt [7] developed a constraint-based approach to gen-
erate unit tests that can exhibit program-state deviations
caused by the execution of a slightly changed program line
(in a mutant produced during mutation testing [6], [14]).
Korel and Al-Yami [17] created driver code that compares
the outputs of two program versions and then leveraged the
existing white-box test-generation approaches to generate
tests for which the two versions will produce different
outputs. However, this type of test-generation problem is
rather challenging and it is in fact an undecidable problem.
The research in this paper tries to tackle the problem by
exploiting the existing regression tests and checking more-
detailed program behavior exercised inside the program.

2.2 Program Spectra

A program spectrum has been proposed to characterize a
program’s behavior [2], [24]. Although a program spectrum
may characterize a program’s behavior statically, a program
spectrum is usually used in characterizing dynamic
behavior exhibited by the execution of a test or multiple
tests. One of the earliest proposed program spectra are path
spectra [2], [24], [13]. Path spectra are represented by the
executed paths in a program. There are variants of path
spectra depending on whether to use the complete paths
[13] or partial paths (loop-free intraprocedural paths) [2],
[24], as well as whether to track the frequency of path
occurrences. Harrold et al. [13] later proposed several types
of program spectra (such as branch spectra, data-depen-
dence spectra, execution-trace spectra, and output spectra)
to investigate their potential applications in regression
testing. Branch spectra consist of the set of conditional
branches exercised by program execution. Data-dependence
spectra consist of the set of definition-use pairs exercised by
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program execution. Execution-trace spectrum consists of the
sequence of program statements exercised by program
execution. These program spectra as well as path spectra
are defined by using the structural entities exercised by
program execution. We refer to these types of program
spectra as syntactic spectra. Harrold et al. [13] also proposed
output spectra, which consist of the outputs produced by
program execution. Ernst [9] developed the Daikon tool to
detect likely program invariants from program execution
and these dynamically detected invariants can also be
considered as program spectra. Both output spectra and
program invariants are defined by using program states
(variable values) directly or indirectly. We refer these types
of program spectra as semantic spectra.

Harrold et al. [13] define subsumption relationships
among program spectra. Spectra type S1 subsumes spectra
type S2 iff whenever the S2 spectra for program P, version
P’,and input i differ, the S1 spectra for P, P’, and i differ.
Spectra type S1 strictly subsumes spectra type S2 if S1
subsumes S2 and for some program P, version P, and i,
the S1 spectra differ but the S2 spectra do not. Spectra
types S1 and S2 are incomparable if neither S1 strictly
subsumes S2 nor S2 strictly subsumes S1. In this work, we
additionally define equivalence relationships among pro-
gram spectra. Spectra types S1 and S2 are equivalent if S1
subsumes S2 and S2 subsumes S1.

Harrold et al. [13] show that execution-trace spectra
strictly subsume any other spectra. Path spectra strictly
subsume branch spectra. Data-dependence spectra are
incomparable to path spectra, branch spectra, or output
spectra. Output spectra are incomparable to path spectra,
branch spectra, or data-dependence spectra. In general,
syntactic spectra except for execution-trace spectra are
incomparable to semantic spectra. In addition, program
invariants are incomparable to output spectra.

3 VALUE SPECTRA

This section introduces a new type of semantic spectra,
value spectra, which are used to characterize program
behavior. We first describe internal program state transi-
tions in the granularity of user functions. Based on the
internal program state transitions, we next define three
variants of value spectra.

3.1 Internal Program State Transitions

The execution of a program can be considered as a
sequence of internal program states. Each internal
program state comprises the program’s in-scope variables
and their values at a particular execution point. Each
program execution unit (in the granularity of statement,
block, code fragment, function, or component) receives an
internal program state and then produces a new one. The
program execution points can be the entry and exit of a
user-function execution when the program execution
units are those code fragments separated by user-function
call sites. Program output statements (usually output of
I/0O operations) can appear within any of those program
execution units. Since it is relatively expensive in practice
to capture all internal program states between the
executions of program statements, we focus on internal

#include <stdio.h>

1 int max(int a, int b) {

2 if (a >= b) {

3 return a;

4 } else {

5 return b;

6 }

7}

8 int main(int argc, char xargv[]) {
9 int i, j;

10 if (argc !'= 3) {

11 printf ("Wrong arguments!") ;
12 return 1;

13 }

14 i = atoi(argvI[l]);

15 j = atoi(argv[2]);

16 if (max(i,j) >= 0){

17 if (max(i, j) == 0){
18 printf("o") ;

19 } else {

20 printf("1");

21 }

22 } else {

23 printf("-1");

24 }

25 return 0;

26 }

Fig. 1. A sample C program.

program states in the granularity of user functions,
instead of statements.

A function-entry state S is an internal program state at
the entry of a function execution. S““"¥ comprises the
function’s argument values and global variable values. A
function-exit state S is an internal program state at the exit
of a function execution. S comprises the function return
value, updated argument values, and global variable
values. Note that S does not consider local variable
values. If any of the preceding variables at the function
entry or exit is of a pointer type, the S or S«
additionally comprises the variable values that are directly
or indirectly reachable from the pointer-type variable. A
function execution (S, Sty is a pair of a function call’s
function-entry state S and function-exit state S

To illustrate value spectra, we use a sample C program
shown in Fig. 1. This program receives two integers as
command-line arguments. The program outputs -1 if the
maximum of two integers is less than 0, outputs 0 if the
maximum of them is equal to 0, and outputs 1 if the
maximum of them is greater than 0. When the program
does not receive exactly two command-line arguments, it
outputs an error message.
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argc | 3 0 arge | 3
argv[1] «o” 1 argv[1] «o”
argv(2] . argv[2]
“1” 1 ° “1”
.9 ret 0
main max max max max main
entry entry exit entry exit exit
state state state state state

state

max function exec-1

max function exec-2

N

main function exec

Fig. 2. Internal program state transitions of the sample C program
execution with input 70 1~.

Fig. 2 shows the internal program state transitions of
the sample program with the command line arguments of
70 1”. In the program execution, the main function calls
the max function twice with the same arguments, and
then outputs ”1” as is shown inside the cloud in Fig. 2.

3.2 Value Spectra Types

We propose a new class of semantic spectra, value spectra,
based on exercised internal program states. Value spectra
track the variable values in internal program states, which
are exercised as a program executes.

We propose three new variants of value spectra:

o  User-function value hit spectra (in short as value hit
spectra). Value hit spectra indicate whether a user-
function execution is exercised.

o  User-function value count spectra (in short as value
count spectra). Value count spectra indicate the
number of times that a user-function execution is
exercised.

o  User-function value trace spectra (in short as value trace
spectra). Value trace spectra record the sequence of
the user-function executions traversed as a program
executes.

Table 1 shows different value spectra and output spectra
for the sample C program execution with input 70 17. We
represent a user-function execution using the following form:

funcname (entry(argvals) ,exit (argvals, ret))

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31,
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where funcname represents the function name, argvals
after entry represents the argument values and global
variable values at the function entry, argvals after exit
represents the updated argument values and global variable
values at the function exit, and ret represents the return
value of the function. Function executions in value hit
spectra or value count spectra do not preserve order, while
value trace spectra do preserve order. In value count
spectra, a count marker of ”* num” is appended to the end
of each function execution to show that the function
execution is exercised num times. Note that, if we change
the second max function call from max (i, j) tomax(j,1i),
we will have two distinct entities for max in the value hit
and value count spectra. It is because these two function
executions will become distinct with different function-
entry or function-exit states. In value trace spectra, ”Vv”
markers are inserted in the function-execution sequence to
indicate function execution returns [23]. The value trace
spectra for the sample program shows that main calls max
twice. Without these markers, the same function-execution
sequence would result from main calling max and max
calling max.

The value trace spectra strictly subsume the value
count spectra, and the value count spectra strictly
subsume the value hit spectra. The output spectra are
incomparable with any of the three value spectra since the
program’s output statements inside a particular user
function body might output some constants or variable
values that are not captured in that user function’s entry
or exit state. For example, when we shulffle those print£
statements in the main function body, the program still
has the same value spectra but different output spectra.
On the other hand, the executions with different value
spectra might have the same output spectra. However,
when those function bodies containing output statements
are not modified in version P’, the value trace spectra
strictly subsumes the output spectra. In addition, if we
also collect the entry and exit states of system output
functions in the value trace spectra, the value trace spectra
strictly subsume the output spectra.

Value trace spectra strictly subsume dynamically de-
tected invariants because Ernst’s Daikon tool [9] generalizes
invariants from variable values that define value trace
spectra. Because Daikon infers invariants for each function
separately and the order among function executions does
not affect the inference results, value count spectra also
strictly subsume dynamically detected invariants. How-

TABLE 1
Value Spectra for the Sample Program with Input 70 1~

spectra profiled entities
value hit main (entry (3,"0","1") ,exit(3,"0","1",0)), max(entry(0,1),exit(0,1,1))
value count | main (entry (3,"0","1"),exit(3,"0","1",0))*1, max(entry(0,1),exit(0,1,1))*2

value trace | main (entry (3,"0",

max (entry(0,1),exit(0,1,1)),

"1") ,exit(3, non’

Vv, V

"1",0)), max(entry(0,1),exit(0,1,1)), V,

nqn

output




XIE AND NOTKIN: CHECKING INSIDE THE BLACK BOX: REGRESSION TESTING BY COMPARING VALUE SPECTRA 5

ever, value hit spectra are not comparable to dynamically
detected invariants because the number of data samples can
affect Daikon’s inference results [9]. For example, after we
eliminate the second max method call by caching the return
value of the first max method call, we will have the same
value count spectra but Daikon might infer fewer invariants
for max when running the two program versions with input
"0 1" because too few data samples exhibit some originally
inferred invariants.

Execution-trace spectra strictly subsume any other
program spectra, including the three value spectra. Other
syntactic spectra, such as branch, path, and data-depen-
dence spectra are incomparable with any of the three value
spectra. For example, when we change the statement of 1 =
atoi(argv[l]) toi =atoi(argv[l]) + 1, we will have
the same traditional syntactic spectra, but different value
spectra with input "0 1” running on the two program
versions. On the other hand, when we move the statement
of printf (”1”) from within the inner else branch to
after the inner else branch, and add a redundant statement
i =1 + 1 after the printf (”1”) statement, we will have
different traditional syntactic spectra, but the same value
spectra with input "0 1” running on the two program
versions.

4 VALUE SPECTRA DIFFERENCES

This section presents how we exploit the differences
between value spectra of the same test on two program
versions. We first describe how we compare value spectra.
We then describe the deviation propagations exhibited by
spectra differences. We finally present two heuristics to
locate deviation roots based on deviation propagation.

4.1 Spectra Comparison

In this paper, we primarily focus on comparing value
spectra from a program’s old version and new version
when we run the same test on these versions. We need to
compare function executions from two program versions
when comparing the value spectra from these versions. We
can reduce the comparison of two function executions to the
comparison of the function names, signatures, and the
corresponding variable values in the function-entry and
function-exit states from these two function executions. We
next formally represent and compare function executions.
To represent a program state, we adapt Zimmermann
and Zeller’s formal notation for representing a program
state as a rooted memory graph [36], where a vertex
represents a value in memory and an edge between two
vertices represents a reference between the values. For-
mally, let G = (V, E,root) be a memory graph including a
set V of vertices, a set E of edges, and a dedicated vertex
root. Each vertex ve€ V is a triple (val,tp,addr), which
represents a value val of type tp at memory address addr.
Each edge e € E is also a triple (v, v, 0p), where vy,v, € V
are the starting and ending vertices of the edge and op is the
name for the edge, being the variable name of the reference
associated with the edge. A rooted memory graph for a
function-entry state has a dedicated vertex root € V' that
references the function’s arguments and global variables. A

rooted memory graph for a function-entry state has a
dedicated vertex root € V' that references the function’s
return, arguments, and global variables. We perform a
linearization algorithm [34] to linearize the rooted memory
graph for a function-entry or function-exit state into a
sequence, which is the representation of the state. The
algorithm traverses the rooted memory graph starting from
the root in the depth-first manner. For each first-time
encountered vertex v = (val,tp,addr), we put into the
sequence the name of the vertex (obtained by using the
names on the path from the root vertex to v') and the value
val. If an encountered vertex has been visited before, instead
of putting val into the sequence, we put into the sequence
the name of that vertex during the first-time visit. In the end
of the graph traversal, the resulting sequence is the state
representation.

Two states S and S, are equivalent represented as S; =
S, if and only if their state representations are the same;
otherwise are nonequivalent, represented as S; # S;. Two
function executions f; : (S7""Y, S5y and fy : (S5, S5t
are equivalent if and only if they have the same function
name and signature, S""Y = S5, and S¢*"* = S§¥*. The
comparison of value count spectra additionally considers
the number of times that equivalent function executions are
exercised. Given a function execution in the new version,
the compared function execution in the old version is the
one that has the same function name, signature, and
function-entry state. If we cannot find such a function
execution in the old version, the compared function
execution is an empty function execution. An empty function
execution has a different function name, function signature,
function-entry state, or function-exit state from any other
regular function executions.

The comparison of value trace spectra further considers
the calling context and sequence order in which function
executions are exercised. If we want to determine whether
two value trace spectra are the same, we can compare the
concatenated function-execution sequences of two value
traces. If we want to determine the detailed function-
execution differences between two value trace spectra, we
can use the constructed dynamic call tree and the GNU
Diffutils [11] to compare the function-execution traces of
two value trace spectra. After the comparison, when a
function execution f is present in Version a but absent in
Version b, we can consider that an empty function
execution in Version b is compared with f in Version a.

4.2 Deviation Propagation

Assume  fpe, 1 (Sv STty is a function execution in a
program’s new version and fuq: (S5, SN s its
compared function execution in the program’s old
version. If f,., and fy4 are equivalent, then f,., is a
nondeviated function execution. If f.., and fy; are not
equivalent, then f,., is a deviated function execution. We
have categorized a deviated function execution into one of
the following two types:

1. The path is constructed by using the sequence of vertices in the stack
maintained during the depth-first search.
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O main
| O initialize

|0 alt_sep test

L
1

O main

|0 initialize

| | O ALIM
| O Own_Below Threat

(The execution of the 58th test)

| O Non Crossing Biased Climb

| |_O Inhibit Biased Climb

| |_O Own Above Threat

| O Non_Crossing Biased Descend

| |_O Inhibit Biased Climb

O Own_ Below_ Threat-------- [dev follower]
O ALIM---------=--=--------~ [dev follower]

|__ O Own_Above Threat

(The execution of the 91st test)

| 0 alt sep test------------------- [dev container]
| O Non Crossing Biased Climb
| |_O Inhibit Biased Climb

| |__O Own_Above Threat

| O Non Crossing Biased Descend- [dev container]
| O Inhibit Biased Climb

| O Own Below Threat

Fig. 3. Value-spectra-based deviation-propagation call trees of a new program version (the ninth faulty version) of the tcas program.

e Deviation container. f,., is a deviation container if
Sentry = SV but Serit £ St If a function execu-
tion is identified to be a deviation container,
developers can know that a certain behavioral
deviation occurs inside the function execution. Note
that when there is a certain behavioral deviation
inside a function execution, the function execution
might not be observed to be a deviation container,
since the behavioral deviation might not be propa-
gated to the function exit.

e  Deviation follower. f., is a deviation follower if
Sentry = STV Tf a function execution is identified to
be a deviation follower, developers can know that a
certain behavioral deviation occurs before the func-
tion execution. For value count spectra particularly,
a function execution in a program’s new version can
be categorized as a deviation follower if its count is
different from the count of the compared function
execution from the old program version. We need to
use a matching technique (similar as the one used in
the value trace spectra comparison) to identify
which particular function executions in one version
are absent in the other version.

The details of value spectra differences can provide
insights into deviation propagation in the execution of the
new program version. To provide such details, we attach
deviation information to a dynamic call tree, where a vertex
represents a single function execution and an edge
represents calls between function executions. From the
trace collected during a test execution, we first construct a
dynamic call tree and then annotate the call tree with
deviation information to form a deviation-propagation call
tree. Fig. 3 shows the deviation-propagation call trees of two
test executions on a new (faulty) version of the tcas
program. The tcas program, its faulty versions, and test
suite are contained in a set of siemens programs [15],
which are used in the experiment described in Section 7. In
the call trees, each node (shown as 0) is associated with a
function execution, and parent node calls its children nodes.
For brevity, each node is marked with only the correspond-
ing function name. The execution order among function
executions is from the top to the bottom, with the earliest
one at the top. If there is any deviated function execution, its
deviation type is marked in the end of the function name.

Usually, behavioral deviations are originated from
certain program locations that are changed in the new
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program version. These program locations are called
deviation roots. The function that contains a deviation root
is called deviation-root container. In the new version of the
tcas program, a relational operator > in the old version is
changed to >=. The function that contains this changed line
is Non_Crossing_Biased_Descend.

Some variable values at later points after a deviation-root
execution might differ from the ones in the old program
version because of the propagation of the deviations at the
deviation root. The deviations at the function exit of the
deviation-root container might cause the deviation-root
container to be observed as a deviation container. Note that
some callers of the deviation-root container might also
be observed as deviation containers. For example, in the
lower call tree of Fig. 3, the deviation-root container
Non_Crossing_Biased_Descend is observed as a devia-
tion container and its caller alt_sep_test is also
observed as a deviation container.

Sometimes deviations after a deviation-root execution
might not be propagated to the exit of the deviation-root
container, but the deviations might be propagated to the
entries of some callees of the deviation-root container,
causing these callees to be observed as deviation followers.
For example, in the upper call tree of Fig. 3, the deviation-
root container’s callees Own_Below_Threat and ALIM are
observed as deviation followers.

4.3 Deviation-Root Localization
In the previous section, we have discussed how deviations
are propagated given a known deviation root. This section
explores the reverse direction: locating deviation roots by
observing value spectra differences. This task is called
deviation-root localization. Deviation-root localization can
help developers to better understand which program
change(s) caused the observed deviations and then deter-
mine whether the deviations are expected.

Recall that given a function execution f,,, : (S<rv, Sevity,

new new
if fuew is a deviation container, S¢% is not deviated but S¢*%

is deviated; if f,., is a deviation follower, "% has already
been deviated; if f,., is a nondeviated function execution,
neither S nor S<** is deviated. Deviation roots are likely
to be within those statements executed within a deviation
container or before a deviation follower. The following two
heuristics are to narrow down the scope for deviation roots

based on deviation propagation effects:

Heuristic 1. Assume f is a deviation follower and g is
the caller of £. If 1) g is a deviation container or a
nondeviated one, and 2) any function execution
between g’s entry and the call site of £ is a
nondeviated one, deviation roots are likely to be
among those statements executed between the g’s
entry and the call site of £, excluding user-function-
call statements. For example, in the upper call tree of
Fig. 3, own_Below_Threat is a deviation follower
and its caller Non_Crossing_Biased_Descend is a
nondeviated one. The Inhibit_Biased_Climb in-
voked immediately before the Own_Below_Threat is
a nondeviated one. Then, we can accurately locate the
deviation root to be among those statements executed

between the Non_Crossing_Biased_Descend’s en-
try and the call site of Own_Below_Threat.

Heuristic 2. Assume f is a deviation container. If any of
f’s callees is a nondeviated one, deviation roots are
likely to be among those statements executed within
f’s function body, excluding user-function-call state-
ments. For example, in the lower call tree of Fig. 3,
Non_Crossing Biased_Descend is a deviation con-
tainer and any of its callees is a nondeviated one.
Then, we can accurately locate the deviation root to be
among those statements executed within the Non_-
Crossing_Biased_Descend’s function body.

When multiple changes are made at different program
locations in the new program version, there might be more
than one deviation root that cause behavioral deviations. If
a deviation root’s deviation effect is not propagated to the
execution of another deviation root, and each deviation root
causes their own value spectra differences, our heuristics
can locate both deviation roots at the same time.

5 PATH SPECTRA

This section presents three types of path spectra (extended
from previously proposed path spectra [2], [13], [24]) to
approximate an internal program state at a specific
execution point. The state representation uses the path that
the program execution takes from the beginning of the
program to the execution point. In particular, a function-
entry state S""¥ is then represented by the path that the
program execution takes from the beginning of the program
to the entry point of the function, represented as P“'V. A
function-exit state S is represented by the path that the
program execution takes from the beginning of the program
to the exit point of the function P**. We can show P“ to
be P*"Y concatenated with p, which is the path that the
program execution takes within the function execution
(taking into account the taken paths within the function’s
callees). Recall that a function execution (S Sewity s
characterized by S and S“. After we use the path
representation to approximate S“"¥ and S“", we can then
define user-function path hit spectra (in short as path hit
spectra), user-function path count spectra (in short as path count
spectra), and user-function path trace spectra (in short as path
trace spectra) corresponding to value hit spectra, value count
spectra, and value trace spectra defined in Section 3.2. Note
that our definitions of path spectra are slightly different
from the ones defined in previous work [2], [24]. In
previous work, path spectra refer to spectra that track
partial paths—the set of loop-free introprocedural paths
exercised by program execution. Our definition of path
spectra is more closely related to complete-path spectra [13].

The following is the path representation for the execution
of the sample C program in Fig. 1 with input 70 17:
8E, 10F,1E,2F,5R, 16T, 1E, 2F, 5R, 17F, 25R. The path
representation consists of a sequence of branches taken by
the program execution. Each branch is denoted by the line
number of the corresponding conditional in the source code
followed by “T” (denoting the true branch), “F” (denoting
the false branch), “E” (denoting the method entry), and “R”
(denoting the method return).
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TABLE 2
Path Spectra for the Sample Program with Input 70 1”
spectra profiled entities
path hit main(entry(),exit (8E,10F,1E,2F,5R,16T, 1E,2F,5R,17F,25R)),
max (entry (8E,10F) ,exit (8E,10F,1E,2F,5R)),
max (entry (8E,10F, 1E,2F,5R, 16T) ,exit (8E, 10F, 1E,2F,5R, 16T, 1E, 2F, 5R) )
path count | main (entry () ,exit (8E,10F, 1E,2F,5R,16T, 1E,2F,5R,17F,25R) ) %1,
max (entry (8E,10F) ,exit (8E,10F,1E,2F,5R)) 1,
max (entry (8E,10F,1E,2F,5R,16T) ,exit (8E,10F, 1E,2F,5R, 16T, 1E,2F,5R) ) »1
path trace | main (entry(),exit (8E,10F,1E,2F,5R,16T,1E,2F,5R,17F,25R)) x1,
max (entry (8E,10F) ,exit (8E,10F,1E,2F,5R)), V,
max (entry (8E,10F, 1E,2F,5R,16T) ,exit (8E,10F, 1E,2F,5R, 16T, 1E,2F,5R)),V, V

Table 2 shows three types of path spectra for the sample
C program execution with input #0 1”. Any of the three
path spectra and complete-path spectra [13] subsume one
another; therefore, these three path spectra and complete-
path spectra are equivalent. In the rest of the paper, we shall
discuss only path hit spectra (path spectra in short when it
is clear from the context). Execution-trace spectra strictly
subsume path hit spectra. Path hit spectra strictly subsume
branch spectra. Path hit spectra are incomparable to data-
dependence spectra, output spectra, value spectra, or
program invariants.

6 PATH SPECTRA DIFFERENCES

We can compare the path hit spectra from running the
same test on a program’s old version and new version by
using techniques similar to the ones for value spectra
(Section 4.1). Fig. 4 shows the path-spectra-based devia-
tion-propagation call trees of two test executions on a new
(faulty) version of the tcas program (the same test
executions for the value-spectra-based deviation call trees
shown in Fig. 3). During the execution of the 58th test, the
executed changed line in the faulty version lies within the
method body of Non_Crossing_Biased_Descend,
being after the execution of Inhibit_Biased_Climb
and before the execution of Own_Below_Threat. A (first-
encountered) diverged branch in the faulty version is taken
before Own_Below_Threat is executed. The function-
entry states of Own_Below_Threat and its subsequent
executed functions are deviated; therefore, these function
executions are identified as deviation followers. The
function-exit states of Non_Crossing_Biased_Descend
(the method containing the diverged branch) and its callers
are deviated; therefore, these function executions are
identified as deviation containers. During the execution
of the 91st test, the executed changed line in the faulty
version also lies within the method body of Non_Cros-
sing_Biased_Descend, being after the execution of
Inhibit_Biased_Climb and before the execution of
Own_Below_Threat. A diverged branch in the faulty
version is also taken before Own_Below_Threat is
executed; therefore, Own_Below_Threat is identified as

a deviation follower. Non_Crossing_Biased_Descend
and its callers are identified as deviation containers.

Based on two call trees in Fig. 4, we can use Heuristic
1 (shown in Section 4.3) to accurately locate their
deviation roots. In both call trees, the Own_Below_-
Threat function executions marked with * are deviation
followers (but the Own_Below_Threat in the lower tree
was a nondeviated one in Fig. 3 when we compared value
spectra), and their callers Non_Crossing_Biased_Des-
cend are deviation containers (but the Non_Crossing_-
Biased_Descend in the upper tree was a nondeviated
one in Fig. 3 when we compared value spectra). In each
tree, the Inhibit_Biased_Climb invoked immediately
before the Own_Below_Threat is a nondeviated one.
Then, we can use Heuristic 1 to accurately locate the
deviation root to be among those statements executed
between the Non_Crossing_Biased_Descend’s entry
and the call site of Own_Below_Threat.

By comparing the call trees in Fig. 4 with the ones in
Fig. 3, we can see that some nondeviated function
executions in Fig. 3 are overconservatively identified as
deviation containers or followers in Fig. 4 because the path
representation is less precise for representing program
states than the representation used in value spectra.

When multiple changes are made at different program
locations in the new program version and more than one
deviation root cause behavioral deviations, path-spectra-
based heuristics can usually detect only the first deviation
root at its best performance because the function-entry
states of the later executed deviation roots are conserva-
tively considered deviated.

7 EXPERIMENT

This section presents the experiment that we conducted to
evaluate our approach. We first describe the experiment’s
objective and measures as well as the experiment instru-
mentation. We then present and discuss the experimental
results. We finally discuss analysis cost and threats to
validity.
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(The execution of the 58th test)
O main------------------"-~--~-~-~-~--"-—"---- [dev container]
| O initialize
| O alt sep test-------------------- [dev container]
| O Non Crossing Biased Climb
| |__O Inhibit Biased Climb
| |_O Own_Above Threat
| O Non_Crossing Biased Descend- [dev container]

| |_O Inhibit Biased Climb

| |_O Own Below Threat--------- [dev follower] x
| | O ALIM----------—- - [dev follower]
|__O Own_Above Threat------------ [dev follower]

O main------------------~--~-~-~--"—-~—-~—-~—~—~-- [dev container]
| O initialize
| O alt sep test------------------- [dev container]
| O Non_Crossing Biased Climb
| |_O Inhibit Biased Climb
| |_O Own_Above Threat
| |__O ALIM
| O Own_Below Threat
| O Non Crossing Biased Descend- [dev container]

| O Inhibit Biased Climb

| O Own_Below Threat--------- [dev follower]x

Fig. 4. Path-spectra-based deviation-propagation call trees of a new program version (the ninth faulty version) of the tcas program.

7.1 Objective and Measures
The objective of the experiment is to investigate the
following questions:

1. How different are the three value spectra types, path
spectra type, and output spectra type in terms of
their deviation-exposing capability?

2. How accurately do the two deviation-root localiza-
tion heuristics locate the deviation root from value
spectra or path spectra?

Given spectra type S, program P, new version P’, and
the set CT of tests that cover the changed lines, let
DT(S, P, P',CT) be the set of tests each of which exhibits
S spectra differences and LT(S, P, P',CT) be the subset of
DT (S, P, P',CT) whose exhibited spectra differences can be
applied with the two heuristics to accurately locate
deviation roots. To answer Questions 1 and 2, we use the
following two measures, respectively:

e  Deviation exposure ratio. The deviation exposure ratio
for spectra type S is the number of the tests in
DT(S, P, P',CT) divided by the number of the tests
in CT, given by the equation:

|DT(S, P, P,CT)|
|CT|

e  Deviation-root localization ratio. The deviation-root
localization ratio for spectra type S is the number of
the tests in LT(S, P, P',CT) divided by the number

of the tests in DT(S,P,P,CT), given by the

. . |LT(S,P.P'CT)|
equation: \DT(S.P.P.CT)| "

Higher values of either measure indicate better results
than lower values. In the experiment, we measure the
deviation-root localization ratio in the function granularity
for the convenience of measurement. That is, when the
deviation-root localization locates the deviation-root con-
tainers (the functions that contain changed lines), we
consider that the localization accurately locates the devia-
tion root. For those changed lines that are in global data
definition portion, we consider the deviation-root contain-
ers to be those functions that contain the executable code
referencing the variables containing the changed data.

Sometimes the localization cannot accurately locate the
deviation root; therefore, we additionally use the measure
of deviation-root localization distance to show how difficult it
is for developers to trace from an identified location to the
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TABLE 3
Subject Programs Used in the Experiment

program funcs | loc tests | vers | vsgen | vscomp | psgen | pscomp | vssize | pssize

(sec/test) | (sec/test) | (sec/test) | (sec/test) | (kb/test) | (kb/test)
printtok 18 | 402 | 4130 7 0.76 0.18 0.14 0.04 6.51 0.92
printtok2 19 | 483 | 4115 10 0.48 0.08 0.19 0.05 1.72 1.19
replace 21 516 | 5542 32 0.49 0.08 0.18 0.02 2.1 0.85
schedule 18 | 299 | 2650 9 1.22 0.15 0.18 0.04 6.72 1.27
schedule2 16 | 297 | 2710 10 1.24 0.19 0.30 0.06 6.09 1.42
tcas 9 138 1608 41 0.35 0.04 0.03 0.02 0.36 0.23
totinfo 7] 346 1052 23 0.51 0.04 0.13 0.02 1 0.4

‘ space ’ 135 ’ 6218 ‘ 13585 ‘ 18 ‘ 1.46 ‘ 0.23 ‘ 0.28 ‘ 0.07 ‘ 28.43 ’ 4.03 ‘

deviation root. We compute the measure by counting the
number of method entries and exits that the program
execution encounters starting from the deviation root (the
changed line in the faulty version) to the identified location
(the diverged branch identified by path-spectra compar-
ison). Lower values of the measure indicate better results
than higher values.

7.2 Instrumentation

We built prototypes for the spectra-comparison approach to
determine the practical utility. Our prototype for value-
spectra comparison is based on Ernst et al.’s [9] Daikon
Kvasir front end for C binaries [5]. Daikon is a system for
dynamically detecting likely program invariants. It runs an
instrumented program, collects and examines the values
that the program computes, and detects patterns and
relationships among those values. Based on a debugging
and profiling tool called Valgrind [21], Daikon’s Kvasir
front end instruments C binaries for collecting data traces
during program executions. By default, the Daikon front
end instruments nested or recursive types (structs that have
struct members) with the instrumentation depth of two and
we set the instrumentation depth as three in the experiment.
For example, given a pointer to the root of a tree structure,
we collect the values of only those tree nodes that are within
the tree depth of three. Our prototype for path-spectra
comparison is based on the RECON instrumenter for C
programs [32].

We have developed several tools (in Java) that compute
and compare all three variants of value spectra, path hit
spectra, and output spectra from the collected traces. In the
experiment, we have implemented the deviation-root
localization for only value hit spectra and path hit spectra.?
Given two spectra, our tools report in textual form whether
these two spectra are different. For value hit spectra and
path hit spectra, our tools can display spectra differences in
deviation-propagation call trees in plain text (as is shown in

2. We have not implemented deviation-root localization for path count
and path trace spectra because their localization results would be the same
as the one of path hit spectra. We have not implemented deviation-root
localization for value count or value trace spectra because their implemen-
tation requires the matching of traces from two versions, which is
challenging by itself and beyond the scope of this research.

Figs. 3 and 4) and report deviation-root locations also in
textual form.

We used eight C programs as subjects in the experiment.
Researchers at Siemens Research created the first seven
programs with faulty versions and a set of test cases [15];
these programs are popularly referred as the siemens
programs (we used the programs, faulty versions, and test
cases that were later modified by Rothermel and Harrold
[26]). The researchers constructed the faulty versions by
manually seeding faults that were as realistic as possible.
Each faulty version differs from the original program by
one to five lines of code. The researchers kept only the faults
that were detected by at least three and at most 350 test
cases in the test suite. The eighth program, called the space
program, is a larger C program developed for the European
Space Agency. The space program includes 9,564 lines of
C code, among which 6,218 lines are executable. The space
program is equipped with faulty versions, each of which
contains a single fault that was exposed during the
development of the space program. For the space
program, Vokolos and Frankl [30] randomly created a test
suite with 10,000 test cases and Rothermel et al. [27]
augmented the test suite to include 3,585 additional test
cases to achieve better structural coverage of the program.

Columns 1-5 of Table 3 show the program names,
number of functions, lines of executable code, number of
tests, number of faculty versions used in the experiment,
respectively. Columns 6 and 8 show the average time (in
seconds) of generating value spectra and path spectra,
respectively, for one test. Columns 7 and 9 show the
average time (in seconds) of comparing value spectra and
path spectra, respectively, for one test. The last two columns
show the average size (in kilobytes) of generated value
spectra and path spectra, respectively, for one test.

We performed the experiment on a Linux machine with
four Pentium IV 2.8 GHz processors. In the experiment, we
used the original program as the old version and the faulty
program as the new version. We used all the test cases in
the test suite for each program.

7.3 Results

Figs. 5, 6, 7, and 8 use boxplots to present the experimental
results. The box in a boxplot shows the median value as the
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Fig. 6. Experimental results of deviation-root localization ratios for value hit spectra.

central line, and the first and third quartiles as the lower
and upper edges of the box. The whiskers shown above and
below the boxes technically represent the largest and
smallest observations that are less than 1.5 box lengths
from the end of the box. In practice, these observations are
the lowest and highest values that are likely to be observed.
Small circles beyond the whiskers are outliers, which are
anomalous values in the data.

Fig. 5 shows the experimental results of deviation
exposure ratios that are computed over all subjects. The
vertical axis lists deviation exposure ratios and the
horizontal axis lists five spectra types: output, path hit,
value hit, value count, and value trace spectra. Figs. 6 and 7
show the experimental results of deviation-root localization
ratios for value hit spectra and path hit spectra, respec-
tively. The vertical axis lists deviation-root localization
ratios and the horizontal axis lists subject names.

From Fig. 5, we observed that checking value spectra
differences increases the deviation exposure ratio about a
factor of three compared to checking program output
differences. This indicates that a relatively large portion of
deviations could not be propagated to program outputs.
There are no significant differences of the deviation
exposure ratios among the three value spectra, except that

the third quartile of the value trace spectra is slightly higher
than the one of the value hit or value count spectra. We
found that there were three versions where value trace
spectra have higher deviation exposure ratios than value hit
and value count spectra. The faults in these three versions
sometimes cause some deviation followers to be produced
in value trace spectra, but these deviation followers are
equivalent to some function executions produced by the old
program version; therefore, although the value trace spectra
are different, their value hit spectra or value count spectra
are the same.

We observed that checking path spectra differences also
increases the deviation exposure ratio compared to check-
ing program output differences, and the increase is slightly
more than checking value spectra differences. This indicates
that some test executions change the execution paths, but do
not exhibit deviations on program states at the entries or
exits of user-defined functions.

In Fig. 6, the deviation-root localization ratios for value
hit spectra are near 1.0 for all subjects except for the
schedule2 and totinfo programs; therefore, their boxes
are collapsed to almost a straight line near the top of the
figure. The results show that our heuristics for value hit
spectra can accurately locate deviation roots for all subjects
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except for the schedule2 and totinfo programs. We
inspected these two programs’ traces carefully to find out
the reasons. We found that the Daikon front end did not
collect complete program state information in a key linked-
list struct in schedule?2 using the instrumentation depth of
three. In some of schedule2’s faulty versions, deviations
occur on the key linked-list struct beyond the depth of
three. Therefore, we could not detect the deviations at the
exits of deviation roots. We expect that we could increase
the deviation-root localization ratios after increasing the
instrumentation depth. For totinfo, the Daikon front end
did not collect sufficiently precise values for some variables
with the double type; therefore, sometimes two double
values are different during program execution. but their
collected values in the string form are the same.

In Fig. 7, the deviation-root localization ratios for path hit
spectra vary for different subjects and even different versions
for the same subject. The results show that our heuristics for
path hit spectra cannot locate deviation roots as accurately as
the ones for value hit spectra. Only the first program
(printtok) and the last two programs (totinfo and
space) can achieve the ratio of near 1.0. We inspected the
faulty versions of these three programs and found that most
of their faults occur in the body of functions that contain few

call sites after the faulty lines; during or after the execution of
faulty lines, some different branches are taken before
returning the function or invoking another function.

Fig. 8 shows the experimental results of deviation-root
localization distances for path hit spectra. The vertical axis
lists deviation-root localization distances and the horizontal
axis lists subject names. To facilitate close observation of the
data, we cut off replace’s two outliers, which are larger
than 200. We observed that the localization distances vary
across subjects. Two subjects have a rather high value
(several dozens) for their localization distances. This
indicates that it may be difficult for developers to trace
from the identified location back to the deviation root for
these subjects.

The experiment simulates the scenario of introducing
regression faults into programs during program modifica-
tions. When programmers perform a modification that is
not expected to change a program’s semantic behavior, such
as program refactoring [10], our spectra comparison
approach can show the occurrences of unintended devia-
tions and our deviation-root localization accurately locates
the regression faults. Moreover, we can reverse the version
order by treating the faulty version as the old version and
the correct version as the new version. Then, we can
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conduct a similar experiment on them. This simulates the
scenario of fixing program bugs. Since our spectra compar-
ison is symmetric, we expect to get the same experimental
results. This shows that when programmers perform a bug-
fixing modification, our approach can show them the
occurrences of the intended deviations.

7.4 Analysis Cost

The time cost of our approach is primarily the time of
generating spectra as well as comparing spectra (deviation-
root localization is a part of spectra comparison). Columns 6
and 8 of Table 3 show the average time for generating value
and path spectra, respectively, for one test. Columns 7 and 9
of Table 3 show the average time for comparing value and
path spectra, respectively, for one test. The time cost of
generating spectra is generally higher than that of compar-
ing spectra and the time cost of the value-spectra approach
is generally higher than that of the path-spectra approach.
The elapsed time for generating or comparing two spectra
of a test is less than one second, except for generating the
value spectra of schedule, schedule2, and space (with
the average time of 1.22, 1.24, and 1.46 seconds, respec-
tively). The value spectra of these three programs are more
expensive to generate because schedule and schedule2
contain recursive data structures (which cause the size of a
single function-entry or function-exit state to be relatively
large) and space is a larger program (the size of its total
function executions for a test is relatively large).

The space cost of our spectra-comparison approach is
primarily the space for storing generated spectra. The space
cost of storing value spectra is generally higher than that of
storing path spectra. The space cost for the space program
is much higher than that of other programs: The average
space cost of storing its spectra is 28.43 kilobytes (KB) for
one test’s value spectra and 4.03 KB for one test’s path
spectra. The average space cost for the value spectra of
printtok, schedule, or schedule2 is above 6 KB and
the cost for the remaining three programs ranges from
0.36 KB to 2.1 KB. Except for the space program, the space
cost of all programs” path spectra is below 1.5 KB.

In general, larger programs require higher space and time
costs. The time or space cost of our value-spectra-compar-
ison approach can be approximately characterized as

)7

where |vars| is the number of variables (including the
pointer references reachable from the variables in scope) at
the entry and exit of a user function, |userfuncs| is the
number of executed and instrumented user functions, and
[testsuite| is the size of the test suite.

The time or space cost of our path-spectra-comparison
approach can be approximately characterized as

VCost = O(|vars| x |user funcs| x |testsuite

PCost = O(|branches| x |user funcs| x |testsuite]),

where |branches| is the number of executed branches within
an instrumented user function.

We have incorporated the following two mechanisms in
our tool implementation to reduce the analysis cost. First,
our implementation postprocesses the data traces collected
by the Daikon front end by filtering out (meaningless)
uninitialized variables. Second, our implementation stores

generated spectra files in a compressed form. To further
reduce the analysis cost, we can reduce |testsuite| by
applying our approach on only those tests selected by
regression test selection techniques [25]. In addition, we can
also reduce |userfuncs| by instrumenting only those
modified functions and their (statically determined)
up-to-n-level callers or those functions enclosed by identi-
fied firewalls [19], [31]. The reduced scope of instrumenta-
tion trades a global view of deviation propagation for
efficiency. Specifically for path spectra, we can use partial
paths [2], [24] instead of complete paths to reduce cost.

7.5 Threats to Validity

The threats to external validity primarily include the degree
to which the subject programs, faults or program changes,
and test cases are representative of true practice. The
siemens programs are small and the space program is of
medium size. Most of the faulty versions involve simple,
one or two-line manually seeded faults. Moreover, the new
versions in our experiment do not incorporate other fault-
free changes since all the changes made on faulty versions
deliberately introduce regression faults. These threats could
be reduced by more experiments on wider types of subjects
in future work. The threats to internal validity are
instrumentation effects that can bias our results. Faults in
our prototype, the Daikon front end, and the RECON
instrumenter might cause such effects. To reduce these
threats, we manually inspected the spectra differences on a
dozen of traces for each program subject. One threat to
construct validity is that our experiment makes use of the
data traces collected during executions, hoping that these
precisely capture the internal program states for each
execution point.

8 RELATED WORK

Reps et al. [24] compare path spectra (loop-free intraproce-
dural paths) from the executions of two tests on the same
program to tackle the Year 2000 problem. Our approach
compares value spectra or path spectra from the execution
of the same test on two program versions to tackle the
regression testing problem. Our path-spectra comparison
approach adopts a slightly different definition of path
spectra and we compare the effectiveness of path-spectra
comparison with our value-spectra comparison. Our ex-
perimental results show that the deviation-root localization
based on value spectra performs more accurately than the
one based on path spectra.

Harrold et al. [13] empirically investigate the relationship
between syntactic spectra differences and output spectra
differences of two program versions in regression testing.
The syntactic spectra that they investigate include branch,
path, data dependence, and execution trace spectra. Their
experimental results show that, when a test input causes
program output differences between versions, the test input
is likely to cause syntactic spectra differences. However,
their results show that the reverse is not true. Our
experimental results on path-spectra comparison confirm
their observations and we intend to take advantage of this
observation to expose more behavioral deviations by
comparing program spectra.
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Abramson et al. [1] develop the relative debugging
technique that requires users to specify key data structures
that must be equivalent at specific locations in two program
versions. Then, a relative debugger automatically compares
the data structures and reports any differences while both
program versions are executed concurrently. Our approach
does not require user-defined locations but compares states
at the entries and exits of user functions. In principle, to
save space cost, comparing value spectra can also be done
online while running two program versions simultaneously
instead of our current offline analysis on collected traces.
However, one challenge in online comparison is to
automatically and accurately correlate and synchronize
corresponding program parts during the simultaneous
execution of two program versions.

Jaramillo et al. [16] develop the comparison checking
approach to compare the outputs and values computed by
source level statements in the unoptimized and optimized
versions of a source program. Their approach requires the
optimizer writer to specify the mappings between the
unoptimized and optimized versions in the optimization
implementation. Their approach locates the earliest point
the unoptimized and optimized programs differ during the
comparison checking. Our approach operates at the
granularity of user-function executions and uses two
heuristics to locate deviation roots instead of using the
earliest deviation points (coincidentally, the heuristics
based on path spectra identify the earliest diverged branch
to belong to deviation roots). Moreover, our approach does
not require any extra user inputs and targets at testing
general applications rather than optimizers.

Fault propagation has been investigated in the testing
literature [20], [7], [29], [28]. These models primarily focus
on the estimation and analysis of fault exposure probability
with the goal of generating or selecting test cases that
propagate the faults to outputs. Our approach focuses on
regression testing and proactively exposes behavioral
deviations by checking inside the black box instead of
checking only black-box outputs. Our approach also offers
an empirical way of studying fault propagation behavior
complementing existing analytic approaches.

Weak mutation testing [14] requires that a test case
causes a mutated version to compute a different value than
the original version does, in contrast to the strong mutation
testing [6] that requires mutated and original versions to
produce different outputs. The difference between our
approach and traditional output-checking approach is
analogous to weak and strong mutation testing. Neither
weak mutation testing nor our approach requires the faults
to be propagated to outputs. Weak mutation testing
observes the exposure of hypothesized and seeded faults
by a test for estimating and measuring the test, whereas our
approach observes the exposure of actual faults or
behavioral deviation by a test for regression testing.
Moreover, weak mutation testing is primarily a unit testing
technique, but our approach can be either system or unit
testing technique by checking internal behavior inside a
system or unit.

Reese and Leveson [22] present the software deviation
analysis technique to determine whether a software
specification can behave well when there are deviations in
data inputs from an imperfect environment. Their software
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deviation analysis detects behavioral changes between two
identical programs given slightly different inputs, whereas
our approach detects behavioral changes between two
program versions given the same inputs. The deviations
in our approach are rooted from some program locations
that are changed between versions, rather than from
program inputs.

A dynamic slice [18] of a program is the set of statements
that actually affect the value of a selected variable at a
specific location after the program is executed against a
given test. Dynamic slicing uses runtime structural in-
formation in addition to some static information. A
dynamic slice for a deviated variable may include multiple
program changes, even if only one of them actually causes
the deviation, whereas our deviation-root localization uses
state information and may single out the responsible
program change. Our approach reports deviation roots in
the granularity of functions or code segments separated by
call sites. The deviated variables at a function’s entry or exit
(produced by our approach) can be inputs to the dynamic
slicing approach, which can report deviation roots in the
statement level within a function.

9 CONCLUSION

After developers made changes on their program, they can
rerun the program’s regression tests to assure the changes
take effect as intended: refactoring code to improve code
quality, enhancing some functionality, fixing a bug in the
code, etc. To help developers to gain a higher confidence on
their changes, we have proposed a new approach that checks
program behaviors inside the black box over program
versions besides checking the black-box program outputs.
We have developed a new class of semantic spectra,
called value spectra, to characterize program behaviors. We
exploit value spectra differences between a program’s old
version and new version in regression testing. We use these
value spectra differences to expose internal behavioral
deviations inside the black box. We also investigate
deviation propagation and develop two heuristics to locate
deviation roots. If there are regression faults, our deviation-
root localization additionally addresses the regression fault
localization problem. We also approximate value spectra by
extending previously proposed path spectra [2], [13], [24]
and detect behaviorial deviations and locate deviation roots
by similarly comparing path spectra. We have conducted an
experiment on eight C program subjects. The experimental
results show that both value-spectra-comparison and path-
spectra-comparison approaches can effectively detect beha-
vioral deviations even before deviations are (or even if they
are not) propagated to outputs. The results also show that
our deviation-root localization based on value spectra can
accurately locate deviation roots for most subjects.
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