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CoMID: Context-based Multi-invariant Detection
for Monitoring Cyber-physical Software

Yi Qin, Tao Xie, Chang Xu, Angello Astorga, and Jian Lu

Abstract—Cyber-physical software delivers context-aware ser-
vices through continually interacting with its physical environ-
ment and adapting to the changing surroundings. However, when
the software’s assumptions on the environment no longer hold,
the interactions can introduce errors for leading to unexpected
behaviors and even system failures. One promising solution to
this problem is to conduct runtime monitoring of invariants.
Violated invariants reflect latent erroneous states (i.e., abnormal
states that could lead to failures). In turn, monitoring when
program executions violate the invariants can allow the software
to take alternative measures to avoid danger. In this article,
we present Context-based Multi-Invariant Detection (CoMID),
an approach that automatically infers invariants and detects
abnormal states for cyber-physical programs. CoMID consists of
two novel techniques, namely context-based trace grouping and
multi-invariant detection. The former infers contexts to distinguish
different effective scopes for CoMID’s derived invariants, and
the latter conducts ensemble evaluation of multiple invariants to
detect abnormal states during runtime monitoring. We evaluate
CoMID on real-world cyber-physical software. The results show
that CoMID achieves a 5.7–28.2% higher true-positive rate and a
6.8–37.6% lower false-positive rate in detecting abnormal states,
as compared with existing approaches. When deployed in field
tests, CoMID’s runtime monitoring improves the success rate of
cyber-physical software in its task executions by 15.3–31.7%.

Index Terms—cyber-physical software, abnormal-state detec-
tion, invariant generation

I. INTRODUCTION

CYBER-PHYSICAL software programs (in short as cyber-
physical programs) integrate cyber and physical space to

provide context-aware adaptive functionalities. An important
class of cyber-physical programs are those that iteratively
interact with their environments. Examples of such programs
are those running on robot cars [1]–[3], unmanned aerial
vehicles (UAVs) [4]–[6], and humanoid robots [7]–[9]. These
program continually sense environmental changes, make
decisions based on their pre-programmed logic, and then take
physical actions to adapt to the sensed changes. The three
steps, namely, sensing, decision-making, and action-taking,
form an interaction loop between a cyber-physical program
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and its running environment. Each pass of such an interaction
loop is referred to as an iteration.

To improve the productivity and cope with infinite kinds
of environmental dynamics, software developers often hold
certain assumptions on typical scenarios, where their cyber-
physical programs are supposed to run. For example, a
robot controlled by a cyber-physical program walks in an
indoor environment, where the floor is supposed to be firm
but not slippery, and the space is supposed not to contain
any fast-moving obstacle. However, it is challenging for the
developers to precisely specify what can be considered as
“not firm” or “slippery”. In addition, when put into an open
environment that is more complex than a cyber-physical
program’s designed scenarios, the program itself can hardly
tell when its encountered scenarios have already violated
these assumptions, and thus it could be subject to various
runtime errors or even system failures. As such, a cyber-
physical program is easily subject to runtime errors in its
deployment [11]–[15], and then suffers from misbehavior
or even failure (e.g., a robot falling down and damaging
itself). Therefore, there is a strong need for preventing cyber-
physical programs from entering such errors, which indicate
the violation of their implicit assumptions on the running
environments.

One promising way is to conduct runtime monitoring of
pre-specified invariants, which represent the properties that
have to be satisfied during executions, to check whether
a cyber-physical program’s execution is safe. Being safe
indicates that the program’s execution will not lead to a
failure, if no intervention is taken, but just following the logics
in the program. However, specifying effective invariants is
challenging. For example, one may specify invariants as the
negation of failure conditions, e.g., not crashing of a UAV or
falling down of a humanoid robot. However, such invariants
are not that useful, because when they are violated (i.e., the
corresponding failure conditions are evaluated to be true),
it is already too late for a concerned program not to fail.
An alternative is to specify invariants for latent erroneous
states (a.k.a. abnormal states). Then one is potentially able
to predict future failures, and prevent a concerned program
from taking originally-planned actions, which would otherwise
have caused failures. For example, if a robot finds its
program execution violating the invariants that represent
safe executions, it can decide to stop further exploring the
current scenario and plan another path to its destination. This
resolution action can help it avoid unexpected danger in the
original scenario.

There are two major ways of specifying invariants for
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detecting abnormal states: using manually specified properties
or using automatically generated invariants. For the former,
the developers need domain knowledge to understand what
can constitute abnormal states, and derive corresponding
properties. This manual process is challenging, especially
when a cyber-physical program and its running environment
are non-trivial [4]. On the other hand, approaches of automated
invariant generation [16]–[19] provide a promising alternative.
Despite varying in details, these approaches follow a general
process [20] as follows. When a subject program is running,
these approaches collect its execution trace in terms of
program states (e.g., variable values) at program locations of
interest (e.g., entry and exit points of each executed method).
Then from a set of such collected safe traces (i.e., those
not leading to failures), the approaches derive invariants for
different program locations based on predefined templates.
These invariants can then be used with runtime monitoring
to predict the program’s future executions to be safe (i.e.,
passing, for no invariant violation) or not (i.e., failing, for any
invariant violation). Here, passing implies that the program
runs safely with its assumptions on the environment holding,
and failing implies that the program could soon fail since its
assumptions on the environment no longer hold now.

However, using automatically generated invariants for
runtime monitoring is still challenging. One major problem
is how to balance between general and specific invariants. If
an invariant for a program location is too general, using it for
runtime monitoring can miss the detection of abnormal states,
resulting in false negatives. For example, relaxing invariants
to cater for various firm floors can accidently include firm but
slippery floors, breaking the robot program’s assumptions on
its running environment. On the other hand, if an invariant is
too specific, using it for runtime monitoring can detect many
“abnormal” states even in safe executions, resulting in false
positives. For example, restricting invariants to specific firm
floors (e.g., in brick or wood material) can cause false alarms
when the robot walks on other firm but not slippery floors,
where the program’s execution is still safe.

Even worse, this balancing problem can be further exac-
erbated by two characteristics of cyber-physical programs:
iterative execution and uncertain interaction.

Iterative execution. Cyber-physical programs are featured
by repeated iterations of a sensing, decision-making, and
action-taking loop. Then a program location for which
an invariant is generated can be executed multiple times
during multiple iterations for dealing with different contexts
(i.e., various situations in handling environmental dynamics).
During these different iterations, a program’s definition of
safe behavior with respect to each context varies across the
iterations. Overlooking these contexts, generated invariants
would be overgeneralized, such that the detection of abnormal
states can be missed. On the other hand, generating invariants
by sticking to any specific context would also make the
invariants overly fragile to other contexts of safe executions,
causing false alarms.

Recently, researchers have proposed to enhance invariant
generation with contexts to avoid false alarms. For example,
ZoomIn [24] proposed to use program contexts to distinguish

effective scopes for different invariants. However, for a
cyber-physical program that iteratively interacts with its
environment, only one type of context (i.e., program context)
may not be sufficient for specifying an invariant’s effective
scope. The reason is that a cyber-physical program’s behavior
can also be additionally affected by its environment, even if
its program context keeps similar in different iterations.

Uncertain interaction. Cyber-physical programs could also
face massive false alarms due to uncertainty [21], when they
use automatically generated invariants to detect abnormal
states. For example, even if one places a robot at the same
position across different iterations, its sensors can possibly
report different values for its position due to uncertainty (as
an inherent nature of sensing). These different input values
are then propagated to a program location of interest for
deriving invariants, causing this location to own variable
values different from those in other safe executions also
from the same position. Then, overlooking the impact of
such uncertainty, runtime monitoring with the generated
invariants can easily report false alarms: invariant violation is
actually caused by inaccurate sensing, not due to a program’s
assumptions not holding on its environment.

To address these challenges, in this article, we present
an approach, named Context-based Multi-Invariant Detection
(CoMID), to automatically generating invariants for speci-
fying developers’ implicit assumptions, and checking these
invariants for detecting when a cyber-physical program has
entered any abnormal state at its runtime. CoMID addresses
the preceding challenges with its two techniques, namely,
context-based trace grouping and multi-invariant detection:

Context-based trace grouping. The first technique divides
collected execution traces into different iterations, and groups
them according to both program and environmental contexts.
Here, program context refers to a program’s statements
executed during one iteration, and environmental context refers
to the values of environmental attributes as sensed by the
program during the iteration. The technique conducts execu-
tion trace grouping by clustering, based on the similarities
of corresponding contexts between each pair of iterations.
Then, for each group the technique generates invariants based
only on the iterations in that group. Since the iterations in
a group share a common program context and environmental
context, the two contexts together specify the effective scope
for the invariants generated for this group. We name this
scope the group’s generated invariants’ context. Then, in the
future when the cyber-physical program executes in an open
environment, where different scenarios can be encountered,
CoMID helps identify those iterations sharing similar contexts
with the invariants that are valid to detect abnormal states.
Therefore, CoMID’s context-based trace grouping increases
both the chance of identifying such context-sharing iterations
(by shorter executions) and the accuracy of abnormal-state
detection (by checking both context types)

Multi-invariant detection. The second technique addresses
the robustness problem for invariants when their relied
execution traces contain noisy values due to uncertainty.
Instead of generating a single invariant from all execution
traces in a group, this technique generates multiple ones,



3

based on different subsets sampled from the execution
traces in the group. Then it uses an estimation function
to decide the detection of abnormal states based on multi-
invariant evaluation results. The function measures the ratio
of violated invariants against all invariants with respect to
their corresponding groups, and then takes the uncertainty
in program-environment interactions into consideration, to
decide whether the invariant violation indicates the detection
of abnormal states or is simply caused by uncertainty. This
idea has been inspired by ensemble learning [22], which
uses multiple models to improve the prediction performance,
in contrast to the conventional prediction based on one
constituent model alone.

We evaluate our CoMID approach on three real-world
cyber-physical programs: a 4-rotor unmanned aerial vehicle
(4-UAV) [23], a 6-rotor unmanned aerial vehicle (6-UAV),
and a NAO humanoid robot [7]. We compare CoMID with
two existing approaches: naı̈ve, which simply uses an invariant
inference engine (i.e., Daikon [16]) to generate invariants, and
p-context, which uses program context to enhance invariant
generation and abnormal-state detection (e.g., ZoomIn [24]).
The evaluation results show CoMID’s effectiveness: it achieves
a 5.7–28.2% higher true-positive rate and a 6.8–37.6% lower
false-positive rate in detecting abnormal states for the three
programs’ executions; when deployed for runtime monitoring
to prevent unexpected failures, CoMID improves the success
rate of the three programs by 15.3–31.7% in their task
executions.

In summary, this article makes the following contributions:
• The CoMID approach to automatically generating in-
variants and detecting abnormal states for cyber-physical
programs’ executions.
• The context-based trace grouping technique to refine
invariant generation with respect to different contexts.
• The multi-invariant detection technique to address the
impact of uncertainty in program-environment interactions
on invariant-based runtime monitoring.
• An evaluation with real-world cyber-physical programs
and comparison of CoMID with state-of-the-art invariant
generation approaches.

The remainder of this article is organized as follows. Sec-
tion II presents a program-environment interaction model for
understanding a cyber-physical program’s iterative execution
nature, and a motivating example for explaining the challenges
in generating effective invariants. Section III gives an overview
of our CoMID approach and then elaborates on its two
techniques. Section IV presents our evaluation of CoMID with
three real-world cyber-physical programs and compares it with
existing approaches. Section V discusses related work, and
finally Section VI concludes this article and discusses future
work.

II. PRELIMINARIES

In this section, we introduce our program-environment
interaction model and present our motivating example based
on this model.
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Fig. 1. PEIM’s iterative reaction loop

A. Program-Environment Interaction Model

To better demonstrate the iterative execution of a cyber-
physical program, we propose a Program-Environment
Interaction Model (PEIM). The model concerns not only the
program itself, but also its environment under interaction, in
contrast to traditional program models that concern programs
themselves only. Note that our PEIM model is only for
capturing the iterative nature of a cyber-physical program in
interactions with its environment. Our CoMID approach is
essentially a code-based approach.

Given a program P , we define its PEIM using a tuple,
(P , E, U , C). We use P to represent the program, and E
to represent the environment where the program executes.
Conceptually, we consider environment E as a black-box
program whose behavior can be observed by monitoring its
global variables, although one may not actually know how
E works. We assume that one can observe P ’s behavior in
E (i.e., P ’s output) and P ’s obtained sensory data from E
(i.e., P ’s input). We use C to represent P ’s and E’s initial
configuration (i.e., default startup parameter values for P and
initial environmental layout for E). We use U to represent the
specification of uncertainty affecting the interaction between
P and E.

We define the uncertainty specification U as a function
that maps environment E’s output OE to program P ’s input
IP . If one does not consider uncertainty, IP would trivially
equal to OE , on their values. However, in practice, IP ̸= OE

due to uncertainty. Their differences are caused by inaccurate
environmental sensing (e.g., a sensed value deviates from
its supposed value) or flawed physical actions (e.g., an
action is taken without exactly achieving its supposed effect)
[35]. Note that a complete specification of such differences
may not be available. Therefore, we assume that U is a
partial specification, which contains information on ranges and
distributions of uncertainty on the conversion between IP and
OE values.

As a whole, our PEIM = (P , E, U , C) works in an iterative
way, as illustrated in Fig. 1. It starts with program P and
environment E initialized by configuration C (Step 1). Then
both P and E begin their independent executions. At the
program side, P gets its input IP from the environment’s
current output OE , executes based on IP , updates its global
variables GP , and finally returns output OP (Step 2). At the
environment side, E also takes its input IE from the program’s
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(a) Walking on a wood floor (b) Walking on a brick floor

Fig. 2. A NAO robot controlled by a cyber-physical program

current output OP , “executes” by applying IE’s effect to
update its global variables GE , and finally returns output OE

(Step 3). Once OP or OE is produced, E or P receives it,
converts it to IE or IP , and puts the result in a buffer for later
use. When P or E finishes its iteration, it obtains its next input
IP or IE from the corresponding buffer using some policy,
e.g., FIFO or priority-first (an input for indicating that an
emergency situation can be processed first). We conceptually
represent the impact of uncertainty on the conversion between
P and E by IP = U(OE) (Step 4). Steps 2 to 4 form an
iterative reaction loop (i.e., iteration, as mentioned earlier).

B. Motivating Example

We use a motivating example to illustrate our target
problem and its challenges. Consider our aforementioned NAO
humanoid robot controlled by a cyber-physical program P .
Its environment E, according to our PEIM, describes the
robot’s surrounding environment. E takes the robot’s actions
as input, changes its states (e.g., the position and posture
of the robot), and produces P ’s sensory data as output. For
uncertainty U , we consider only inaccurate sensing, which
maps a given environment’s output parameter oE to an error
range [oE − lower, oE + upper] for P to sense. At last, the
configuration C specifies the initial states of P (e.g., the initial
values of P ’s global variables) and E (e.g., the initial position
of the robot, and the layout of the obstacles).

Suppose that the robot is exploring an indoor area, as
illustrated in Fig. 2. For the sake of quality and productivity,
the developers can hold implicit assumptions on the scenarios
where the robot is supposed to walk, e.g., a room with a
firm and not slippery floor. Then, the developers proceed to
design corresponding exploration strategies for the robot, e.g.,
walking slowly and balancing by raising its arms with certain
angles. These strategies are for ensuring the robot to walk
safely on a floor made of several common materials, e.g.,
wood, as shown in Fig. 2-a, and brick, as shown in Fig. 2-b.
We next analyze what challenges the runtime monitoring with
invariants can encounter, in order to prevent the robot from
entering abnormal states.

Program P uses readings of two pressure sensors installed
on the robot’s two feet to measure whether the robot has

leaned toward left or right and decide whether it has to balance
the robot in its walking. The measurement is conducted by
calculating the difference between the two sensors’ readings,
preleft and preright. P then decides one of the robot’s arms
according to which direction the robot is leaning toward, and
calculates the height the decided arm should be raised to.
Suppose that variable angle in P controls the height value,
and then it becomes a key factor that decides whether the
robot can properly balance itself in walking. The developers
can design various logics to calculate the angle value, but they
more or less depend on the material comprising the floor.

One outstanding challenge is that the developers can hardly
specify proper angle values. The developers typically follow
a trial-and-error process to calculate plausible angle values.
If lucky enough, the developers can design the calculation
logics that seemingly work for several types of floor material.
Even so, the users of the robot may still not be able to
decide whether a specific scenario is safe for the robot to
walk into (i.e., whether the calculation logics still work), or
when a previously safe scenario becomes no longer safe (e.g.,
when the scenario gradually evolves). As mentioned earlier,
runtime monitoring with invariants can play an important role
to address such preceding challenge. We next explain how to
generate invariants for the angle variable and use them to
decide whether P ’s execution is safe for the current scenario.

Most existing approaches of invariant generation work
similarly. Consider that we generate an invariant for variable
angle at the entry point of method motion.angleMove
(names, angle, timeLists), which is the key method
for deciding how to raise an arm for balancing the robot. We
first collect several safe execution traces (e.g., tr1, tr2, and
tr3) of program P , in which angle’s corresponding variable-
value pairs are tr1: {angle = 48}, tr2: {angle = 52}, and
tr3: {angle = 55}. Following a predefined template (e.g.,
varX ≤ C), we can derive an invariant like “angle ≤ 55”,
satisfying all the three traces. This invariant suggests that
proper angle values at this program location should not exceed
55. Then later when P controls the robot and finds its collected
angle value at the same program location to be 60, the
runtime monitoring could decide that P ’s execution is not safe.
Technically, the runtime monitoring reports that the current
execution enters an abnormal state, i.e., classified as failing.

However, as mentioned earlier, invariant generation has to
balance between general and specific invariants. The preceding
invariant “angle ≤ 55” has relaxed its condition on proper
values for the angle variable to cater for all the three
execution traces, although these values could be from different
scenarios. Then using this invariant can potentially misclassify
an unsafe execution with an angle value of 53 for the scenario
experienced in tr1 as passing. On the other hand, if one derives
the invariant from two execution traces, tr1 and tr2, only (e.g.,
“angle ≤ 52”), but checks it against the execution of tr3 from
another scenario. Then the runtime monitoring can be too strict
and would misclassify that execution as failing.

The nature of cyber-physical programs exacerbates the
invariant-balancing problem. For example, a cyber-physical
program can encounter multiple iterations, and not all
iterations share the same context. Suppose that a robot is
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Fig. 3. CoMID’s workflow

walking in a scenario connected with different types of floor
material (e.g., wood and brick) and placed with different
types of obstacle (e.g., high, low, and round). Such a scenario
implies different values of the environment E’s variables (i.e.,
environmental context). Even on the same floor, the robot may
take different strategies to handle different obstacle situations.
Such variety of strategies implies different execution traces
of program P in the current iteration (i.e., program context).
Without distinguishing these contexts, invariant generation can
be easily over-generalized (e.g., deriving invariants to cater for
all executions traces), and invariant violation can also be easily
over-triggered (e.g., checking invariants in a context different
from the context from which the invariants are derived).

A cyber-physical program’s uncertain interactions with its
environment similarly worsen the invariant-balancing problem.
Uncertainty U , which might be caused by inaccurate sensing,
would make derived invariants imprecise due to random noises
in sensor readings. Such imprecision can cause both false-
alarm and missing-warning problems. A naive way is to relax
the condition in such an invariant by allowing some extent of
error, e.g., a delta of ±5 added to proper values for the angle
variable. However, this way is quite ad hoc, and can also easily
aggravate the false-alarm and missing-warning problems.

These limitations of existing approaches on automated
invariant generation motivate us to develop our CoMID
approach, particularly focused on the invariant generation
and runtime monitoring for cyber-physical programs. CoMID
aims to distinguish different contexts for effective invariant
generation and address the impact of uncertainty for effective
runtime monitoring with generated invariants. We elaborate on
our CoMID’s methodology in the next section.

III. CONTEXT-BASED MULTI-INVARIANT DETECTION

The input of our CoMID approach is a cyber-physical
program P and its running environment E (conceptually). For
the purpose of invariant generation, we assume the availability
of a set of failure conditions (e.g., crashing of a UAV or
falling down of a humanoid robot) for deciding whether a
cyber-physical program’s execution has already failed, as the
existing work [24] does.

CoMID works in four steps: (1) it first executes program
P in environment E to collect safe execution traces, i.e.,
no failure condition triggered (Step 1: trace collection); (2)
it then groups iterations from the collected execution traces
into multiple sets of context-sharing iterations, based on
their program and environmental contexts (Step 2: iteration
grouping); (3) after that, it generates multiple invariants for
each group (Step 3: multi-invariant generation); (4) finally,
it uses the generated invariants to detect abnormal states
for program P ’s future executions (Step 4: abnormal-state
detection). Fig. 3 illustrates CoMID’s workflow.

In the first two steps, besides collecting traditional artifacts
(e.g., arguments and return values for each executed method),
CoMID also analyzes program and environmental contexts
for each iteration. Regarding the program context, CoMID
records what statements are executed in an iteration. Regarding
the environmental context, CoMID records attribute values
associated with environment E. CoMID recognizes P ’s system
calls related to environmental sensing, and uses these calls
to record attribute values at the beginning of each iteration.
CoMID uses the program context to distinguish an iteration’s
specific strategy in handling external situations, and uses the
environmental context to distinguish different situations that
P is facing in a specific iteration.

In the last two steps, CoMID generates and checks multi-
invariants to address the impact of uncertainty on deciding
whether a specific invariant violation is a convincing indication
that the current execution is no longer safe. CoMID leverages
previous work (e.g., Daikon [16]) for invariant derivation by
feeding different sets of sampled iterations.

We next elaborate on CoMID’s details.

A. Context-based Trace Grouping (Steps 1 and 2)

Trace collection. In the first step, CoMID executes the
given cyber-physical program P and collects its traces for
invariant generation. For saving the cost, CoMID records
values of program variables only at entry and exit points of
the methods executed in each iteration. CoMID also records
program and environmental contexts for each iteration, in order
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to distinguish different iterations. For the program context,
CoMID records the statements executed in each iteration
through program instrumentation. For the environmental
context, CoMID records values of environmental attributes
using their involved system calls at the beginning of each
iteration (i.e., once CoMID recognizes a new iteration).

CoMID extracts iterations from a collected execution trace
by identifying P ’s input points, which indicate the start of each
iteration and separate different iterations. For a cyber-physical
program that iteratively interacts with its environment, it
receives environmental inputs through periodically invoking
system calls related to environmental sensing, e.g., reading a
pressure sensor’s value every 200 milliseconds, or sampling
a picture from a camera per second. CoMID relies on such
periodical environmental sensing and related system calls to
decide such input points. For many cyber-physical programs,
their system calls for environmental sensing have the same or
similar invocation cycles, and this characteristic makes their
inputs naturally free from being overlapping. A cyber-physical
program may also conduct one-time sensing actions, e.g.,
reading an ultrasonic sensor’s value to decide the distance to an
obstacle in an ad hoc way. However, such one-time sensing
actions can be easily distinguished from periodical sensing
actions through analyzing their appearances in an execution
trace.

Formally, we use segment to represent the collected
information for each iteration in program P ’s execution. A
segment abstracts P ’s execution state during an iteration. We
use sgi to represent P ’s state for its i-th iteration: sgi = (Pcxt,
Ecxt, M1, M2, ..., Mj), where

1) Pcxt represents the i-th iteration’s program context,
which is a set of identities (ids) of statements executed
in the iteration.

2) Ecxt represents the i-th iteration’s environmental contex-
t, which is a set of name-value pairs for sensing variables
in P .

3) M1, M2, ..., Mj represent a sequence of methods
executed in the i-th iteration, each of which contains
a method’s name, arguments, and return value.

CoMID conducts random testing on P and collects its
execution traces. The random testing is according to P ’s
targeted application scenarios, whose information is typically
available when it is built or tested. For example, in our
evaluation (Section IV), the NAO robot subject is designed
to walk on wooden or brick floor, and the two UAV subjects
are designed to fly on a sunny or cloudy day without strong
wind. In addition, random testing has been shown to be simple,
yet effective for exploring a program’s diverse behaviors (e.g.,
Android Monkey testing [28] and Google’s Waymo self-
driving car testing [29]), which are useful for CoMID to
generate invariants by studying these diverse behaviors from
the cyber-physical program.

Then, according to P ’s associated failure conditions, one
annotates whether a collected execution trace is safe or unsafe
(i.e., whether violating any failure condition or not). We
note that failure conditions can vary for different subjects,
depending on their different tasks and execution environments.
Still, there are three common suggestions for specifying failure

conditions: (1) concerning a cyber-physical program’s safety
properties, e.g., a robot or UAV should never fall into the
ground; (2) concerning liveness properties, e.g., a robot should
not always be trapped in a small region; (3) concerning
stableness properties, e.g., a UAV should not lose its height
quickly in short time or lose its balance in the air. The set of
safe execution traces forms the initial trace set for CoMID to
learn and generate invariants from.

Iteration grouping. In the second step, CoMID groups
iterations (segments) from the safe execution traces, so that
each group contains only context-sharing ones. Here, contexts
refer to program and environmental contexts recorded in the
first step.

CoMID analyzes environmental contexts Ecxt record-
ed in segments to discover common patterns shared by
iterations. It builds a set of all environmental contexts
ENV CONTEXT , and conducts the k-means clustering
algorithm [25] to form different clusters. We choose k-means
clustering mainly for the performance consideration, since it
is one of the most efficient clustering algorithms. For the
same reason, CoMID considers only environmental attributes
of numeric types in the clustering. It uses a normalized
Euclidean metric to measure the distance between each pair
of environmental contexts. Compared with the Euclidean
metric, the normalized Euclidean metric can better measure
the distance in a space whose dimensions have different
scales. Since a cyber-physical program’s sensing variables
naturally have different scales according to involved sensors
of different types, we choose the normalized Euclidean
metric to measure the distance between two environmental
contexts. Formally, given two environmental contexts Ecxt A
(a A1, a A2, ..., a An) and Ecxt B (a B1, a B2, ..., a Bn),
their distance dis(Ecxt A,Ecxt B) is calculated as

dis(Ecxt A,Ecxt B) =
∑n

i=1

√
(a Ai−a Bi)2

s2i
,

where s2i is the variance of all values of Ecxt’s i-th attributes
in the ENV CONTEXT set.

The k-means clustering algorithm [25] requires setting a
suitable value for parameter k, which decides the maximal size
of each formed cluster of environmental contexts. Generally,
a small k value can make derived clusters more specific,
but it could also increase noises in later classification [26].
Therefore, we choose the grid search [27], a traditional way
of conducting parameter optimization in machine learning
algorithms, to decide the most suitable value for parameter
k. Intuitively, the grid search conducts cross-validation on a
set of candidate values for the parameter to be optimized, and
selects the one with the best performance.

We initially use 30 candidate values for parameter k, from
1% of the total number of collected environmental contexts
to 30%, increasing with a pace of 1%. Then we conduct 10-
fold cross-validation to decide the most suitable k value. We
randomly divide the ENV CONTEXT set into ten disjoint
subsets of the same size. Nine subsets are merged for training
(i.e., training set) and the remaining one is for validation
(i.e., testing set). For each candidate k value, we conduct
its corresponding clustering on the training set, resulting in
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multiple clusters of environmental contexts. With respect to
these clusters, the environmental contexts from the testing set
are then classified into them. Accordingly, we calculate an
average deviation value to measure the performance associated
with the specific k value. Let an environmental context from
the testing set be Ecxt T , and its classified cluster be C
(Ecxt 1, Ecxt 2, ..., Ecxt j). Then context Ecxt T ’s deviation
value div(Ecxt T ) is calculated as

div(Ecxt T ) = 1
j

∑j
i=1 dis(Ecxt T,Ecxt i).

The average deviation value for k is the averaged deviation
values of all environmental contexts from the testing set. One
would expect this value to be minimized, and thus CoMID
selects the k value with the smallest average deviation value
after comparing all candidate values. In our field tests of the
NAO robot and UAV subjects used later in our evaluation
(Section IV), we observe that the selected k value ranges from
17% to 22% of the total number of collected environmental
contexts with their corresponding performance being similar.
Therefore, we select 20% of the total number as the k value
used in CoMID to simplify its implementation and evaluation.

With the k value set for the k-means clustering, CoMID
derives initial clusters for collected environmental contexts,
and their belonging segments are also clustered accordingly.
Then CoMID refines these initial clusters of segments based
on their program contexts, by measuring the similarity of
program contexts between segments in each cluster. CoMID
uses the Jaccard similarity index [30] to calculate the Degree
of Similarity (DoS) value between each pair of program
contexts. Let Pcxt sg be segment sg’s program context (i.e.,
a set of statement ids). Then for two given segments sgA
and sgB , the DoS value between their program contexts
DoS(Pcxt sgA, Pcxt sgB) is calculated as

DoS(Pcxt sgA, Pcxt sgB) =
|Pcxt sgA∩Pcxt sgB |
|Pcxt sgA∪Pcxt sgB | .

Then the DoS value between a pair of program contexts
ranges from 0 to 1. CoMID considers two segments to have
the same program context if the DoS value of their program
contexts is no less than 0.8. This reference value is set by
following the existing work [24]. Nevertheless, we also study
the impact of different DoS threshold values on CoMID’s
effectiveness in our later evaluation (Section IV).

Based on this similarity measurement on program contexts,
CoMID refines the initial clusters of segments. If two segments
in one cluster have the same program context, they are still
together in that cluster. Otherwise, they are separated into two
clusters. This separation process iterates until no cluster can
be refined. Then the final result is a set of groups, each of
which contains only segments with the same environmental
and program contexts. We also say that each group contains
context-sharing iterations.

Example. Consider in our robot example method
motion.angleMove(names, angle, timeLists).
Fig. 4 illustrates CoMID’s recorded information for the 8th
and 12th iterations in an execution trace trA. The segment
representing the 8th iteration, denoted as seg8A, is shown in
the upper dashed box, and the segment representing the 12th
iteration is shown in the lower box. For each segment, its

P :

trA

8
th

iteratio
n

Method name: 
motion.angleMove

Arguments: 

names            LShoulder

angle 48

timeLists 1.0

Environmental context:

(22.3, 20.8, 26.3)

Program context: 

stm30, stm31, stm34

…

motion.angleMove

(names, angle, timeLists)

…

P :

1
2

th
iteratio

n

…

motion.angleMove

(names, angle, timeLists)

…
Method name: 
motion.angleMove

Arguments: 

names   LShoulder

angle     55

timeLists 1.0

Environmental context:

(24.1, 19.6, 22.7)

Program context: 

stm30, stm31, stm34
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8

Segment of the 12th iteration segA
12

Fig. 4. Illustration of Step 1: Trace collection
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Fig. 5. Illustration of Step 2: Iteration grouping
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upper block lists the concerned iteration’s environmental and
program contexts, respectively, and its lower block lists the
information for methods executed in this iteration (here we
show one method for illustration). We use a tuple, e.g., (22.3,
20.8, 26.3), to represent the values of sensed environmental
attributes, e.g., for the pressure on the robot’s left foot, that
on the right foot, and the robot’s distance to its front-facing
obstacle, respectively. We use “stm” followed by a number,
e.g., “stm30”, to represent the id of a statement executed
in the concerned iteration. Note that this example is for the
illustrative purpose and thus many aspects are simplified. For
example, we list only three statements as program contexts
(in reality, there can be many). As a result, a DoS threshold
value of 0.8 between two program contexts is not effective
to use, and one has to design more statements as program
contexts to make this value useful. To make this example
simple yet illustrative, we adopt another DoS threshold value
of 0.5 here.

Fig. 5 illustrates how the iterations in three execution traces
(trA, trB , and trC) are grouped according their environmental
and program contexts. CoMID first derives initial clusters
(Fig. 5-a) according to environmental contexts of the iterations,
and cluster C1 includes six iterations (seg8A and seg12A
from trA, seg21B and seg30B from trB , and seg15C and seg20C
from trC ). We show only their environmental and program
contexts for illustration. CoMID then calculates DoS values
for program contexts of the six iterations, and refines the
C1 cluster into two final groups (Fig. 5-b). One larger group
contains four iterations (seg8A, seg12A , seg15C , and seg20C ) from
execution traces trA and trC , and the other smaller group
contains two iterations (seg21B and seg30B ) from trace trB .
Such refinement result is due to their DoS calculations, e.g.,
DoS(seg8A, seg15C ) = 1.0, DoS(seg21B , seg30B ) = 0.5, DoS(seg8A,
seg21B ) = 0.2, and DoS(seg21B , seg15C ) = 0.2, and so on.

B. Multi-invariant Detection (Steps 3 and 4)

Multi-invariant generation. After context-based trace
grouping, CoMID obtains multiple groups of context-sharing
iterations in terms of segments. CoMID feeds the segments
in each group to the Daikon [16] engine for deriving
invariants specific to this group. Note that the effectiveness
of our CoMID approach is independent of the used invariant
inference engine. Here we have chosen Daikon due to its wide
usage and fair comparisons in our evaluation as explained later.
One could also use other invariant inference engines for cyber-
physical programs. In such cases, the artifacts collected in Step
1 (i.e., arguments and return values for each executed method)
should be replaced by corresponding artifacts according to
the actually used invariant inference engines. Nevertheless,
program and environmental contexts should still be collected
since they are required by our CoMID’s technique of context-
based trace grouping.

As mentioned earlier, CoMID needs to address the impact
of uncertainty on invariant generation, so as to suppress the
negative consequences of inaccurate sensing values. To do so,
CoMID uses different subsets from each group of segments for
deriving invariants, which are later used for collective checking

in the runtime monitoring against uncertainty. Generally, one
can freely decide the number of such subsets, and CoMID
chooses four for avoiding high computational and monitoring
overheads. The sizes of the sampled subsets can also be freely
decided, and here CoMID makes the sizes of sampled subsets
have equal differences (i.e., 20%, 40%, 60%, and 80% of the
total number of segments in a group). We also study the impact
of different sizes of sampled subsets on CoMID’s effectiveness
in our later evaluation (Section IV).

Then, besides the one invariant (i.e., principal invariant) for
the universal set (i.e., a whole group of segments), CoMID
generates four invariants for the four subsets, respectively.
These five invariants are named as an invariant family, with
respect to each supported invariant template and each executed
method requiring invariant generation in the group. Since each
invariant family is associated with a specific group of context-
sharing iterations, the group’s contexts are also referred as
the invariant family’s context. An invariant family’s context
specifies the situations under which the invariants in the family
are suitable for checking, thus deciding abnormal states for
concerned programs.

Abnormal-state detection. Now CoMID has generated
a set of invariant families for runtime monitoring of each
program location of interest. Different from the existing
work [24], CoMID chooses to check only those invariant
families whose contexts are the same as that of the current
iteration in a program’s execution. Here, “same” is decided by
the comparisons of both program and environmental contexts:
(1) the DoS value between a pair of program contexts no less
than 0.8 (Section III.A), and (2) the environmental context of
the current iteration is classified into the same cluster as that
of the considered invariant family.

After selecting suitable invariant families for checking,
CoMID then needs to decide whether an invariant violation
in the runtime monitoring is simply caused by uncertainty
or indicates the detection of a real abnormal state. CoMID
uses an estimation function to ensemble the evaluation results
of invariant checking across multiple iterations, in order to
suppress the impact of uncertainty on the decision. The design
of the estimation function is based on two intuitions:

1) The possibility that an invariant violation or satisfaction
is caused by uncertainty relates to the number of
segments that have been used for deriving the invariant
under checking.

2) The impact of uncertainty on invariant checking can
be suppressed by examining checking results across
multiple consecutive iterations.

Based on these two intuitions, the estimation function
assigns a weight to each invariant violation or satisfaction.
The weight assignment is designed as follows:

1) For a violated invariant inv1, the more segments are used
for deriving it, the less possibility that inv1’s violation
is caused by uncertainty, since inv1 is inclined to be
general.

2) For a satisfied invariant inv2, the more segments are
used for deriving it, the less possibility that inv2’s
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satisfaction indicates the current execution to be passing,
since satisfying a general invariant is natural.

Recall that CoMID makes five subsets for each group of
segments (from 20% to 100% of the total size, with a pace of
20%), and generates invariants with respect to each of these
subsets. Then given a subset of segments and its associated
size ratio p (i.e., 20%, 40%, ..., or 100%), CoMID sets the
weight assigned for the violation of one invariant generated
from this subset to be p, and that for the satisfaction to be
−(1−p). Such a weight value intuitively models the likelihood
whether an execution is failing or passing: a positive value
suggests failing, while a negative value suggests passing, and
its absolute value indicates the confidence.

Formally, consider an invariant family INV = {invi}, 1 ≤
i ≤ k. Let the invariant-checking result for invi at iteration j
be rji , where 1 denotes invariant satisfaction and −1 denotes
violation. Let the size ratio associated with invariant invi be pi
(from its corresponding segment subset). Then the estimation
function returns for INV at iteration j as follows:

EST (INV )j =
k∑

i=1


pi∑k

x=1 px
rji = −1

− 1− pi∑k
x=1(1− px)

rji = 1

EST (INV )j calculates the sum of weighted checking
results for all invariants in INV for iteration j. The estimation
function then calculates the averaged result for the last w
consecutive iterations (until j):

EST (INV )j−(w−1),j = 1
w

∑j
i=j−(w−1) EST (INV )i.

This averaged value falls in the range of [−1, 1], and a value
closer to 1 would be a strong indicator of a failing execution
(i.e., having entered an abnormal state). Like existing work,
CoMID needs to set up a threshold for this value to decide
whether a monitored execution is failing. Since this value’s
fluctuation can be largely caused by the uncertainty, we
assume that its distribution corresponds to that of the specific
uncertainty type experienced by a cyber-physical program.
Then based on the specific uncertainty type (i.e., its error
range [−U , U ] and distribution D), CoMID sets up the
threshold ∆ by solving the uncertainty’s C-confidence interval
equation, i.e., Pr(x ∈ [−U ×∆, U ×∆]) = C, where Pr(x)
is the probability function for distribution D). For subjects
such as the NAO robot and UAVs in our later evaluation,
CoMID sets w = 5 and C = 90%. The former suggests 2–3
seconds before CoMID makes a decision, which is sufficient
for such low-speed subjects to take new actions (customizable
by application domains). The latter suggests that CoMID plans
to hold a confidence level of 90% for its made decisions
(also customizable by application domains). In the confidence
interval equation, the probability function for most uncertainty
types follow common models [31], facilitating the equation’s
solution. For example, if a specific certain type follows the
uniform distribution, ∆ would be solved to be 0.9; if it follows
the normal distribution, ∆ would be 0.65. By doing so, CoMID
sets up the threshold ∆ for deciding whether an averaged EST

Daikon invariant inference engine
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Invariants:

angle

angle
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Invariants’ context

A group of context-sharing iterations

Method name: 
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Arguments:
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timeLists 1.0
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Fig. 6. Illustration of Step 3: Multi-invariant generation
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{ (24.2, 22.9, 22.4), 
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Fig. 7. Illustration of Step 4: Abnormal-state detection

value implies the prediction of a failing execution, i.e., by
checking whether the value is larger than ∆.

Example. Consider in our robot example the variable
angle for method motion.angleMove(names, angle,
timeLists). Fig. 6 illustrates an invariant family for this
variable (showing three invariants for example), generated
based on one group of context-sharing iterations. In this family,
the principal invariant is “angle ≤ 65, 100%”, indicating
that the robot’s arm should not be raised over 65 degrees in
all cases. This invariant is generated based on all segments
(i.e., 100%) in the concerned group. The other two invariants,
namely, “angle ≤ 52, 20%” and “angle ≤ 58, 50%”,
are generated when only 20% and 50% (randomly sampled)
segments are used. These invariants’ context is also illustrated
in Fig. 6 (from their corresponding group of segments).

Fig. 6 illustrates how CoMID uses the generated invariant
family to detect abnormal states in the runtime monitoring.
Consider the 45th and 46th iterations for a monitored
execution trace (using two consecutive iterations for example,
i.e., w = 2). Suppose that the earlier generated invariant family
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(a) NAO robot (b) 4-rotor UAV (c) 6-rotor UAV

Fig. 8. Evaluation Subjects

shares the same context with both iterations. Then CoMID
checks all three invariants in the family to decide whether the
execution is safe or not. For the 45th iteration, its execution
violates all the three invariants, and thus EST (INV )45 is
calculated to be 1 ( 1

1.7 + 0.2
1.7 + 0.5

1.7 ). For the 46th iteration,
its execution violates only one invariant “angle ≤ 52, 20%”,
and thus EST (INV )46 is calculated to be −0.27 (− 0

1.3 +
0.2
1.7 − 0.5

1.3 ). So the averaged value of the estimation function
for the execution consisting of the 45th and 46th iterations
is 0.37 ( 1−0.27

2 ). If the uncertainty type follows the normal
distribution, CoMID would solve the equation to obtain the
threshold value to be 0.65, as explained earlier. Then the result
(0.37) suggests that the monitored execution is still safe, and
that the several invariant violations encountered in these two
iterations have been possibly caused by uncertainty.

IV. EVALUATION

In this section, we present the evaluation of our CoMID
approach including comparing it with two existing approaches.
The first approach naı̈ve simply uses an invariant inference
engine (i.e., Daikon [16]) to generate invariants. The second
approach p-context, inspired by ZoomIn [24], uses program
context to enhance invariant generation and abnormal-state
detection. We select three real-world cyber-physical programs,
namely, NAO robot (Fig. 8-a), 4-rotor UAV (Fig. 8-b), and
6-rotor UAV (Fig. 8-c), as the evaluation subjects. For the
evaluation, we implement CoMID as a prototype tool in Java
8 and study the following three research questions:

RQ1: How does CoMID compare with existing work in
detecting abnormal states for cyber-physical programs in
terms of effectiveness and efficiency?

RQ2: How does CoMID’s configuration (e.g., enabling
either or both built-in technique(s) for improving the
generated invariants, setting up which DoS threshold
value for distinguishing different program contexts in
the invariant generation, and choosing which sizes of
sampled subsets for multi-invariant generation) affect its
effectiveness?

RQ3: How useful is CoMID-based runtime monitoring
by invariant generation and checking for cyber-physical
programs?

A. Evaluation Subjects

We instrument the three evaluation subjects to record
their program variable-value and context information during
their executions. We use Daikon as the invariant inference
engine for generating invariants from these subjects’ execution
traces. Besides the invariant templates internally supported by

Daikon, we additionally add polygon invariant templates into
Daikon, as suggested by existing work [4], [32] on runtime
monitoring for cyber-physical programs. Note that CoMID is
itself independent of the used invariant templates, and this
feature makes it general to common cyber-physical programs.

The three evaluation subjects are from different companies
or universities. The commercial NAO robot program contains
300 LOC (Python-based, with five methods). The two UAV
programs are developed by professional electrical engineers,
and contain 1,500 LOC (Java-based, with 24 methods) and
4,000 LOC (C-based, with 35 methods), respectively.

B. Evaluation Design and Setup
Execution-trace collection. In the evaluation, all invariants

should be generated based on the execution traces collected
from the selected evaluation subjects. For the evaluation
purpose, we design various scenarios for our evaluation
subjects to run with, and collect their execution traces
accordingly. We test totally six scenarios and collect 1,200
execution traces (i.e., obtaining a total of 1,200 execution
traces from six scenarios) for the three evaluation subjects.

We decide whether an execution trace is safe or not (i.e., the
oracle) according to its corresponding program’s behavior and
whether its associated failure conditions have been triggered.
The failure conditions discussed later seem ad hoc as they
may not hold for other cyber-physical program subjects.
Nevertheless, such failure conditions can hardly be general
or systematic for a wide range of cyber-physical programs,
as the latter can have varying requirements for being safe
or functional. For example, the criterion for a NAO robot
to stay balanced on the ground would be clearly different
from that for a UAV to stay balanced when flying in the air.
As such, failure conditions should probably be application-
specific, as we design different failure conditions for the three
subjects. If any failure condition is triggered, its corresponding
subject program is directly decided and annotated to be unsafe
in its execution. Based on such oracle information (safe or
unsafe), we can later judge whether a specific approach under
comparison gives a correct prediction or not (i.e., passing vs.
safe, and failing vs. unsafe).

For the NAO robot (subject #1), we design a 3m×3m indoor
area (including random obstacles and different floor materials)
for free exploration. The NAO robot’s failure conditions
concern its safety (e.g., the robot should never fall into the
ground or crash into any obstacle) and liveness (e.g., the
robot should not be trapped in a small region). We collect
a total of 200 execution traces, including 127 safe ones and
73 unsafe ones. We also build a simulated space with the
same settings by the official NAO’s emulator Webots [33],
and collect 600 execution traces, which include 454 safe
ones and 146 unsafe ones. We note that the Webots emulator
also supports uncertain environmental sensing internally, and
thus its emulated executions are accompanied with uncertainty
naturally. However, both the subject program and all the
approaches under comparison are unaware of such uncertainty.
For ease of presentation, we use NAO-f and NAO-e to denote
the two scenarios, i.e., field setting and emulation setting for
the NAO robot, respectively.
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For the 4-rotor UAV (subject #2), we design three field
scenarios and collect 100 execution traces for each scenario
due to battery constraints. In the first scenario, the UAV takes
off from a starting point and lands at a remote destination.
We collect 68 safe execution traces and 32 unsafe ones. In
the second scenario, the UAV carries some balancing weight
during its flying. We collect 71 safe execution traces and 29
unsafe ones. In the last scenario, the UAV conducts extra
actions in addition to its normal flying plans, e.g., hovering
and turning around. The failure conditions for the 4-rotor
UAV concern its safety (e.g., a UAV should never fall into
the ground or land outside a destination area) and stableness
(e.g., a UAV should never lose its height quickly in short time
or lose its balance in the air). We collect 64 safe execution
traces and 36 unsafe ones. Similarly, we use 4-UAV-s1, 4-UAV-
s2, and 4-UAV-s3 to denote the three scenarios, respectively.

For the 6-rotor UAV (subject #3), similarly it is scheduled
to fly from a starting point to a remote destination. The 6-
rotor UAV’s failure conditions are the same as the 4-rotor
UAV’s. We collect 100 execution traces, including 76 safe
executions and 24 unsafe ones. We design one field scenario
for the evaluation and use 6-UAV to denote this scenario.

Evaluation procedure. From the collected execution traces
from various scenarios, all the approaches under comparison
(i.e., CoMID, naı̈ve, and p-context) generate invariants, which
are evaluated for their qualities, in order to answer the
three research questions. The evaluation is conducted on a
commodity PC with an Intel(R) Core(TM) i7 CPU @4.2GHz
and 32GB RAM. For each scenario, we run CoMID, naı̈ve,
and p-context on safe execution traces to generate invariants,
respectively. Then we use safe and unsafe execution traces
to validate their generated invariants in detecting abnormal
states for the three evaluation subjects. We use 10-fold
cross-validation in our evaluation. More specifically, for each
scenario we divide the set of safe execution traces into
ten subsets of the same size. One subset of safe execution
traces (named the safe set) and the set of unsafe execution
traces (named the unsafe set) are retained for validation. The
remaining nine subsets of safe execution traces are used for
invariant generation. We repeat this generation and validation
process ten times and average their results as the final results
for discussion.

To answer research question RQ1 (effectiveness and
efficiency), we compare the invariants generated by the
three approaches. For each approach, we first study the
number of its generated invariants and the percentage of these
invariants that can also be generated by other approaches.
Since CoMID uses multi-invariant detection, we consider only
its principal invariants for a fair comparison. We then study
the effectiveness and efficiency of the invariants generated by
the three approaches in detecting abnormal states for cyber-
physical programs. We measure the effectiveness by the true-
positive rate (TP, i.e., the percentage of unsafe execution traces
that are predicted to be failing) for the unsafe set, and by the
false-positive rate (FP, i.e., the percentage of safe execution
traces that are predicted to be failing) for the safe set. Finally,
we compare the efficiency for the three approaches by their
time costs on invariant generation and checking.

To answer research question RQ2 (impact of configuration),
we study CoMID’s effectiveness (TP and FP) with its different
configurations enabled: (1) on whether to enable one or both
built-in technique(s) for improving the generated invariants,
i.e., enabling context-based trace grouping only (Context),
enabling multi-invariant detection only (Multi), or enabling
both techniques (CoMID); (2) on how to set up a DoS
threshold value for distinguishing program contexts in the
invariant generation, i.e., from 0.6 to 1.0 with a pace of 0.1
(0.8 as the default setting, as explained in Section III.A);
(3) on different sizes of sampled subsets for multi-invariant
generation.

The first two research questions study the quality of
CoMID’s generated invariants based on offline execution
traces that have been collected in advance. Research question
RQ3 investigates how CoMID’s abnormal-state detection helps
to improve a cyber-physical program’s safety in the runtime
monitoring. Without CoMID-based runtime monitoring, the
three evaluation subjects can rely on only their built-
in protection mechanisms when their corresponding failure
conditions are triggered. For example, when the robot is falling
into the ground, it would control to stop walking and crouch
on its knees; when a UAV is falling into the ground, it would
control to stop rotating its wings. Such protection mechanisms
can prevent the robot and UAVs from being damaged by the
failures, but their planned tasks already fail. With CoMID-
based runtime monitoring, the three evaluation subjects can
use CoMID-based recovery in advance once CoMID detects
abnormal states (i.e., predicting the current execution to be
failing), and take remedy actions to prevent failure. Note
that the original protection actions are invoked when failure
conditions are satisfied (i.e., failures have already occurred,
e.g., a robot is falling into the ground), while the remedy
actions are invoked when CoMID detects any abnormal state
(i.e., considering the current execution unsafe or failing).
RQ3 aims to study the difference between these two setups
regarding a cyber-physical program’s recovery strategies (i.e.,
without monitoring vs. with monitoring, or original protection
mechanism vs. CoMID-based remedy actions).

However, the carefully designed remedy actions are not
the focus of CoMID, which focuses only on indicating when
remedy actions should be invoked upon an abnormal state is
detected. For comparison purposes, we adopt only very simple
remedy actions for our evaluation subjects, i.e., suspending
and then resuming current tasks after a short period of time.
For example, the robot would stop walking, stand for two
seconds, and then walk toward a different direction; a UAV
would stop landing, reinitiate the flying plan, and then seek
to land after two seconds. Although such remedy action can
delay the subjects’ planned tasks, the remedy action should
be able to help avoid upcoming failures that would otherwise
occur if no remedy action is taken.

To answer RQ3 (usefulness), we study how CoMID-based
runtime monitoring helps the three evaluation subjects on
preventing their failures. The failure data without CoMID-
based runtime monitoring can be obtained from earlier
collected execution traces for the three evaluation subjects in
answering RQ1 and RQ2. For obtaining the failure data with
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TABLE I
OVERVIEW OF THE GENERATED INVARIANTS BY THE THREE APPROACHES

CoMID Naı̈ve P-context
Inv TP (%) FP (%) Inv TP (%) FP (%) Inv TP (%) FP (%)

NAO-f 1,157 (33.0%) 85.9 18.3 978 (39.1%) 68.6 56.0 979 (38.0%) 78.5 43.9
NAO-e 1,313 (32.4%) 90.3 13.9 1,117 (38.1%) 79.1 44.0 1,117 (38.1%) 84.6 33.9
4-UAV-s1 860 (39.0%) 95.0 15.6 577 (58.1%) 77.5 40.0 577 (58.1%) 84.3 27.2
4-UAV-s2 802 (36.3%) 93.9 7.1 570 (51.1%) 65.7 30.7 570 (51.1%) 79.1 17.2
4-UAV-s3 933 (30.2%) 90.8 29.1 609 (46.3%) 75.5 49.4 609 (46.3%) 80.6 35.9
6-UAV 1,803 (33.0%) 92.0 12.2 1,527 (39.0%) 83.4 30.7 1,527 (39.0%) 85.9 18.9

CoMID-based runtime monitoring, we run the three evaluation
subjects enabled with CoMID-based runtime monitoring and
remedy mechanisms 100 times for each scenario, and average
their results. Then we calculate and compare the success
rates for the three evaluation subjects from the failure data.
In addition, since the remedy mechanisms can delay the
subjects’ planned tasks, we study their impact by measuring
and comparing the subjects’ task-completion time (i.e., when
a robot finishes its exploration task, and a UAV finishes its
flying and landing tasks) for those non-failure executions.

C. Evaluation Results and Analyses

RQ1 (effectiveness and efficiency). Table I gives an
overview of our evaluation results on the quality of the gen-
erated invariants by the three approaches under comparison.
The table includes the number of generated invariants (Inv),
true positive rate (TP) in detecting abnormal states for the
unsafe set, and false positive rate (FP) in detecting abnormal
states for the safe set. The percentage data in brackets after
the invariant numbers give the proportions of the concerned
invariants that can also be generated by other approaches.
In general, CoMID generates more invariants than naı̈ve
and p-context (17.5–53.2% more, for different scenarios),
even if we consider its principal invariants only. The reason
is that CoMID generates different invariants to govern the
program behavior for different situations by distinguishing
different program and environmental contexts. Naı̈ve and p-
context generate the same numbers of invariants since they
both generate the same invariants, although they check these
invariants in different ways during the runtime monitoring, as
shown later.

In addition, we observe that the invariants generated by
CoMID are quite different from those generated by the
other two approaches. For example, 30.2–39.0% of CoMID’s
invariants can be generated by the other two approaches, but
38.1–58.1% of the other two approaches’ invariants can also
be generated by CoMID. Considering that the number of
CoMID’s generated invariants is larger than those of the other
two approaches’ generated invariants, this result suggests that
CoMID generates much more invariants that are unique from
those generated by the other two approaches.

It is important to know whether these unique invariants bring
the positive or negative impact on detecting abnormal states
for the three evaluation subjects. We observe from Table I
that these unique invariants enable CoMID to achieve a higher
TP and a lower FP. For example, CoMID’s TP is 8.6–28.2%
higher than naı̈ve and 5.7–14.7% higher than p-context, and at

the same time, CoMID’s FP is 18.6–37.6% lower than naı̈ve
and 6.8–25.5% lower than p-context. A high TP implies the
ability of capturing various cases of abnormal states, and at the
same time, a low FP implies that this ability is not achieved
by the cost of overfitting the generated invariants to specific
cases. Therefore, this result suggests that CoMID’s generated
invariants are of a high quality, by achieving both a high TP
and a low FP. It also indicates that CoMID deserves its efforts
on particularly addressing the iterative execution and uncertain
interaction characteristics of cyber-physical programs. For the
iterative execution, p-context partially uses program contexts
to distinguish different scopes for different invariants, and
thus performs better than naı̈ve, which does not consider any
context at all. For the uncertain interaction, different levels of
uncertainty result in CoMID’s varying leading advantages in
FP for different evaluation subjects. For example, compared
with p-context, CoMID achieves a 20.0–25.5% lower FP for
the NAO robot, and a 6.8–11.2% lower FP for the two UAVs.

We note that CoMID’s reported FP varies between different
subjects (7.1–29.9%). Considering different subjects’ various
deployment platforms and environments, a direct comparison
across different subjects may not make much sense. Never-
theless, we make a further investigation into CoMID’s FP
results. We find that the false positives are mainly caused by
the uncertainty (e.g., inaccurate sensing) associated with these
subjects. For example, in scenarios where a subject suffers
more from uncertainty, e.g., the in-field scenario (NAO-f) of
the NAO robot, all three studied approaches report a higher
FP (4.4–12.0% higher, as shown in Table I), as compared with
scenarios where a subject suffers less from uncertainty, e.g.,
the emulated scenario (NAO-e) of the NAO robot.

We then compare the efficiency for the three approaches
in generating invariants and checking these invariants for
detecting abnormal states. Fig. 9-a compares these approaches’
time costs in generating invariants. We observe that CoMID
spends 18.7–43.6% more time than naı̈ve and 8.9–23.5% more
than p-context in generating invariants. Naı̈ve spends the least
time due to its straightforward strategy of invariant generation
by overlooking all contexts. CoMID’s higher time cost is due
to its constituent techniques of context-based trace grouping
and multi-invariant generation for improving the quality of
generated invariants. For the former, CoMID groups context-
sharing iterations to make its generated invariants fitter to
specific program behaviors, bringing up its TP in detecting
abnormal states. For the latter, CoMID uses multiple invariants
to alleviate the impact of uncertainty, bringing down its FP in
detecting abnormal states.
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Fig. 9. Efficiency comparison for CoMID, naı̈ve, and p-context

Fig. 9-b compares the three approaches’ time costs in
checking invariants for runtime monitoring. For the collected
execution traces, which are four-minute length on average,
CoMID’s total time overhead is less than 400 milliseconds
(176.5–363.5 milliseconds, or 241.9 milliseconds on average).
Considering that CoMID checks invariants only at the end of
each iteration, the time overhead is actually split into multiple
pieces for each iteration, and each piece is very small. We
observe that CoMID spends 36.3–88.5% less time than naı̈ve.
Although CoMID uses multiple invariants to decide abnormal
states, its technique of context-based trace grouping enables it
to focus on much fewer invariants specific for each iteration
encountered by a cyber-physical program. naı̈ve, instead, has
to check each invariant in each iteration, resulting in its high
time cost in detecting abnormal states. Regarding p-context,
whose total time overhead is about 200 milliseconds (157.3–
315.7 milliseconds, or 209.4 milliseconds on average), CoMID
is acceptable (only slightly more time), considering that it
has additionally considered environmental contexts for refining
invariants and addressed the impact of uncertainty in checking
invariants. Therefore, CoMID should be useful for many real-
world cyber-physical programs, which include, but not limited
to, the three evaluation subjects.

However, due to the variety of different cyber-physical
programs, one can hardly claim that CoMID applies to
all of them. We suggest characterizing CoMID’s applicable
cyber-physical programs according to their iteration lengths
in terms of the execution time for one iteration. Since
CoMID checks invariants only at the end of each iteration,
a cyber-physical programs’s iteration length would largely
affect, if not deciding, whether CoMID’s time overhead is
sufficiently small and affordable. For example, if a cyber-
physical program has an iteration length of about 100
milliseconds or longer (i.e., sensing its environment less than
ten times per second), then CoMID is applicable (e.g., for our
evaluation subjects, the iteration length for the NAO robot is
about 500 milliseconds and those for the two UAV subjects
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Fig. 10. Effectiveness comparison for CoMID, Context, and Multi

are about 200 milliseconds). The reason is that CoMID takes
about 0.6 millisecond for each iteration (Fig. 9-b, average total
time is 241.9 milliseconds, and average iteration number is
420). Still, CoMID’s own time overhead depends on how many
invariants should be checked, being quite application-specific.
For our evaluation subjects, the numbers of checked invariants
for the three subjects are 802–1,803. For other cyber-physical
programs, one can decide CoMID’s applicability based on their
invariant numbers accordingly.

Therefore, we answer research question RQ1 as follows.

CoMID generates and checks invariants to detect
abnormal states for cyber-physical programs effectively and
efficiently. It achieves a higher TP (5.7–28.2% higher) and
a lower FP (6.8–37.6% lower) than naı̈ve and p-context.
Although CoMID spends more time in generating invariants
(offline), its invariant checking (online) is comparably
efficient as p-context and much more efficient than naı̈ve.

RQ2 (impact of configuration). We study the impact of
configurations on CoMID’s effectiveness from two aspects.
First, CoMID can be configured with its two built-in
techniques (context-based trace grouping and multi-invariant
detection) individually enabled. Fig. 10 compares the effec-
tiveness in terms of TP and FP for the original CoMID
(CoMID), CoMID with only context-based trace grouping
enabled (Context), and CoMID with only multi-invariant
detection enabled (Multi). We observe that when detecting
abnormal states for the unsafe set, Context performs more
effectively than Multi in four UAV scenarios (20.2–28.3%
higher TP), while Multi performs more effectively than
Context in two NAO scenarios (0.7–1.1% higher TP). As
analyzed earlier, the NAO robot suffers more from uncertainty
than the two UAVs due to its complicated sensing and physical
behavior, and thus Multi helps more than Context for the two
NAO scenarios on suppressing the impact of uncertainty. For
the four UAV-related scenarios, their uncertainty is relatively
light, and thus Context exhibits more substantial advantages.
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When combining the two techniques together, CoMID always
produces the best results (2.7–35.4% higher TP). On the other
hand, when suppressing false alarms for the safe set, Multi
performs more effectively than Context in all six scenarios
(0.9–13.3% lower FP). The advantages of Multi are mainly
caused by the fact that uncertainty is the major reason for false
alarms. Still, CoMID again produces the best results (2.1–9.5%
lower FP). Considering that Context and Multi behave better
in different scenarios (complementing each other) and CoMID
always produces the best results, CoMID’s two techniques
(context-based trace grouping and multi-invariant detection)
are both useful for improving its effectiveness by achieving a
high TP and a low FP.

The p-context approach (inspired by the existing work
ZoomIn [24]) uses program contexts to specify effective
scopes for its generated invariants, but does not explicitly
address the uncertainty issue. When its reported FP is
compared with Context (i.e., CoMID without addressing the
uncertainty), the latter obtains only a 1.4–3.3% lower FP
rate than the p-context approach as shown in Table I, but
CoMID with both its techniques enabled (i.e., addressing the
uncertainty) obtains a 6.8–25.5% lower FP rate than the p-
context approach. This result demonstrates CoMID’s strengths
in alleviating the impact of uncertainty to cyber-physical
programs. This result also suggests that the p-context approach
can still be effective for subjects with less uncertainty.

Second, CoMID can also be configured to use different DoS
threshold values for distinguishing different program contexts
in generating invariants. As mentioned earlier, CoMID uses a
default DoS threshold value of 0.8 as suggested by the existing
work [24], and here we study the impact of this value choice
(from 0.6 to 1.0 with a pace of 0.1) on CoMID’s effectiveness.
Fig. 11 compares CoMID’s effectiveness in terms of TP and
FP with different DoS threshold values. We observe that in all
six scenarios, CoMID with the value of 0.8 indeed behaves
the best in both TP and FP. Nevertheless, the winning extents
are not that large, and the extent on TP (1.8–15.6% higher)
is a bit more than that on FP (0.1–7.9% lower). In addition,
we observe that the impact of different DoS threshold values
varies across different scenarios. For example, in scenario
NAO-f, the TP for threshold 0.9 behaves slightly better than
that for threshold 0.7, while in scenario NAO-e, the latter
behaves slightly better than the former. This result suggests
that CoMID’s effectiveness might be further improved if its
DoS threshold value can be tuned adaptively for specific
cyber-physical programs. Currently, we make CoMID take the
default value of 0.8 for simplicity, and we leave its adaptive
tuning to future work.

Third, CoMID samples four subsets from a group of
context-sharing iterations, each containing 20%, 40%, 60%,
and 80% of the total number of segments in a group, for multi-
invariant generation. Now we study the impact of different
sizes of sampled subsets on CoMID’s effectiveness. Besides
the original size configuration (original), we consider three
other size configurations: (1) four subsets each containing
20%, 30%, 50%, and 70% of the total number of segments
in a group (c1); (2) containing 20%, 50%, 70%, and 90%
(c2); (3) containing 20%, 26%, 36%, and 53% (c3). While the
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Fig. 11. Effectiveness comparison for CoMID with different DoS threshold
values
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Fig. 12. Effectiveness comparison for CoMID with different size
configurations for sampled subsets

first two size configurations are manually set to make their
size differences not equal, the last one is randomly set for
comparison.

Fig. 12 compares CoMID’s effectiveness in terms of
TP and FP with different size configurations for sampled
subsets. We observe that CoMID’s average effectiveness with
the original size configuration is the best among the four
compared configurations in both TP (78.7%) and FP (22.2%).
Nevertheless, the wining extents are not that large (0.8–1.9%
higher TP, and 0.5–1.7% lower FP). This result suggests that
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changing to another size configuration can have only limited
impact on CoMID’s effectiveness. In addition, we observe
that although CoMID with the original size configuration
achieves the best average effectiveness, CoMID with other size
configurations can achieve the best effectiveness for specific
scenarios. For example, considering TP, c1 performs the best in
scenario 4-UAV-s1, c2 performs the best in scenario 4-UAV-
s3, and c3 performs the best in both scenarios NAO-e and
6-UAV. Similar to the DoS threshold value setting, the result
also suggests that CoMID’s effectiveness might be potentially
further improved if its adopted sizes of sampled subsets for
multi-invariant generation can be tuned adaptively for specific
cyber-physical programs.

Therefore, we answer research question RQ2 as follows.

CoMID’s configurations affect its effectiveness. First,
CoMID’s two built-in techniques are both useful. When
the uncertainty affecting the three evaluation subjects
is relatively light, CoMID with only context-based trace
grouping enabled already behaves quite well. When the
uncertainty is relatively heavy, CoMID with only multi-
invariant detection enabled behaves better. In either way,
combing both techniques (i.e., a full-fledged CoMID)
produces the best results. Second, CoMID’s settings of its
DoS threshold value for distinguishing different program
contexts, as well as sizes of its sampled subsets for multi-
invariant generation, also affect its effectiveness, but not
substantially. Its current configuration (i.e., DoS threshold
value set to 0.8, and sizes of sampled subsets set to 20%,
40%, 60%, and 80% of the total number of segments in
a group) already makes it work satisfactorily for the three
evaluation subjects.

RQ3 (usefulness). Finally, we study how CoMID-based
runtime monitoring helps the three evaluation subjects on
preventing their potential failures. Fig. 13 compares the
success rate for the three evaluation subjects in the six
scenarios, based on their failure data with (“with CoMID”)
and without (“without CoMID”) CoMID-based runtime mon-
itoring. We observe that CoMID indeed helps improve the
success rate by 15.3–31.7% (avg. 23.1%) across different
scenarios. This result echoes our earlier evaluation results on
CoMID’s high TP and low FP performance. In addition, as
mentioned earlier, the CoMID-based runtime monitoring and
remedy mechanisms can delay the three evaluation subjects’
planned tasks, thus trading for higher safety (i.e., fewer
failures). So we study such impact. Fig. 14 compares the
average task-completion time for non-failure executions of the
three evaluation subjects with (“with CoMID”) and without
(“without CoMID”) CoMID-based runtime monitoring. We
observe that CoMID indeed increases the subjects’ task-
completion time by 8.8–35.2% (avg. 26.8%). We consider
such slowdown extent acceptable for subjects that require high
safety assurance. In fact, the delay is largely due to the safety
control before reinitializing the tasks (e.g., a robot stands for
two seconds and then restarts walking, and a UAV restarts to
land after two seconds), customizable by different application
domains.

Therefore, we answer research question RQ3 as follows.
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CoMID’s capability of generating and checking invariants
for runtime monitoring can effectively prevent the three
evaluation subjects from entering potential failures. CoMID
helps improve the subjects’ success rate in their task
executions by 15.3–31.7%, with a cost of 8.8–35.2% longer
task-completion time.

D. Threats to Validity

One major concern on the validity of our empirical conclu-
sions is the selection of evaluation subjects in our evaluation.
We select only three evaluation subjects, which may not allow
our conclusions to be generalized to more other subjects.
Nevertheless, a comprehensive evaluation requires the support
of suitable environments for experimentation, which should be
both observable and controllable. This requirement restricts
our choice of possible evaluation subjects. To alleviate this
threat, we try to make our subjects realistic by selecting
real-world cyber-physical programs. In addition, we make
the subjects diverse by requesting them to cover different
functionalities (e.g., automated area exploration, planned
flying, and smart obstacle avoidance), and to run on different
platforms (e.g., Python-based NAO robot, Java-based UAV,
and C-based UAV). By doing so, we try to alleviate as
much as possible potential threat to the external validity
of our empirical conclusions. Still, evaluating CoMID on
more comprehensive cyber-physical programs and platforms
deserves further efforts.

Another concern is about relating the detection of an
abnormal state to an execution’s failure result; such factor may
pose threat to internal validity of our empirical conclusions on
an approach’s TP and FP performance. The reason is that when
an abnormal state is detected by an approach, one seems not
able to clearly relate the detection to the current execution’s
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upcoming failure, considering that their time interval can vary.
To address this problem, we particularly design to measure TP
for unsafe executions and FP for safe executions only: (1) for
an unsafe execution, if an approach never detects any abnormal
state, such result suggests its weakness (it should detect),
and so we choose to check whether the approach reports the
detection of any abnormal state, i.e., TP; (2) on the other
hand, for a safe execution, if an approach reports the detection
of any abnormal state, such result also suggests its weakness
(it should not detect), and so we directly check whether the
approach produces such false alarms, i.e., FP. In addition, to
further alleviate the potential threat, we additionally study
in research question RQ3 whether CoMID-based runtime
monitoring indeed helps prevent the three evaluation subjects
from entering failures, i.e., by measuring and comparing their
success rates in task executions. All together, we strive our best
efforts to evaluate CoMID’s empirical and practical usefulness
for cyber-physical programs.

Last but not least, the failure conditions used for annotating
safe/unsafe execution traces may threat the validity of our
empirical conclusions. Failure conditions’ not being satisfied
does not necessarily indicate that the current execution is
passing (i.e., should be a candidate to be annotated as a
“safe” one) at this moment. What we can assure is that
when failure conditions are satisfied, the current execution
is indeed failing (i.e., should be annotated as an “unsafe”
one). If not, one has not yet observed any evidence showing
that the current execution will necessarily fail in the future.
Therefore, we consider that the execution is still passing at this
moment. Note that this treatment applies to all the approaches
under comparison, and therefore should not affect much our
empirical conclusions.

V. RELATED WORK

In this section, we discuss representative related work
on testing cyber-physical programs, generating program
invariants, and runtime monitoring, respectively.

Testing cyber-physical programs. Cyber-physical pro-
grams are featured with context-awareness, adaptability, and
uncertain program-environmental interactions, which bring
substantial challenges to their quality assurance. To address
this problem, various approaches have been proposed for
effective testing of such programs. For example, Fredericks et
al. [34] use utility functions to guide the design and evolution
of test cases for cyber-physical programs. Xu et al. [13]
propose monitoring common error patterns at the runtime of
cyber-physical programs, to identify defects in their adaptation
logics when interacting with uncertain environments. Ramires
et al. [35] explore specific combinations of environmental
conditions to trigger specification-violating behaviors in
adaptive systems. Yi et al. [36] propose a white-box
sampling-based approach to systematically exploring the state
space of an adaptive program, by filtering out unnecessary
space samplings whose explorations would not contribute
to detecting program faults. These preceding approaches
exploit different observations to strengthen their testing
effectiveness, but rely mostly on human-written or domain-
specific properties for defining abnormal or error states

in executing programs. Our CoMID approach complements
these preceding approaches by assisting their fault-detection
capabilities from checking trivial failure conditions (e.g.,
system crashes) to comprehensive errors (e.g., various types
of error state) with automatically generated invariants.

Generating program invariants. Dynamically inferring
invariants is spearheaded by the Daikon [16] approach. The
approach instantiates several pre-defined property templates
to produce candidate properties, and uses test runs to discard
candidate properties that are violated. The remaining set of
candidate properties are maintained as the likely invariants.
DySy [37] is an approach that combines test runs with
symbolic execution. Like Daikon, DySy uses test runs but
simultaneously performs symbolic execution to collect path
conditions and symbolic constraints for a method’s return
value and the receiver object’s instance variables. From these
path conditions and symbolic constraints, DySy derives the
method’s preconditions and postconditions. PreInfer [38] also
combines test runs with symbolic execution but, unlike DySy,
PreInfer conducts pruning and template-based abstraction for
loops to infer concise quantified invariants. Jiang et al. [4]
derive invariants by observing messages exchanged between
system nodes, and specify operational attributes for robotic
systems based on these messages. Zhang et al. [39] use
symbolic execution as a feedback mechanism to refine the
set of candidate invariants generated by Daikon. Carzaniga
et al. [40] propose cross-checking invariant-alike oracles by
exploiting intrinsic redundancy of software systems. Different
from these preceding approaches, our CoMID approach
additionally considers the impact of contexts on invariant
generation (to restrict invariants’ effective scopes) and that of
uncertainty on invariant checking (to suppress false alarms),
specially catered for the characteristics of cyber-physical
programs.

Runtime monitoring. By means of invariant checking, one
is able to detect abnormal states or anomalous behaviors in
a program’s execution. Detecting abnormal states early can
allow the program to execute alternative actions to avoid
danger. Zheng et al. [41] mine predicate rules that specify
what must hold at certain program points (e.g., branches
and exit points) for runtime monitoring. Raz et al. [42]
derive constraints on values returned by data sources, and
identify abnormal values based on the derived constraints.
Pastore et al. [24] use the statement-coverage information in a
program’s execution to improve the precision of abnormality
detection. Nadi et al. [43] extract configuration constraints
from program code, and use the constraints to enforce expected
runtime behaviors. Xu et al. [44] collect the calling contexts
of method invocations, and use the contexts to distinguish a
program’s different behaviors under different scenarios. The
preceding approaches share a common assumption that a
program execution’s anomalous behaviors can be discovered
by checking newly collected execution data against earlier
derived constraints from assumed normal executions. While
this assumption is generally correct, cyber-physical programs’
two characteristics, i.e., iterative execution and uncertain
interaction as discussed earlier, make the preceding approaches
less effective. The main reason is that different iterations
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in a cyber-physical program’s execution can face different
situations and undertake different strategies to handle these
situations. Then a straightforward invariant-checking approach
can easily generate false alarms when the derived invariants’
scopes differ and the impact of uncertainty is overlooked. Our
CoMID approach specifically addresses this problem and thus
complements existing work on effective runtime monitoring.

VI. CONCLUSION AND FUTURE WORK

In this article, we have presented a novel approach,
CoMID, for effectively generating and checking invariants to
detect abnormal states for cyber-physical programs. CoMID
distinguishes different contexts for invariants and makes
them context-aware, so that its generated invariants can
be effective for varying situations and at the same time
robust to uncontrollable uncertainty faced by cyber-physical
programs. Our evaluation with real-world cyber-physical
programs demonstrates CoMID’s effectiveness in improving
the true-positive rate and reducing the false-positive rate in
detecting abnormal states, as compared with two state-of-the-
art invariant generation approaches.

CoMID still has room for improvement. For example, it
currently records the values of program variables at entry
and exit points of all executed methods, and uses these
variable values to generate invariants. Monitoring all executed
methods greatly increases the time overhead of CoMID, and
makes it less effective when applied to a time-critical cyber-
physical program (e.g., a program whose iteration length is
less than 100 milliseconds, as discussed in Section IV-C).
One promising way is to restrict the invocations of Daikon to
important methods only, as suggested by other Daikon-based
work [45]. In addition, CoMID currently uses the default DoS
threshold value of 0.8 as suggested by existing work [24].
In our evaluation, we observe the opportunities in which
different threshold values can bring higher quality of runtime
monitoring for different scenarios. Therefore, it is also worth
exploring how to design adaptive DoS threshold tuning for
further refined invariant generation and checking, as our future
work.

CoMID also brings new research opportunities. Once
CoMID detects abnormal states, one has to correct the
monitored cyber-physical program’s current execution, in
order to prevent it from reaching a failure. In our evaluation,
we use a straightforward strategy to design the remedy actions,
since remedy is not the focus of this article. Considering the
open environment surrounding cyber-physical programs, it is
very challenging to design such simple yet effective remedy
actions. One possible way is to exploit the invariant-violation
information. When CoMID reports an invariant violation, it not
only detects the anomalies of the variable values of a cyber-
physical program, but also describes the program’s internal
and external situation through program and environmental
contexts. By checking the program’s safe executions under
similar situations, one could possibly interpret the situation
with the program’s present violation, and map this information
to proper remedy actions. This direction deserves further effort
to investigate.
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