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In recent years, applying deep learning to detect semantic code clones has received substantial attention

from the research community. Accordingly, various evaluation benchmark datasets, with the most popular

one as BigCloneBench, are constructed and selected as benchmarks to assess and compare different deep

learning models for detecting semantic clones. However, there is no study to investigate whether an evaluation

benchmark dataset such as BigCloneBench is properly used to evaluate models for detecting semantic code

clones. In this article, we present an experimental study to show that BigCloneBench typically includes

semantic clone pairs that use the same identifier names, which however are not used in non-semantic-clone

pairs. Subsequently, we propose an undesirable-by-design Linear-Model that considers only which identifiers

appear in a code fragment; this model can achieve high effectiveness for detecting semantic clones when

evaluated on BigCloneBench, even comparable to state-of-the-art deep learning models recently proposed for

detecting semantic clones. To alleviate these issues, we abstract a subset of the identifier names (including type,

variable, and method names) in BigCloneBench to result in AbsBigCloneBench and use AbsBigCloneBench to

better assess the effectiveness of deep learning models on the task of detecting semantic clones.
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1 INTRODUCTION
Code clones [32] (in short as clones in the rest of this article) are similar code snippets that share the

same semantics but may differ syntactically to various degrees. There is a common agreement that

clones should be detected and managed [20, 34] for three main reasons. First, clones unnecessarily

increase system size. As a system increases in size, more software maintenance efforts are needed.
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Second, changes to a code segment, such as fault fixing, need to be made to its clones as well,

thereby increasing maintenance efforts. Also, if changes are performed inconsistently, faults could

be introduced. Third, duplicating a code snippet that contains faults leads to fault propagation.

To detect and manage clones, researchers have established a common taxonomy to group clones

into multiple types [2, 32], which encompass semantic clones, the most difficult-to-detect ones. Type

I-III clones are clone pairs that differ at token and statement levels. Type-IV clones are code snippets

with similar functionalities but with different implementations. To clarify the differences between

Type-III and Type-IV clones, previous work [39] divides these two types into the following four

categories based on their syntactical similarity (sorted from the easiest to most difficult to detect):

Very-Strong Type-III, Strong Type-III, Moderately Type-III, and Weak Type-III/Type-IV. The two

most difficult-to-detect categories of clones, i.e., Moderately Type-III and Weak Type-III/Type-IV,

are referred to as semantic clones [2, 32]. Semantic clones are difficult to detect because they are

quite different in implementations, not amenable for detection based on the lexical and structural

information [45, 48].

Since the emergence of clones as a research field, various traditional approaches [15, 16, 33, 36]

have focused on detecting and analyzing Type-I to Type-III clones but have had limited success

with semantic clones (i.e., Moderately Type-III and Weak Type-III/Type-IV clones). Without prior

knowledge, these approaches cannot identify semantic clones being dissimilar in lexical/syntactical-

level implementations (e.g., bubble sort and quick sort) without considering functional behaviors

of code snippets. For example, SourcererCC [36] treats the source code under analysis as tokens

and compares subsequences to detect clones. SourcererCC is a typical lexical-based approach that

considers the similarity only in the lexical level of code snippets and ignores the structural infor-

mation. Deckard [15] uses only the structural information without considering lexical information

of code snippets.

Based on a large labeled dataset such as BigCloneBench [39] (one of the most popular bench-

marks), deep learning approaches [45, 46, 48, 49] have been proposed to detect semantic clones in

recent years. In the rest of this article, we refer a deep learning architecture before training as a deep

learning approach, and refer a deep learning model after training as a deep learning model. Existing

research has taken great efforts on proposing complicated deep learning approaches [44, 45, 48, 49]

to improve detection effectiveness with respect to evaluation metrics (e.g., precision and recall) on

BigCloneBench. These approaches usually split the dataset into the training and validation/test

sets. Their experimental results show that deep learning approaches can effectively detect semantic

clones by learning features from big data without manually extracting features. Deep learning

approaches perform well on detecting semantic clones because the deep learning approaches can

learn the semantic information in semantic clones from the training set.

Despite the quality of a labeled dataset being highly critical for these deep learning approaches,

there exists no study for investigating limitations of BigCloneBench when being used to assess and

compare different deep learning approaches for detecting semantic clones, in the face of various

data quality issues increasingly reported for other software engineering tasks [1, 26]. If researchers

do not pay attention to data quality issues in the dataset, the reported effectiveness of models on the

dataset is not convincing [1, 26]. For example, code duplication issues exist (resulted from identical

and similar files) in both the training/validation and test sets used to train and assess deep learning

approaches for source code [1]. Code duplication affects all evaluation metric values, and the

effects observed by end-users are often significantly worse than the effects reported by evaluations

conducted based on the dataset. Here is another example to illustrate the impact of the dataset

on a deep learning approach. As the keynote presentation in Frontiers in AI and Robotics (FAIR

2020) [37], some deep learning approaches distinguish dogs and wolves based on the surrounding

background instead of their different looks, leading to the model’s poor effectiveness on new data.
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Although many research efforts have found the limitations of the dataset used by them, there is no

study to investigate the limitations of BigCloneBench when used as the benchmark to assess and

compare different deep learning approaches on semantic clone detection.

To fill this gap of lacking empirical investigation, in this article, we conduct an experimental

study to find that many semantic clone pairs from BigCloneBench use the same identifier names,

which, however, are not used in non-clone pairs. Based on this finding, we hypothesize that deep

learning approaches can achieve high metric values on BigCloneBench by considering only the

identifier name information. To validate this hypothesis, we develop an undesirable-by-design

approach to detect semantic clones by utilizing only the identifier name information. This approach

is undesirable purposely because code segments from a semantic clone pair can have quite different

identifier names by definition and in practice, and detecting whether code segments are semantic

clones shall be independent of how the identifier names in these code segments are named. We find

that even this undesirable approach can achieve high effectiveness comparable to the effectiveness

of state-of-the-art approaches on BigCloneBench. Note that the undesirable model trained on

OJClone [27] fails to effectively detect semantic clones in OJClone, another major evaluation

dataset popularly used by the research community.

To alleviate the identified issue in BigCloneBench, we abstract a subset of the identifier names in

BigCloneBench to better assess the effectiveness of deep learning approaches (we denote the result-

ing new dataset as AbsBigCloneBench) that have less reliance on the identifier name information.

Our experimental results show that the undesirable approach fails to detect semantic clones on

AbsBigCloneBench effectively. However, the state-of-the-art approaches used in our experiments

still perform well on AbsBigCloneBench by learning semantic features such as the lexical and

structural information from code snippets.

We also empirically assess the cross-effectiveness of deep learning approaches on BigCloneBench

and AbsBigCloneBench. We conduct an experiment to explore whether models trained with

BigCloneBench (or AbsBigCloneBench) are also effective on AbsBigCloneBench (or BigCloneBench).

The experimental results show that models trained with AbsBigCloneBench perform well when

applied on BigCloneBench. However, models trained with BigCloneBench cannot be effectively

applied to AbsBigCloneBench for detecting semantic clones. These results indicate that models

trained with BigCloneBench fail to detect semantic clones if the identifier names are changed.

This article makes the following main contributions:

• Assessment. We design an undesirable-by-design approach named Linear-Model, which can

achieve high effectiveness on BigCloneBench by utilizing only the identifier name information.

Thus, deep learning approaches with high effectiveness evaluated on BigCloneBench may not

really be effective in general. Researchers need to pay attention to the identifier naming in

BigCloneBench when using BigCloneBench to assess and compare deep learning approaches

for detecting semantic clones. We abstract the identifier names in BigCloneBench to produce

AbsBigCloneBench, which can be used to better assess the effectiveness of deep learning

approaches on the task of detecting semantic clones. The experimental results show that

abstracting the identifier names for BigCloneBench can help better assess the effectiveness of

an approach on the task of detecting semantic clones. Researchers should strive to assess the

effectiveness of their approaches on datasets that do and do not abstract the identifier names,

respectively, in order to provide a more comprehensive view of approach effectiveness.

• Training. The models trained on AbsBigCloneBench have less reliance on the identifier name

information. Through cross-experiments between BigCloneBench and AbsBigCloneBench,

we find that the models trained with AbsBigCloneBench are also effective on BigCloneBench,

but the models trained with BigCloneBench are not effective on AbsBigCloneBench.
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The remainder of this article is structured as follows. Section 2 introduces the preliminary.

Section 3 details the undesirable-by-design approach named Linear-Model. Sections 4 and 5 describe

the experiments and result analysis, respectively. Section 6 introduces related work. Section 7

discusses our work. Finally, Section 8 concludes.

2 PRELIMINARY
In this section, we first introduce the problem definition of code clone detection. Then, we detail

the construction of BigCloneBench. Finally, we introduce the motivating examples of this article.

2.1 Problem Definition
Given two code snippets 𝐶𝑖 and 𝐶 𝑗 , we set their label 𝑦𝑖, 𝑗 to 1 if (𝐶𝑖 ,𝐶 𝑗 ) is a clone pair or −1
otherwise. Then a set of training data of 𝑛 code snippets {𝐶1, ...,𝐶𝑛} can be represented as 𝐷 =

{(𝐶𝑖 ,𝐶 𝑗 , 𝑦𝑖, 𝑗 ) |𝑖, 𝑗 ∈ [1, 𝑛], 𝑖 < 𝑗}. Our goal is to train a Linear-Model to learn a function 𝜙 that maps

any code snippet 𝐶 to a feature vector 𝒗 so that for any pair of code snippets (𝐶𝑖 ,𝐶 𝑗 ), the cosine

similarity 𝑠𝑖, 𝑗 of the two feature vectors 𝑣𝑖 and 𝑣 𝑗 is as close to the corresponding label 𝑦𝑖, 𝑗 .

We use Equation 1 to calculate the cosine similarity of two vectors of the same dimension:

𝐶𝑜𝑠𝑖𝑛 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑢, 𝑣) = 𝒖 · 𝒗
∥𝒖∥∥𝒗∥ (1)

Thus, we have the following equation (Equation 2):

𝑠𝑖, 𝑗 =
𝜙 (𝐶𝑖 ) · 𝜙 (𝐶 𝑗 )
∥𝜙 (𝐶𝑖 )∥∥𝜙 (𝐶 𝑗 )∥

(2)

where 𝑠𝑖, 𝑗 ∈ [−1, 1].
To determine whether a pair of code snippets (𝐶𝑖 ,𝐶 𝑗 ) is a clone pair or not during inference, we

need to set a threshold value 𝜎 such that (𝐶𝑖 ,𝐶 𝑗 ) is a clone pair if 𝑠𝑖, 𝑗 ≥ 𝜎 . We choose 𝜎 empirically

based on the validation set.

2.2 BigCloneBench Dataset
2.2.1 Construction of BigCloneBench. BigCloneBench is mined from a big-data inter-project repos-

itory IJaDataset 2.0 [13]. It covers 10 functionalities. For each functionality, its mining steps are

mainly divided into seven steps. (1) Select Target Functionality. The authors of BigCloneBench

(in short as authors in the rest of this section) select a commonly needed functionality in open-

source Java projects as its target functionality. (2) Identify Possible Implementations. The authors

review Internet discussion (e.g., Stack Overflow) and API documentation (e.g., JavaDoc) to identify

the common implementations of the target functionality. (3) Create Specifications. The authors

create a specification of the functionality. (4) Create Sample Snippet. After obtaining the possible

implementations and a specification of the functionality in the second and third steps, the authors

then create a sample snippet, which will be used to later search for code snippets. (5) Search for

Code Snippets. The authors search for possible code snippets for the target functionality based

on the sample snippet. When searching for similar code snippets to the sample snippet, to avoid

introducing too many dissimilar code snippets and causing a lot of manual annotation burden,

from the sample snippet, the authors identify the keywords and source code patterns intrinsic

to the sample snippet with respect to implementing the functionality. Although searching with

source code patterns may result in code snippets with dissimilar identifier names to a certain extent,

searching with keywords may result in code snippets most of which have similar identifier names.

(6) Build Candidate Set. Based on the resulting code snippets in the search result from the fifth
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step, the authors obtain the candidate possible code clone snippets. (7) Manual Tagging. Finally,

the authors manually confirm the candidate code snippets.

2.2.2 Typifying the Clone Types in BigCloneBench. After the authors manually mark whether

two code snippets are clone pairs, the clone types of the clone pairs are automatically marked.

Type-I normalization includes the removal of comments and a strict pretty-printing. Type-II

normalization expands Type-I normalization to include the systematic renaming of identifier names

and replacement of literals with default values. To identify Type-III and Type-IV clones, the authors

measure the syntactical similarity of the clones using a line-based metric after full normalization,

including the removal of comments, a strict pretty-printing, the renaming of all identifier names to

a common value, and the change of all literal values to a common value.

Although the authors use an abstract technique to distinguish between semantic clones (Type-IV)

and non-semantic clones, it is not guaranteed that semantic clones do not rely on the identifier

names. In the fifth step of the previous section, to avoid introducing a large number of false positives,

the authors search for the clone code based on the same keywords and source code patterns. This

process will lose a lot of true positives (i.e., code snippets with dissimilar identifier names), so the

semantic clones in BigCloneBench are highly dependent on the identifier names.

2.3 Motivating Example
2.3.1 Analyzing BigCloneBench. We carefully read clone pairs in BigCloneBench and OJClone. We

find that many clone pairs from BigCloneBench use the same identifier names, which are not used

in non-clone pairs. However, this observation does not exist in OJClone. In addition, we further

collect identifier names statistics by the Jaccard similarity coefficient to evaluate the similarity of the

identifier names among different functionalities of two datasets. The Jaccard similarity coefficient

is used to measure the similarity between two sets of data. It compares members for two sets to see

which members are shared and which are distinct. The value varies from 0 to 1. The higher the

value, the more similar the two sets. It is calculated as follows:

𝐽 (𝑋,𝑌 ) = |𝑋 ∩ 𝑌 ||𝑋 ∪ 𝑌 |
where 𝑋 and 𝑌 are two sets, |𝑋 ∩ 𝑌 | is the size of the intersection of X and Y, and |𝑋 ∩ 𝑌 | is the
size of the union of X and Y.

To evaluate the similarity of the identifier names among different functionalities, we first get the

Top 20 frequent identifier names in each functionality. Then, we compute the Jaccard similarity

coefficient for every two functionalities, namely, 𝐽 (𝐹𝑖 , 𝐹 𝑗 ) in which 𝐹𝑖 and 𝐹 𝑗 are sets of Top 20 used

identifier names in functionalities 𝑖 and 𝑗 . At last, we get the average Jaccard similarity coefficient

among different functionalities 𝐽 . The details to get the average Jaccard similarity coefficient are

shown in Algorithm 1.

The Jaccard similarity coefficient among different functionalities of BigCloneBench is 0.038,

it indicates the huge differences in the identifier names among different functionalities in Big-

CloneBench. For better illustration, Table 1 shows the top 20 frequent identifier names in each

functionality. For example, programs in functionality “copy a file” usually use “file” related identifier

names, but rarely used in other functionalities. On the other hand, the Jaccard similarity coefficient

of OJClone is 0.469, indicating that about half of the frequent identifier names are the same among

different functionalities. The difference of the Jaccard similarity coefficients between the two

datasets indicates that the identifier name similarity among different functionalities in OJClone is

much higher than that in BigCloneBench. The reason for the difference is the different construction

of the two datasets. The programs of OJClone come from a programming environment where

students write solutions from scratch for various problems. Therefore, even for different problems,
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Table 1. Top 20 frequent identifier names of each functionality on BigCloneBench.

Functionality Top 20 frequent identifier names

Web Download InputStreamReader BufferedReader readLine URL url close IOException open-

Stream line toString in InputStream append openConnection int getInputStream

reader substring add length

Secure Hash (MD5) getInstance MessageDigest digest update getBytes NoSuchAlgorithmExcep-

tion length md toString append toHexString i UnsupportedEncodingException

StringBuffer md5 hash reset password encode text

Copy a File close FileOutputStream IOException File FileInputStream String int write out

read in InputStream copy IOUtils size FileChannel getChannel exists Output-

Stream length

Decompress Zip getName File close isDirectory IOException FileOutputStream out in Zi-

pArchiveEntry InputStream length entry IOUtils mkdirs getParentFile FileIn-

putStream getNextEntry write exists copy

FTP Authenticated Login login connect FTPClient IOException disconnect getReplyCode FTPReply is-

PositiveCompletion ftp logout setFileType reply BINARY_FILE_TYPE password

changeWorkingDirectory enterLocalPassiveMode FTP close isConnected File

Bubble Sort i length j temp a bubbleSort tmp sort n swapped size list t print k get field

permut Index_value addLast

Init. SGV With Model setContents ScrollingGraphicalViewer viewer setEditPartFactory setRootEdit-

Part createControl ScalableFreeformRootEditPart SWT GraphicalViewer setE-

ditDomain shell run Shell Composite getContents parent getShell open flush

getWorkbench

SGV Selection Event Handler ISelectionChangedListener selectionChanged SelectionChangedEvent addSelec-

tionChangedListener event getSelection viewer setContents setEditPartFactory

setRootEditPart setContextMenu setSelectionProvider Composite IStructuredS-

election instanceof SWT getFirstElement getSite parent createControl

Create Java Project(Eclipse) create setOutputLocation setNatureIds JavaCore setRawClasspath IProjectDe-

scription open Path IJavaProject getWorkspace ResourcesPlugin IClasspathEn-

try setDescription NATURE_ID getProject CoreException getFullPath getDe-

scription javaProject IProject

SQL Update and Rollback executeUpdate rollback commit SQLException close prepareStatement Pre-

paredStatement setAutoCommit Connection getConnection setString createS-

tatement next setInt sql ResultSet conn executeQuery log stmt

programmers may define the same identifier names. For example, students typically define the

loop variable as 𝑖 when implementing a single loop and define multiple loop variables as 𝑗, 𝑘 when

implementing nested loops. However, BigCloneBench is mined from a large open-source repository

where the identifier names are more related to a specific functionality. Thus, the identifier names

of code snippets that do not belong to the same functionality are quite dissimilar.

The two code snippets in Figure 1 are numbered 21,754,660 and 23,677,114, respectively, in

BigCloneBench. These two code snippets are labeled as semantic clones in BigCloneBench. From

the figure, we can find that although they are labeled as semantic clones, their identifier names are

very similar, such as “File”, “FileInputStream”, “FileOutputStream”, “IOException”, “fis”, and “fos”.

Based on the preceding finding, we hypothesize that deep learning approaches can achieve high

metric values on BigCloneBench by considering only the identifier name information. Abstracting

the identifier names in BigCloneBench may provide a different len for researchers to assess the

effectiveness of deep learning approaches on the task of detecting semantic clones.
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Algorithm 1 Jaccard Similarity Coefficient Statistics

1: procedure Jaccard(D) ⊲ D is the dataset

2: 𝑙𝑠 ← 𝑙𝑖𝑠𝑡 ()
3: for 𝑓 in 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑖𝑒𝑠 do
4: 𝑙 ← 𝑑𝑖𝑐𝑡 () ⊲ Count list of identifier names in a functionality

5: for 𝑐 in 𝑐𝑜𝑑𝑒𝑠 do ⊲ 𝑐𝑜𝑑𝑒𝑠 are all snippets belong to f

6: 𝑠 ← 𝑠𝑒𝑡 () ⊲ 𝑠 is the set of identifier names in code

7: for 𝑖𝑑 in 𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟𝑛𝑎𝑚𝑒𝑠 do
8: if 𝑖𝑑 not in s then
9: 𝑠 .𝑎𝑑𝑑 (𝑖𝑑)
10: if 𝑖𝑑 in 𝑙 then 𝑙 [𝑖𝑑] ← 𝑙 [𝑖𝑑] + 1
11: else𝑙 [𝑖𝑑] ← 1

12: 𝑡𝑜𝑝 ← 𝑙 .𝑚𝑜𝑠𝑡_𝑐𝑜𝑚𝑚𝑜𝑛(20) ⊲ Top 20 identifier names

13: 𝑙𝑠 .𝑎𝑑𝑑 (𝑡𝑜𝑝)
14: 𝑠𝑢𝑚, 𝑐𝑛𝑡 ← 0, 0

15: for 𝐹𝑖 , 𝐹 𝑗 in 𝑙𝑠 and 𝑖 ≠ 𝑗 do
16: 𝐽𝑖 𝑗 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 (𝐹𝑖 , 𝐹 𝑗 )
17: 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝐽𝑖 𝑗
18: 𝑐𝑛𝑡 ← 𝑐𝑛𝑡 + 1
19: return 𝑠𝑢𝑚/𝑐𝑛𝑡

Fig. 1. Semantic clone pair with the similar identifier names from BigCloneBench

Fig. 2. Semantic clone pair from Stack Overflow post “Remove digits from a number in Java”

2.3.2 An Example of Semantic Clone Pair with the Different Identifier Names in Real World. The
previous section analyzes in detail that the semantic clones in BigCloneBench are highly dependent

on the identifier names. Many research efforts [45, 48] have pointed out that semantic clones are

difficult to detect because semantic clones may be different in lexical implementation. Figure 2
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Fig. 3. Overall architecture

shows an example of semantic clone pairs from Stack Overflow post “Remove digits from a number

in Java.”

3 UNDESIRABLE-BY-DESIGN MODEL
In this section, we first introduce the overall structure of our proposed undesirable-by-design

approach named Linear-Model and then explain the technical details of Linear-Model and max

pooling [31].

3.1 Approach Overview
Figure 3 shows the architecture of Linear-Model. To process a code snippet, we first use Javalang

1

to parse code snippets into ASTs, as shown in Figure 4. Then we traverse all the nodes in the AST

and remove the node duplicates determined based on their IDs (e.g., “MethodDeclaration”, “copy”,

“FormalParameter”). Here we use Depth-First-Search (the way to traverse AST does not affect

the traversal result). Finally, the set of the node IDs that we get is “MethodDeclaration”, “copy”,

“FormalParameter”, “src”, “ReferenceType”, “String”, “dest”, and “IOException”. State-of-the-art

approaches use the program information from AST nodes, including the lexical and structural

information (represented as terminal nodes identified with dashed-line boxes). Therefore, for

Linear-Model, we also leverage the sets of the traversed node IDs from ASTs to get the same lexical

information as other state-of-the-art approaches. Still we use only little structural information of

AST (e.g., “ForStatement” and “IfStatement”) for Linear-Model. A detailed explanation for Linear-

Model is shown in the next section. Then we use PACE (proposed by Yu et al. [48]) to initialize

the embeddings of node IDs before feeding the vectorized node IDs into Linear-Model with a max-

pooling layer. To detect clones, Linear-Model uses two linear matrices in parallel to process a pair

of code snippets simultaneously. The two linear matrices share the same parameters. Linear-Model

takes the output of the max-pooling layer as the feature vector of a code snippet and calculates

1
https://github.com/c2nes/javalang
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Fig. 4. An example of a code snippet, its AST, and the traversal node IDs of the AST.

the cosine similarity of the two vectors. At last, Linear-Model is trained through gradient descent

back-propagation to minimize the MSE loss function:∑︁
𝑖

∑︁
𝑗

(𝑠𝑖, 𝑗 − 𝑦𝑖, 𝑗 )2 (3)

𝑠𝑖, 𝑗 and 𝑦𝑖, 𝑗 are the cosine similarity and the corresponding label of a pair code snippets, respec-

tively. In summary, Linear-Model learns to make the cosine similarity of non-clone pairs as close to

−1 as possible and the cosine similarity of clone pairs as close to 1 as possible.

3.2 Linear Operation and Max Pooling
Figure 5 shows the linear operation of Linear-Model, where there are 𝑛 tokens in the set of node

IDs, and the encoding length of each token is 𝑑 . Linear-Model uses a 𝑑 ×𝑚 matrix for the linear

operation, and then obtains a 𝑛 ×𝑚 matrix. After the linear operation, the number of tokens in the

set of node IDs is the same as before. Then max pooling is applied to each dimension in the output

vectors; each dimension corresponds to one feature detector, thereby reducing a set of node IDs

with any number of tokens to a 1 ×𝑚 vector. Linear-Model uses only little structural information

of AST as Linear-Model knows only which statements (e.g., “ForStatement” and “IfStatement”)

appear in source code, but Linear-Model does not know the relationship among these statements.

In addition, Linear-Model does not consider the sequential information of source code as it tries to

see only which tokens appear in the source code.

Formally, there is 1 matrix with the set of node IDs represented by𝑊𝑠𝑒𝑡 ∈ R𝑛×𝑑 , where 𝑛 and 𝑑

respectively represent the number of tokens in the set of node IDs and the vector dimension of

each token; then the output of Linear-Model is

𝑊𝑜𝑢𝑡𝑝𝑢𝑡 =𝑊𝑠𝑒𝑡 ·𝑊𝑙𝑖𝑛𝑒𝑎𝑟 + 𝑏 (4)

where𝑊𝑜𝑢𝑡𝑝𝑢𝑡 ∈ R𝑛×𝑚,𝑊𝑙𝑖𝑛𝑒𝑎𝑟 ∈ R𝑑×𝑚, 𝑏 ∈ R𝑚
Note that Linear-Model uses only one simple linear layer. It does not use a hidden layer to capture

the hidden features.
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Fig. 5. Linear operation

4 EXPERIMENTAL STUDIES
In this section, we describe the state-of-the-art approaches and datasets that we use in our ex-

perimental studies. According to Yu et al. [48] and Wei et al. [45], more than 98% of clone pairs

in BigCloneBench [39] are semantic clones, and clone pairs in the OJClone dataset [27] belong

to at least Type-III clones. Both datasets are widely used in detecting semantic clones via deep

learning [45, 46, 48, 49]. Therefore, we conduct experiments on BigCloneBench and OJClone to

explore whether and why “effective” approaches (assessed on BigCloneBench) based on deep

learning are not really effective in general. We also conduct experiments on AbsBigCloneBench

to address that abstracting a set of identifier names in BigCloneBench can help better assess the

effectiveness of deep learning approaches on BigCloneBench for tasks of detecting semantic clones.

In addition, we also design cross-experiments, i.e., (1) train models on BigCloneBench and test them

on AbsBigCloneBench; (2) train models on AbsBigCloneBench and test them on BigCloneBench.

We conduct the experiments to answer the following research questions:

• RQ1: Can the undesirable-by-design Linear-Model (by utilizing only a subset of the identifier

names) achieve high effectiveness on BigCloneBench?

• RQ2: How effective are state-of-the-art approaches and Linear-Model on AbsBigCloneBench?

• RQ3: How effective are state-of-the-art approaches and Linear-Model on the cross-experiments?

We address RQ1 to point out that for the task of detecting semantic clones, the approaches based

on deep learning assessed to be effective on BigCloneBench may not be really effective in general.

We then address RQ2 to get an improved evaluation dataset named AbsBigCloneBench, which is

derived from BigCloneBench. Experimental results show that AbsBigCloneBench is more desirable

for differentiating state-of-the-art approaches and the undesirable approach. At last, we address

RQ3 to show that models trained with AbsBigCloneBench are also effective on BigCloneBench.

4.1 State-of-the-art Approaches
In this article, we select three state-of-the-art approaches of detecting semantic clones, including

ASTNN [49], TBCCD [48], and FA [44]. In addition, to illustrate the impact of the identifier names

in datasets, we design an undesirable-by-design approach named Linear-Model to detect semantic

clones by utilizing only the identifier name information. Linear-Model is detailed in Section 3.

4.1.1 ASTNN. ASTNN [49] is an AST-based neural network for source code representation. It

encodes the small statement trees split from entire trees and captures both lexical and structural

knowledge of statements. Then, it applies a bidirectional RNN to produce the representation of the

entire AST from the representation vectors of statements.

10
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Table 2. Percentage of clone types in BigCloneBench.

Clone Type T1 T2 VST3 ST3 MT3 WT3/T4

Ratio 0.46% 0.06% 0.05% 0.19% 1.01% 98.23%

Table 3. Overall information of BigCloneBench and OJClone.

Datasets Language Code snippet %Clone pair AVG Len

BigCloneBench Java 9,134 13.7 28.60

OJClone C 7,500 6.7 32.25

4.1.2 TBCCD. TBCCD [48] is recent work for semantic clone detection. It exploits the tree-based

convolutional neural network to detect semantic clones. In addition, TBCCD includes a position-

aware character embedding technique to eliminate the impacts of unseen code tokens.

4.1.3 FA. FA [44] uses graph neural networks for detecting semantic clones. FA first adds edges to

the program’s AST to form a graph named FA-AST. Then FA applies two different types of graph

neural networks (GNNs) on FA-AST to measure the similarity of code pairs. As FA is customized

for the Java language, we do not replicate it on OJClone, which is in the C language.

4.2 Datasets
We conduct experiments on two public datasets (the other two datasets are variants of these two

datasets): BigCloneBench [40] and OJClone [27]. They are widely used benchmarks for clone

detection [48, 49, 51]. Table 3 shows the detailed information of the two datasets that we use.

4.2.1 BigCloneBench. BigCloneBench is a large clone detection benchmark proposed by Sva-

jlenko et al. [39]. BigCloneBench is mined from IJaDataset [13] and confirmed by three experts.

IJaDataset [13] contains a total of 25,000 subject systems and 365M LOC. BigCloneBench covers

10 functionalities and contains six million tagged true clone pairs, and 260,000 tagged false clone

pairs. Unlike the common taxonomy that groups clones into four types, BigCloneBench divides the

Type-III clone type into weak, medium, strong, and very strong. Table 2 describes the proportion

of each clone type in BigCloneBench. Semantic clone pairs (i.e., Moderately Type-III and Weak

Type-III/Type-IV) account for more than 98% among all types of clone pairs. Therefore, many

approaches exploit BigCloneBench to assess the effectiveness of approaches for detecting semantic

clones.

We use the BigCloneBench dataset to answer our RQ1.

4.2.2 OJClone. OJClone is another widely used benchmark to assess the effectiveness of approaches

for detecting semantic clones. OJClone
2
was proposed by Mou et al. [27]. OJClone is derived from

programming assignments submitted by students. It is originally used for code classification tasks.

Later, CDLH [45], TBCCD [48], and ASTNN [49] use the OJClone dataset for the task of detecting

semantic clones. As code snippets submitted by students while solving a specific problem share the

same functionality, true clone pairs in OJClone are at least Type-III clones. Following state-of-the-art

approaches, we also select the first 15 problems of the OJClone dataset in which each problem

contains 500 solutions. In OJClone, two different code solutions that solve the same programming

problem are considered as a true clone pair; otherwise, they are considered a false clone pair.

Compared with the state-of-the-art approaches on the OJClone dataset, the undesirable-by-design

2
http://poj.openjudge.cn
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Linear-Model proposed in this article is obviously invalid. Compared with BigCloneBench, OJClone

can effectively assess the effectiveness of approaches for detecting semantic clones based on deep

learning. In agreement with the experimental results, the Jaccard similarity of the identifier names

among the different problems of OJClone that we analyze shows that OJClone is little dependent

on the identifier names.

We use the OJClone dataset to answer our RQ1.

4.2.3 AbsBigCloneBench. AbsBigCloneBench is abstracted fromBigCloneBench. AbsBigCloneBench

abstracts a subset of the identifier names in BigCloneBench, such as type, variable, and method

names, and retain other tokens such as operators, basic types, and member variables. According to

the definition of clone type [2, 32, 35], the abstraction of AbsBigCloneBench will not change the

labeling of semantic clones and non-semantic clones in BigCloneBench.

We use AbsBigCloneBench to answer our RQ2 and RQ3. We aim to illustrate that abstracting a

subset of identifier names in BigCloneBench can assist BigCloneBench to more effectively assess the

effectiveness of approaches for detecting semantic clones based on deep learning. Models trained

on the AbsBigCloneBench dataset are also effective on the BigCloneBench dataset.

4.2.4 Over-AbsBigCloneBench. Over-AbsBigCloneBench is mentioned in Section 5.2.1. Like Mou

et al. [27] and Yu et al. [48], we also explore the effectiveness of each approach when only non-

terminal AST nodes are retained. In Figure 4, the terminal nodes are identified with dashed-line

boxes. Over-AbsBigCloneBench remains only the tokens in solid-line boxes. This article does

not emphasize Over-AbsBigCloneBench because the abstraction of Over-AbsBigCloneBench will

change the labeling of semantic clones and non-semantic clones in BigCloneBench.

We use Over-AbsBigCloneBench to show that state-of-the-art approaches on such an over-

abstraction dataset are also more effective than Linear-Model (Table 5).

4.3 Experimental Setting
For the BigCloneBench dataset, we use the same data as CDLH [45] and TBCCD [48], including

9,134 code snippets totally. We divide the dataset into the training set, validation set, and test set

according to the ratio of 8: 1: 1. Specifically, we randomly select 913 code snippets to construct the

test set, 913 code snippets to construct the validation set, and the remaining 7,308 code snippets

to construct the training set. Finally, we get
913×912

2
= 416, 328 pairs in the test and validation sets,

respectively, and
7,308×7,307

2
= 26, 699, 778 pairs in the training set. Since the training set is enormous,

we randomly select 300,000 pairs as the training set.

OJClone has a total of 7,500 code snippets. We also divide the training set, validation set, and

test set according to the ratio of 8: 1: 1. We randomly select 750 code snippets to construct the test

set and 750 code snippets to construct the validation set. The remaining 6,000 code snippets are

used to construct the training set. We have
750×749

2
= 280, 875 pairs in the test and the validation

sets, and
6,000×5,999

2
= 17, 997, 000 pairs in the training set; since the training set is enormous, finally

we randomly select 300,000 pairs as the training set.

Our sampling of the training set is completely random. We construct the training set, validation

set, and test set according to 8:1:1 since this sampling is consistent with existing related work [44,

48, 49]. We replicate ASTNN, TBCCD, and FA by running the source code that they provide.

The parameters for training Linear-Model are as follows:𝑚 is 100, the number epochs that we

train Linear-Model is 10, the optimizer is SGD, and the batch size is 1. The threshold of Linear-Model

12
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Table 4. Comparison of different approaches on BigCloneBench and OJClone. P and R represent Precision
and Recall, respectively. (The FA is customized for Java programs and cannot be used to detect clones written
in C. Therefore, its results on OJClone are neglected.)

Approach BigCloneBench OJClone

P R F1 P R F1
ASTNN 0.93 0.94 0.93 0.98 0.98 0.98

TBCCD 0.94 0.95 0.95 0.99 0.99 0.99

FA 0.98 0.94 0.96 - - -

Linear-Model 0.91 0.94 0.93 0.70 0.71 0.70

for prediction is determined with the validation set.We use TensorFlow
3
to implement Linear-Model.

Our code for Linear-Model and the dataset of AbsBigCloneBench are publicly available
4
.

5 RESULTS
This section shows our experimental results and analysis.

5.1 RQ1: Can the Undesirable-by-design Linear-Model Achieve High Effectiveness on
BigCloneBench by Utilizing only A Subset of the Identifier Names?

5.1.1 Precision and Recall on BigCloneBench and OJClone. To assess the aforementioned hypothesis,

we compare Linear-Model, an undesirable-by-design approach, with state-of-the-art approaches

for detecting semantic clones, i.e., ASTNN, TBCCD, and FA. Table 4 shows the Precision, Recall,

and F1 score of different approaches on BigCloneBench and OJClone.

Table 4 shows that Linear-Model can achieve equivalent effectiveness to other approaches. Both

Linear-Model and ASTNN have achieved 0.93 F1 score on the BigCloneBench dataset. We can

see that even this undesirable approach can achieve equally high effectiveness comparable to

state-of-the-art approaches on BigCloneBench.

However, the results of Linear-Model onOJClone are quite different from those on BigCloneBench.

This undesirable approach cannot effectively detect semantic clones on OJClone. Desirable ap-

proaches (i.e., TBCCD, ASTNN, FA) reported by existing literature still perform well on both

BigCloneBench and OJClone datasets. According to the analysis in their papers, these approaches

can detect semantic clones by capturing both the lexical and structural information in the source

code.

Experimental results show that Linear-Model can effectively detect semantic clones in Big-

CloneBench, whereas all metrics are worsened on OJClone dramatically, and the F1 score of

Linear-Model is 0.70, about 0.23 lower than that on BigCloneBench. Due to the great differences

among top used identifier names in different functionalities of BigCloneBench, Linear-Model

can achieve equivalent effectiveness as other approaches by learning these identifier names. For

OJClone, it is difficult for Linear-Model to effectively learn the similarity among code snippets

by learning the identifier names in source code, thus failing to detect semantic clones. However,

state-of-the-art approaches can learn other features, e.g., structural features in programs.

5.1.2 Researchers Need to Pay Attention to the Identifier Names in BigCloneBench When Using
BigCloneBench to Assess and Compare Deep Learning Approaches for Detecting Semantic Clones.
We design an undesirable-by-design linear model named Linear-Model to detect semantic clones

3
http://www.tensorflow.org

4
https://github.com/yh1105/AbsBigCloneBench
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Table 5. Comparison of different approaches on Over-AbsBigCloneBench.

Approach Precision Recall F1 ΔF1

ASTNN 0.80 0.67 0.73 -0.20

TBCCD 0.62 0.71 0.66 -0.29

FA 0.77 0.76 0.77 -0.19

Linear-Model 0.42 0.25 0.44 -0.49

by utilizing only the identifier name information. This model is undesirable because code snippets

from a semantic clone pair can have quite different identifier names by definition, and detecting

whether code snippets are semantic clones can be independent of how the identifiers in these

code snippets are named. Therefore, it is unreasonable to use Linear-Model to detect semantic

clones because Linear-Model detects semantic clones by looking at only which tokens appear in

the code snippets. As shown in Table 4, the huge difference of the identifier names among different

functionalities in BigCloneBench helps Linear-Model achieve high effectiveness on the task of

detecting semantic clones. However, when the difference disappears (e.g., OJClone), Linear-Model

fails to detect semantic clones.

When researchers use the BigCloneBench dataset to assess the effectiveness of their approaches,

they should pay attention to mitigating the impact of the identifier names. The next section illustrate

that the abstraction technique for a subset of the identifier names in BigCloneBench can help better

assess the effectiveness of approaches for detecting semantic clones. We introduce the abstraction

technique in detail in the next section. In summary, we find that

� Finding 1. An undesirable Linear-Model can achieve high effectiveness based on the

identifier name information on BigCloneBench but fails to effectively detect semantic

clones in OJClone. It is problematic to directly use only BigCloneBench to assess the

effectiveness of approaches for detecting semantic clones, calling for further improvement

before being used.

5.2 RQ2: How Effective are State-of-the-art Approaches and Linear-Model on
AbsBigCloneBench?

To alleviate the issue in BigCloneBench discussed in RQ1, in this section, we abstract a subset of the

identifier names in BigCloneBench to better assess the effectiveness of deep learning approaches.

We denote the dataset after abstracting the identifier names as AbsBigCloneBench, such that the

identifier names among code snippets with different functionalities in AbsBigCloneBench are

much more similar. This section first compares the Recall, Precision, and F1 score of Linear-Model

and state-of-the-art approaches on Over-AbsBigCloneBench. Next we introduce how we modify

BigCloneBench to get AbsBigCloneBench. Then, we compare the Recall, Precision, and F1 score of

Linear-Model and the state-of-the-art approaches on AbsBigCloneBench. Finally, we discuss why

AbsBigCloneBench is more desirable than BigCloneBench for assessing the effectiveness of deep

learning approaches.

The experimental results and Jaccard similarity coefficient show that abstracting the identifier

names in BigCloneBench can help better assess the effectiveness of an approach for detecting

semantic clones.

5.2.1 Recall, Precision, and F1 Score of Different Approaches on Over-AbsBigCloneBench. Like Mou

et al. [27] and Yu et al. [48], to further explore the impacts of code tokens on clone detection, we first

conduct an experiment on ASTwithout the lexical information. Noticing that the lexical information
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Fig. 6. An example of code snippet in BigCloneBench and AbsBigCloneBench

is located in the terminal nodes of the ASTs, we remove all terminal nodes from the ASTs to generate

partial ASTs. We feed state-of-the-art approaches with partial ASTs for this experiment. We apply

the traversed text from partial ASTs as input for Linear-Model to detect semantic clones. Figure 4

shows that the terminal node is identified with dashed-line boxes. For the experiment on Over-

AbsBigCloneBench, a partial AST used for state-of-the-art approaches includes only identifiers with

solid-line boxes, and the text used for Linear-Model is “MethodDeclaration”, “FormalParameter”,

“ReferenceType”, and “IOException”. As all the code token information is removed, the partial AST

mainly contain the structural information, the text traversed from ASTs contain only little structural

information (e.g., ForStatement and IfStatement). Table 5 shows that when more information in the

dataset is removed (all terminal node information is removed), the state-of-the-art approaches are

more effective than Linear-Model by capturing the program’s structural information. However, if

we remove all code tokens (remove all terminal nodes and keep only non-terminal nodes in the

program’s AST), this removal will lose a lot of semantic information in the program.

5.2.2 How We Modify BigCloneBench to Get AbsBigCloneBench. Considering the common tax-

onomy of clone types [2, 32, 35], we abstract a subset of the identifier names in the source code

and obtain AbsBigCloneBench to better assess the effectiveness of deep learning approaches. In

particular, we abstract a subset of the identifier names, including type, variable, and method names

in the code snippets to obtain AbsBigCloneBench. The other tokens, such as operators, basic types,

and member variables are kept as the original ones to retain programs semantics. API invocations

are essential for implementing the functionality of programs, so we keep these API invocations

in AbsBigCloneBench. The abstraction technique is similar to Harer et al. [24] and Li et al. [9].

We discuss the abstraction technique used by Harer et al. and Li et al. in Section 6. Finally, our

abstraction technique abstracts the type names, variable names, and method name for a method in

the code snippets.

After building the AbsBigCloneBench dataset, we compare the Jaccard similarity coefficient of

BigCloneBench and AbsBigCloneBench. The Jaccard similarity coefficients of the identifier names

among different functionalities in BigCloneBench and AbsBigCloneBench are 0.038 and 0.484,

respectively, indicating that AbsBigCloneBench is less dependent on the identifier names than

BigCloneBench.

5.2.3 Recall, Precision, and F1 Score of Different Approaches on AbsBigCloneBench. Similar to RQ1,

we compare different approaches on AbsBigCloneBench to investigate whether AbsBigCloneBench

can be used as an evaluation dataset to assess the effectiveness of deep learning approaches on

detecting semantic clones. The results are shown in Table 6, where ΔF1 is the relative improvement

(worsening) compared to the F1 on BigCloneBench in Table 4.

Table 6 shows a substantial decrease in both the Precision and the Recall of Linear-Model

compared to state-of-the-art approaches on AbsBigCloneBench. Compared to the results shown in
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Table 6. Comparison of different approaches on AbsBigCloneBench. ΔF1 score indicates the relative improve-
ment (worsening) compared to F1 scores on BigCloneBench in Table 4.

Approach Precision Recall F1 ΔF1

ASTNN 0.94 0.82 0.93 0

TBCCD 0.92 0.96 0.94 -0.01

FA 0.96 0.95 0.96 0

Linear-Model 0.81 0.88 0.83 -0.10

(a) PR-Linear-Model (b) PR-TBCCD

(c) PR-ASTNN (d) PR-FA

Fig. 7. PR curves and AUC of different approaches on BigCloneBench and AbsBigCloneBench

Table 4, the state-of-the-art approaches can achieve equivalent effectiveness on AbsBigCloneBench.

Although the identifier names are abstracted, the approaches can perform well by learning other

semantic features such as the structural information from code snippets. However, it is limited for

Linear-Model to learn other features while detecting semantic clones on AbsBigCloneBench. As we

abstract a subset of the identifier names, including type, variable, and method names, the identifier

names among code snippets with different functionalities in AbsBigCloneBench are much more

similar than that in BigCloneBench. Therefore, Linear-Model may recognize some false clone pairs

in AbsBigCloneBench as true clone pairs, thus decreasing the Precision on AbsBigCloneBench. On
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the other hand, it is also difficult for Linear-Model to learn features in true clone pairs, so the Recall

also drops substantially.

We also compare Precision-Recall (PR) curves and AUC values of different approaches on

BigCloneBench and AbsBigCloneBench, respectively. As shown in Figure 7, the AUC value of

Linear-Model on AbsBigCloneBench is substantially lower than that on BigCloneBench. The AUC

values of state-of-the-arts approaches on AbsBigCloneBench are almost the same as those on

BigCloneBench. This result further shows that biases introduced from the subset of the identifier

names can be reduced by abstracting them.

5.2.4 Why Can AbsBigCloneBench Help BigCloneBench Better Assess the Effectiveness of Approaches
for Detecting Semantic Clones? AbsBigCloneBench is derived from BigCloneBench by abstracting

a subset of the identifier names, including type, variable, and method names. The subset of the

identifier names can be totally different according to the definition of semantic clones. As semantic

clones are functionally similar, we keep API invocations essential for implementing the functionali-

ties of programs. After abstracting a subset of the identifier names, the Jaccard similarity coefficient

of AbsBigCloneBench improves to 0.484 from 0.038. The great improvement demonstrates the great

increase of the similarity of the identifier name usage among different functionalities.

To show whether AbsBigCloneBench can be used to assess different deep learning approaches,

we first compare Linear-Model with other approaches on AbsBigCloneBench. Table 6 shows that

state-of-the-art approaches still perform well on AbsBigCloneBench, whereas the undesirable-

by-design Linear-Model has a substantial effectiveness decline. Additionally, instead of achieving

equivalent effectiveness to other approaches on BigCloneBench, Linear-Model is 0.10-0.13 lower

than others in terms of F1. The Precision-Recall curve and AUC value in Figure 7 also shows

that Linear-Model cannot detect semantic clones well on AbsBigCloneBench. The experimental

results show that AbsBigCloneBench can better differentiate state-of-the-art approaches and the

undesirable approach in terms of their effectiveness demonstrated on the evaluation dataset.

In summary, after comparing the results of many deep learning approaches in BigCloneBench

and AbsBigCloneBench, we find that

� Finding 2. Desirably abstracting the identifier names for BigCloneBench can help dif-

ferentiate the state-of-the-art approaches and the undesirable approach in terms of their

effectiveness demonstrated on the evaluation dataset. Abstracting the identifier names

for BigCloneBench can help better assess the effectiveness of an approach for detecting

semantic clones. In other words, abstracting the identifier names for BigCloneBench can

help illustrate an approach’s reliance on the identifier names for detecting semantic clones.

5.3 RQ3: How Effective are State-of-the-art Approaches and Linear-Model on the
Cross-experiments?

In this section, we conduct cross-experiments to explorewhethermodels trainedwith BigCloneBench

(AbsBigCloneBench) are also effective onAbsBigCloneBench (BigCloneBench). The cross-experiments

are divided into two groups: (1) trainmodels on BigCloneBench and test them onAbsBigCloneBench;

(2) train models on AbsBigCloneBench and test them on BigCloneBench. In the end of this section,

we provide three practical assessment techniques to check whether a dataset is reasonable for

assessing the effectiveness of an approach for detecting semantic clones based on deep learning.

5.3.1 Different Models Trained on BigCloneBench and Tested on AbsBigCloneBench. Table 7 shows
the different models on the cross-experiments in BigCloneBench and AbsBigCloneBench. The

F1 score and Δ F1 score (i.e., scores in the upper part) in Table 7 show that all models trained

on BigCloneBench do not work well on AbsBigCloneBench. The experimental results indicate
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Table 7. Comparison of different approaches on the cross-experiments. Δ F1 score indicates the relative
improvement (worsening) compared to F1 scores in Table 4 and Table 6.

Approaches Precision Recall F1 Δ F1

Train: BigCloneBench Test: AbsBigCloneBench

ASTNN 0.69 0.63 0.66 -0.27

TBCCD 0.63 0.72 0.67 -0.28

FA 0.87 0.74 0.80 -0.16

Linear-Model 0.58 0.60 0.59 -0.34

Train: AbsBigCloneBenchTest: BigCloneBench

ASTNN 0.93 0.88 0.91 -0.02

TBCCD 0.91 0.92 0.92 -0.02

FA 0.95 0.92 0.94 -0.02

Linear-Model 0.75 0.70 0.73 -0.10

that these models are not effective on another dataset (i.e., AbsBigCloneBench) with different

identifier names (e.g., type, variable, and method names). Models trained on BigCloneBench do

not work well on AbsBigCloneBench because models trained on BigCloneBench can achieve

convergence quickly by using the identifier name information. Using BigCloneBench is limited

for all approaches (i.e., ASTNN, TBCCD, FA, and Linear-Model) to effectively learn the lexical and

structural information. Therefore, when the identifier names in the test set are different from the

training set, the state-of-the-art approaches cannot effectively detect semantic clones. In summary,

we find that

� Finding 3. Models trained on BigCloneBench are not effective on AbsBigCloneBench,

but models trained on AbsBigCloneBench (except Linear-Model) are still effective on

BigCloneBench. The experimental results of the cross-experiments suggest that AbsBig-

CloneBench provides a more comprehensive view of an approach’s effectiveness that is

less reliant on the identifier names than BigCloneBench.

5.3.2 Different Models Trained on AbsBigCloneBench and Tested on BigCloneBench. As shown
in Table 7, models (except Linear-Model) trained on AbsBigCloneBench still perform well on

BigCloneBench. From the Δ F1 score in Table 7, we find that the results of Linear-Model have a

substantial decline, i.e., 0.10 in terms of the Δ F1 score compared to other approaches (i.e., 0.01).

As Linear-Model captures features from the identifier names, the effectiveness of Linear-Model

decreases when the identifiers in the test set are different from the training set. However, the state-

of-the-art approaches show only a slight decrease. After abstracting the subset of the identifier

names in the training set, the state-of-the-art approaches mainly rely on the structural information

to learn functional similarities between semantic clone pairs. The effectiveness of the state-of-the-

art approaches would not be affected when applied to other datasets with different identifier names.

In summary, we find that

� Finding 4. Models trained on AbsBigCloneBench are also effective on BigCloneBench.

5.3.3 Three Dataset Properties. Table 4 and Table 6 show that both AbsBigCloneBench and OJClone

can be used to better assess an approach’s effectiveness of detecting semantic clones than Big-

CloneBench. Here we propose three dataset properties to check whether a dataset can be used for

assessing the effectiveness of an approach based on deep learning. We denote the dataset (consisting
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of the training, validation, and test sets) before abstraction as pre-abstraction dataset, and the dataset
(consisting of the training, validation, and test sets) after abstraction as post-abstraction dataset. In
addition, we use mixed dataset to denote a dataset that consists of the training and validation sets

from the pre-abstraction dataset and the test set from post-abstraction dataset.

• Property 1: Preserving effectiveness ranking of the given approaches assessed across
the pre-abstraction dataset and the post-abstraction dataset.
The relative effectiveness ranking of the given approaches assessed on the pre-abstraction
dataset shall be the same or similar as the ranking of the given approaches assessed on the

post-abstraction dataset.
• Property 2: Preserving effectiveness of the given approach assessed across the pre-
abstraction dataset and the mixed dataset. The effectiveness of the given approach

assessed on the pre-abstraction dataset shall be the same or similar as the effectiveness of the

approach assessed on the mixed dataset.
• Property 3: Achieving ineffectiveness with an undesirable approach assessed on the
post-abstraction dataset.
An undesirable approach (such as Linear-Model, which relies upon only the identifier names)

shall be ineffective on the post-abstraction dataset, performing worse than state-of-the-art

approaches assessed on the post-abstraction dataset.

6 RELATEDWORK
In this section, we introduce the related work of identifier normalization, code clone detection, and

learning from big code.

6.1 Identifier Normalization in Software Engineering
The techniques of abstracting identifier names have been applied in many approaches based on deep

learning for software engineering tasks. In the task of vulnerability detection, Li et al. [24] abstract

identifier names to reduce their approach’s dependence on the identifier names. Li et al. first remove

the comment information in the given code snippets, then abstract away the variable names in the

code snippets, and finally abstract away the custom method names in the code snippets. In addition

to the variable and method names, Harer et al. [9] also abstract constants in code snippets. Kim et

al. [17] abstract formal parameter names, local variable names, data type names, and method names

to detect vulnerabilities. They normalize the method body by removing the comments, whitespaces,

tabs, and line feed characters and converting all characters into lowercase.

In the task of code completion, Cummins et al. [5] automatically synthesize a large number of

OpenCL benchmarks by learning a character-level LSTM over valid OpenCL code. The goal of the

OpenCL benchmarks is to generate reasonable-looking code rather than synthesizing a program

that complies with a specification. To ease the task of synthesizing the OpenCL benchmarks,

Cummins et al. normalize the code by consistently renaming variables and method names. For

Python code, Bhoopchand et al. [3] use a token sparse pointer-based neural model that learns to

copy recently declared identifier names to capture long-range dependencies of the identifier names.

Bhoopchand et al. normalize the identifier names before feeding the resulting token stream to

their approach. Bhoopchand et al. replace each identifier name with an anonymous identifier name

indicating the identifier group (class, variable, argument, attribute, or function) concatenated with

a random number that makes the identifier names unique in the scope of the identifier group.

In the task of clone detection, many researchers pay attention to the abstraction of identifier

names. Roy and Cordy [33] propose a tool to use flexible code normalization, which is not simply

limited to global replacement (e.g., replacement of all identifier and literal names), or simple
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abstraction (e.g., abstraction of loop bodies). Tool users can choose to normalize the specific parts

that the users expect to vary. Kamiya et al. [16] design multiple transformation rules (e.g., “Remove

namespace attribution”, “Remove template parameters”, and “Remove initialization lists”) for C++

code, and rules (“Remove package names”, “Supplement callees”, and “Separate class definitions") for

Java code to abstract the identifier names. Although many approaches for code clone detection have

applied identifier abstraction techniques, they are all different from our application scenarios. First,

they are not based on deep learning. Second, they focus on improving the effectiveness of clone

detection through abstracting the identifier names, while we focus on assessing the effectiveness of

deep learning approaches for detecting semantic clones.

6.2 Code Clone Detection
Code clone detection is an important research problem in the field of software engineering. Detecting

clones can help reduce the cost of software maintenance and prevent faults. Clones are similar code

snippets that share the same semantics but may differ syntactically to various degrees. One common

taxonomy among researchers is to group clones into four types, i.e., Type-I to Type-IV [2, 32, 35].

Type I-III clones are clone pairs that differ at the token and statement levels. Type-I clones are

identical code snippets in addition to variations in comments and layout. Apart from Type-I clones,

Type-II clones are identical code snippets except for different identifier names and literal values.

Apart from Type-II clones, Type-III clones are syntactically similar code snippets that differ at the

statement level. Apart from Type-III clones, Type-IV clones are functionally similar code snippets

with different implementations. The difference in the identifier names does not affect the Type-II,

Type-III, and Type-IV clones.

Many approaches have been proposed to detect clones. These approaches mainly measure the

similarity among code representations varying from lexical-based [16, 18, 28, 33, 36, 43], structural-

based [6–8, 15], and graph-based [19, 21, 25, 29] representations. CCFinder [16] and Sourcer-

erCC [36] detect clones according to the comparison of tokens. Deckard [15] detects clones by

comparing the structural similarity between the ASTs.

Deep learning approaches [23, 47–49, 51] have recently received substantial attention for clone

detection. White et al. [47] propose to learn latent features for source code via a recursive auto-

encoder over ASTs. To detect Type-IV clones effectively, Wei et al. [45] formulate code clone

detection as a supervised learning task. They propose an end-to-end deep learning approach named

CDLH to learn hash codes from the lexical and structural information. Zhao et al. [51] propose

DeepSim to measure functional similarity. DeepSim encodes the program’s control flow graph and

data flow graphs into matrices and then uses them to train a deep learning model to compute the

similarity between two code snippets. Yu et al. [48] propose TBCCD to detect semantic clones using

tree-based convolutional neural network capturing both the lexical and structural information of

code snippets.

6.3 Learning from Big Code
Large open-source software systems [42, 50] have arisen and been ubiquitous in recent years.

They provide billions of code tokens for various software engineering tasks, such as code clone

detection [44, 48], bug fixes [30], and code summarization [10–12]. The availability of “Big Code”

suggests new data-driven approaches for learning statistical distributions from source code. These

approaches estimate distributional properties over large and representative software corpora.

Deep learning approaches have a powerful ability to generalize from “Big Code” and handle

noise in code examples. Various deep learning approaches have been proposed to address software

engineering tasks. Research in the “Big Code” area relies on large corpora of code. However, a few

studies address issues with the “Big Code”. Allamani [1] describes the impact of code duplication on
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deep learning approaches, and finds that code duplication can cause the evaluation to overestimate

deep learning approaches. LeClair et al. [22] address the problem of identifier names in summarizing

source code by using a project dataset without words from source code.

7 DISCUSSION
In this section, we first discuss the implications and limitations of our work. Then we discuss why

we choose Linear-Model to compare with state-of-the-art approaches, and make clarification: we

do not emphasize that the identifier names of semantic clones should not be similar. Finally, we

show the effectiveness of SVM on BigCloneBench, OJClone, and AbsBigCloneBench.

7.1 Implications
7.1.1 Assessing the Effectiveness of Deep Learning Approaches for Detecting Semantic Clones. We

point out an essential issue in BigCloneBench, widely used in clone detection; other researchers

have not noticed this issue. We notice that BigCloneBench is used to assess the effectiveness of

many approaches based on deep learning. However, researchers do not notice that the undesirable-

by-design approach (Linear-Model) can still achieve high effectiveness on BigCloneBench due to

BigCloneBench’s substantial dependence on the identifier information. We point out this issue,

which has not been noticed by researchers before, and propose to alleviate this issue through

abstracting a subset of the identifier names. The experimental results also show that abstracting the

identifier names in BigCloneBench can help better assess the effectiveness of approaches for detect-

ing semantic clones based on deep learning. In addition, the models trained on AbsBigCloneBench

are also effective on BigCloneBench.

7.1.2 Possible Scenarios. Not only AbsBigCloneBench can be used to better assess the effectiveness

of approaches for detecting semantic clones, models trained on AbsBigCloneBench also have

meaningful application scenarios. For example, for the task of malware and vulnerability detection,

approaches need to learn the behavioral characteristics of the malware and vulnerabilities; such

learning is not feasible when using only the identifier information. Assisting programming learners

to search for more diverse implementations can be another application scenario.

7.2 Limitations
BigCloneBench is mined from real world projects. In many real world projects, the identifier names

in the code snippets that belong to a semantic clone pair may be similar. If we abstract the identifier

names in BigCloneBench to result in AbsBigCloneBench, AbsBigCloneBench may be different

from the real world scenario, and AbsBigCloneBench may also increase the difficulty of detecting

semantic clones. Here we argue that if an approach is assessed to be effective on AbsBigCloneBench

with the identifier names abstracted away, the approach will still be effective in the real world

project (i.e., BigCloneBench).

7.3 Why DoWe Choose Linear-Model to Compare with State-of-the-art Approaches?
We design an undesirable-by-design approach named Linear-Model to point out the negative

impact of the identifier names on semantic clone detection via deep learning. Section 3 introduces

the configuration of Linear-Model in detail. We ensure that Linear-Model does not consider the

sequential information of source code as it tries to see only which tokens appear in the source code.

Compared to Linear-Model, state-of-the-art approaches deeply capture the structural information

of a code snippet while detecting semantic clones. For example, TBCCD captures the structural

information of a code snippet and a token’s position in the AST to detect semantic clones. CDLH

uses AST-based LSTM to capture both lexical and structural information of the code snippet.
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ASTNN divides the AST of a code snippet into multiple subtrees; after the vector representation

of the subtree is obtained, the structural information of the code snippet is captured through the

bidirectional GRU. We choose the undesirable Linear-Model to assess whether it can perform

well by using only the identifier name information to detect semantic clones on BigCloneBench.

Linear-Model can be replaced by other deep learning approaches that utilize only the identifier

name information.

7.4 Do We Emphasize That the Identifier Names of Semantic Clones Should Not Be
Similar?

Some researchers may argue that the identifier name information is meaningful for detecting

semantic clones in the real world scenarios. In this article, we are not saying that the identifier

names of two code snippets belonging to a semantic clone pair should not be similar; we just

emphasize that the identifier names of the semantic clone pair can be different, and the identifier

names in the code snippets can cause confusion when the effectiveness of deep learning approaches

is assessed. According to the common taxonomy of clone types [2, 32, 35], the identifier names can

differ if two code snippets belong to a semantic clone pair. AbsBigCloneBench can eliminate the

impact of the identifier name information on detecting semantic clones as much as possible, so

abstracting the identifier names in BigCloneBench can help better assess the effectiveness of deep

learning approaches on the task of detecting semantic clones.

7.5 Will a Traditional Machine Learning Approach Achieve as Good Results as
Linear-Model?

Before deep learning algorithms became popular, Support Vector Machine (SVM) [4, 38, 41] is one

of the most popular machine learning models. For the clone detection task, Jadon [14] proposes to

detect clones by SVM. We also compare the effectiveness of SVM (a non-deep learning approach) on

BigCloneBench and OJClone. We first perform lexical analysis on code snippets to obtain the tokens

of the code snippets. Similar to the text classification task with SVM, we stitch two code snippets

into a text and treat the clone detection task as a binary classification task. The F1 score of SVM

on BigCloneBench can reach 0.75, while reaching 0.11 on OJClone (the F1 score of Linear-Model

on BigCloneBench can reach 0.93, while reaching 0.70 on OJClone). The F1 scores of SVM on

BigCloneBench and OJClone are lower than Linear-Model; the reason is that SVM is still inferior to

Linear-Model in terms of the ability to capture features. One of the advantages of a deep learning

approach is that it captures hidden features. Consistent with Linear-Model, the experimental results

show that SVM works on BigCloneBench, but does not work on OJClone.

8 CONCLUSION
In this article, we have found that the semantic clones in BigCloneBench heavily rely on the

identifier name information. According to the definition of clone type, the identifier names of

semantic clones can be different. We have conducted an experimental study on BigCloneBench to

compare the effectiveness of an undesirable-by-design approach named Linear-Model and other

state-of-the-art deep learning approaches. The experimental results show that it is questionable to

use only BigCloneBench to assess the effectiveness of approaches for detecting semantic clones. To

alleviate the impact of the identifier names in BigCloneBench, we abstract a subset of the identifier

names in BigCloneBench to produce a new dataset named AbsBigCloneBench. The experimental

results show that abstracting the identifier names for BigCloneBench can help differentiate the state-

of-the-art approaches and the undesirable approach in terms of their effectiveness demonstrated

on the evaluation dataset. Models trained with AbsBigCloneBench are desirably less dependent

on the identifier names than those trained with BigCloneBench. In addition, models trained with
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AbsBigCloneBench are also effective on BigCloneBench, but models trained with BigCloneBench

are not effective on AbsBigCloneBench.

We hope that our work can inspire future research on using deep learning for semantic clone

detection; researchers need to pay attention to whether using only the identifier name information

in the dataset can achieve good effectiveness. Researchers also need to pay attention to whether

similar problems exist in the used evaluation benchmarks for other software engineering tasks.
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