
12

Guided Test Generation for Database Applications via Synthesized
Database Interactions

KAI PAN and XINTAO WU, University of North Carolina at Charlotte
TAO XIE, University of Illinois at Urbana-Champaign

Testing database applications typically requires the generation of tests consisting of both program inputs and
database states. Recently, a testing technique called Dynamic Symbolic Execution (DSE) has been proposed
to reduce manual effort in test generation for software applications. However, applying DSE to generate tests
for database applications faces various technical challenges. For example, the database application under
test needs to physically connect to the associated database, which may not be available for various reasons.
The program inputs whose values are used to form the executed queries are not treated symbolically, posing
difficulties for generating valid database states or appropriate database states for achieving high coverage of
query-result-manipulation code. To address these challenges, in this article, we propose an approach called
SynDB that synthesizes new database interactions to replace the original ones from the database application
under test. In this way, we bridge various constraints within a database application: query-construction
constraints, query constraints, database schema constraints, and query-result-manipulation constraints. We
then apply a state-of-the-art DSE engine called Pex for .NET from Microsoft Research to generate both
program inputs and database states. The evaluation results show that tests generated by our approach can
achieve higher code coverage than existing test generation approaches for database applications.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—Testing tools

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Automatic test generation, dynamic symbolic execution, synthesized
database interactions, database application testing

ACM Reference Format:
Kai Pan, Xintao Wu, and Tao Xie. 2014. Guided test generation for database applications via synthesized
database interactions. ACM Trans. Softw. Eng. Methodol. 23, 2, Article 12 (March 2014), 27 pages.
DOI: http://dx.doi.org/10.1145/2491529

1. INTRODUCTION

For quality assurance of software applications, testing is essential before the applica-
tions are deployed [Tassey 2002; Cusumano and Selby 1997]. Testing software applica-
tions can be classified into categories such as functional testing, performance testing,
security testing, environment and compatibility testing, and usability testing. Among
different types of testing, functional testing focuses on functional correctness. An im-
portant task of functional testing is to generate test inputs to achieve full or at least
high code coverage. There, covering a branch is necessary to expose a potential fault
within that branch. To cover specific branches, it is crucial to generate appropriate

K. Pan and X. Wu were supported in part by the U.S. National Science Foundation under CCF-0915059, and
T. Xie under CCF-0915400.
Authors’ addresses: K. Pan and X. Wu, Department of Software and Information Systems, University of North
Carolina at Charlotte, Charlotte, NC 28223; email: {kpan, xwu}@uncc.edu; T. Xie, Department of Computer
Science, University of Illinois at Urbana-Champaign, Urbana, IL 60801; email: taoxie@illinois.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1049-331X/2014/03-ART12 $15.00

DOI: http://dx.doi.org/10.1145/2491529

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 12, Pub. date: March 2014.

12:2 K. Pan et al.

tests, including appropriate program inputs (i.e., input arguments). However, manu-
ally producing these tests could be tedious and even infeasible. To reduce manual effort
in test generation, a testing technique called Dynamic Symbolic Execution (DSE) has
been proposed [Godefroid et al. 2005; Sen et al. 2005]. DSE extends the traditional
symbolic execution [King 1976; Clarke 1976] by running a program with concrete in-
puts while collecting both concrete and symbolic information at runtime, making the
analysis more precise [Godefroid et al. 2005]. DSE first starts with default or random
inputs and executes the program concretely. Along the execution, DSE simultaneously
performs symbolic execution to collect symbolic constraints on the inputs obtained
from predicates in branch conditions. DSE flips a branch condition and conjuncts the
negated branch condition with constraints from the prefix of the path before the branch
condition. DSE then hands the conjuncted conditions to a constraint solver to generate
new inputs to explore not-yet-covered paths. The whole process terminates when all
the feasible program paths have been explored or the number of explored paths has
reached the predefined upper bound.

Testing database applications requires generating test inputs of both appropriate
program inputs and sufficient database states. However, producing these test inputs
faces great challenges, because database states play crucial roles in database applica-
tion testing, and constraints from the issued SQL queries and queries’ returned result
set impact which paths or branches to execute within program code. Recently, some
approaches [Emmi et al. 2007; Taneja et al. 2010] adapt DSE to generate tests, includ-
ing both program inputs and database states, for achieving high structural coverage
of database applications. Emmi et al.[2007] proposed an approach that runs the pro-
gram simultaneously on concrete program inputs as well as on symbolic inputs and
a symbolic database. The symbolic database is a mapping from symbolic expressions
to logical formulas over symbolic values. The symbolic path constraint is treated as
a logical formula over symbolic values. Solving these logical formulas can help gener-
ate database records that satisfy the execution of a concrete query. In the first run,
it uses random concrete values for the program inputs, collects path constraints over
the symbolic program inputs along the execution path, and generates database records
such that the program execution with the concrete SQL queries (issued to the database
during the concrete execution) can cover the current path. Then, to explore a new
path, the approach flips a branch condition and generates new program inputs and
corresponding database records. To solve the problem when the associated database
is not available, the MODA framework [Taneja et al. 2010] transforms the program
under test to interact with a mock database in place of the real database. The approach
applies a DSE-based test generation tool called Pex [Tillmann and de Halleux 2008]
for .NET to collect constraints of both program inputs and the associated database
state. The approach also inserts the generated records back to the mock database so
that the query execution on the mock database could return appropriate results. Both
approaches collect constraints from program code and treat the associated database
(either real or mock) as an external component.

In general, for database applications, constraints used to generate effective program
inputs and sufficient database states often come from four parts: (1) query-construction
constraints, where constraints come from the subpaths being explored before the query-
issuing location; (2) query constraints, where constraints come from conditions in the
query’s WHERE clause; (3) database schema constraints, where constraints are prede-
fined for attributes in the database schema; (4) query-result-manipulation constraints,
where constraints come from the subpaths being explored for iterating through the
query result. Basically, query-construction constraints and query-result-manipulation
constraints are program-execution constraints, while query constraints and database
schema constraints are environment constraints. Typically, program-execution

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 12, Pub. date: March 2014.

Guided Test Generation for Database Applications 12:3

constraints are solved with a constraint solver for test generation, but a constraint
solver could not directly handle environment constraints.

To generate both effective program inputs and sufficient database states, we need
to correlate program-execution constraints and environment constraints seamlessly
when applying DSE on testing database applications. Considering the preceding four
parts of constraints, applying DSE on testing database applications faces great chal-
lenges for generating both effective program inputs and sufficient database states. For
existing DSE-based approaches of testing database applications, it is difficult to corre-
late program-execution constraints and environment constraints. Performing symbolic
execution of database interaction API methods would face a significant problem: these
API methods are often implemented in either native code or unmanaged code, and
even when they are implemented in managed code, their implementations are of high
complexity; existing DSE engines have difficulty in exploring these API methods. In
practice, existing approaches [Emmi et al. 2007; Taneja et al. 2010] would replace
symbolic inputs involved in a query with concrete values observed at runtime. Then,
to allow concrete execution to iterate through a non-empty query result, existing ap-
proaches generate database records using constraints from conditions in the WHERE
clause of the concrete query and insert the records back to the database (either real
database [Emmi et al. 2007] or mock database [Taneja et al. 2010]) so that it returns a
non-empty query result for query-result-manipulation code to iterate through.

A problem of such design decision made in existing approaches is that values for
variables involved in the query issued to the database system could be prematurely
concretized. Such premature concretization could pose barriers for achieving struc-
tural coverage, because query constraints (i.e., constraints from the conditions in the
WHERE clause of the prematurely concretized query) may conflict with later con-
straints. First, constraints from the concrete query may conflict with database schema
constraints. The violation of database schema constraints could cause the generation
of invalid database states, thus causing low code coverage of database application code
in general. Second, constraints from the concrete query may conflict with query-result-
manipulation constraints. The violation of query-result-manipulation constraints could
cause low code coverage of query-result manipulation code. While it is essential to col-
lect sufficient constraints required by generating both program inputs and database
states, naturally correlating the aforementioned four parts of constraints remains a
significant problem. The root cause stems from the fact that although the problem
could be solved by a thorough symbolic representation of the database state as well as
the symbolic input variables with a sufficiently powerful constraint solver, it would be
still challenging or even infeasible to bridge the gap caused by an external associated
database.

Basically, there exists a gap between program-execution constraints and environ-
ment constraints, caused by the complex black-box query-execution engine. Treating
the connected database (either real or mock) as an external component isolates the
query constraints with later constraints, such as database schema constraints and
query-result-manipulation constraints. In this article, we propose a DSE-based test
generation approach called SynDB to address the preceding problems of two types of
constraint conflicts. SynDB treats the associated database as an internal component
rather than the black-box query-execution engine. Our approach is the first work that
uses a fully symbolic database. In our approach, we treat symbolically both the em-
bedded query and the associated database state by constructing synthesized database
interactions. We transform the original code under test into another form that the
synthesized database interactions can operate on. To force DSE to actively track the
associated database state in a symbolic way, we treat the associated database state as
a synthesized object, add it as an input to the program under test, and pass it among

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 12, Pub. date: March 2014.

12:4 K. Pan et al.

synthesized database interactions. The synthesized database interactions integrate the
query constraints into normal program code. We also check whether the database state
is valid by incorporating the database schema constraints into normal program code.
This way, we correlate the aforementioned four parts of constraints within a database
application and bridge the gap of program-execution constraints and environment con-
straints. Then, based on the transformed code, we guide DSE’s exploration through the
operations on the symbolic database state to collect constraints for both program in-
puts and the associate database state. By applying a constraint solver on the collected
constraints, we thus attain effective program inputs and sufficient database states
to achieve high code coverage. Note that our approach does not require the physical
database to be in place. In practice, if needed, we can map the generated database
records back to the real database for further use.

This article makes the following main contributions.

—We present an automatic test generation approach to solve significant challenges of
existing test generation approaches for testing database applications even when the
associated physical database is not available.

—We introduce the first approach to provide a thorough symbolic representation of the
database state and a novel test generation technique based on DSE through code
transformation for correlating various parts of constraints in database applications,
bridging query construction, query execution, and query-result manipulation.

—We provide a prototype implemented for the proposed approach using a state-of-the-
art tool called Pex [Microsoft 2007] for .NET from Microsoft Research as the DSE
engine and evaluations on real database applications to assess the effectiveness of
our approach. Empirical evaluations show that our approach can generate effective
program inputs and sufficient database states that achieve higher code coverage
than existing DSE-based test generation approaches for database applications.

2. ILLUSTRATIVE EXAMPLE

In this section, we first use an example to intuitively introduce the aforementioned two
types of constraint conflicts of existing test generation approaches. We then apply our
SynDB approach on the example code to illustrate how our approach works.

The code snippet in Figure 1 includes a portion of C# code from a database application
that calculates some statistics related to customers’ mortgages. The schema-level de-
scriptions and constraints of the associated database are given in Table I. The method
calcStat first sets up database connection (Lines 03–05). It then constructs a query
by calling another method buildQuery (Lines 06, 06a, 06b, and 06c) and executes the
query (Lines 07–08). Note that the query is built with two program variables: a local
variable zip and a program-input argument inputYear. The returned result records are
then iterated (Lines 09–15). For each record, a variable diff is calculated from the
values of the fields C.income, M.balance, and M.year. If diff is greater than 100000, a
counter variable count is increased (Line 15). The method then returns the final result
(Line 16). To achieve high structural coverage of this program, we need appropriate
combinations of database states and program inputs.

To test the preceding code, DSE [Emmi et al. 2007] chooses random or default values
for inputYear (e.g., inputYear = 0 1). Here, the query-construction constraints are
simply true. Constraints from the concrete query are C.SSN = M.SSN AND C.zipcode
= 28223 AND M.year = 0. For generation of a database state, the constraint for the
attribute M.year in the concrete query becomes M.year = 0. However, we observe from
the schema in Table I that the randomly chosen value (e.g., inputYear = 0) violates

1The same problem occurs with inputYear == 1.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 12, Pub. date: March 2014.

Guided Test Generation for Database Applications 12:5

Fig. 1. A code snippet from a database application in C#.

Table I. Database Schema

customer table mortgage table
Attribute Type Constraint Attribute Type Constraint

SSN Int Primary Key SSN Int Primary Key
name String Not null Foreign Key

gender String ∈ {F, M} year Int ∈ {10, 15, 30}
zipcode Int [00001, 99999]

age Int (0, 100] balance Int [2000, Max)
income Int [100000, Max)

a database schema constraint: M.year can be chosen from only the set {10, 15, 30}.
Thus, we have the first type of conflict: query constraints (i.e., constraints derived from
the WHERE clause of the concrete query), thus conflict with the database schema
constraints. As previously mentioned, the violation of database schema constraints
would cause the generation of invalid database states. Thus, existing DSE-based test
generation approaches may fail to generate sufficient database records to cause the
execution to enter the query result manipulation (e.g., the while loop in Lines 09–15).
Furthermore, even if the specific database schema constraint (i.e., M.year ∈ {10, 15,
30}) does not exist and test execution is able to reach later part, the branch condition
in Line 14 cannot be satisfied. The values for the attribute M.year (i.e., M.year = 0
or M.year = 1) from the query in Line 06b are prematurely concretized. Then, such
premature concretization causes conflict with later constraints (i.e., in Line 13, we
have diff = (income − 1.5 * balance) * 0 or 1, which conflicts with the condition in
Line 14) from subpaths for manipulating the query result. Thus, we have the second
type of constraint conflict. From these two types of constraint conflicts, we observe
that treating the database as an external component isolates the query constraints
with database schema constraints and query-result-manipulation constraints.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 12, Pub. date: March 2014.

12:6 K. Pan et al.

Fig. 2. Transformed code produced by SynDB for the code in Figure 1.

Fig. 3. Synthesized database state.

To address the preceding two types of constraint conflicts in testing database applica-
tions, our SynDB approach replaces the original database interactions by constructing
synthesized database interactions. For example, we transform the example code in
Figure 1 into another form shown in Figure 2. Note that in the transformed code,
methods in the bold font indicate our new synthesized database interactions. We also
add a new input dbState to the program with a synthesized data type DatabaseState.
The type DatabaseState represents a synthesized database state whose structure is con-
sistent with the original database schema. For example, for the schema in Table I, its
synthesized database state is shown in Figure 3. The program input dbState is then
passed through synthesized database interactions SynSqlConnection, SynSqlCommand, and
SynSqlDataReader. Meanwhile, at the beginning of the synthesized database connections,
we ensure that the associated database state is valid by calling a method predefined
in dbState to check the database schema constraints for each table.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 12, Pub. date: March 2014.

Guided Test Generation for Database Applications 12:7

Table II. Generated Program Inputs and Database States to Cover Paths Line09 = true,
Line14 = false and Line09 = true, Line14 = true

dbState
dbState.Customer dbState.Mortgage

inputYear SSN name gender zipcode age income SSN year balance
15 001 AAA F 28,223 45 150,000 001 15 100,000
15 002 BBB M 28,223 55 150,000 002 15 50,000

To synthesize the database operations for the synthesized database interactions, we
incorporate the query constraints as program-execution constraints in normal program
code. To do so, within the synthesized method ExecuteReader, we parse the symbolic
query and transform the constraints from conditions in the WHERE clause into normal
program code (e.g., whose exploration helps derive path conditions). The query result is
then assigned to the variable results with the synthesized type SynSqlDataReader. The
query result eventually becomes an output of the operation on the symbolic database
state.

We then apply a DSE engine on the transformed code to conduct test generation.
In the first run, DSE chooses random or default values for inputYear and dbState (e.g.,
inputYear = 0, dbState = null). The value of dbState is passed through sc and cmd.
Note that for the database connection in Line 05, DSE’s exploration is guided to check
database schema constraints for each table (e.g., Mortgage.year ∈ {10, 15, 30}). Then,
in Line 08, DSE’s exploration is guided to collect query constraints from the symbolic
query. In Line 09, because the query result is empty, DSE stops and tries to generate
new inputs. To cover the new path, where Line 09 == true, the DSE engine generates
appropriate values for both inputYear and dbState using a constraint solver based
on the collected constraints. The generated program input and database records are
shown in Table II (e.g., inputYear = 15 and the record with C.SSN = 001). In the next
run, the execution of the query whose WHERE clause has been updated as C.SSN =
M.SSN AND C.zipcode = 28223 AND M.year = 15 yields a record so that DSE’s exploration
enters the while loop (Lines 09–15). The transformed code can also guide DSE’s
exploration to collect later constraints (the query-result-manipulation constraint in
Line 14) from subpaths for manipulating the query result to generate new inputs.
For example, to cover Line 14 == true, the collected new constraint (income − 1.5 *
balance) * year is combined with previous constraints to generate new inputs (e.g.,
the input inputYear = 15 and the record with C.SSN = 002, as shown in Table II).

Note that although the MODA approach [Taneja et al. 2010] conducts code-
transformation on the program under test to interact with a mock database in place
of the real database, the preceding two types of constraint conflicts still exist. To force
DSE to treat the associated database records symbolically, the approach calls a Pex API
method to initialize and assign values to corresponding table columns. However, the re-
lations (i.e., data dependencies) among program inputs, symbolic variables assigned by
the Pex API method, and program variables involved in the query are lost. Database
records are generated based on constraints from the prematurely concretized SQL
queries. Thus, the aforementioned two types of constraint conflicts are not avoided by
this design decision. On the other hand, our SynDB approach correlates all four kinds
of constraints within database applications into a seamless framework and thus is able
to avoid constraint conflicts during test generation.

3. APPROACH

Our approach relates the schema constraints, query construction, query execution, and
query result manipulation in one seamless framework. We conduct code transformation
on the original code under test by constructing synthesized database interactions. We

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 12, Pub. date: March 2014.

12:8 K. Pan et al.

Table III. A Summary of Synthesized Database Interactions

Original class SqlConnection SqlCommand SqlDataReader
New class SynSqlConnection SynSqlCommand SynSqlDataReader
New field DatabaseState dbStateConn DatabaseState dbStateComm DataTable resultSet

SynSqlConnection SynSqlCommand(string q, bool Read()
(DatabaseState dbStatePara) SynSqlConnection SSConn) -> iterate through the

->pass the symbolic ->pass the symbolic field DataTable
Main modified database state database state resultSet

methods and SynSqlDataReader int GetInt32(),
functionalities DatabaseState getDB() ExecuteReader() double GetDouble()....

->return the field ->simulate the query ->read column values
dbStateConn execution on the from DataTable

symbolic database state resultSet

treat the database state symbolically and add it as an input to the program. In the trans-
formed code, the database state is passed through synthesized database interactions.
At the beginning of the synthesized database connection, we enforce database schema
constraints via checking code. The synthesized database interactions also incorporate
query constraints from conditions in the WHERE clause of the symbolic query into nor-
mal program code. Then, when a DSE engine is applied on the transformed code, DSE’s
exploration is guided to collect constraints for both program inputs and database states.
In this way, we generate sufficient database states as well as effective program inputs.

3.1. Code Transformation

For the code transformation, we transform the code under test into another form upon
which our synthesized database interactions can execute. Basically, we replace the
standard database interactions with renamed API methods. We mainly deal with the
statements or stored procedures to execute against an SQL server database [Microsoft
2012b]. We identify relevant method calls including the standard database API meth-
ods. We replace the original database API methods with new names (e.g., we add “Syn”
before each method name). Note that replacing the original database API methods
is a large body of work. Even a single class could contain many methods, and their
relationships could be very complex. In our SynDB framework, we mainly focus on
the classes and methods that are commonly used and can achieve the basic function-
alities of database applications. Typically, a database application communicates with
the associated database through four steps. First, the application sets up a connec-
tion with the database (e.g., construct an SqlConnection object). Second, it constructs
a query to be executed and combines the query into the connection (e.g., construct
an SqlCommand object using the database connection and the string value of the query).
Third, if the query’s execution yields an output, the result is returned (e.g., construct an
SqlDataReader object by calling the API method ExecuteReader()2). Fourth, the returned
query result is manipulated for further execution. Table III gives a summary of the
code transformation part.

We construct a synthesized object to represent the whole database state accord-
ing to the given database schema. Within the synthesized database state, we define
tables and attributes. For example, for the schema in Table I, the corresponding syn-
thesized database state is shown in Figure 3. Meanwhile, we check database schema
constraints for each table and each attribute by transforming the database schema
constraints into normal program code for checking these constraints. We construct

2If the query is to modify the database state (such as INSERT, UPDATE, and DELETE), methods
ExecuteNonQuery() or ExecuteScalar() are applied.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 12, Pub. date: March 2014.

Guided Test Generation for Database Applications 12:9

a checkConstraints() method to implement the checking for database integrity con-
straints: for Check Constraints, we check whether the value in a certain column satis-
fies an arbitrary expression defined in the schema; for Not-Null Constraints, we specify
that a column must not assume the null value; for Unique Constraints, we ensure that
the data contained in a column is unique with respect to all the other rows in the table;
for Primary Keys, we indicate that the column is unique and not-null for rows in the
table; for Foreign Keys, we check the consistency of a certain column that is referred to
another column in another table. During the implementation, we call a Pex API method
PexAssume() when enforcing the database schema checking. PexAssume() is called to fil-
ter out undesirable test inputs and force the test inputs to satisfy all the constraints
indicated within the provided conditions. Such design decision stems from the fact that
the database schema constraints are unlike those conditions in if-else statements for
which we must explore both true and false branches. In fact, the negation of schema
constraints is actually what we try to avoid. Thus, invoking PexAssume() could mandato-
rily enforce database schema constraints with better efficiency. For example, to enforce
the primary key constraint, we include the expression of the primary key’s behavior
into a PexAssume() statement.

Note that we are also able to capture complex constraints at the schema level, such
as constraints across multiple tables and multiple attributes. To implement triggers
and stored procedures, we manually map their original definitions into normal pro-
gram methods that take parameters as corresponding database columns. Within the
method body, we manually apply the execution on associated database tables and re-
turn result set as required. To implement cascading updates/deletes, we conduct the
implementation on the indicated column by monitoring the types of actions on that
column. Once we observe that there comes an update or a delete, we automatically
invoke corresponding updating/deleting actions on the referred tables/columns.

We then add the synthesized database state as an input to the transformed code.
Through this way, we force DSE to track the associated database state symbolically
and guide DSE’s exploration to collect constraints of the database state.

3.2. Database Interface Synthesization

We use synthesized database interactions to pass the synthesized database state, which
has been added as a new input to the program. For each database interacting interface
(e.g., database connection, query construction, and query execution), we add a new
field to represent the synthesized database state and use auxiliary methods to pass it.
Thus, DSE’s exploration on the transformed code is guided to track the synthesized
database state symbolically through these database interactions. For example, as listed
in Table III, for the interactions SynSqlConnection and SynSqlCommand, we add new fields
and new methods.

For the synthesized database connection, at the beginning, we enforce the checking
of database schema constraints by calling auxiliary methods predefined in the passed
synthesized database state. In this way, we guarantee that the passed database state is
valid. It is also guaranteed that the further operations issued by queries (e.g., SELECT
and INSERT) on this database state would yield valid results. Figure 4 gives the details
of the synthesized database connection. For example, in SynSqlConnection, we rewrite
the method Open() by calling the method checkConstraints() predefined in the passed
synthesized database state.

Then, we synthesize new API methods to execute the query and synthesize a new
data type to represent the query result. For example, we rewrite API methods to ex-
ecute a query against the synthesized database state, according to various kinds of
queries (e.g., queries to select database records, and queries to modify the database
state). Figure 5 gives the details of SynSqlCommand whose methods ExecuteReader()

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 12, Pub. date: March 2014.

12:10 K. Pan et al.

Fig. 4. Synthesized SqlConnection.

Fig. 5. Synthesized SqlCommand.

and ExecuteNonQuery() are used to execute queries. The details of algorithms for
ExecuteReader() and ExecuteNonQuery() are discussed later in Section 3.3 (Algorithms 1
and 2, respectively).

We construct a synthesized data type to represent the query result, whose structures
are built dynamically based on the query to be executed. For example, we construct
SynSqlDataReader to represent the query result and use a field with the type DataTable to
represent the returned records. We choose the type DataTable [Microsoft 2012a] because
its characteristics are very similar to a query’s real returned result set. The entire data
structure is expressed in a table format. For a DataTable object, its columns can be built
dynamically by indicating the column names and their data types.

3.3. Database Operation Synthesization

In this section, we illustrate how to use the preceding synthesized database interactions
to implement database operations. A database state is read or modified by executing
queries issued from a database application. In our SynDB framework, we parse the
symbolic query and transform the constraints from conditions in the WHERE clause
into normal program code (e.g., whose exploration helps derive path conditions).

3.3.1. Select Operation. We first discuss how to deal with the SELECT statement for a
simple query. A simple query (shown in Figure 6) consists of three parts. In the FROM
clause, there is a from-list that consists of a list of tables. In the SELECT clause,
there is a list of column names of tables named in the FROM clause. In the WHERE
clause, there is a qualification that is a boolean combination of conditions connected by
logical connectives (e.g., AND, OR, and NOT). A condition is of the form expression op

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 12, Pub. date: March 2014.

Guided Test Generation for Database Applications 12:11

Fig. 6. A simple query.

ALGORITHM 1: SelectExe: Evaluate a SELECT statement on a symbolic database state

Input: DatabaseState dbStateComm, a SELECT query Q
Output: SynSqlDataReader R
1: Construct a SynSqlDataReader object R;
2: for each table Ti in Q’s from-list do
3: for each attribute A in Ti do
4: Find A’s corresponding field F in schema;
5: Construct a new DataColumn C;
6: C.ColumnName = F.name;
7: C.DataType = F.type;
8: R.resultSet.Columns.Add(C);
9: end for
10: end for
11: for each table Ti in Q’s from-list do
12: Find Ti ’s corresponding table T ′

i in dbStateComm;
13: end for
14: R.resultSet.Rows = T ′

1×T ′
2...×T ′

n;
15: Construct a string S = Q’s WHERE clause;
16: Replace the database attributes in S with their corresponding column names in

R.resultSet;
17: Replace the SQL logical connectives in S with corresponding program logical operators;
18: for each row r in R.resultSet.Rows do
19: if r does not satisfy S then
20: R.resultSet.Rows.Remove(r);
21: end if
22: end for
23: for each column c in R.resultSet.Columns do
24: if c does not appear in Q’s SELECT clause then
25: R.resultSet.Columns.Remove(c);
26: end if
27: end for
28: return R;

expression, where op is a comparison operator (=, <>, >, >=, <, <=) or a membership
operator (IN, NOT IN) and expression is a column name, a constant, or an (arithmetic
or string) expression. We leave discussion for complex queries in Section 3.4.

In our approach, we rewrite the method ExecuteReader() (shown in Figure 5) to deal
with the SELECT statement. The return value of the method is a SynSqlDataReader
object. Recall that the SynSqlCommand object contains a field dbStateComm to represent the
symbolic database state. We evaluate the SELECT statement on this symbolic database
state in three steps. We construct the full cross-product of relation tables followed by
selection and then projection, which is based on the conceptual evaluation of the SQL
queries. The details of executing the SELECT statement is shown in Algorithm 1.
First, we compute a cross-product of related tables to get all rows based on the FROM
clause (Lines 1–14). A cross-product operation computes a relation instance that con-
tains all the fields of one table followed by all fields of another table. One tuple in a
cross-product is a concatenation of two tuples coming from the two tables. To realize

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 12, Pub. date: March 2014.

12:12 K. Pan et al.

cross-product computation, we update the columns of the field DataTable resultSet by
adding new columns corresponding to the attributes of the tables appearing in the
FROM clause. The new columns have the same names and data types as their corre-
sponding attributes. We compute the cross-product by copying all the rows to DataTable
resultSet. Second, from the cross-product, we select rows that satisfy the conditions
specified in the WHERE clause (Lines 15–22). For each row r, if it satisfies the condi-
tions, we move to check the next row; otherwise, we remove r. Note that, as previously
mentioned, we deal with the SELECT statement for a simple query whose WHERE
clause contains a qualification that is a boolean combination of conditions connected
by logical connectives (e.g., AND, OR, and NOT). In this step, we transform the eval-
uation of the conditions specified in the WHERE clause into normal program code in
the following way. From the WHERE clause, we replace the database attributes in
the conditions with their corresponding column names in DataTable resultSet. We also
map those SQL logical connectives (e.g., AND, OR, and NOT) to program logical op-
erators (e.g., &&, ||, and !), thus keeping the original logical relations unchanged. For
SQL operators that correspond directly to programming language operators, we map
them to corresponding operators (e.g., >, =, and <). For those SQL operators that do
not correspond directly to programming language operators (e.g., LIKE, IS NULL), we
map them to corresponding programming language API methods provided by the basic
data types (e.g., map LIKE to string.contains()). Currently we do not handle 3-valued
logic for SQL queries. After these transformations, we push the transformed logical
conditions into parts of a path condition (e.g., realized as an assumption recognized by
the DSE engine). Third, after scanning all the rows, we remove unnecessary columns
from DataTable resultSet based on the SELECT clause (Lines 23–28). For each column
c in DataTable resultSet, if it appears in the SELECT clause, we keep this column;
otherwise, we remove c. After the preceding three steps, the field DataTable resultSet
contains all rows with qualified values that the SELECT statement should return.

Through this way, we construct a SynSqlDataReader object to relate the previous query
execution and the path conditions later executed in the program. We transform the
later manipulations on the SynSqlDataReader object to be indirect operations on the
initial symbolic database state. To let this SynSqlDataReader object satisfy the later
path conditions, the test generation problem is therefore transformed to generating a
sufficient database state against which the query execution can yield an appropriate
returned result.

3.3.2. Modify Operation. To deal with queries that modify database states, we rewrite
the method ExecuteNonQuery() (shown in Figure 5). The pseudocode is shown in Algo-
rithm 2. The method also operates on the field dbStateComm that represents the sym-
bolic database state. We first check the modification type of the query (e.g., INSERT,
UPDATE, and DELETE). For the INSERT statement (Lines 1–8), from the table in
the INSERT INTO clause, we find the corresponding table in dbStateComm. From the
VALUES clause, we then check whether the values of the new row to be inserted sat-
isfy database schema constraints. We also check after this insertion, whether the whole
database state still satisfy database schema constraints. If both yes, we add this new
row to the target table in dbStateComm, by mapping the attributes from the INSERT
query to their corresponding fields. For the UPDATE statement (Lines 9–19), from the
UPDATE clause, we find the corresponding table in dbStateComm. We scan the table
with the conditions from the WHERE clause and locate target rows. For each row, we
also check whether the specified values satisfy the schema constraints. If qualified,
we set the new values to their corresponding columns based on the SET clause. For
the DELETE statement (Lines 20–30), from the DELETE FROM clause, we find the
corresponding table in dbStateComm. We locate the target rows using conditions from

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 12, Pub. date: March 2014.

Guided Test Generation for Database Applications 12:13

ALGORITHM 2: ModifyExe: Evaluate a modification statement on a symbolic database state

Input: DatabaseState dbStateComm, a modification query Q
1: if Q is an INSERT statement then
2: Get table T from Q’s INSERT INTO clause;
3: Find T ’s corresponding table T ′ in dbStateComm;
4: Construct a new row r based on VALUES clause;
5: if T’.check(r) == true &&

dbStateComm.T’.afterInsert(r) == true then
6: dbStateComm.T’.Add(r);
7: end if
8: end if
9: if Q is an UPDATE statement then
10: Get table T from Q’s UPDATE clause;
11: Find T ’s corresponding table T ′ in dbStateComm;
12: for each row r in T ′ do
13: if r satisfies the conditions in Q’s WHERE clause then
14: if dbStateComm.T’.afterUpdate(r) == true then
15: Set r with the specified values;
16: end if
17: end if
18: end for
19: end if
20: if Q is a DELETE statement then
21: Get table T from Q’s DELETE FROM clause;
22: Find T ’s corresponding table T ′ in dbStateComm;
23: for each row r in T do
24: if r satisfies the conditions in Q’s WHERE clause then
25: if dbStateComm.T’.afterDelete(r) == true then
26: dbStateComm.T’.Remove(r);
27: end if
28: end if
29: end for
30: end if

the WHERE clause. We then check whether this deletion would violate the schema
constraints; otherwise, we remove these rows.

3.4. Discussion

In this section, we present some complex cases that often occur in database applications.
We introduce how our approach can deal with these cases, such as complex queries,
aggregate functions, and cardinality constraints.

3.4.1. Dealing with Complex Queries. Note that SQL queries embedded in the program
code could be very complex. For example, they may involve nested subqueries with ag-
gregation functions, union, distinct, and group-by views, etc. The syntax of SQL queries
is defined in the ISO standardization.3 The fundamental structure of an SQL query is
a query block which consists of SELECT, FROM, WHERE, GROUP BY, and HAVING
clauses. If a predicate or some predicates in the WHERE or HAVING clause are of the
form [Ck op Q] where Q is also a query block, the query is a nested query. A large body of
work [Kim 1982; Dayal 1987; Ahmed et al. 2006] on query transformation in databases
has been explored to unnest complex queries into equivalent single-level canonical

3American National Standard Database Language SQL. ISO/IEC 9075:2008. http://www.iso.org/iso/
iso catalogue/catalogue tc/catalogue detail.htm?csnumber=45498.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 12, Pub. date: March 2014.

12:14 K. Pan et al.

Fig. 7. A canonical query in DPNF.

queries. Researchers showed that almost all types of subqueries can be unnested ex-
cept those that are correlated to non-parents, whose correlations appear in disjunction,
or some ALL subqueries with multi-item connecting condition containing null-valued
columns.

Generally, there are two types of canonical queries: DPNF with the WHERE clause
consisting of a disjunction of conjunctions, as shown in Figure 7, and CPNF with
the WHERE clause consisting of a conjunction of disjunctions (such as (A11 OR... OR
A1n) AND ... AND (Am1 OR... OR Amn)). Note that DPNF and CPNF can be transformed
mutually using DeMorgan’s rules [Goodstein 2007]. For a canonical query in DPNF
or CPNF, SynDB can handle it well because we have mapped the logical relations
between the predicates in the WHERE clause to normal program code. We are thus
able to correctly express the original logical conditions from the WHERE clause using
program logical connectives.

3.4.2. Dealing with Aggregate Functions. An SQL aggregate function returns a single
value calculated from values in a column (e.g., AVG(), MAX(), MIN(), COUNT(), and
SUM()). It often comes in conjunction with a GROUP BY clause that groups the result
set by one or more columns.

In general, we map these aggregate functions to be calculations on the
SynSqlDataReader object. Recall that for the SynSqlDataReader object that represents a
query’s returned result set, its field DataTable resultSet contains qualified rows selected
by a SELECT statement. From these rows, we form groups according to the GROUP
BY clause. We form the groups by sorting the rows in DataTable resultSet based on the
attributes indicated in the GROUP BY clause. We discard all groups that do not satisfy
the conditions in the HAVING clause. We then apply the aggregate functions to each
group and retrieve values for the aggregations listed in the SELECT clause.

Another special case that we would like to point out is that in the SELECT clause,
it is permitted to contain calculations among multiple database attributes. For ex-
ample, suppose that there are two new attributes checkingBalance and savingBalance
in the mortgage table. In the SELECT clause, we have a selected item calculated as
mortgage.checkingBalance + mortgage.savingBalance. In our approach, dealing with such
a complex case is still consistent with how to deal with the aforementioned SELECT
statement. From the field DataTable resultSet in the SynSqlDataReader object, we merge
the columns involved in this selected item using the indicated calculation. For example,
we get a merged column by making an “add” calculation on the two related columns
mortgage.checkingBalance and mortgage.savingBalance. We also set the data type of the
merged column as the calculation result’s data type.

3.4.3. Dealing with Cardinality Constraints. Program logic can be far more complex than
our illustrative example. Cardinality constraints for generating a sufficient database
state may come from the query-result-manipulation code. Since SynDB is a DSE-based
test generation approach, the space-explosion issue in path exploration still exists,
especially after the query result is returned.

Consider the example code in Figure 8. Inside the while loop after the result set is
returned, a variable count is updated every time when a condition balance > 50000 is
satisfied. Then, outside the while loop, branch conditions in Lines 10a and 10c depend
on the values of count. Manually, we can observe that the value of count depends on

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 12, Pub. date: March 2014.

Guided Test Generation for Database Applications 12:15

Fig. 8. An example where cardinality constraints come from the query result manipulation.

how many records satisfy the branch condition in Line 09b. We may generate enough
database records so that branches in Lines 10a and 10c could be entered. However,
since there is a while loop, applying DSE to hunt for enough database records (thus
covering Lines 10a) faces significant challenges: the size of results can range to a very
large number of which perhaps only a small number of records can satisfy the condition
in Line 09b. Hence, this problem is reduced to a traditional issue [Xie et al. 2009]: to
explore a program that contains one or more branches with relational conditions (here,
we have (count > 10)) where the operands are scalar values (i.e., integers or floating-
point numbers) computed based on control-flow decisions connected to program inputs
through data flow (here, we have if (balance > 50000) count++;).

In the literature, Xie et al. proposed an approach Fitnex [2009] that uses a fitness
function to measure how close an already discovered feasible path is to a particular
test target. Each already explored path is assigned with a fitness value. Then a fitness
gain for each branch is computed and the approach gives higher priority to flipping a
branching node with a better fitness gain. The fitness function measures how close the
evaluation at runtime is to covering a target predicate.

Under the scenario of our approach, since we have built the consistency between the
database state and the returned result set, we can capture the relationship between
the database state and the target conditions (such as Lines 10a and 10c) depending
on the returned result set. We apply the search strategy that integrates the Fitnex
approach [Xie et al. 2009] so that generating enough database records with high effi-
ciency becomes feasible. For the example code in Figure 8, we detect that covering the
path condition in Line 10a is dependant on covering the path condition in Line 09b.
To satisfy the target predicate in Line 10a, the search strategy would give priority to
flip the branching node in Line 09b. This step therefore helps achieve generating a
sufficient database state with high efficiency.

4. EVALUATION

Our approach replaces the original database API methods with synthesized database
interactions. We also treat the associated database state as a program input to guide
DSE to collect constraints for generating both program inputs and corresponding
database records. Through this way, tests generated by our approach are able to achieve
high code coverage for testing database applications. In our evaluation, we seek to eval-
uate the performance of our approach from the following perspectives.

RQ1. What is the percentage increase in code coverage by the tests generated by our
approach compared to the tests generated by existing approaches [Emmi et al.
2007; Taneja et al. 2010] in testing database applications?

RQ2. What is the running cost of our approach compared with an existing approach
[Taneja et al. 2010] on generating tests?

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 12, Pub. date: March 2014.

12:16 K. Pan et al.

4.1. Subject Applications

We conduct an empirical evaluation on three open-source database applications:
iTRUST4, RiskIt5, and UnixUsage6. These applications contain comprehensive programs
and have been previously widely used as evaluated applications (iTRUST [Clark et al.
2011], RiskIt and UnixUsage [Grechanik et al. 2010; Taneja et al. 2011; Pan et al. 2011b]).
iTRUST is a class project created at North Carolina State University for teaching software
engineering. It consists of functionalities that cater to patients and the medical staff.
The accompanied database contains 30 tables and more than 130 attributes. RiskIt is
an insurance quote application that makes estimation based on users’ personal infor-
mation, such as zipcode and income. It has an existing database containing 13 tables,
57 attributes, and more than 1.2 million records. UnixUsage is an application to obtain
statistics about how users interact with the Unix systems using different commands. It
has a database containing 8 tables, 31 attributes, and more than 0.25 million records.
Since our approach is able to conduct database state generation from the scratch, we
do not need to make use of the existing database records. The three applications were
originally written in Java. To test them with the Pex DSE engine, we convert the
original Java source code into C# code using a tool called Java2CSharpTranslator.7
Java2CSharpTranslator is an Eclipse plug-in based on the fact that Java and C# have
a lot of syntax/concept in common. The detailed evaluation subjects and results can be
found on our project website.8

We report the code coverage using block coverage provided by Pex. Code coverage
could be calculated for code blocks, lines of code, and partial lines if they are exe-
cuted by a test run. Among these code entities under coverage measurement, a code
block is a code path with a single entry point, a single exit point, and a set of in-
structions that are all run in sequence. We choose block coverage (e.g., the percentage
of code blocks being covered) to be the metric as we find for these subject applica-
tions, the number of covered blocks could reflect the covered code portions because most
of the methods under test do not contain complex logics that involve many blocks. For
the analysis time of our approach, we measure the execution time by running Pex on
the transformed code. In our evaluation, we set Pex’s TimeOut value as 120 seconds.
Pex provides a set of commands to specify the upper bound of the execution cost of
which the TimeOut command is used to indicate the time to stop if no more code could be
covered.

For these applications, we focus on the methods whose SQL queries are constructed
dynamically. For the iTRUST application, from the subpackage called iTRUST.DAO, we
choose 14 methods that contain queries whose variables are data-dependent on pro-
gram inputs. The iTRUST.DAO package mainly deals with database interactions and data
accessing. The RiskIt application consists of 44 classes of which 32 methods are found
to have at least one SQL query. Within these 32 methods, 17 methods contain queries
whose variables are data-dependent on program inputs. We choose these 17 methods
to conduct our evaluation. The UnixUsage application consists of 26 classes of which 76
methods are found to have at least one SQL query. Within these 76 methods, we choose
22 methods that contain queries whose variables are data-dependent on program
inputs to conduct our evaluation.

4http://agile.csc.ncsu.edu/iTrust.
5https://riskitinsurance.svn.sourceforge.net.
6http://sourceforge.net/projects/se549unixusage.
7http://sourceforge.net/projects/j2cstranslator/.
8http://www.sis.uncc.edu/∼xwu/DBGen.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 12, Pub. date: March 2014.

Guided Test Generation for Database Applications 12:17

Table IV. Schema Constraints on iTRUST

Application Table:Attribute Constraints
Users:Role enum(‘patient’,‘admin’,‘hcp’,‘uap’,‘er’,‘tester’,‘pha’, ‘lt’) NOT NULL

Personnel:role enum(‘patient’,‘admin’,‘hcp’,‘uap’,‘er’,‘tester’,‘pha’, ‘lt’) NOT NULL
iTRUST Personnel:state enum(‘AK’,‘AL’, . . . ,‘WV’, ‘WY’) NOT NULL

Patients:state enum(‘AK’,‘AL’, . . . ,‘WV’, ‘WY’) NOT NULL
icdcodes:Chronic enum(’no’,’yes’) NOT NULL

icdcodes:Code decimal(5,2) NOT NULL

Table V. Added Extra Schema Constraints on RiskIt and UnixUsage(“PK” stands for “Primary Key”)

Application Table:Attribute Original constraints Added constraints
education:EDUCATION char(50) ∈ {high school, college, graduate}

job:SSN int, NOT NULL, PK [000000001, 999999999]
RiskIt userrecord:SSN int, NOT NULL, PK [000000001, 999999999]

userrecord:ZIP char(5) ZIP.length = 5
userrecord:MARITAL char(50) ∈ {single, married, divorced, widow}

COURSE INFO:COURSE ID int, NOT NULL, PK [100,999]
UnixUsage DEPT INFO:RACE varchar(50) ∈ {white, black, asian, hispanic}

TRANSCRIPT:USER ID varchar(50) NOT NULL [000000001, 999999999]

4.2. Evaluation Setup

The three applications have predefined their own schemas for the associated databases
in attached .sql files. For the iTRUST application, the predefined database schema con-
straints are more comprehensive than the other two. We list the contained constraints
related with the methods under test in Table IV. However, for RiskIt and UnixUsage,
we observe that the predefined database schema constraints are over-simplified and
contain only the basic primary key constraints and data type constraints. To better
reflect real-world database schema constraints in real practice, we extend the existing
database schema constraints by adding extra constraints. We choose certain attributes
from the tables and augment their constraints. The added extra constraints are en-
sured, as much as possible, to be reasonable and consistent with real-world settings.
For example, for the RiskIt application, we add a length constraint to the attribute
ZIP from the userrecord table to ensure that the length of ZIP must be 5. Similarly,
we ensure that the value of the attribute EDUCATION from the education table must be
chosen from the set {high school, college, graduate}. The details of the added extra
constraints for RiskIt and UnixUsage are listed in Table V.

We next implement code transformation on the original program code under test.
As previously mentioned, our approach constructs synthesized database states based
on the schemas (e.g., attribute names and data types) and incorporates the database
schema constraints into normal program code by checking these constraints on the
synthesized database states. We then apply Pex on the transformed code to conduct
test generation.

Initially, for each method under test, the output of Pex’s execution on the trans-
formed code is saved in a methodname.g.cs file consisting of a number of generated
tests. To investigate RQ1, we intend to directly measure the code coverage on the orig-
inal program under test. We conduct the measurements in the following way. From
those methodname.g.cs files, we first populate the generated records back into the real
database. To do so, we instrument code at the end of each methodname.g.cs file. The in-
strumented code builds connections with the real database, constructs INSERT queries
for each table, and runs the INSERT queries. We construct new tests using the program
inputs generated by Pex’s execution on the transformed code. Note that these program

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 12, Pub. date: March 2014.

12:18 K. Pan et al.

Fig. 9. SynfilterZipcode: Transformed code of method filterZipcode.

inputs have also been saved in the methodname.g.cs files. Then, we run the constructed
new tests for the original program under test interacting with the real database to
measure the code coverage. We record the statistics of the code coverage, including
total program blocks, covered blocks, and coverage percentages.

We choose one method filterZipcode from the RiskIt application to illustrate the
evaluation process. The method accepts an input zip to form an query, searches cor-
responding records from the userrecord table, and conducts some calculation from the
returned records. After the code transformation, we get a new method SynfilterZipcode,
as shown in Figure 9. We next run Pex on the transformed code SynfilterZipcode to
conduct test generation. The generated tests are then automatically saved by Pex in a
SynfilterZipcode.g.cs file. For example, one of the tests is shown in Figure 10 (Lines
01–21). Running this test covers the path where Line 11 = true, and Line 16 = true
in Figure 9. For the test in Figure 10, the generated database record is shown in
Lines 09–13, and the corresponding program inputs for method arguments zip and
dbstateRiskIt are shown in Line 20. The last statement (Line 21) makes an assertion
and completes the current test. After the assertion, we instrument auxiliary code to
populate the generated records back to the real database. We build a connection with
the real database and insert the records to corresponding tables (pseudocode in Lines
22–28). Then, we construct new tests for the original code under test using the program
inputs contained in tests generated by Pex. For example, based on the input values in
Line 20 of the test shown in Figure 10, we construct a new test shown in Figure 11. We
run these new tests and then measure the code coverage for the original code under
test.

To compare our approach with an existing test-generation approach for database
application testing [Emmi et al. 2007], we make use of our SynDB framework. Basi-
cally, based on our transformed code, we simulate the existing approach by generating
database records using constraints from the concrete queries obtained at each query-
issuing point by DSE’s exploration. We insert these generated records back to the real
database so that DSE can enter the query-result iteration. Note that at this point,
if there exists a conflict with the database schema, the generated records to be in-
serted will be rejected by the database, corresponding to the first type of constraint
conflict as previously mentioned. Then, when DSE is able to enter the query-result
iteration, to explore the query-result-manipulation code, we get additional constraints
from the query-result-manipulation code. Using these constraints together with the
constraints obtained previously, we generate new records and insert them back to the

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 12, Pub. date: March 2014.

Guided Test Generation for Database Applications 12:19

Fig. 10. Tests generated by Pex on SynfilterZipcode.

Fig. 11. Constructed tests for filterZipcode.

real database again. Note that at this point, if there exists a conflict between the
query-result-manipulation constraints and query constraints, the generation will fail,
corresponding to the first type of constraint conflict as previously mentioned. To mea-
sure the code coverage achieved by the existing approach [Emmi et al. 2007], we create
tests using corresponding program inputs generated by Pex and run these tests with
the real database. Such simulated results are expected to be equivalent to the results
produced with the original implementation of the existing approach.

To compare our approach with the MODA framework [Taneja et al. 2010], we modify
the MODA package’s settings to match our subject applications, such as constructing
mock databases (e.g., creating tables and columns) based on the given database schema.
We run the package on each method under test and record the code coverage and
running time.

4.3. Results

We report the evaluation results in Tables VI, VII, and VIII from the perspectives
of code coverage and cost. The evaluation is conducted on a machine with hardware
configuration Intel Pentium 4CPU 3.0GHz, 2.0GB Memory and OS Windows XP SP2.

4.3.1. Code Coverage. In Tables VI, VII, and VIII, the first part (Columns 1–2)
shows the index and method names. The second part (Columns 3–6) shows the code
coverage result. Column 3 “total(blocks)” shows the total number of blocks in each
method. Columns 4–6 “covered(blocks)” show the number of covered blocks using tests

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 12, Pub. date: March 2014.

12:20 K. Pan et al.

Table VI. Evaluation Results on iTrust

total covered(blocks) time(seconds)
No. method (blocks) others SynDB increase SynDB MODA

1 addUser 21 16 19 14.28% 17.1 33.3
2 updateCode 19 15 17 10.53% 14.3 38.2
3 addICDCode 23 17 21 17.39% 21.0 40.1
4 getICDCode 21 16 19 14.28% 18.9 35.3
5 addEmptyPersonnel 23 17 21 17.39% 17.3 39.6
6 editPersonnel 20 15 18 15.00% 16.2 28.9
7 getRole 27 19 25 22.22% 15.4 31.1
8 editPatient 25 17 23 24.00% 16.8 27.7
9 getDiagnosisCounts 49 41 47 12.24% 28.9 time out
10 getWeeklyCounts 22 17 20 13.64% 15.7 43.8
11 findEarliestIncident 19 15 17 10.53% 11.4 33.5
12 add(DiagnosesDAO) 17 13 15 11.76% 10.3 28.5
13 edit(DiagnosesDAO) 19 15 17 10.53% 11.8 30.1
14 getAllOfficeVisitsForDiagnosis 38 29 36 18.42% 22.0 time out

all methods (total) 343 262 315 15.45% 237.1 650.1

Table VII. Evaluation Results on RiskIt

total covered(blocks) time(seconds)
No. method (blocks) others SynDB increase SynDB MODA

1 getAllZipcode 39 17 37 51.28% 27.9 42.1
2 filterOccupation 41 37 37 0% 17.6 36.2
3 filterZipcode 42 28 38 23.81% 14.2 54.1
4 filterEducation 41 27 37 24.39% 13.1 35.9
5 filterMaritalStatus 41 27 37 24.39% 8.9 33.7
6 findTopIndustryCode 19 14 14 0% 11.8 28.5
7 findTopOccupationCode 19 14 14 0% 12.1 27.7
8 updatestability 79 67 75 10.13% 68.8 time out
9 userinformation 61 51 57 9.84% 74.3 time out

10 updatetable 60 50 56 10.00% 96.2 time out
11 updatewagetable 52 48 48 0% 101.6 time out
12 filterEstimatedIncome 58 44 54 17.24% 19.4 32.2
13 calculateUnemploymentRate 49 45 45 0% 42.7 74.4
14 calculateScore 93 16 87 76.35% 66.5 time out
15 getValues 107 68 99 28.97% 82.2 time out
16 getOneZipcode 34 23 32 26.47% 21.3 38.6
17 browseUserProperties 108 96 104 7.41% time out time out

all methods (total) 943 672 871 21.10% 798.6 1243.4

generated by our approach, the number of covered blocks using tests generated by
existing approaches, and the percentage increase, respectively. We find that for existing
approaches [Emmi et al. 2007; Taneja et al. 2010], they achieve the same code coverage
for all the methods. The reason being that they use the same design decision when
conducting the generation for database records, interacting with either a real database
[Emmi et al. 2007] or a mock database [Taneja et al. 2010]. Note that our approach
does not deal with generating program inputs and database states to cause runtime
database connection exceptions. Thus, the code blocks related to these exceptions (e.g.,
the catch statements) cannot be covered. The fourth part (Columns 7–8) shows the

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 12, Pub. date: March 2014.

Guided Test Generation for Database Applications 12:21

Table VIII. Evaluation Results on UnixUsage

total covered(blocks) time(seconds)
No. method (blocks) others SynDB increase SynDB MODA

1 courseNameExists 7 7 7 0% 5.0 14.1
2 getCourseIDByName 10 10 10 0% 7.1 14.8
3 computeFileToNetworkRatio 25 8 25 68.00% 13.7 23.3

ForCourseAndSessions
4 outputUserName 14 14 14 0% 9.8 26.6
5 computeBeforeAfterRatioByDept 24 24 24 0% 58.3 92.0
6 getDepartmentIDByName 11 11 11 0% 13.6 28.0
7 computeFileToNetworkRatioForDept 21 21 21 0% 38.3 66.2
8 raceExists 11 7 11 36.36% 12.9 31.1
9 userIdExists(version1) 11 7 11 36.36% 13.3 30.3

10 transcriptExist 11 7 11 36.36% 13.9 30.8
11 getTranscript 6 5 6 16.67% 7.7 16.1
12 commandExists(version1) 10 10 10 0% 7.9 28.6
13 getCommandsByCategory 10 10 10 0% 7.3 31.2
14 retrieveUsageHistoriesById 21 7 21 66.67% 14.8 39.0
15 userIdExists(version2) 11 7 11 36.36% 10.2 22.4
16 commandExists(version2) 11 11 11 0% 10.1 21.7
17 retrieveMaxLineNo 10 7 10 30.00% 11.8 25.9
18 retrieveMaxSequenceNo 10 7 10 30.00% 12.3 24.7
19 getSharedCommandCategory 11 7 11 36.36% 11.1 27.1
20 getUserInfoBy 47 15 47 68.09% 52.2 time out
21 doesUserIdExist 10 9 10 10.00% 6.6 16.8
22 getPrinterUsage 34 27 34 20.59% 21.9 44.4

all methods (total) 336 238 336 29.17% 359.8 775.1

running time cost by MODA and our approach. In our evaluation, we set the TimeOut
as 120 seconds for Pex.

Within the iTRUST application, the 14 methods contain 343 code blocks in total. Tests
generated by existing approaches cover 262 blocks while our approach can cover 315
blocks (15.45% average increase). Within the RiskIt application, the 17 methods contain
943 code blocks in total. Tests generated by existing approaches cover 672 blocks while
our approach can cover 871 blocks (21.10% average increase). Within the UnixUsage
application, the 22 methods contain 336 code blocks in total. Tests generated by existing
approaches cover 238 blocks while our approach can also cover the whole 336 blocks
(29.17% average increase).

We observe that tests generated by existing approaches fail to cover certain blocks
for some methods. The reason being that the generated records violate the database
schema constraints. When populating such records back into the real database, the in-
sertion operations are rejected by the database. Take the previously mentioned example
method SynfilterZipcode shown in Figure 9 to illustrate such cases. Our simulated re-
sults show that existing approaches are able to generate a record with a value “\0”
for the ZIP field. However, the value “\0” does not satisfy the database schema con-
straint where ZIP.length = 5, as shown in Table V. Thus, the real database refuses
the insertion of this record. As a result, correspondingly, running the tests generated
by existing approaches cannot retrieve effective records from the database and fails to
cover certain blocks (e.g., the while loop for the query-result iteration).

For iTRUST, the accompanied schema constraints are more comprehensive than the
constraints for the other two applications. The results show that our approach can

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 12, Pub. date: March 2014.

12:22 K. Pan et al.

Fig. 12. Method getRole from iTRUST.

generate tests to cover more blocks for all the 14 methods under test. For example, for
the No.7 method getRole shown in Table VI, the original code is shown in Figure 12.
One of its parameter String role is combined into a SQL query that selects records
from the Users table. The attribute Role related with the variable role has a constraint
shown in Table V, where the value can be chosen from only a predefined string set.
Existing approaches fail to generate effective test inputs to cover Line 12, while our
approach has captured such a constraint and is able to generate effective tests to cover
more code blocks than existing approaches. Note that for this method, the not-covered
code (Line 12) by existing approaches is directly related with query result manipulation,
where such a case is different from the method shown in Figure 9. For the method shown
in Figure 9, the not-covered code (Line 17) is related with the variable manipulated
within the query result manipulation (Line 12). The experimental results show that our
approach can handle both cases, because our approach has correlated the constraints
from the query result manipulation and later program execution.

For RiskIt and UnixUsage, we add only a small number of extra database schema
constraints, where these constraints have not affected all the methods. The results
show that existing approaches achieve the same code coverage as our approach does
for some methods. For example, for the No.2 method filterOccupation in the RiskIt
application shown in Table VII, we did not add any other constraints to the associated
tables. The result shows that, for the total 41 blocks, both existing approaches and our
approach can cover 37 blocks, while the remaining not-covered blocks are related to
handling runtime exceptions. Note that the number of added extra constraints in our
evaluation is limited. In practice, applications could contain more complex constraints.
In that case, we expect that our approach can achieve much better code coverage than
existing approaches.

Comparing with existing approaches, the increased code coverage by our approach
is from addressing the aforementioned two types of constraint conflicts caused by
prematurely concretized SQL queries. In our evaluation, we observe that most of the
increased code coverage comes from the methods under test that have the issue of
the first type of constraint conflict. Only two methods (methods 6 and 8) from iTrust,
one method (method 14) from RiskIt, and no methods from UnixUsage have the issue
of the second type of constraint conflict. For the two methods (methods 6 and 8) from
iTrust, all of the increased code coverage comes from addressing the second type of
constraint conflict. For the method (method 14) from RiskIt, within the total increased
code coverage, 15 code blocks are covered due to addressing the second type of constraint

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 12, Pub. date: March 2014.

Guided Test Generation for Database Applications 12:23

conflict. Although there are a limited number of methods under test that have the issue
of the second type of constraint conflict since the logic of most methods under test is
simple, we believe such issues exist widely when the program code logic becomes more
complex.

Another observation that we would like to point out is on complex constraints in-
volving multiple attributes and multiple tables. For example, for the No.12 method
filterEstimatedIncome in Table VII, the program input String getIncome appears in
a branch condition involving a mathematical formula comparing with a complex
calculation using the query’s returned result. The complex calculation derives a
value from multiple attributes (workweeks, weekwage, capitalGains, capitalLosses, and
stockDividents) across multiple tables (data tables job and investment). Recall that our
approach is able to capture complex constraints defined at the schema level. For this
method, if an extra complex constraint is defined for these attributes at the schema
level, we expect that our approach can achieve much better coverage than existing
approaches.

4.3.2. Cost. We observe that the major factor that impacts the execution time for test
generation is the complexity of the query embedded in a method. If a query joins mul-
tiple tables, the exploration of checking database schema constraints for each table is
linearly increased. In the implementation of our approach, we call one of Pex’s API
methods PexAssume() to reduce the cost of exploring constraints. PexAssume() is for fil-
tering out undesirable test inputs. By calling PexAssume(), it is beneficial to guarantee
that database schema constraints are always enforced without unnecessary negations.
Although we can apply the Pex API method to optimize the constraint-checking pro-
cess, the cost still increases when more tables are involved. For example, for RiskIt,
methods 1 and 16 have similar code logics except that the query in method 1 joins
three tables, while method 16 deals with only one table called userrecord. We observe
that the execution on method 1 (27.9 seconds) costs much more time than method 16
(21.3 seconds).

Meanwhile, if a table contains a large number of attributes, high cost is also incurred,
because more values have to be generated for table columns. For example, for method 3
in RiskIt, the original query selects all columns from the userrecord table. To evaluate
the performance when the size of table columns changes, we double the number of its
columns by adding more attribute names. We observe that the execution costs more
time than the original, increasing from 14.2 seconds to 17.5 seconds.

Another observation from the running cost that we would like to point out is related
to Pex’s path exploration. Complexity of the qualification in a query also affects the
analysis time, as evaluating the conditions has been transformed into normal pro-
gram code in our approach. For example, the qualification in a query is expressed by
a boolean combination of conditions connected by program logical connectives. A gen-
erated record that satisfies the whole qualification should satisfy all the conditions.
However, when Pex explores a branch, it neglects to explore any subsequent boolean
condition but starts a new run if it finds that the first condition does not hold. Thus,
to make all the conditions true, Pex takes more runs, whose number is linear to the
number of conditions. In practice, to improve the efficiency, we force Pex to consider all
the conditions together in one time, still calling Pex’s API method PexAssume().

Since the existing approach [Emmi et al. 2007] is not publicly available and we
simulate its functionalities by using our SynDB framework, we ignore reporting the
running time for this approach. We report the analysis cost of our approach compared
with MODA in Tables VI, VII, and VIII. Columns 7 and 8 show the running time for
each method. For example, the running time of our approach for method addUser in
iTRUST is 17.1 seconds, while MODA uses 33.3 seconds to conduct test generation. On

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 12, Pub. date: March 2014.

12:24 K. Pan et al.

average, for all three applications, the results show that our approach uses much less
running time than MODA.

5. RELATED WORK

Testing database applications has been attracting increasing attention recently. With
the focus on functional testing, test generation is a fundamental technique. Emmi
et al. [2007] develop an approach for extending DSE to consider query constraints.
The approach generates tests consisting of both program inputs and database states
for Java applications. However, it is required that the associated database should be
in place. Taneja et al. [2010] develop the MODA framework that is applicable when
the database is not available by using a mock database. Our approach focuses on the
problem faced by these two approaches: they generate database records based on query
constraints from the concrete query, and these query constraints may conflict with other
constraints. Our approach correlates various constraints within a database application.
Some other approaches also leverage DSE as a major supporting technique for testing
database applications. A recent approach [Pan et al. 2011a] uses DSE to generate
database states to achieve advanced structural coverage criteria. Li and Csallner [2010]
propose an approach to exploit existing databases to maximize the coverage under DSE.

Some approaches [Zhang et al. 2012; Tillmann and Schulte 2006] conduct test gen-
eration through modeling the environment and writing stub functions. Using stub
functions can isolate the unit under test from the environment. However, for database
applications, a significant problem of using stub functions is that program-execution
constraints and environment constraints are also isolated. Our approach uses a fully
symbolic database and passes it through synthesized database interactions. Hence
all constraints within a database application are not isolated from each other. Our
approach can guarantee that the generated tests are always valid.

Willmor and Embury [2006] propose an approach that builds a database state for
each test case intensionally, where the pre-conditions and post-conditions to be satisfied
for the test case are provided in a query by the user. Chays et al. propose a set of tools
[Chays et al. 2004; Deng and Chays 2005] for testing database applications by gathering
information from the schema and application and by populating the database with use-
ful values, as well as preparing test cases to check application’s resulting database state
and output. Chays et al. [2008] develop an approach that generates inputs to satisfy cer-
tain properties specified by the tester. The approach generates test queries based on the
SQL statements from the application. The AGENDA approach [Chays et al. 2004, 2008;
Deng and Chays 2005] deals with how to generate tests that satisfy some basic database
integrity constraints. The approach does not handle parametric queries or constraints
on query results, which are however very common in practice. Another problem is that
it is not guaranteed that the execution of the test query on the generated database
states can produce the desired query results. The QAGen [Binnig et al. 2007b] approach
extends symbolic execution using symbolic query processing to generate query-aware
databases. However, QAGen mainly deals with isolated queries and considers only the
cardinality constraints. Our approach focuses on the context of application programs.
Binnig et al. [2007a] propose the approach of Reverse Query Processing (RQP) that con-
siders cases where the query-execution result is given. Although RQP can be applied
in application programs, it still lacks the ability to deal with complex program logic
where the constraints derived from concrete queries are infeasible. Khalek et al. [2008]
conduct black-box testing of database management systems (DBMS). They develop an
ADUSA prototype to generate database states and expected results of executing given
queries on generated database states, given a database schema and an SQL query
as input. Unlike using constraint solver, they use the Alloy Analyzer that uses SAT
to generate data. Veanes et al. [2009] propose a test generation approach for given

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 12, Pub. date: March 2014.

Guided Test Generation for Database Applications 12:25

SQL queries. The approach isolates each individual query to generate tests but does not
consider the interactions among queries. Moreover, the approach requires explicit cri-
teria from developers to specify what tests should be generated. Another approach [Pan
et al. 2011b] focuses on program-input generation given an existing database state. Us-
ing the intermediate information gathered by the DSE process, the approach constructs
auxiliary queries and executes them on the existing database state to attain effective
program inputs. In contrast, our approach mainly generates database states from the
scratch.

Other than achieving high code coverage that aims to expose program faults, testing
database applications also has other target requirements. Halford and Orso [2006]
present a set of testing criteria named command form coverage. It is claimed that
all command forms should be covered when issued to the associated database. Some
other techniques [Zhou and Frankl 2009, 2011; de la Riva et al. 2010; Tuya et al.
2010; Gupta et al. 2010] focus on the mutation testing of database applications. Zhou
and Frankl [2009] propose the JDAMA approach that conducts mutation testing for
database applications. The approach evaluates the performance of mutant killing for
given database states but cannot generate effective tests to kill mutants. Another ap-
proach [Cabal and Tuya 2004] addresses the problem of measuring the coverage of SQL
queries and presents a tool that automates it. Authors propose two different coverage
measures for the coverage of SQL queries, specifically for the case of the SELECT
query. However, it is still imperative to integrate SQL coverage criteria with other
criteria for program languages. Based on a given SQL query, de la Riva et al. [2010]
propose an approach that generates database records to satisfy the constraints ob-
tained from the query’s mutants, following predefined transformation rules. However,
the approach does not consider program constraints and cannot deal with database ap-
plications directly. Our approach can be extended to satisfy other testing requirements,
such as mutation testing, as long as we have correlated various constraints within a
database application. For performance testing, the PPGen approach [Wu et al. 2005,
2007] generates mock databases by reproducing the statistical distribution of realistic
database states. However, PPGen assumes that constraints are explicit and focuses on
SQL workload’s performance testing. Our approach can generate database records and
can be extended to estimate the performance of a database application by specifying
various distribution properties.

6. CONCLUSION AND FUTURE WORK

In this article, we propose a DSE-based approach called SynDB for testing database
applications. The approach synthesizes new database interactions to replace the orig-
inal ones. This way, we bridge the gap between program-execution constraints and
environment constraints. Existing test-generation techniques treat the database as
an external component and may face problems when considering constraints within a
database application in an insufficient way. Our approach considers both query con-
straints and database schema constraints and transform them to normal program
code. We use a state-of-the-art DSE engine called Pex to generate effective tests con-
sisting of both program inputs and database states. Empirical evaluations show that
our approach achieves higher program code coverage than existing approaches.

In future work, we plan to extend our approach to various phases of functional testing.
We plan to investigate the problem of locating logical faults in database applications
using our approach. For example, there could be inherent constraint conflicts within
an application caused by careless developers. We plan to apply our approach on more
complex application contexts such as multiple queries. We also plan to investigate how
to apply our approach on generating a large number of database records.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 12, Pub. date: March 2014.

12:26 K. Pan et al.

REFERENCES

Rafi Ahmed, Allison W. Lee, Andrew Witkowski, Dinesh Das, Hong Su, Mohamed Zaı̈t, and Thierry Cruanes.
2006. Cost-based query transformation in Oracle. In Proceedings of the International Conference on Very
Large Data Bases (VLDB). 1026–1036.

Carsten Binnig, Donald Kossmann, and Eric Lo. 2007a. Reverse query processing. In Proceedings of the
IEEE International Conference on Data Engineering (ICDE). 506–515.

Carsten Binnig, Donald Kossmann, Eric Lo, and M. Tamer Özsu. 2007b. QAGen: Generating query-aware
test databases. In Proceedings of the ACM SIGMOD Conference. 341–352.

Marı́a José Suárez Cabal and Javier Tuya. 2004. Using an SQL coverage measurement for testing
database applications. In Proceedings of the ACM SIGSOFT Sympsium on the Foundations of Software
Engineering (SIGSOFT-FSE). 253–262.

David Chays, Yuetang Deng, Phyllis G. Frankl, Saikat Dan, Filippos I. Vokolos, and Elaine J. Weyuker. 2004.
An AGENDA for testing relational database applications. Softw. Test. Verif. Reliab. 14, 1, 17–44.

David Chays, John Shahid, and Phyllis G. Frankl. 2008. Query-based test generation for database applica-
tions. In Proceedings of the International Workshop on Testing Database Systems (DBTest). 6.

Sarah R. Clark, Jake Cobb, Gregory M. Kapfhammer, James A. Jones, and Mary Jean Harrold. 2011. Local-
izing SQL faults in database applications. In Proceedings of the IEEE/ACM International Conference
on Automated Software Engineering (ASE). 213–222.

L. A. Clarke. 1976. A system to generate test data and symbolically execute programs. IEEE Trans. Softw.
Eng. 2, 3, 215–222.

Michael A. Cusumano and Richard W. Selby. 1997. How Microsoft builds software. Commun. ACM 40, 6
(1997), 53–61.

U. Dayal. 1987. Of nests and trees: A unified approach to processing queries that contain nested subqueries,
aggregates, and quantifiers. In Proceedings of the International Conference on Very Large Data Bases
(VLDB). 197–208.

Claudio de la Riva, Marı́a José Suárez Cabal, and Javier Tuya. 2010. Constraint-based test database gen-
eration for SQL queries. In Proceedings of the International Workshop on Automation of Software Test
(AST). 67–74.

Yuetang Deng and David Chays. 2005. Testing database transactions with AGENDA. In Proceedings of the
International Conference on Software Engineering (ICSE). 78–87.

Michael Emmi, Rupak Majumdar, and Koushik Sen. 2007. Dynamic test input generation for database
applications. In Proceedings of the International Symposium on Software Testing and Analysis (ISSTA).
151–162.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed automated random testing. In
Proceedings of the Programming Language Design and Implementation (PLDI). 213–223.

R. L. Goodstein. 2007. Boolean Algebra. Dover Publications.
Mark Grechanik, Christoph Csallner, Chen Fu, and Qing Xie. 2010. Is data privacy always good for soft-

ware testing? In Proceedings of the IEEE International Symposium on Software Reliability Engineering
(ISSRE). 368–377.

Bhanu Pratap Gupta, Devang Vira, and S. Sudarshan. 2010. X-data: Generating test data for killing SQL
mutants. In Proceedings of the IEEE International Conference on Data Engineering (ICDE). 876–879.

William G. J. Halfond and Alessandro Orso. 2006. Command-form coverage for testing database applications.
In Proceedings of the IEEE/ACM International Conference on Automated Software Engineering (ASE).
69–80.

Shadi Abdul Khalek, Bassem Elkarablieh, Yai O. Laleye, and Sarfraz Khurshid. 2008. Query-aware test gen-
eration using a relational constraint solver. In Proceedings of the IEEE/ACM International Conference
on Automated Software Engineering (ASE). 238–247.

Won Kim. 1982. On Optimizing an SQL-like nested query. ACM Trans. Datab. Syst. 7, 3 (1982), 443–469.
J. C. King. 1976. Symbolic execution and program testing. Commun. ACM, 19, 7, 385–394.
Chengkai Li and Christoph Csallner. 2010. Dynamic symbolic database application testing. In Proceedings

of the International Workshop on Testing Database Systems (DBTest). 1–6.
Microsoft. 2007. Pex: Dynamic analysis and test generation for .NET. Microsoft Research Foundation of

Software Engineering Group.
Microsoft. 2012a. DataTable. Microsoft MSDN. http://msdn.microsoft.com/en-us/library/system.data.

datatable.aspx. (Last accessed May 2012).
Microsoft. 2012b. .NET framework data provider for SQL server. Microsoft MSDN. (May 2012). http://msdn.

microsoft.com/en-us/library/system.data.sqlclient.aspx. (Last accessed May 2012).

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 12, Pub. date: March 2014.

Guided Test Generation for Database Applications 12:27

Kai Pan, Xintao Wu, and Tao Xie. 2011a. Database state generation via dynamic symbolic execution for
coverage criteria. In Proceedings of the International Workshop on Testing Database Systems (DBTest).
1–6.

Kai Pan, Xintao Wu, and Tao Xie. 2011b. Generating program inputs for database application testing. In
Proceedings of the IEEE/ACM International Conference on Automated Software Engineering (ASE).
73–82.

Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A concolic unit testing engine for C. In Proceed-
ings of the Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE). 263–272.

Kunal Taneja, Mark Grechanik, Rayid Ghani, and Tao Xie. 2011. Testing software in age of data privacy: A
balancing act. In Proceedings of the Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE). 201–211.

Kunal Taneja, Yi Zhang, and Tao Xie. 2010. MODA: Automated test generation for database applications
via mock objects. In Proceedings of the IEEE/ACM International Conference on Automated Software
Engineering (ASE). 289–292.

G. Tassey. 2002. The economic impacts of inadequate infrastructure for software testing. Tech. Repport.
NIST Planning. 02-3, National Institute of Standards and Technology.

Nikolai Tillmann and Jonathan de Halleux. 2008. Pex-White Box test generation for .NET. In Proceedings
of the International Conference on Tests and Proofs (TAP). 134–153.

Nikolai Tillmann and Wolfram Schulte. 2006. Mock-object generation with behavior. In Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering (ASE). 365–368.

Javier Tuya, Marı́a José Suárez Cabal, and Claudio de la Riva. 2010. Full predicate coverage for testing SQL
database queries. Softw. Test. Verif. Reliab. 20, 3, 237–288.

Margus Veanes, Pavel Grigorenko, Peli de Halleux, and Nikolai Tillmann. 2009. Symbolic query exploration.
In Proceedings of the International Conference on Formal Engineering Methods (ICFEM). 49–68.

David Willmor and Suzanne M. Embury. 2006. An intensional approach to the specification of test cases for
database applications. In Proceedings of the International Conference on Software Engineering (ICSE).
102–111.

Xintao Wu, Chintan Sanghvi, Yongge Wang, and Yuliang Zheng. 2005. Privacy aware data generation for test-
ing database applications. In Proceedings of the International Database Engineering and Applications
Symposium (IDEAS). 317–326.

Xintao Wu, Yongge Wang, Songtao Guo, and Yuliang Zheng. 2007. Privacy preserving database generation
for database application testing. Fundam. Inform. 78, 4, 595–612.

Tao Xie, Nikolai Tillmann, Peli de Halleux, and Wolfram Schulte. 2009. Fitness-guided path exploration in
dynamic symbolic execution. In Proceedings of the IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). 359–368.

Linghao Zhang, Xiaoxing Ma, Jian Lu, Nikolai Tillmann, Jonathan de Halleux, and Tao Xie. 2012. Envi-
ronment modeling for automated testing of cloud applications. IEEE Softw. Special Issue on Software
Engineering for Cloud Computing 29, 2, 30–35.

Chixiang Zhou and Phyllis G. Frankl. 2009. Mutation testing for Java database applications. In Proceedings
of the IEEE International Conference on Software Testing, Verification and Validation (ICST). 396–405.

Chixiang Zhou and Phyllis G. Frankl. 2011. Inferential checking for mutants modifying database states.
In Proceedings of the IEEE International Conference on Software Testing, Verification and Validation
(ICST). 259–268.

Received May 2012; revised January, May 2013; accepted June 2013

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 2, Article 12, Pub. date: March 2014.

