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Systematic Structural Testing of Firewall Policies
JeeHyun Hwang, Tao Xie, Fei Chen, and Alex X. Liu

Abstract—Firewalls are the mainstay of enterprise security
and the most widely adopted technology for protecting private
networks. As the quality of protection provided by a firewall
directly depends on the quality of its policy (i.e., configuration),
ensuring the correctness of firewall policies is important and yet
difficult. To help ensure the correctness, we propose a systematic
structural testing approach for firewall policies. We define struc-
tural coverage (based on coverage criteria of rules, predicates,
and clauses) on the firewall policy under test. To achieve high
structural coverage effectively, we have developed four automated
packet generation techniques: the random packet generation, the
one based on local constraint solving (considering individual rules
locally in a policy), the one based on global constraint solving
(considering multiple rules globally in a policy), and the one
based on boundary values.

We have conducted an experiment on a set of real policies and
a set of faulty policies to detect faults with generated packet sets.
Generally, our experimental results show that a packet set with
higher structural coverage has higher fault-detection capability
(i.e., detecting more injected faults). Our experimental results
show that a reduced packet set (maintaining the same level of
structural coverage with the corresponding original packet set)
maintains similar fault-detection capability with the original set.

Index Terms—Firewall policy, validation, test packet genera-
tion, structural coverage, fault detection.

I. INTRODUCTION

SERVING as the first line of defense against malicious
attacks and unauthorized traffic, firewalls are crucial el-

ements in securing the private networks of most businesses,
institutions, and home networks. A firewall is typically placed
at the point of entry between a private network and the outside
Internet such that all network traffic has to pass through it. In
a distributed system, messages are encapsulated into packets,
which often pass through multiple access points in a network
and firewalls are responsible for filtering, monitoring, and
securing such packets [1]. Corruption or misconfiguration in
firewalls may cause that the firewalls fail to filter malicious
packets properly and affect the performance and security of a
distributed system.

As security problems of firewalls are often caused by mis-
configuration in firewall policies, correctly specifying firewall
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policies is a critical and yet challenging task for building
reliable firewalls [2]. There are many factors for misconfig-
uring firewall policies. First, the rules in a firewall policy
are logically entangled because of the conflicts among rules
and the resulting order sensitivity. Second, a firewall policy
may consist of a large number of rules. A firewall on the
Internet may consist of hundreds or even a few thousands
of rules. Last but not the least, an enterprise firewall policy
often consists of legacy rules that are written by different
operators, at different times, and for different reasons, which
make maintaining firewall policies even more difficult.

To help ensure the correctness of firewall policies, re-
searchers and practitioners have developed various firewall
analysis and testing tools. The main function of these firewall
analysis tools is to detect “bad smell” (i.e., “anomalies”) in
firewall policies based on some common patterns of firewall
configuration mistakes [3], [4]. Such firewall analysis tools are
certainly useful; however, the main drawback of such tools is
that the “anomalies” may not be mistakes and the number
of “anomalies” could be too large to be practically useful.
Several firewall policy testing techniques have been proposed
[5]–[7]. However, these firewall policy testing techniques are
not based on well-established testing techniques in software
engineering. For example, these techniques do not consider
coverage criteria [8] for firewall policy testing

In this paper, we propose firewall policy testing based on
the concept of firewall policy coverage, which helps test a
firewall policy’s structural entities (i.e., rules, predicates, and
clauses) to check whether each entity is specified correctly.
In firewall policy testing, test inputs and outputs are packets
and their evaluated decisions (against the firewall policy under
test), respectively. Given test packets and the policy under
test, when evaluating packets against the policy, our coverage
measurement tool measures firewall policy coverage —- which
entities of the policy are involved (called “covered”) in the
evaluation. Moreover, our systematic firewall policy testing
helps detect faults with the test packets, which often do not fol-
low some configuration mistake patterns (e.g., anomalies [3],
[4] and configuration errors [2]). Intuitively, policy testers
shall generate test packets to achieve high structural coverage,
which helps investigate a large portion of policy entities for
fault detection.

As it is tedious for policy testers to manually generate test
packets for firewall policies, we have developed an automated
packet-generation tool (that can generate packets) for four
packet-generation techniques: the random packet generation
technique, the one based on local constraint solving (consid-
ering individual rules locally in a policy), the one based on
global constraint solving (considering multiple rules globally
in a policy), and the one based on boundary values. As gener-
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Rule Source IP Source Port Destination IP Destination Port Protocol Decision
𝑟1 * * 192.168.0.0/16 * * accept
𝑟2 1.2.3.0/24 * * [1, 28 − 1] TCP discard
𝑟3 * * * * * discard

Fig. 1. An example firewall policy.

ated packets are often large and manual inspection of packet-
decision pairs is tedious, we have developed an automated
packet reduction tool to reduce the number of packets while
keeping the same level of structural coverage.

We have conducted an experiment on a set of real firewall
policies with mutation testing [9], which is a specific form
of fault injection that creates faulty versions of a policy by
making small syntactic and semantic changes. We generate
packet sets (for each policy) with the packet generation
techniques. Our experimental results show that a packet set
with higher structural coverage (including rule, predicate, and
clause coverage) often achieve higher fault-detection capabil-
ity (i.e., detecting more injected faults), which is measured
through the number of “killed mutants” (i.e., detected faults).
On the comparison of packet sets and their reduced packet
sets, our experimental results also show that a reduced packet
set achieves similar fault-detection capability with the original
packet set.

The rest of the paper is organized as follows. Section II
presents background information on firewall policies. Sec-
tion III presents a firewall policy model. Section IV describes
structural coverage criteria of a firewall policy. Section V
illustrates a framework of our proposed packet-generation
techniques, test reduction technique, and a mechanism of
measuring fault-detection capability. Section VI describes an
implementation of our framework. Section VII illustrates our
experiments of measuring policy coverage and fault-detection
capability. Section VIII discusses related work. Section IX
concludes the paper.

II. FIREWALL POLICY

A firewall policy is composed of a sequence of rules
that specify under what conditions a packet is accepted
and discarded while passing between a private network and
the outside Internet. In other words, the policy describes a
sequence of rules to decide whether packets are accepted
(i.e., being legitimate) or discarded (i.e., being illegitimate).
A rule is composed of a set of fields (generally including
source/destination IP addresses, source/destination port num-
bers, and protocol type) and a decision. Each field represents
the range of possible values (to match the corresponding value
of a packet), which are either a single value or a finite interval
of non-negative integers.

A packet matches a rule if and only if each value of the
packet satisfies the corresponding values in the rule. Upon
finding a matching rule, the corresponding decision of that
rule is derived. When evaluating a packet, the firewall policy
follows the first-match semantic: the first matching rule is
given the highest priority among all the matching rules.

Figure 1 shows an example of a firewall policy. The symbol
“*” denotes that the corresponding field’s range (in a rule) is
equal to the domain of the field and is satisfied by any packet.

An IP address is a 32 bit value (e.g., 192.168.0.0), which is
represented as a four-part dotted-decimal address. Classless
Inter-domain Routing (CIDR) notation is used to represent IP
ranges over an IP address with a subnet mask (e.g., /16 or /24).
For example, the range of 192.168.0.0/24 implies IP addresses
from 192.168.0.0 to 192.168.0.255. This range consists of all
possible IP addresses starting with the same left-most 24 bits
(i.e., 192.168.0) on the given IP address. Each of the remaining
8 bits (which do not have fixed values) is either 0 or 1.

The example has three firewall rules 𝑟1, 𝑟2, and 𝑟3. Rule
𝑟1 accepts any packet whose destination IP address is the net-
work 192.168.0.0/16 (which indicates the range [192.168.0.0,
192.168.255.255]). Rule 𝑟2 discards any packet whose source
IP address is the network 1.2.3.0/24 (which indicates the
range [1.2.3.0, 1.2.3.255]) and port is the range [1, 28 − 1]
with the TCP protocol type. Rule 𝑟3 is a tautology rule to
discard all packets. Consider that a packet whose destination
IP address is 192.168.0.0 and protocol type is UDP. When
evaluating the packet, we find that the packet can match both
𝑟1 and 𝑟3. Among the two rules, as 𝑟1 is the first-matching
rule, the packet is evaluated to be accepted (with regards to
the decision of 𝑟1). If a packet matches no rules in a firewall
policy, there exists an implicit last tautology rule to discard
the packet.

III. FIREWALL POLICY MODEL

This section illustrates a model of a firewall policy based
on common generic features. A firewall policy is composed
of a sequence of rules, each of which has the form (called the
generic representation) as follows.

⟨predicate⟩ → ⟨decision⟩ (1)

A ⟨predicate⟩ in a rule is a boolean expression over fields
on which a packet arrives. The ⟨decision⟩ of a rule can be
accept or discard and returned as the evaluation result when
the ⟨predicate⟩ is evaluated to be true.

The ⟨predicate⟩ is represented as a conjunction form as
follows.

𝐹1 ∈ 𝑆1 ∧ ... ∧ 𝐹𝑛 ∈ 𝑆𝑛 (2)

In a policy model, we represent a value in a field 𝐹𝑖 (e.g.,
IP address) with its corresponding range 𝑆𝑖 (e.g., 𝐹𝑖 ∈ [2,5])
to simplify the representation format. We refer to each 𝐹𝑖 ∈
𝑆𝑖 as a ⟨clause⟩, which can be evaluated to either true or false.
Table I summarizes the notations used in this paper.

The first-match semantic (of a firewall policy) shows
the same behavior with the execution of a series of
IF-THEN-ELSE statements in program code. Given a sequence
of rules, the following process is iterated until reaching the
last rule: if a ⟨predicate⟩ in a rule is evaluated true, then the
corresponding decision is returned; otherwise, the next rule (if
exists) is evaluated.
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TABLE I
SUMMARY OF NOTATIONS

𝑃 a set of predicates of the rules in a policy
𝐶 a set of clauses of the predicates in a policy
𝑟𝑖 a rule in a firewall policy
𝑝𝑖 a predicate in a rule 𝑟𝑖
𝑐𝑖 an 𝑖th clause in a predicate
𝐹𝑖 a field (e.g., IP address)
𝐷𝑖 domain of field 𝐹𝑖 (e.g., [0, 232 − 1] for the IP address)
𝑆𝑖 a subset of domain 𝐷𝑖 (e.g., [2,5])

𝐶𝑝𝑖(𝑐𝑗) a constraint of a clause 𝑐𝑗 in a predicate 𝑝𝑖
𝐶(𝑝𝑖) a constraint of a predicate 𝑝𝑖

𝑘 a packet

𝑟1 : 𝐹1 ∈ [2, 5] ∧ 𝐹2 ∈ [5, 10] → 𝑎𝑐𝑐𝑒𝑝𝑡
𝑟2 : 𝐹1 ∈ [6, 7] ∧ 𝐹2 ∈ [5, 10] → 𝑑𝑖𝑠𝑐𝑎𝑟𝑑

Fig. 2. Example firewall rules.

IV. STRUCTURAL COVERAGE CRITERIA

In firewall testing, exhaustive testing (i.e., executing all pos-
sible test packets) is time consuming and inefficient. Instead of
exhaustive testing, we focus on testing to cover only specific
entities (i.e., a predicate tested to be false or true) based on a
set of defined coverage criteria.

A. Definition

Treating the firewall policy under test as program code (i.e.,
IF-THEN-ELSE statements), we apply structural coverage
criteria similar to the ones defined by Ammann et al [10].
In this paper, a test suite is a set of packet-decision pairs to
check whether a packet is evaluated to its corresponding ex-
pected decision. We define rule, predicate, and clause coverage
criteria as follows.

Definition 1: Rule Coverage Criterion (𝑅𝐶𝐶) for a test
suite requires that for each rule 𝑟 in a policy, the evaluation
of the test packets in the test suite needs to match 𝑟 (i.e.,
make 𝑟’s predicate 𝑝 to be evaluated to true) at least once,
respectively.

In other words, 𝑅𝐶𝐶 requires that for each predicate 𝑝,
𝑝 is evaluated to true at least once. Figure 2 shows example
firewall rules where only two fields 𝐹1 and 𝐹2 are used.

For example, given two test packets, 𝑘1 (3, 5) and 𝑘2 (6, 10)
over two fields 𝐹1 and 𝐹2, both predicates 𝑝1 and 𝑝2 (of 𝑟1
and 𝑟2, respectively) are evaluated to true. 𝑅𝐶𝐶 is achieved
by these two test packets. More specifically, 𝑘1 evaluates 𝑝1
to true, causing 𝑟1’s decision to be returned without further
evaluating 𝑝2. 𝑘2 evaluates 𝑝1 to false and next evaluates 𝑝2
to true. Note that when a packet finds the first-matching rule
𝑟 (i.e., evaluating a predicate to true), policy evaluation stops
and returns 𝑟’s decision as a final decision.

Definition 2: Predicate Coverage Criterion (𝑃𝐶𝐶) for a
test suite requires that for each predicate 𝑝 of the rules in
a policy, the evaluation of the test packets in the test suite
needs to make 𝑝 to be evaluated to true and false at least
once, respectively.

To achieve 𝑃𝐶𝐶, in addition to 𝑘1 and 𝑘2, we require one
more packet such as 𝑘3 (6, 11) that evaluates 𝑝2 to false.
Figure 3 illustrates these three test packets that evaluate

packet 𝑝1 𝑝2 matching rule
𝑘1: (3, 5) True N/A 𝑟1
𝑘2: (6, 10) False True 𝑟2
𝑘3: (6, 11) False False N/A

Fig. 3. Sample packets for all combinations of true and false values
of predicates 𝑝1 and 𝑝2.

packet 𝑐1 𝑐2 𝑝1 = (𝑐1 ∧ 𝑐2)
𝑘1: (3, 5) True True True
𝑘2: (6, 10) False True False
𝑘3: (3, 11) True False False
𝑘4: (6, 11) False False False

Fig. 4. Sample packets for all combinations of true and false values
of clauses 𝑐1 and 𝑐2.

all combinations of true and false (of 𝑝1 and 𝑝2). N/A

represents a not-applicable predicate or rule during packet
evaluation. For 𝑘1, we mark N/A in 𝑝2’s evaluation because
𝑘1’s decision is determined without further evaluating 𝑝2.

Covering every predicate in a firewall requires at most 2𝑛
test packets, where 𝑛 is the number of rules. However, the
minimal number of test packets (for 𝑃𝐶𝐶) could be less
than 2𝑛 because a single test packet can satisfy multiple
true or false branches of predicates. As 𝑅𝐶𝐶 and 𝑃𝐶𝐶
do not require each clause to be covered, we then define
clause coverage criterion (𝐶𝐶𝐶), which specifically targets
at covering each clause in a predicate.

Definition 3: Clause Coverage Criterion (CCC) for a test
suite requires that for each clause 𝑐 of the predicates in a
policy, the evaluation of the test packets in the test suite needs
to make 𝑐 to be evaluated to true and false at least once,
respectively.

In 𝐶𝐶𝐶, each clause is required to be evaluated to true

and false at least once independently from other clauses.
Consider that 𝑝1 includes two clauses 𝑐1 and 𝑐2 (with regards
to 𝐹1 and 𝐹2, respectively). Note that the boolean value of 𝑝1
is equal to 𝑐1 ∧ 𝑐2. Figure 4 illustrates four test packets that
evaluate all combinations of true and false (of 𝑐1 and 𝑐2)
and the corresponding boolean value of 𝑝1. There are several
ways to cover clauses in 𝑝1: (1) select 𝑘2 and 𝑘3 or (2) select
𝑘1 and 𝑘4. However, instead of the first selection, the second
selection has an advantage to increase the coverage in terms
of 𝑅𝐶𝐶 and 𝑃𝐶𝐶.

B. Structural Coverage

We have developed three structural coverage measurements
that monitor whether rules, predicates, or clauses are covered
when evaluating packets against the policy under test. For
each structural coverage criterion, we define coverage mea-
surements as follows.

Rule coverage measurements. For the rule coverage crite-
rion, rule coverage is the percentage of the number of covered
rules (i.e., predicates being evaluated to true) in a policy.

Predicate coverage measurements. For the predicate cov-
erage criterion, predicate coverage is the percentage of the
number of covered predicates (i.e., predicates being evaluated
to true or false) in 𝑃 over 2 × ∣𝑃 ∣.
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Fig. 5. Framework overview.

Clause coverage measurements. For the clause coverage
criterion, clause coverage is the percentage of the number of
covered true or false values of clauses in 𝐶 over 2 × ∣𝐶∣.

C. Structural Coverage and Fault Detection

Policy testers may generate and select a test suite to achieve
a certain (high) level of coverage. However, our main objec-
tive, through testing, is to detect faults in the firewall policy
while reaching a certain level of coverage. Coverage analysis
helps investigate a larger portion of entities for fault detection
using a test suite that achieves higher structural coverage.

Consider that a fault in entities (i.e., rules, predicate, or
clause) may cause to output incorrect decisions when evalu-
ating some packets. A fault in a rule’s decision (e.g., using
accept by mistake instead of discard) is discovered if and
only if the rule is covered and the derived decision is verified.
A test suite with high rule coverage may detect such faults
easily and increase our confidence on the correctness of the
policy against such faults. Similarly, a test suite with high
predicate/clause coverage may have a high chance to detect
faults in predicates/clauses. Therefore, we are interested in
covering each entity at least once to exercise a wide range of
the policy’s behavior.

V. FRAMEWORK

This section presents our framework for testing firewall
policies. Figure 5 shows the overview of framework of our
approach. Our framework includes three phases: test packet
generation, test reduction, and fault detection. In the test
packet generation phase, our test packet generation compo-
nent analyzes a firewall policy and generates test packets
to cover entities (e.g., predicates and clauses) in the policy.
We propose four different test packet generation techniques
described in Section V-A. In the test reduction phase, the test
reduction component reduces the number of packets based on
coverage criteria by including only packets that help increase
policy coverage measurement during evaluation. In the fault
detection phase, the policy authors manually inspect whether

the actual decisions (i.e., evaluated decisions of the generated
packet against the firewall policy) are consistent with expected
decisions. If the authors find any inconsistent decisions, the
authors determine that they detect a fault in the policy.

A. Test Packet Generation

As manually generating packets for testing policies is
tedious, we have developed four techniques to automatically
generate packets for the policy under test. The objective is to
generate packets for achieving high structural coverage. This
section describes four packet generation techniques (developed
in our approach): the random packet generation technique,
the packet generation technique based on local constraint
solving, the packet generation technique based on global
constraint solving, and the packet generation technique based
on boundary values. The key difference between the second
and third techniques is the scope (i.e, local or global) of
constraints used in the packet generation. While the second
and third techniques generate packets based on random values
within values solved by each constraint solving, the fourth one
generates test packets based on boundary values within values
solved by local constraint solving.

In this section, 𝑝 and 𝐶(𝑝) denote a predicate and its
constraint, respectively. To evaluate 𝑝 to be true (false),
a packet should satisfy the constraint 𝐶(𝑝) (¬𝐶(𝑝)) (for the
true (false) branch of 𝑝). 𝐶(𝑝) is represented in the form
of 𝐶𝑝(𝑐1) ∧ .... ∧ 𝐶𝑝(𝑐𝑛), where 𝐶𝑝(𝑐1), ..., 𝐶𝑝(𝑐𝑛) are the
constraints of the clause 𝑐1, ..., 𝑐𝑛 in 𝑝, respectively.

1) Random Packet Generation Technique: The random
packet generation technique is straightforward. A packet 𝑘 is
in the form of (𝑘1, ..., 𝑘𝑛), where 𝑘1, ..., 𝑘𝑛 are numeric values
over fields (such as source addresses), whose domains are
denoted by 𝐷1, ..., 𝐷𝑛). Given the domains of the policy under
test, the generator for the technique automatically generates
a packet 𝑘 by randomly selecting 𝑘1, ..., 𝑘𝑛 (within the
domain 𝐷1, ..., 𝐷𝑛, respectively). While the technique does
not require the policy itself in test generation and can quickly
generate a large number of test packets, the technique often
lacks effectiveness to achieve high structural coverage with
the generated packets. Due to randomness, the number of the
entities (i.e., predicates or clauses) being covered is often small
in comparison to the total number of the entities in the policy
under test.

2) Packet Generation Technique based on Local Constraint
Solving: In general, packet generation should focus on gen-
erating packets to cover those entities (i.e., predicates and
clauses) that have not been covered previously. Different from
the preceding technique, the technique based on local con-
straint solving statically analyzes the entities in an individual
rule and generates packets to evaluate the constraints (i.e.,
conditions) of the entities to be true or false. The technique
takes into account local constraints (given by a rule) without
considering the impact of other rules in the policy.

More specifically, the generator constructs constraints 𝐶(𝑝)
and ¬𝐶(𝑝) (for both true and false branches of 𝑝) for each
rule. The generator generates a packet based on the concrete
values to satisfy each constraint. As the generator generates
packets based on satisfying constraints in predicates, the
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generated packets may not be effective in covering each clause
(to be true and false). To target at covering many clauses,
the generator constructs combinations of 𝐶𝑝(𝑐𝑖) and ¬𝐶𝑝(𝑐𝑖).
For example, combinations 𝐶𝑝(𝑐1) ∧ .... ∧ 𝐶𝑝(𝑐𝑛) (for true

branches of all clauses) and ¬𝐶𝑝(𝑐1) ∧ .... ∧ ¬𝐶𝑝(𝑐𝑛) (for
false branches of all clauses) can be considered.

There are two major limitations of the technique. First,
the generated packets may fail to cover target entities due to
overlapping predicates (i.e., predicates that can be satisfied by
the same packet) across multiple rules. As shown in Figure
1, a packet 𝑘 (whose destination IP address is 192.168.0.0
and protocol type is UDP) satisfies the predicates of both
𝑟1 and 𝑟3 but fails to be evaluated against 𝑟3, which can
be 𝑘’s potential target entities. Second, the technique cannot
determine whether a structural entity could be covered in
advance. Some rules may be completely shadowed by other
rules and never evaluated. In such cases, there is no criterion
to decide whether to generate additional packets (based on
other more capable solutions to solve the same constraints) or
stop testing.

3) Packet Generation Technique based on Global Con-
straint Solving: To better generate packets to cover target
entities, our generator (based on global constraint solving)
analyzes the policy under test and generates packets by solving
global constraints (collected from the policy). The motivation
of global constraint solving is to take into account the influ-
ence of overlapping predicates across rules. Covering entities
in a rule requires that the predicates of all the preceding rules
should be evaluated to false. To find such entities, we define
rule reachability as follows.

Definition 4: Rule reachability of a packet 𝑘 to reach a
rule 𝑟𝑖 in a policy requires that 𝑘 evaluates 𝑟𝑖’s preceding
rules’ predicates to false and reaches the rule.

We may generate packets to reach and evaluate all the
reachable rules in the policy. To cover entities in a rule 𝑟𝑖,
we explore a (path) constraint 𝑃𝑎𝑡ℎ(𝑟𝑖) that represents rule 𝑟𝑖
reachability. 𝑃𝑎𝑡ℎ(𝑟𝑖) is additionally used upon the preceding
technique to cover target entities by taking into account the
impact of overlapping predicates in the preceding rules.

More specifically, 𝑃𝑎𝑡ℎ(𝑟𝑖) is represented as the form of
¬𝐶(𝑝1) ∧ .... ∧ ¬𝐶(𝑝𝑖−1) where 𝐶(𝑝1), ..., 𝐶(𝑝𝑖−1) are the
predicate constraints in the preceding rules 𝑟1, ..., 𝑟𝑖−1. Given
the path constraint 𝑃𝑎𝑡ℎ(𝑟𝑖), to cover the predicate 𝑝𝑖 in 𝑟𝑖,
the generator constructs two constraints 𝑃𝑎𝑡ℎ(𝑟𝑖) ∧ 𝐶(𝑝𝑖)
(for the true branch of 𝑝𝑖 after reaching 𝑟𝑖) and 𝑃𝑎𝑡ℎ(𝑟𝑖) ∧
¬𝐶(𝑝𝑖) (for the false branch of 𝑝𝑖 after reaching 𝑟𝑖). As the
generator generates packets based on solutions of constraints
𝑃𝑎𝑡ℎ(𝑟𝑖) ∧ 𝐶(𝑝𝑖) and 𝑃𝑎𝑡ℎ(𝑟𝑖) ∧ ¬𝐶(𝑝𝑖), the packets reach
𝑟𝑖 and exercise 𝑟𝑖’s true and false branches, respectively.

To cover many clauses in a rule 𝑟𝑖, the generator constructs
constraints as follows. The generator conjuncts 𝑃𝑎𝑡ℎ(𝑟𝑖) with
the combinations of positive or negative constraints of clauses
in 𝑟𝑖.

Given the constraints, the generator generates packets based
on solutions for the collected constraints. This technique is
useful to generate packets with high structural coverage by
taking into account the impact of the preceding rules of a
target rule. However, this technique requires higher analysis
time (e.g., constraint-solving cost) than the two preceding

techniques.

Algorithm 1: Packet Generation Technique based on
Boundary Values
Input: Firewall policy 𝑃 where 𝑛 is the number of rules, 𝑟1, 𝑟2, ...,

𝑟𝑛. 𝐶𝑝(𝑐1), ..., 𝐶𝑝(𝑐𝑚) where each 𝐶𝑝(𝑐𝑗) is the 𝑗th clause
constraint of constraints 𝐶𝑝 of a rule. 𝐷1, 𝐷2, ..., 𝐷𝑚 where
𝐷𝑗 is a domain of the 𝑗th field.

Output: A set of packets.

𝑜𝑢𝑡𝑝𝑢𝑡 = ⟨⟩;
for 𝑖 := 1 to 𝑛 do

𝐶𝑝 = constraints of 𝑟𝑖;
for 𝑗 := 1 to 𝑚 do

𝑘𝑗 = MinValue (𝐶𝑝(𝑐𝑗));

𝑘 = (𝑘1, 𝑘2, ..., 𝑘𝑗);
𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑜𝑢𝑡𝑝𝑢𝑡 ∪ 𝑘;
for 𝑗 := 1 to 𝑚 do

𝑙 = MinValue (𝐶𝑝(𝑐𝑗));
if 𝑙 ≤ 𝑀𝑖𝑛𝑉 𝑎𝑙𝑢𝑒(𝐷𝑗) then

𝑘𝑗 = 𝑙 ;

else
𝑘𝑗 = 𝑙 − 1 ;

𝑘 = (𝑘1, 𝑘2, ..., 𝑘𝑗);
𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑜𝑢𝑡𝑝𝑢𝑡 ∪ 𝑘;
for 𝑗 := 1 to 𝑚 do

𝑘𝑗 = MaxValue (𝐶𝑝(𝑐𝑗));

𝑘 = (𝑘1, 𝑘2, ..., 𝑘𝑗);
𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑜𝑢𝑡𝑝𝑢𝑡 ∪ 𝑘;
for 𝑗 := 1 to 𝑚 do

𝑟 = MaxValue (𝐶𝑝(𝑐𝑗));
if 𝑟 ≥ 𝑀𝑎𝑥𝑉 𝑎𝑙𝑢𝑒(𝐷𝑗) then

𝑘𝑗 = 𝑟 ;

else
𝑘𝑗 = 𝑟 + 1 ;

𝑘 = (𝑘1, 𝑘2, ..., 𝑘𝑗);
𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑜𝑢𝑡𝑝𝑢𝑡 ∪ 𝑘;

return 𝑜𝑢𝑡𝑝𝑢𝑡

4) Packet Generation Technique based on Boundary Values:
To better generate packets to detect a fault in a firewall policy,
our generator (based on boundary values) analyzes the policy
under test and generates packets based on boundary values
by solving local constraints (collected from the policy). The
generated packets include boundary values, which are on the
range boundaries (i.e., the smallest value and the largest value)
of each field. Intuitively, when a fault is injected to a firewall
policy, it is likely that the policy includes a faulty policy
behavior on range boundaries of a field instead of other values.

The technique selects boundary values instead of random
values from values satisfying rule constraints. Boundary values
are the values around the smallest and largest values of
a clause in a rule. For example, Figure 2 has a rule 𝑟1
that includes two fields 𝐹1 ∈ [2, 5] and 𝐹2 ∈ [5, 10]. For
the smallest value 2 of 𝐹1, boundary values are 1 and 2
that evaluate 𝐹1 to be false and true, respectively. For the
largest value 5 of 𝐹1, boundary values are 5 and 6 that
evaluate 𝐹1 to be true and false, respectively. Similarly, we
can select boundary values 4, 5, 10, and 11 for 𝐹2 ∈ [5, 10].
Given boundary values of 𝐹1 and 𝐹2, we can generate four
packets (1, 4), (2, 5), (5, 10), and (6, 11) to cover true and
false branches of clauses in 𝑟1.

More specifically, the generator generates packets based on
boundary values to cover true and false branches of clauses
in a rule 𝑟𝑖. Algorithm 1 presents our technique to generate
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packets based on boundary values. Note that 𝐶𝑝(𝑐𝑗) is the 𝑗th
clause constraint in a rule. In the algorithm, Lines 4-7 present
that the generator generates a packet based on the smallest
boundary values 𝑆 to satisfy positive constraints (i.e., 𝐶𝑝(𝑐1)
∧ .... ∧ 𝐶𝑝(𝑐𝑛) for true branches of all clauses) of each rule.
Lines 8-15 present that the generator generates a packet based
on boundary values (next to 𝑆) to satisfy negative constraints
(i.e., ¬𝐶𝑝(𝑐1) ∧ .... ∧ ¬𝐶𝑝(𝑐𝑛) for false branches of all
clauses) of each rule. Lines 16-19 present that the generator
generates a packet based on the largest boundary values 𝐿 to
satisfy positive constraints of each rule. Lines 20-27 present
that the generator generates a packet based on boundary values
(next to 𝐿) to satisfy negative constraints of each rule.

The generator generates packets based on boundary values
within solutions for the collected constraints. This technique
generates packets with high structural coverage (that can be
achieved based on local constraint solving) and fault detection
with using boundary values instead of any other values feasible
to cover a target entity.

However, the packets generated based on boundary values
of a rule’s constraints could not reach the rule due to the
impact of overlapping predicates in the preceding rules. To
further generate packets based on correctly identified boundary
values, we leverage an existing technique [11] to remove
redundant overlapping predicates of firewall policies. In ad-
dition, this redundancy removal technique helps reduce the
number of generated packets based on boundary values when
redundant rules are removed and the number of rules is
decreased.

B. Test Reduction

It is tedious for the policy authors to manually inspect a test
suite, which is a set of packet-decision pairs. Therefore, we
should reduce the size of the test suite for inspection without
incurring substantial loss in fault-detection capability. Since
structural coverage is an important factor for reflecting fault-
detection capability, we can reduce the size of the test suite
while keeping its coverage level.

Given a packet set, we evaluate each packet set against the
policy. We use a greedy algorithm that removes a packet from
the packet set if and only if evaluating the packet does not
increase any of the coverage metrics that are achieved by
previously evaluated packets in the packet set.

C. Measuring Fault-Detection Capability

Fault detection is a focus of any testing process. In this
paper, we aim to investigate the relationship between firewall
policy structural coverage achieved by a packet set and the
packet set’s fault-detection capability. We adopt mutation
testing [9] to measure the fault-detection capability of the
packet set.

In policy mutation testing, we inject a fault into the original
policy and thereby create a mutant (faulty version). Injected
faults can be of various types including simple mistakes (e.g.,
incorrect decision in a rule) and complex configuration errors
involving multiple rules. The intuition behind mutation testing
is that if a policy contains a fault, there will usually be a set

of mutants that can be detected (killed) only by a test packet
that also detects that fault.

When different decisions are produced by the evaluations of
the same test packet on the original policy and its mutant, the
test packet is adequate to detect the fault in the mutant and we
say that the mutant is “killed”. When various mutants are used,
fault-detection capability of a test suite is measured through
the mutant-killing ratio, which is the number of mutants killed
by the test suite divided by the total number of mutants.

Table II shows the chosen mutation operators for firewall
policies and their descriptions. Mutation operators may change
predicates, clauses, or decisions of a policy. We classify
mutation operators into two groups: (1) rule-level mutation op-
erators including 𝑅𝑃𝑇 , 𝑅𝑃𝐹 , 𝐶𝑅𝑂, 𝐶𝑅𝐷, 𝐴𝑅 and 𝑅𝑀𝑅
and (2) clause-level mutation operators including 𝑅𝐶𝑇 , 𝑅𝐶𝐹 ,
𝐶𝑅𝑆𝑉 , 𝐶𝑅𝐸𝑉 , 𝐶𝑅𝑆𝑂, and 𝐶𝑅𝐸𝑂. The first group adds,
removes, or modifies a rule in a policy. The number of
generated mutants with each mutation operator is equal to the
number of rules of the policy. The second group modifies a
clause in a rule. The number of generated mutants with each
mutation operator is equal to the number of clauses.

However, syntactic changes of firewall policies cannot guar-
antee semantic changes of the firewall policies. In other words,
the mutant generator for each mutation operator may generate
semantically equivalent mutants, which are mutants with the
same behaviors as the original policy; an equivalent mutant
cannot be killed by any test packet. In order to guarantee
semantic changes of firewall policies after fault injection,
we leverage an existing change-impact analysis tool [13] on
firewall policies to determine whether the modifications incur
any semantic changes. Given two policies 𝑝1 (an original
policy) and 𝑝2 (its corresponding mutant), change-impact
analysis is to analyze what would be different policy behaviors
between 𝑝1 and 𝑝2.

VI. IMPLEMENTATION

Our implementation (written in Java) includes four compo-
nents: packet generation, packet evaluation, packet reduction,
and mutation generation. In the packet generation component,
for packet generation based on local constraint solving, our
packet generator selects random values (that satisfy a given
constraint) for each field value of a test packet. For packet
generation based on global constraint solving, we leveraged a
theorem prover called Z31. The component statically analyzes
and finds concrete solutions (i.e., numeric values), each of
which is transformed to a test packet. If no solution exists, Z3
outputs unsolvable. For packet generation based on boundary
values, our packet generator selects boundary values (that
satisfy a given constraint) for each field value. In order to
remove redundancy, we leverage an existing tool [13] to detect
redundancy in a firewall policy.

In the packet evaluation component, we developed a generic
firewall evaluation engine to simulate evaluating packets
against the policy under test. The engine parses and stores
rules as a List. When evaluating a packet, the engine searches
for the first-applicable rule and outputs the rule’s decision. The
engine also automatically compares the evaluated decisions

1http://research.microsoft.com/projects/z3/
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TABLE II
MUTATION OPERATORS FOR POLICY MUTATION TESTING.

Name Description

Rule Predicate True (𝑅𝑃𝑇 ) A rule is applied to all packets by modifying every clause range to “*”.
Rule Predicate False (𝑅𝑃𝐹 ) A rule is never applied to any packet by modifying every clause range to an invalid range

(e.g., [10, 5]).
Rule Clause True (𝑅𝐶𝑇 ) A clause 𝑐𝑖 is applied to the field value 𝑓𝑣𝑖 of all packets by modifying the clause range

to “*”.
Rule Clause False (𝑅𝐶𝐹 ) A clause 𝑐𝑖 is never applied to the field value 𝑓𝑣𝑖 of all packets by modifying the clause

range to an invalid range (e.g., [10, 5]).
Change Range Start point Value (𝐶𝑅𝑆𝑉 ) The range in a clause is changed by modifying the start point value randomly.
Change Range End point Value (𝐶𝑅𝐸𝑉 ) The range in a clause is changed by modifying the end point value randomly.
Change Range Start point Operator (𝐶𝑅𝑆𝑂) The range in a clause is changed by increasing the start point value by one.
Change Range End point Operator (𝐶𝑅𝐸𝑂) The range in a clause is changed by decreasing the end point value by one.
Change Rule Order (𝐶𝑅𝑂) Rule order is changed by exchanging the locations of two adjacent rules.
Change Rule Decision (𝐶𝑅𝐷) A rule’s decision is inverted (i.e., accept to discard or discard to accept).
AR (𝐴𝑅) add a randomly generated rule in a policy.
Remove Rule (𝑅𝑀𝑅) remove the rule in a policy.

(on the policy and the mutated policies) and log “killed”
mutant information if the decisions are inconsistent.

In the packet reduction component, our packet reduction
tool observes the details of covered entities and their covering
packets as well as the details of uncovered entities when
evaluating a packet set.

In the mutation generation component, our mutator auto-
matically generates mutant policies by modifying the policy
under test using the selected mutation operator.

VII. EXPERIMENTS

We carried out our experiments on a laptop PC running
Windows XP SP2 with 1G memory and dual 1.86GHz In-
tel Pentium processor. Our packet generation tool generates
packet sets using the four techniques (random packet genera-
tion, packet generation based on local constraint solving, one
based on global constraint solving, and one based on boundary
values). We use 𝑅𝑎𝑛𝑑, 𝐿𝑜𝑐𝑎𝑙, and 𝐺𝑙𝑜𝑏𝑎𝑙 to denote the packet
sets generated by these first three techniques, respectively.
We use 𝐵𝑜𝑢𝑛𝑑1 and 𝐵𝑜𝑢𝑛𝑑2 to denote the packet sets
generated by the fourth technique on an original policy and
its redundancy-removed policy, respectively. For each policy,
we measured the structural coverage of each packet set and
reduce the size of each packet set while keeping the same level
of structural coverage. We use 𝑅𝑎𝑛𝑑−, 𝐿𝑜𝑐𝑎𝑙−, 𝐺𝑙𝑜𝑏𝑎𝑙−,
𝐵𝑜𝑢𝑛𝑑−

1 , and 𝐵𝑜𝑢𝑛𝑑−
2 to denote the reduced packet sets,

respectively.
The mutator generates mutants (using the defined mutation

operators) by seeding faults in each policy (with one mutant
including one seeded fault). For each policy and its mutants,
the evaluation engine checked if a mutant is “killed” and
measured mutant-killing ratios of each packet set (i.e., the
number of mutants killed by the packet set divided by the
total number of mutants).

We compare our proposed four packet-generation tech-
niques in terms of effectiveness to achieve structural coverage
by the generated packet sets. In order to investigate the effect
of structural coverage on fault-detection capability, we aim to
demonstrate that packet sets with higher coverage can detect
more faults than packet sets with lower coverage. We have also
conducted the same experiment with reduced packet sets to

further investigate whether this reduction significantly affects
their fault-detection capability.

A. Instrumentation

We conducted experiments on 14 real-life firewall policies
collected from a variety of sources. For the local and global
constraint-solving packet-generation techniques, we first gen-
erated the following two constraints for each rule: (1) a
constraint for evaluating every clause in the rule to true
and (2) a constraint for evaluating clauses, each of which
is within (but not equal to) its domain, to false and the
remaining clauses (which subsume their domains) to true.
Because many clauses in firewall policies subsume their
domains (e.g., clauses with “*” marks in Figure 1) and these
clauses cannot be evaluated to false, we evaluated such clauses
to true in the second constraint as described earlier. The
local constraint-solving packet-generation technique generated
𝑛×2 packets. The global constraint-solving packet-generation
technique conjuncts the path constraint for a target rule with
its two preceding constraints to form a new constraint for
solving. If the new constraint is found to be infeasible (due
to the impact of the path condition), this technique cannot
generate packets to satisfy such constraints and may include
fewer than 𝑛 × 2 packets. The packet-generation technique
based on boundary values generated at most 𝑛 × 4 packets.
The technique removes duplicate packets to reduce the number
of packets. Moreover, the technique removes redundancy to
help reduce the number of rules, which reflects the number of
packets.

When generating mutants, mutation operators may generate
a mutated policy that is the same (syntactically or semanti-
cally) as the original policy. As such a mutant does not include
any fault, we excluded the mutant. Moreover, we remove all
of 𝑅𝑃𝐹 and 𝑅𝐶𝐹 mutants whose policy structure is detected
by the mutator to be incorrect.

B. Comparison of Structural Coverage

Table III shows the basic statistics of each firewall policy.
Columns 1-3 show subject names, numbers of rules, and
generated mutants for each firewall policy. Column group “#
Packets” shows the size of the generated packet sets 𝑅𝑎𝑛𝑑,
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TABLE III
EXPERIMENTAL RESULTS ON FIREWALL POLICIES

Policy # Rules # Mutants # Packets # Reduced packets Gen time (ms)
Rand Local Global Bound1 Bound2 Rand− Local− Global− Bound−1 Bound−2 Global

1 (Firewall1) 3 51 6 6 6 10 10 1 3 3 3 3 112
2 (Firewall2) 5 26 10 10 9 12 6 1 5 4 6 3 172
3 (Firewall3) 28 280 56 56 43 104 29 1 17 17 18 12 1040
4 (Firewall4) 18 206 36 36 26 64 22 1 10 9 12 9 622
5 (Firewall5) 26 378 52 52 44 96 62 2 18 19 22 21 896
6 (Firewall6) 26 338 52 52 39 96 42 2 14 14 15 14 919
7 (Firewall7) 27 360 54 54 41 100 46 3 15 15 16 15 982
8 (Firewall8) 28 494 56 56 53 101 87 3 24 27 29 28 969
9 (Firewall9) 14 185 28 28 25 48 34 2 11 11 13 12 483

10 (Firewall10) 17 179 34 34 29 56 22 1 11 13 14 10 579
11 (Firewall11) 23 233 46 46 34 77 30 3 14 11 15 11 810
12 (Firewall12) 6 44 12 12 11 16 10 1 6 5 7 5 215
13 (Firewall13) 16 152 32 32 23 54 18 1 8 7 9 8 542
14 (Firewall14) 24 313 48 48 40 58 42 2 19 17 18 14 843

Average 18.64 231.36 37.29 37.29 30.21 63.71 32.86 1.71 12.50 12.29 14.07 11.79 656.04

Fig. 6. Rule coverage achieved by each packet set.

Fig. 7. Predicate coverage achieved by each packet set.

𝐿𝑜𝑐𝑎𝑙, 𝐺𝑙𝑜𝑏𝑎𝑙, 𝐵𝑜𝑢𝑛𝑑1, and 𝐵𝑜𝑢𝑛𝑑2, respectively for each
packet generation technique. Columns 9-13 show the size
of their reduced packet sets (denoted by 𝑅𝑎𝑛𝑑−, 𝐿𝑜𝑐𝑎𝑙−,
𝐺𝑙𝑜𝑏𝑎𝑙−, 𝐵𝑜𝑢𝑛𝑑−

1 , and 𝐵𝑜𝑢𝑛𝑑−
2 ), respectively. Column 14

shows the analysis time (in milliseconds) for generating
𝐺𝑙𝑜𝑏𝑎𝑙 (the most costly one among the three techniques) and
this analysis time also includes the time to generate and solve
constraints. Note that the last row shows the average.

We observe that 𝐺𝑙𝑜𝑏𝑎𝑙 may contain fewer packets than
𝑅𝑎𝑛𝑑 and 𝐿𝑜𝑐𝑎𝑙. The reason is that when solving a global
constraint, the constraint can be infeasible to be solved and
a constraint solver returns a decision of unsolvable — no
packets are generated based on the decision. We observe

Fig. 8. Clause coverage achieved by each packet set.

that 𝐵𝑜𝑢𝑛𝑑2 contains fewer packets than 𝐵𝑜𝑢𝑛𝑑1 since the
number of rules in the policy under test is reduced after
redundancy removal. The analysis time for 𝑅𝑎𝑛𝑑, 𝐿𝑜𝑐𝑎𝑙,
𝐵𝑜𝑢𝑛𝑑1, and 𝐵𝑜𝑢𝑛𝑑2 is not shown in Table III. The reason
is that the time is too short to be measured in milliseconds
and negligible (in comparison with that of 𝐺𝑙𝑜𝑏𝑎𝑙).

Figures 6, 7, and 8 show the rule, predicate, clause cover-
age metrics, respectively, of each policy achieved by 𝑅𝑎𝑛𝑑,
𝐿𝑜𝑐𝑎𝑙, 𝐺𝑙𝑜𝑏𝑎𝑙, 𝐵𝑜𝑢𝑛𝑑1, and 𝐵𝑜𝑢𝑛𝑑2. We observe that 𝑅𝑎𝑛𝑑
achieved the lowest structural coverage. The reason is that
randomly generated field values in generated packets have a
low chance of satisfying constraints for a rule, predicate, or
clause. We observe that 𝐺𝑙𝑜𝑏𝑎𝑙 achieves higher rule/predicate
coverage than other packet sets. This observation is consistent
with our expectation described in Section V-A. On average,
𝐺𝑙𝑜𝑏𝑎𝑙 is approximately 2% (1.5%) and 56% (28%) higher
than 𝐿𝑜𝑐𝑎𝑙 and 𝑅𝑎𝑛𝑑 in terms of rule (predicate) coverage.
𝐵𝑜𝑢𝑛𝑑1 achieves similar rule/predicate coverage with 𝐺𝑙𝑜𝑏𝑎𝑙.
𝐵𝑜𝑢𝑛𝑑2 achieves lower coverage than 𝐵𝑜𝑢𝑛𝑑1 because pack-
ets (generated based on a redundancy-removed policy) are not
suitable to achieve high structural coverage for its original
policy due to structure change after redundancy removal.

We also observe that for clause coverage, 𝐺𝑙𝑜𝑏𝑎𝑙 achieves
approximately similar (sometimes less) coverage with 𝐿𝑜𝑐𝑎𝑙.
As illustrated earlier, 𝐺𝑙𝑜𝑏𝑎𝑙 may include fewer packets based
on the constructed constraints. When a constraint is found
to be infeasible, we did not take into account other clause-
constraint combinations, which may be feasible to solve for
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Fig. 9. Mutant-killing ratios for all operators by subjects.

Fig. 10. Mutant-killing ratios for all subjects by operators.

covering some of uncovered clauses. Instead, 𝐿𝑜𝑐𝑎𝑙, 𝐵𝑜𝑢𝑛𝑑1,
and 𝐵𝑜𝑢𝑛𝑑2 may cover some (but not all) target clauses
among such uncovered clauses. Furthermore, as our subjects
have only a few or no overlapping predicates across rules, the
packet-generation technique based on local constraint solving
could generate a packet set with almost the highest structural
coverage. If predicates are more complex, we expect that
𝐺𝑙𝑜𝑏𝑎𝑙 shall perform better than 𝐿𝑜𝑐𝑎𝑙.

C. Comparison of Fault-Detection Capability

To find correlation between each structural coverage and
mutation-killing ratios, we classify mutation operations into
two categories, rule-level and clause-level mutation operators
(explained in Section V-C).

Figure 9 shows the average mutant killing ratios for all
operators by policies. We observe that the mutant killing
ratios are similar over the generated packet sets and their
reduced packet set. For 𝑅𝑎𝑛𝑑, 𝐿𝑜𝑐𝑎𝑙, and 𝐺𝑙𝑜𝑏𝑎𝑙, the largest
ratio difference between the generated packet sets and their
reduced packet set is less than 2%. 𝑅𝑎𝑛𝑑 and 𝑅𝑎𝑛𝑑− show
the lowest mutant-killing ratios. As 𝑅𝑎𝑛𝑑 contains a relatively
large number of packets and the lowest mutant-killing ratios,
we observe that the size of a packet set is not highly cor-
related with fault-detection capability. We also observe that
𝐵𝑜𝑢𝑛𝑑1 (𝐵𝑜𝑢𝑛𝑑−

1 ) achieves the highest mutant-killing ratios
among the generated packet sets (the reduced packet sets).
While 𝐿𝑜𝑐𝑎𝑙, 𝐺𝑙𝑜𝑏𝑎𝑙, and 𝐵𝑜𝑢𝑛𝑑1 achieve similar structural
coverage, 𝐵𝑜𝑢𝑛𝑑1 achieves the highest mutant-killing ratios.

This result is expected as the evaluation of these packet sets
can involve more structural entities and boundary values than
the other packet sets.

We also observe that, in Figure 9, for most cases, mutant-
killing ratios are below 60%. The reason for such low mutant-
killing ratios is that a policy can include various types of faults
denoted in Table II and our test packet generation could not
find all possible changed behaviors of a given policy. For a
𝐶𝑅𝑂 mutated policy, two rules swap locations. In order to
detect such a fault, packets should match intersections of two
packets. However, our test packet generation does not consider
such intersections for test packet generation and cannot easily
detect such a fault.

We next present more details about mutants being killed.
Figure 10 shows the average mutant killing ratios for all
policies by operators. For rule-level mutation operators, we
observe that 𝐺𝑙𝑜𝑏𝑎𝑙, 𝐺𝑙𝑜𝑏𝑎𝑙−, 𝐵𝑜𝑢𝑛𝑑1, and 𝐵𝑜𝑢𝑛𝑑−

1 achieve
highest mutant-killing ratios. The reason is that the high-
est rule/predicate coverage achieved by 𝐺𝑙𝑜𝑏𝑎𝑙, 𝐺𝑙𝑜𝑏𝑎𝑙−,
𝐵𝑜𝑢𝑛𝑑1, and 𝐵𝑜𝑢𝑛𝑑−

1 helps exercise more rules and detect
faults in rules.

In Figure 10, we observe that our generated packet sets
cannot detect any faults in the policies with 𝐴𝑅 faults. 𝐴𝑅
simulates a forgotten rule in a given policy. The reason for
such low mutant-killing ratios is that our test packet generation
is based on a set of rules in a given policy and does not have
any information of a forgotten rule to help detect its fault.
Moreover, randomly generating a packet for fault detection
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is not trivial as well due to a large domain of a firewall
policy representation. For example, an IP address field in a rule
includes a subset of the IP address domain (i.e., [0, 28 − 1]),
which is huge. There is a very low possibility that a randomly
generated IP address field value in a packet could detect such
a fault. In other words, in order to detect a fault in a rule,
a packet matches not only an IP address field in the rule.
The packet is required to match other fields in the rule as
well. A randomly generated packet may match some of fields,
especially when a field is a subset of a relatively small domain
(e.g., Boolean). However, matching all of the fields in the rule
with a randomly generated packet is not trivial.

Among clause-level mutation operations, 𝐵𝑜𝑢𝑛𝑑1 and
𝐵𝑜𝑢𝑛𝑑−

1 achieves the highest mutant-killing ratios over 𝑅𝐶𝑇 ,
𝑅𝐶𝐹 , 𝐶𝑅𝐸𝑉 , and 𝐶𝑅𝐸𝑂 mutated policies. As 𝐵𝑜𝑢𝑛𝑑1

and 𝐵𝑜𝑢𝑛𝑑−
1 evaluate more clauses to true or false, the

packet sets are more effective to detect faults in a larger
portion of clauses in the policy. 𝐵𝑜𝑢𝑛𝑑1 (𝐵𝑜𝑢𝑛𝑑−

1 ) and
𝐵𝑜𝑢𝑛𝑑2 (𝐵𝑜𝑢𝑛𝑑−

2 ) detect more faults in 𝐶𝑅𝑆𝑉 and 𝐶𝑅𝑆𝑂
mutated policies. The reason is that a packet in 𝐵𝑜𝑢𝑛𝑑1

(𝐵𝑜𝑢𝑛𝑑−
1 ) and 𝐵𝑜𝑢𝑛𝑑2 (𝐵𝑜𝑢𝑛𝑑−

2 ) are based boundary values
in the constraint. Therefore, 𝐵𝑜𝑢𝑛𝑑1 (𝐵𝑜𝑢𝑛𝑑−

1 ) and 𝐵𝑜𝑢𝑛𝑑2

(𝐵𝑜𝑢𝑛𝑑−
2 ) are effective to detect faults caused by the change

of the boundary value of a clause over other packet sets.

VIII. RELATED WORK

Coverage Criteria For Logical Expressions. A firewall
policy is translated to program code (i.e., IF-THEN-ELSE

statements) that includes a large number of conjunctive logical
expressions to illustrate rules. Ammann et al [10] proposed
coverage criteria for such logical expressions. For example,
they proposed predicate and clause coverage criteria in notions
of logical expressions. Although they proposed such criteria,
they did not generate test suites for real program code to
show the effectiveness of their coverage criteria. We not only
propose logical coverage criteria, which are suitable for a
firewall policy, but also developed test packet generation and
mutation testing techniques to show the effectiveness in terms
of fault-detection capability. To the best of our knowledge,
there is no existing work targeting at test generation and
mutation testing especially for a large number of logical
expressions (in a firewall policy) as our work.

Mutation Testing of Specifications. Black et al. [14] and
Wimmel et al. [15] proposed mutation testing for specifi-
cations. However, their mutation operators change operators
(e.g., replacing an expression by its negation) and pre/post
conditions of specifications. In our work, instead of changing
operators and pre/post conditions, we mutate clauses and a
rule’s decision, where policy authors could make mistakes in
specifying rules (e.g., specifying incorrect values).

Testing of Access Control Policies. For testing access
control policies such as XACML policies [16], Martin et
al. [12] proposed to mutate policies [17], and generate random
requests automatically. Their proposed structural coverage
criteria and mutation operators are not directly applicable to
firewall policies due to the semantic and syntactic differences
between access control policies and firewall policies. While
firewall policies consist of a set of ranges (intervals) in rules,

access control policies consist of structural elements such as
policies, rules, subjects, objects, and actions. They do not use
a well-established test generation technique to cover certain
entities. Our approach uses more advanced technique: the local
and global constraint solving mechanisms to generate packets
covering certain structural entities effectively.

Firewall Policy Test Criteria. Some researchers proposed
firewall testing with test cases generated based on their
proposed criteria. Jürjens et al. [18] proposed specification-
based testing, which generates test sequences to cover a state
transition model of a firewall and its surrounding network. El-
Atawy et al. [19] proposed policy criteria identified by inter-
actions between rules, called “policy segmentation” identified
by interactions between rules. Different from their approaches,
we use structural coverage criteria in each rule to help detect
which entities are specified incorrectly. In addition, we also
use mutation testing to evaluate our approach.

Firewall Policy Testing. Several firewall policy testing
techniques [5]–[7] inject packets into a firewall and check
whether the decisions of the firewall concerning the injected
packets are correct. However, these techniques lack rigorous-
ness in terms of the use of coverage criteria and effective
mechanisms for generating covering packets. Furthermore,
these testing techniques are inefficient when a tester needs to
inject a large number of packets and examine their decisions.
In contrast, our approach is based on solid foundations and
advanced test-packet generation techniques.

IX. CONCLUSION

We have developed a systematic structural testing approach
for firewall policies. We defined three types of structural
coverage for firewall policies: rule, predicate, and clause
coverage criteria. Among the four proposed packet generation
techniques, the global constraint solving technique often gen-
erated packet sets to achieve the highest structural coverage.
Generally, our experimental results showed that a packet set
with higher structural coverage has higher fault-detection ca-
pability (i.e., detecting more injected faults). Our experimental
results showed that a reduced packet set (maintaining the same
level of structural coverage with the corresponding original
packet set) maintains similar fault-detection capability with
the original set.
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