
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX 201X 1

SWAROVsky: Optimizing Resource Loading for
Mobile Web Browsing

Xuanzhe Liu, Member, IEEE, Yun Ma, Xinyang Wang, Yunxin Liu Senior Member, IEEE, Tao Xie Senior
Member, IEEE, and Gang Huang Senior Member, IEEE

Abstract—Imperfect Web resource loading prevents mobile Web browsing from providing satisfactory user experience. In this article,
we design and implement the SWAROVsky system to address three main issues of current inefficient Web resource loading: (1)
on-demand and thus slow loading of sub-resources of webpages; (2) duplicated loading of resources with different URLs but the same
content ; and (3) redundant loading of the same resource due to improper cache configurations. SWAROVsky employs a dual-proxy
architecture that comprises a remote cloud-side proxy and a local proxy on mobile devices. The remote proxy proactively loads
webpages from their original Web servers and maintains a resource loading graph for every single webpage. Based on the graph, the
remote proxy is capable of deciding which resources are “really” needed for the webpage and their loading orders, and thus can
synchronize these needed resources with the local proxy of a client efficiently and timely. The local proxy also runs an intelligent and
light-weight algorithm to identify resources with different URLs but the same content, and thus can avoid duplicated downloading of the
same content via network. Our system can be used with existing Web browsers and Web servers, and does not break the normal
semantics of a webpage. Evaluations with 50 websites show that on average our system can reduce the page load time by 43.1% and
the network data transmission by 57.6%, while imposing marginal system overhead.

Index Terms—Mobile Web, Resource Loading, Optimization.

F

1 INTRODUCTION

W EB resource loading is a critical part of Web browsing.
It is reported that 65% of page load time is spent

on resource loading [1], and resource loading is the bottle-
neck of Web browsing [2]. Optimizing resource loading is
particularly a key requirement on mobile devices. On one
hand, mobile devices have limited computing capability,
cellular data plan, and power supply of battery, and hence
the resource loading should be traffic-saving and energy-
efficient. On the other hand, the performance of mobile
networks is significantly influenced by the characteristics of
Web browsing traffic introduced by the resource loading [3].

Ideally, only the resources that are needed for rendering
a webpage and not cached on the client should be fetched
from the network. Although a lot of research efforts have
been invested to optimize the loading of Web resources [4],
[5], [6], our recent findings [7], [8] demonstrated that the
current Web resource loading still suffers from the following
three main issues of inefficiency.
• On-demand but slow loading of sub-resources. Modern
webpages are complex and each webpage may consist of
numerous Web resources, including HTML, CSS, JavaScript,
images, etc. Those sub-resources are loaded only when they
are needed. For example, an embedded image is fetched
from the network only after the root HTML is parsed or
a JavaScript function is executed. This on-demand process
introduces multiple network Round-Trip Times (RTTs) and
thus slows down resource loading.

• Xuanzhe Liu, Yun Ma, Xinyang Wang, Gang Huang are with the Key
Laboratory of High Confidence Software Technologies (Peking University),
Ministry of Education, Beijing, China, 100871. Email: {liuxuanzhe,
mayun, wangxinyang, hg}@pku.edu.cn. Xuanzhe Liu and Gang Huang
are also with Beida (Binghai) Information Research, Tianjin, 300450.

• Yunxin Liu is with Microsoft Research. Beijing, China, 100084. Email:
yunxin.liu@microsoft.com

• Tao Xie is with the University of Illinois at Urbana-Champaign, USA.
Email: taoxie@illinois.edu

Manuscript received xx, 2016

• Duplicated loading of resources with different URLs
but the same content. As shown in our previous study [7],
it is common that different resources identified by different
URLs could have the same content, due to the load bal-
ancing of Content Delivery Network (CDN) or intention of
developers to force to re-load a resource. As a result, the
same content is downloaded from the network for multiple
times rather than being served from the local cache, because
Web cache uses URLs to identify resources.

• Redundant resource loading due to imperfect cache
configurations. Web cache is expiration-based where an
expiration time for each Web resource is set by a Web
server or a Web browser. If the current time is after the
expiration time of a Web resource, a Web browser re-
fetches the Web resource rather than loading it from the
local cache. Our previous study [8] also shows that the
expiration time of Web resources is rather conservative (i.e.,
too short). Consequently, many unchanged resources are
wrongly expired in the local cache, leading to unnecessary
network transmissions.

In this article, we aim to optimize Web resource loading
by mitigating these three main issues. In particular, we
design and implement a dual-proxy system SWAROVsky
(Smart Web Acceleration by Resource Optimization oVer
the sky). SWAROVsky consists of a remote proxy deployed
on the cloud and a local proxy deployed locally on mo-
bile devices. Different from traditional proxies that mainly
perform simple request forwarding and cache lookup, our
solution is proactive and intelligent. The remote proxy in-
telligently crawls and renders webpages from original Web
servers. It stores all the downloaded resources in loading
each webpage and builds a Resource Loading Graph (RLG)
for the webpage. The resource loading graph of a webpage
determines which resources are needed to load the webpage
and in which order those resources should be loaded. As a
result, when a client requests a webpage (via the local proxy
of the client), the remote proxy is able to immediately send
all the pre-fetched resources of the webpage to the client in

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX 201X 2

a batch and in the right order.
The local proxy on the mobile device records all the

resources that the client has downloaded. When the client
requests the same webpage for the next time, the local proxy
tells the remote proxy what resources the client already has
and thus the remote proxy sends only the missing resources
to the client. The local proxy also runs an intelligent and
lightweight algorithm to identify the resources that have
different URLs but the same content, so that those resources
are not downloaded for multiple times. The remote proxy
periodically crawls data from Web servers to ensure that
the client can always get the latest data, and unchanged
resources are not retransmitted to the client even if their
expiration time is not properly configured.

With the preceding techniques, SWAROVsky is able to
minimize the data transmission in loading a webpage, and
thus improves the page load time as well as optimizing
the user experience. More specifically, this article makes the
following main contributions:

• We present how to build a resource loading graph
to capture the characteristics of the resource-loading
process and derive the priority of resource transmis-
sion in rendering a webpage.

• We develop a resource synchronizer for a local proxy
and its remote proxy to achieve accurate and timely
resource downloading, so that those unnecessary
redundant transfers can be eliminated.

• We design an efficient algorithm of resource match-
ing to determine whether a resource identified via
a new URL has the same content with a previously
cached resource. Therefore, the same content is never
repetitively downloaded.

• We implement the dual-proxy prototype system that
requires no changes to existing Web browsers or
Web servers. The evaluation results demonstrate that
our system can significantly improve Web resource
loading, i.e., reducing the average page load time by
43.1% and the average network data transmission by
57.6%, while imposing small system overhead.

Indeed, the idea of dual-proxy design in general is not
entirely new. However, as studied in our previous work [7],
existing systems have addressed only parts of the imperfect
resource loading of mobile Web browsing. Our system com-
prehensively optimizes the resource loading process, and is
unique compared to existing systems in terms of how to
efficiently design the two proxies with the resource load-
ing graph, resource synchronizer, and resource matching
algorithm. More details on related work can be found in
Section 11.

In the rest of this article, we take a motivating example
to illustrate the three main issues of Web resource loading in
Section 2. We define the design goals and describe the chal-
lenges in Section 3. We present the architecture overview
of our system in Section 4. Then we describe the details of
resource loading graph, resource synchronization, and re-
source matching in Sections 5-7, respectively. We present the
implementation in Section 8, and the system evaluation in
Section 9, and discuss issues in Section 10. After comparing
with related work in Section 11, we draw conclusions in
Section 12.

2 MOTIVATING EXAMPLE
We begin with a motivating example to illustrate the imper-
fect resource loading of current webpage rendering process.
Figure 1(a) shows the root HTML of an example webpage

identified via the URL of “http://foo.com/index.html”. To
load the webpage in a browser, the HTML document is
first fetched from the network. The browser then parses the
HTML document. During parsing, referenced resources are
identified and fetched, such as “a.css” and “b.js”. After
the JavaScript code in the<script> tag is executed, an image
is loaded. Note that the URL of the target image is generated
by the JavaScript code that attaches a random string of
numbers to “c.jpg” (e.g., 0.771). After all the resources are
loaded, users can view the whole page on the screen.

Figure 1(b) shows the cache configuration on the Web
server for each resource of this webpage. The HTML re-
source “index.html” is not assigned an explicit expiration
time so that the browser assigns a random expiration time
to the HTML resource, usually less than one hour [8]. The
CSS resource “a.css” and the JavaScript resource “b.js”
are assigned an explicit expiration time of 86,400 seconds
(one day) and 300 seconds, respectively. The image is as-
signed with an expiration time of one year. Suppose that
a user revisits the webpage after one hour, and none of the
resources has been updated yet since last time’s visit. In such
case, due to the expiration of HTML and JavaScript, the two
resources have to be downloaded again from the network,
while the CSS can be directly loaded from the local cache.
For the image, when the JavaScript code executes again, a
new random string of numbers is attached to “c.jpg” (e.g.,
0.461). As a result, the browser cannot find the resource
in the local cache and has to download it again from the
network.

Figure 1(c) shows the resource loading sequence of the
two visits. Each bar represents the time needed for loading
the corresponding resource. For the first visit, the HTML
resource starts to be loaded at t0. Then at t1, CSS and
JavaScript resources start to be loaded and their loading
finishes at t2 and t3, respectively. During the loading of
JavaScript, the HTML parsing pauses temporarily. Finally,
the image starts to be loaded at t4 and finishes at t5. For the
second visit, since HTML, JavaScript, and image resources
have to be downloaded again from the network, the total
resource loading time cannot be reduced, resulting in the
same page load time.

The preceding webpage loading suffers from all the three
main issues of inefficiency described in Section 1. “a.css”
and “b.js” are loaded after “index.html” is parsed, and
“c.jpg” is loaded after the JavaScript code is executed. For
the second visit, “c.jpg” is fetched again from the server
because it is identified by a random but different number.
Neither “index.html” nor “b.js” is changed but both
are also re-fetched from the server in the second visit due to
cache expiration.

As modern webpages become increasingly complex and
contain more and more sub-resources, the on-demand sub-
resource loading leads to a significantly long page load
time. Attaching a random number to a resource is a com-
mon practice for load balancing or forcing to re-fetch the
resource. Based on our previous measurement study [7], [8],
more than 20% of redundant resource transfers are caused
by resources with different URLs but the same content.

Ideally, the loading of the example webpage should be
like Figure 1(d). For the first visit, if we could decide the
needed resources before they are requested, we could down-
load them altogether. For the second visit, if we could know
that “c.jpg?r=0.461” and “c.jpg?r=0.771” essentially
refer to the same resource, and neither “index.html” nor
“b.js” is changed, we do not need to re-download any
resources at all. Consequently, the page load time can be
significantly reduced for both visits.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX 201X 3

<html>
<head>

<link rel=“stylesheet”, href=“a.css”>
<script src=“b.js”>

</head>
<body>

<script>
var o = document.getElementById(“out”);
o.src = “c.jpg?r=” + Math.random();

</script>
</body>

</html>

http://foo.com/index.html

URL Cache Configuration

index.html cache-control : public

a.css cache-control : public
max-age : 86400

b.js cache-control : public
max-age : 300

c.jpg?r=0.771 cache-control : public
max-age : 31536000

c.jpg?r=0.461 cache-control : public
max-age : 31536000

Resources
index.html

a.css

b.js

c.jpg?r=0.771

t0 t1 t2 t3t4 t5

index.html

a.css

b.js

c.jpg?r=0.461

t0 t1 t2 t3 t4 t5

t0t1 t2

t0t1t2

fir
st

 v
is

it
af

te
r o

ne
 h

ou
r

fir
st

 v
is

it
af

te
r o

ne
 h

ou
r

(a) (b) (c) (d)

Fig. 1. Motivating example. (a) Root HTML of a webpage. (b) Cache configuration of every single resource. (c) Resource loading sequence of the
current process. (d) Potential improvement of the process.

3 DESIGN GOALS AND CHALLENGES

Based on the findings of motivating example, we then define
our system design goals and describe the requirements and
challenges in addressing the three main issues of ineffi-
ciency.

3.1 Design Goals
To optimize the resource loading for mobile Web browsing,
the following design goals should be realized.
Minimal page load time. The page load time is a key
metric of Web browsing. We aim to accelerate the process
of loading Web resources to reduce the page load time and
improve the user experience.
Minimal network traffic. Smartphone users usually have
limited data plan of cellular networks. We aim to reduce
unnecessary data transmission and save data plan for users
in the case of cellular networks.
No modifications of browsers or servers. For ease of de-
ployment, we should require no modifications to existing
Web browsers and Web servers, so that our solution can be
seamlessly and easily deployed into current Web architec-
ture.
Minimal system overhead. The computing capabilities (e.g.,
CPU, RAM, and GPU) of mobile devices are limited. We
should provide a sufficiently lightweight solution to prevent
the costs from surpassing the benefits.

3.2 Challenges
It is challenging to address the main issues of inefficiency
in loading Web resources, as mentioned in Section 1. To
address the first issue (on-demand but slow loading of sub-
resources), our system should push resources to a client as
soon as possible, even before they are actually requested.
Doing so requires knowing the resources of a webpage
as well as their loading order in advance. Since modern
webpages become increasingly complex and dynamic, the
resources of a webpage cannot be statically determined in
advance before the webpage is actually rendered. When
static determination is conducted, some of the resources
may be missed and the order of resource pushing may
be different from the order of resource loading. It is also
challenging to avoid pushing unused resources. We should
push only those resources that are really required.

To address the second issue (duplicated loading of re-
sources with different URLs but the same content), loading

Web resources needs to determine whether the resources
with different URLs have the same content. When a browser
sends a request to load a resource identified by URL u1, the
system needs to know whether a previously downloaded
resource identified by URL u2 has the same content with
the resource identified by u1. If these two resources are
matched, the browser could just load resource u2 to avoid
redundantly downloading u1 from the server. The challenge
here is that our system should provide an efficient matching
mechanism to find the target resource with minimal cost,
as the matching is performed on a mobile device and
the potential searching space can be potentially large. The
matching should also be accurate enough to avoid loading
wrong resources that may compromise the functionalities of
the webpage.

To address the third issue (redundant resource loading
due to imperfect cache configurations), loading Web re-
sources has to determine whether a cached resource has
been already changed or not at the server since the last
time of caching. If not changed, the browser can just load
the cached resource locally instead of downloading it again.
Therefore, no matter what expiration time the Web devel-
oper has configured for a resource, all the requests to the
resource except the first one should never trigger down-
loading of the resource unless it has been changed. Since
the change of resources could happen at any time and there
is no mechanism to inform such changes, it is challenging
for browsers to get the information of resource updates.

In summary, loading Web resources has to acquire some
knowledge in advance in order to accelerate the loading
process for mobile devices. Such knowledge includes identi-
fication of unique resources, resource update information, as
well as resource loading order. To acquire this knowledge,
our system has to preload the target webpage in advance
because only by rendering the webpage can our system
obtain the correct and complete resource information. How-
ever, the preloading itself consumes network traffic and
introduces extra latency. As a result, our system should
not perform the preloading process on mobile devices. Our
system should be designed to balance different design goals
to optimize the resource loading process.

4 SYSTEM OVERVIEW

To achieve our design goals and tackle the challenges, the
key idea of our system design is to leverage the dual-
proxy architecture, i.e., deploying a remote proxy to acquire

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX 201X 4

knowledge of webpages and a local proxy that cooperates
with the remote proxy to feed resources to browsers. The
dual-proxy architecture requires no modification of existing
Web browsers such as Chrome and Firefox, but can be
seamlessly deployed with them. The users just need to
configure their mobile-side browsers to use our local proxy.
All the requests can be handled by the local proxy. The
local proxy handles all the requests issued by browsers. The
dual-proxy architecture also minimizes the system overhead
by offloading much of the computation from the mobile
devices to the remote servers. The local proxy performs
only the basic and necessary computations while the remote
proxy performs computation-intensive jobs. By carefully
designing the communication between the two proxies, we
can minimize the consumption of network traffic and reduce
the workload of the local proxy.

Figure 2 shows the overview of our system’s architec-
ture. The users configure a list of webpages to be optimized
by SWAROVsky. The remote proxy keeps revisiting the
webpages and recording all the resource information during
the loading procedure based on a browser rendering engine
(1©). We design a resource loading graph to capture all the
information characterizing the loading of a webpage, in-
cluding resource URLs, content, and loading dependencies.
The Resource Loading Graph Generator is responsible for
generating and updating the resource loading graph in the
remote repository (2©). The Resource Loading Graph Gener-
ator is the key component to determine how to synchronize
resources between the two proxies and to identify whether
the resources with different URLs have the same content. We
describe the details of resource loading graph in Section 5.

When users open a webpage, all the resource requests
are intercepted by the local resource proxy and handled by
the Resource Matcher (3©). If a request is the first one to
retrieve the root HTML, the Resource Synchronizer starts to
synchronize the resources from the remote resource proxy
and fetch the resources to the local resource proxy (4©). The
synchronizer creates a profile of local resources related to
the target webpage. The profile contains only the MD5 of
the resources. Then the request to the root HTML and the
created profile are sent to the remote proxy. The remote
proxy obtains the corresponding resource loading graph,
updates the resource status, and then indicates whether
the resource has been changed by comparing the MD5
included in the profile against the existing profile in the
remote repository (5©). The graph is returned to the client
first for synchronization. Only those changed resources are
transferred back to the local repository in a stream-based,
compression-enabled manner (6©). The transmission order
is determined based on the resource loading graph. We
present the detailed design of resource synchronizer in
Section 6.

After the resource loading graph is received by the
local proxy, the Resource Matcher begins to respond to the
resource requests. We do not require all the resources to be
successfully downloaded before processing the requests. For
each request, if the URL can be found exactly in the resource
loading graph, the corresponding response is constructed to
encapsulate the resource content, either from the local repos-
itory if not changed, or from synchronization if changed
(7©). If the URL cannot be found, the Resource Matcher tries
to determine whether another resource in the graph has
the same content with the requested one. If matched, the
response is constructed according to the matched resource.
Otherwise, the Resource Matcher forwards the network
request to the original Web server (8©). These unmatched re-
sources are usually user-related or location-based resources

Resource Matcher Local
SynchronizerLocal Repository

R
em

ot
e

Sy
nc

hr
on

iz
er

Web Server

Local Proxy

Remote Repository

Resource Loading
Graph Generator

R
endering
Engine

Cloud-Side Remote Proxy

Browser

Operating System

Devices

1
Revisit

webpages

2

3Intercept
requests

Return
resources9

8 Transfer unmatched resources

4 5

6
7

Check
updates

Synchronize resources

Fig. 2. Architecture overview of the SWAROVsky System.

that different users in different locations may request dif-
ferent resources. Such a bypass mechanism ensures that
our system never breaks down the page semantics. When
the response is ready, it is then sent back to the browser
(9©). We show the design of resource matching algorithm in
Section 7.

Note that SWAROVsky aims to optimize the loading
process of every single resource consisting of a webpage.
In practice, there are some dynamic webpages whose re-
sources may update more frequently, as well as personalized
webpages that contain many user-specific resources. Since a
webpage consists of many resources, not all resources in
dynamic webpages change every time, and personalized
webpages still have resources that are not user-specific.
Therefore, SWAROVsky still has potential benefits for these
two kinds of webpages.

5 RESOURCE LOADING GRAPH
The resources to be loaded along with their loading order
are crucial to improve the resource loading process. Given
the resources to be loaded, our system determines whether
to transfer the complete resource content or not, according
to their status of update. Only the changed resources need
to be downloaded. Given the loading order of resources, our
system first synchronizes those resources that are likely to be
loaded earlier than others. Since modern webpages become
more and more complex and dynamic (e.g., using a lot of
JavaScript code), their resource loading cannot be statically
determined in an offline manner. We design a model of
resource loading graph to capture resource loading infor-
mation. The graph is generated dynamically by actually
rendering webpages on the remote proxy.

5.1 Resource Loading Graph
The loading of a webpage essentially consists of the loading
of every single resource. Except for the root HTML, every
resource has one parent resource that has to be loaded be-
forehand. Hence, there are dependencies between resources.
One straightforward technique is to structure the depen-
dency according to the “referrer” field in the HTTP re-
quest message. This technique could be inaccurate because
the resources loaded by JavaScript refer to the HTML other
than the JavaScript. To obtain the accurate dependencies of
resources, we build a resource loading graph based on the
page’s actual loading sequence.

After rendering a webpage, we can get a resource load-
ing sequence where each resource has a start-loading time
and an end-loading time. We define a directed acyclic graph
(DAG) G =< V,E >, where V refers to the set of resources

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX 201X 5

index.html

a.css b.js

c.jpg

Fig. 3. Resource loading graph of the motivating example in Section 2.

and E refers to the dependencies. Each edge < v1, v2 >
is defined as follows: v1’s end-loading time must be earlier
than v2’s start-loading time, and the difference between the
two time stamps should be the minimum among all the
resources. The root HTML has no parent vertex, and the
HTML is the parent vertex for all those resources that cannot
find a parent vertex based on the preceding rule.

Figure 3 shows the resource loading graph of the ex-
ample described in Section 2. The index.html is the root
vertex, and a.css and b.js are the two children vertexes
of index.html. The image c.jpg is the children vertex of
b.js.

5.2 Graph Generation
The resource loading graph can be dynamically established
and incrementally maintained according to the order of
loading sequence. When the request to a resource is started,
the resource can be placed into the graph. So, it is possible
to generate a partial graph in the progress of page loading.
Such a partial graph is also generated and used when ac-
cessing a webpage on the mobile devices. The pseudo-code
of dynamic graph generation is described in Algorithm 5.1.

Input: A set of resources R = {r1, r2, · · · , rn}
Output: Resource loading graph G < V,E >

1 INITIAL V as the resource of root HTML rhtml

2 INITIAL E ← φ
3 foreach ri ∈ R \ rhtml do
4 spanmin ←∞
5 refer ← rhtml

6 foreach v ∈ V do
7 span← v.end− ri.start
8 if span > 0 and span < spanmin then
9 spanmin ← span

10 referer ← v
11 end
12 end
13 add ri into V
14 add < referer, ri > into E
15 end
16 RETURN G < V,E >

Algorithm 5.1: Construction of Resource Loading
Graph.

Initially, there is only one vertex in resource loading
graph, i.e., the root HTML. For each subsequently requested
resource, we traverse all the resources in the graph to find
the resource whose end-loading time is the closest to the
current resource’s start-loading time. Then the parent vertex
is set as the found resource. If no vertex is found, the parent
vertex is set as the root HTML.

6 RESOURCE SYNCHRONIZATION
When a webpage is being visited or revisited, the new or
updated resources have to be downloaded from the server.

Browser Local Proxy Remote Proxy

Fig. 4. High-level procedure of resource synchronization between the
local and remote proxies.

According to the resource loading graph defined in the
previous section, we can know all the resources to be loaded
as well as their loading order. However, in practice, there
should be an efficient way to download resources to the
client side timely and accurately. In this section, we present
the design of resource synchronization to achieve two goals:
(1) sub-resources (i.e., resources except the root HTML)
should be ready in the local environment before they are
being requested; (2) the network traffic consumed in the
synchronization should be minimized.

6.1 High-Level Procedure

Figure 4 illustrates the high-level procedure of resource syn-
chronization between the local proxy and remote proxy. The
resource synchronization starts when the browser issues the
first request to load the root HTML of the target webpage.
If the webpage has been previously visited, then the related
resources have been downloaded in the previous visit. In
this case, the local proxy sends the requests to the remote
proxy with the checksums of all related resources in the
local repository as well as the reference URL of the target
webpage. If the webpage is visited for the first time, then
only the reference URL is sent to the remote proxy.

When receiving the synchronization request, the remote
proxy retrieves the corresponding resource loading graph.
The remote proxy also compares the checksum of resources
in the remote repository with those received from the client,
and obtains the update status of each resource. Then the
remote proxy returns the resource loading graph together
with the resource’s update status to the local proxy. Finally,
all the resources whose checksum cannot be found in the
local repository are pushed back to the local proxy according
to the transmission priority computed based on the resource
loading graph. In this way, we ensure that the unique
resource content is never repetitively downloaded.

When the local proxy receives the resource loading
graph, it responds to the browser requests. If a resource
is not updated, it is directly returned to the browser. If
a resource is entirely new or updated, it is returned to
the browser after the resource has been successfully down-
loaded from the remote proxy. Our transmission priority
aims to make resources ready on the client when they are
being requested. In other cases, if a resource cannot be found
in the resource loading graph, the resource matcher handles

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX 201X 6

this situation. We describe the resource matcher in the next
section.

6.2 Priority Determination
For each path of the resource loading graph, a deeper
resource vertex has a later loading time in the loading
sequence. In other words, the loading priority of a deeper
resource vertex should be lower. Therefore, we can choose
any topological order of the resource loading graph as the
transmission priority, and such order satisfies all dependen-
cies.

However, the choice of topological order should be con-
sidered carefully. Since we use the stream-based transmis-
sion, we should aim to transmit a few resources at the same
time to get the maximum utilization of the network band-
width. Therefore, some topological orders could reduce the
performance of page loading. With simple topological se-
quences, some “leaf node” (the vertex has zero out-degree)
may have higher priority than the “middle node” (the vertex
has one or more out-degree). That is, some crucial resources,
which can trigger to load some other resources, may be
blocked by common resources.

To keep the crucial resources that are always loaded be-
fore common resources, we design a customized topological
sorting algorithm to compute a reasonable resource loading
sequence. For a resource loading graph G =< V,E >, we
build a reverse resource graph G∗ =< V ∗, E∗ >, where
V ∗ = V , E∗ = {< v1, v2 > | < v2, v1 >∈ E}, i.e., all
the edges in graph G are reversed in G∗. As the resource
loading graph G is a directed acyclic graph (DAG), it is
easy to prove that G∗ is also a DAG. Therefore, we can
obtain the topological order of G∗. With this order, we can
keep that all the common resources are placed before the
crucial resources. In addition, the order also satisfies the
dependency order where the referred resources are placed
before the parent resources. Such an order is a reversed
transmission sequence, and the former resources should
have a lower priority than those latter ones.

6.3 Resource Transmission
To make a resource’s transmission faster with less consump-
tion of data traffic, our system includes three optimizations,
i.e., stream transmission, checksum-based redundancy re-
moval, and data compression.

6.3.1 Stream transmission
We adopt the stream transmission technique, which can
both reduce the number of TCP connections and deliver the
resources to browsers as soon as possible. In fact, recently
emerging protocols such as SPDY [9] and HTTP/2 [10]
support the reuse of TCP connection and stream-based
transmission. Both of the protocols also support priority for
each stream. It is straightforward to adopt the mechanism
provided by these latest protocols.

6.3.2 Checksum-based redundancy removal
To ensure that the cached resources are never redundantly
downloaded if they are not changed, we adopt a technique
for removing checksum-based redundancy. We calculate the
checksum (MD5) of each resource fetched on the remote
proxy. When the synchronization begins, the client proxy
first sends checksums of all the related resources to the re-
mote proxy. When transferring resources back to the client,
the remote proxy checks whether the checksum has already
been included in the checksums sent from the client. The
synchronizer transfers only the resources whose checksum
is missing.

6.3.3 Data compression
Regardless of the data traffic, some webpages could provide
uncompressed data to users. Additionally, the HTTP head-
ers are always uncompressed due to the limitation of the
HTTP/1.1 protocol. We always keep all the data compressed
in transmission, including our resource loading graph, the
HTTP header, and the content. Compression can have some
improvements in data traffic.

7 RESOURCE MATCHING
After the graph is synchronized, the root HTML is re-
turned to the browser at the mobile client side. Then, the
subsequent requests are emitted by the browser to load
resources. Those resources whose URL can be found in the
resource loading graph are fetched either from the local
cache for unchanged resources, or from the local proxy for
new/changed resources.

However, as mentioned previously, between different
visits of the same webpage, the URLs of some resources
could change but their contents are essentially the same.
Therefore, we need to determine whether a resource identi-
fied by a missing URL in the resource loading graph has the
same content with other resources. With this knowledge, we
can eliminate the unnecessary network transfers to repeti-
tively download the same resource. To this end, we design
a resource matching algorithm that relies on the resource
loading graph and URL similarity.

7.1 Graph-based Positioning
When the local proxy responds to resource requests sent
from the browser, we can generate a partial resource loading
graph of the currently loading webpage on the browser.
Since most of the resources are synchronized from the
remote proxy, the client-side resource loading graph is likely
to be similar to the one acquired from the remote proxy. We
assume that the loading order of the same resource does
not significantly change at different loads. Therefore, the
same resource should have a similar position in the resource
loading graph.

Since the resource loading graph may change, we cannot
simply use its parent or child vertex that can be unstable at
different visits. Instead, we choose to use the sibling vertex,
as a resource’s siblings are likely the resources that are
loaded simultaneously. The sibling vertexes of vertex vt in
the resource loading graph G =< V,E > can be expressed
as S(G, vt) = {vs| < vr, vs >,< vr, vt >∈ E and vs 6=
vt and vr, vs, vt ∈ V }. Finding the siblings in the graph is
realizable. Recall the generation of a resource loading graph:
when the local proxy receives a resource’s request from the
browser, a vertex can be added into the resource loading
graph. Therefore, the graph-based positioning can also be
dynamically performed.

Next, we quantify the positioning. Assume the graph
synchronized from the proxy as G1 =< V1, E1 >, and
the graph generated during the page loading on the client
as G2 =< V2, E2 >. The existing resource vertex is
ve(ve ∈ V1). And the target resource vertex is vt(vt ∈ V 2).
Therefore, the union of S(G1, ve) and S(G2, vt) is the po-
tentially matched vertexes between the two resources. We
quantify the matching level as below:

M =
|S(G1, ve) ∩ S(G2, vt)|

2
· (1

|S(G1, ve)|
+

1

|S(G2, vt)|
)

The formula shows that the matching level always ranges
from 0 to 1. When a resource has a zero matching level, we
do not consider it as a potential matched resource.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX 201X 7

TABLE 1
An example of splitting a URL into different parts.

URL: api.dos. aliexpress.com/ aliexpress/data/ doQuery.json? widgetId=101& locale=en US& limit=30
Segment: Prefix Host Path File Arg1 Arg2 Arg3

7.2 URL Similarity
Then, we consider the similarity of URLs. We assume that
resources with the same content usually have similar URLs.
For each URL, we split it with a common separator (such as
“/”, “?”, and “=”) and get the words consisting of this URL.
We match the words between two URLs. The more words
can be matched, the higher chance the two resources can be
the same.

Furthermore, we should distinguish different parts of
the URL because different parts have apparently different
importance levels for our resource matching algorithm. We
divide a URL into five parts: prefix, host, path, file, and
arguments. Table 1 shows an example of how a concrete
URL is split into segments.

It is important to set the crucial coefficient for each
segment. However, we cannot determine the coefficient
statically because different resources may have different
URL parts to determine the content. Some are determined
by the arguments, e.g., id=1 and id=2 indicate two different
resources. However, for some URLs parsed by JavaScript,
the argument includes only the timestamp, which is little
semantically meaningful for the content.

After repetitively revisiting the same webpage, we can
collect a set of URLs that correspond to the same resource.
First, we divide all the URLs with the preceding technique.
Then we count the maximum number of the same string
that appears in a segment. We count the number for every
URL and segment. Then, the crucial coefficient of a segment
in a URL can be defined as

αseg =
nmoststring

nURL + 1
.

Here, nmoststring represents the number of the most
common string that appears in this segment, and nURL is
the number of URLs that point to the same resource. The
coefficient should be always between 0 and 1. So we can get
the crucial coefficient for each segment. For those segments
that are stable for the same URL, the coefficient is higher.
Otherwise, it is lower. Note that the crucial coefficient calcu-
lated on the proxy should be sent to the mobile client with
the graph.

Finally, we can compute the similarity of URLs. For a
matched URL, if the requesting URL has the same segment
with it, the segment’s matching degree is set as 1. Otherwise,
the matching degree is 1 − α (α is the segment’s crucial
coefficient). Then we multiply all the matching degrees
together to get the final similarity, which can be represented
as

Similarity =

segmentsinURL∏
i=1

(1− xi · αi)

where αi is the crucial coefficient for segment i, and xi
represents whether the segment is different, i.e., 0 denotes
the same one and 1 denotes a different one.

7.3 Matching Algorithm
For each resource to be matched, we can calculate the
positioning matching level and URL similarity with each
existing resource in the resource loading graph. Both scores

range from 0 to 1. We multiply these two scores and get
the final resource matching score of each existing resource.
We regard the resource with the highest score as the most
probable same resource.

It is important to set a threshold to determine whether
the target resource is the same to an existing resource.
We conduct experiments to find the appropriate threshold,
which we discuss in Section 9. We finally set the threshold as
0.52. When the score is higher than 0.52, we regard that the
target resource is the same as an existing one. If it is lower
than 0.52, the target resource is a brand-new resource, and
the local proxy should request the resource from the original
Web server.

7.4 Bypass Mechanism
Resource requests that cannot be matched to a resource in
the resource loading graph are directly forwarded to the
original Web server. However, developers may intentionally
enforce some resources to have very short cache time or to
be requested at every visit, e.g., collecting statistics of clients.
Without breaking such semantics, even if the resources can
be matched in the resource loading graph, they should still
be requested from the original server. To this end, we add
some bypass mechanisms. Resources whose cache policy is
“no-cache” and those who have empty content are enabled
by bypass mechanisms, since in practice these resources
are mainly used to upload some specific-purpose data to
servers.

8 IMPLEMENTATION AND DEPLOYMENT

According to the design presented in the preceding sections,
we implement the SWAROVsky system and deploy it onto
the current Web architecture. This section describes the
details.

The local proxy is implemented as a standard Android
system-wide service that listens to a specific network port.
The Resource Synchronizer is implemented upon SPDY
protocol to leverage its stream-based priority-enabled trans-
mission mechanism. We use the SPDY library provided
by Jetty [11] to implement the transportation layer. We
do not use the recently released HTTP/2 protocol due to
the lack of a stable library on Android, but it is easy to
replace SPDY with HTTP/2 in our implementation in the
future. The remote resource proxy is implemented as a Jetty
container to enable SPDY. The Resource Loading Graph
Generator on the remote proxy is implemented based on the
Chromium Embedded Framework (CEF) [12] and Chrome
remote debugging protocol [13]. CEF is a browser facility
that has the same kernel as the latest Chromium browser
but exposes APIs to control the browser. We use CEF to
actually load webpages on the remote proxy and at the same
time obtain the resource loading sequences via the Chrome
remote debugging protocol. To keep up with the resource
update, we revisit webpages every 30 minutes and update
the related resource loading graph.

Since the remote proxy is designed to serve per user,
it can be deployed as a stand-alone service on a personal
cloud, which is emerging as a popular cloud computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX 201X 8

paradigm [14], [15]. In particular, according to a previ-
ous study on browsing behaviors [16], an individual user
is quite likely to revisit on a fixed range of webpages.
Hence, it is feasible to employ such deployment fashion
in SWAROVsky. Indeed, there can exist other deployment
alternatives and we discuss them further in Section 10.

9 EVALUATIONS
We evaluate SWAROVsky from four aspects. First, we inves-
tigate the improvement of resource loading accomplished
by our system compared to the original resource loading
process. Second, we evaluate the performance of the key
components in our system. Third, we examine the overhead
of our system brought by the dual proxy. Finally, we collect
user browsing data to evaluate how our system can benefit
real users.

9.1 Evaluation Setup
All our experiments are performed on a Samsung N7100
smartphone (with CPU 1.6GHz and 2GB RAM), running
the Android 4.4 operating system. We use the latest Firefox
browser as the front-end because in Firefox: (1) configuring
the network proxy is rather easy, and (2) leveraging the add-
ons can help perform automatic experimentation. We install
the local resource proxy on the smartphone and configure
Firefox to use the proxy. We also develop a Firefox add-
on to enable automatic opening of webpages given specific
URLs.

We deploy the remote resource proxy on a laptop
computer, Thinkpad T420i with the Windows 7 OS. We
connect the smartphone and the laptop computer under the
same WiFi environment. We also hardwire the smartphone
with the laptop computer by USB to enable monitoring the
CPU and memory usage of the smartphone through ADB.

The dataset. We choose the webpages to be evaluated
from the websites of Alexa top 500 ranking list [17]. We
exclude websites based on the following rules. (1) For the
websites that are banned in mainland China and cannot
be accessed, such as Google, Facebook, and YouTube, we
directly filter them out. (2) For the websites that have
multiple domains, such as amazon.com, amazon.co.jp,
and amazon.co.uk, we choose only the main domain, e.g.,
amazon.com. (3) For the websites transferred over HTTPS,
we do not take them into account, because our current
implementation has not realized the support of HTTPS.
Finally, we have 190 websites remaining. As mentioned
later, we revisit webpages every 30 minutes for evaluating
the performance with various time intervals. In order to
reduce the record workload, we choose 50 websites1, cov-
ering not only feature-rich websites with numerous media
resources but also simple ones with mostly textual contents.
We evaluate the landing page of each website because it is
the entrance and is usually revisited frequently by users.

9.2 Improvement of Resource Loading
We employ two metrics to measure the performance of
resource loading. One is the page load time, which is the
critical factor influencing the mobile-Web-browsing expe-
riences. We use the time interval elapsing from the start-
loading request to the triggering of the onload() event,

1. Please refer to http://www.mobisaas.org/projects/swarovsky for
a complete list of the chosen websites as well as the evaluation results.
We also provide a demo video to demonstrate our system.

which is widely used as the quantifier of page load time [18].
The other metric is the transferred data traffic that occurs
at the edge of mobile devices; such a metric is a key
factor especially when the devices are used under cellular
networks. We examine how our system can improve the
two metrics in the situations of cold start and warm load.
Cold start is the case where a webpage is visited for the first
time. Warm load is the case where the webpage is revisited
after some time.

Improvement in a real scenario. For a real scenario, we
enable the smartphones to directly connect to the Internet
through high-bandwidth Wi-Fi. We load each webpage for
10 turns by enabling and disabling our system, respectively.
Each turn consists of two loads. The second load is per-
formed immediately when the first load finishes. We regard
the first load as the cold start case and the second load as
the warm load case.

Figure 5 demonstrates the distribution of the page
load time and data traffic for cold start and warm load
with/without our system. It is observed that in each
situation (the subfigure), the metric of our system (blue
line) is smaller than the metric without our system (red
line). Such an observation indicates that in the real scenario,
SWAROVsky can substantially reduce the page load time
and data traffic. On average, the page load time is reduced
by 28.9% for cold start, while dropping to 9% for warm
load because most of the resources can be served from the
cache in the original browser without SWAROVsky so that
the original page load time is short without SWAROVsky.
The data traffic is reduced by 17.1% and 66.4% for cold start
and warm load, respectively. The data traffic for warm load
is reduced substantially because most of the original traffic
for warm load is redundant because the page is revisited
immediately after the cold start.

Improvement in a simulation test. One typical ap-
plication scenario of our system is to improve browsing
experiences when a webpage is revisited after some time.
However, it is practically difficult to make this evaluation
because we cannot wait for very long time without changing
the status of the smartphone. Therefore, we adopt a record-
and-replay approach to conducting simulation-based evalu-
ation. We use our data collection tool [7] to record a three-
week snapshots of the 50 selected webpages by revisiting
them every 30 minutes. The first visit time represents the
cold-start case. Each of the revisitings represents a warm-
load case where the webpage is revisited after some time.
We deploy a server to store these traces under the same
WiFi of the smartphone and laptop computer, and configure
resource loading from the server instead of the original
servers. Based on a previous study on cellular network [19],
we add 150ms latency for the replay server to simulate the
long distance between the remote server and the mobile
device.

Figure 6 shows the improvement of page load time and
data traffic for cold start and warm load. For the cold start,
compared to the traditional loading, we can observe that
both metrics can be reduced to some extent for about 80% of
the websites. The median improvements of page load time
and data usage are 26.9% and 4%, respectively. Page load
time can be reduced substantially because we save the con-
nections to the original servers by just communicating with
our proxy server. The reduction of data traffic is relatively
small since all the resources have to be downloaded to the
client. In some cases, there is a slight increase of page load
time and data usage because SWAROVsky needs to transfer
some additional information.

http://www.mobisaas.org/projects/swarovsky

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX 201X 9

(a) Page load time (ms) (b) Data traffic (KB) (c) Page load time (ms) (d) Data traffic (KB)

Fig. 5. Distribution of page load time and data traffic for cold start and warm load with or without our system in the real scenario.

(a) Reduction of data traffic (b) Reduction of page load time (c) Reduction of data traffic (d) Reduction of page load time

Fig. 6. Distribution of improvement of page load time and data traffic for cold start and warm load with our system.

For the warm load, we simulate the revisit interval rang-
ing from 0.5 hour to 1 week to figure out the improvement.
Figures 6(c) and 6(d) show the improvement of data traffic
and page load time for warm load, respectively. We can
observe that on average the page load time can be reduced
by 43.1% and data traffic can be reduced by 57.6%. The
reduction varies among different websites and different
revisiting intervals. The improvement is more substantial
for shorter revisiting intervals than for longer ones.

9.3 Evaluation of Each Component
Next we evaluate the performance of key components in our
system.

9.3.1 Graph Maintenance
The graph generator on the remote proxy repetitively revis-
its webpages in order to capture the latest resource status
of the webpage. The shorter the revisiting interval is, the
more accurately the status of resources could be predicted.
However, shorter revisiting interval increases the workload
of the remote proxy, while longer interval may lead to
visiting out-of-date information. We study the influences
of revisit frequency on user experience. We choose five
webpages and revisit them every 30 seconds, recording all
the resources in each visit. We calculate the coverage ratio
of matched resources under different intervals. The larger
the coverage ratio is, the more latest information users can
retrieve. Figure 7(a) shows the evolving of coverage ratio
within 30 minutes. We match the resources both by its URL
(solid lines) as well as by its actual content (dotted lines).
The coverage ratio slightly decreases when the interval be-
comes longer. But the decrease is rather smooth. In the worst
case of 30-minute interval, the coverage rate is still about
96%. The ratio evolves differently for different webpages.

If a webpage contains a lot of dynamic contents, the cov-
erage ratio decreases accordingly. The differences between
the coverage by URL and content implies the problem of
URL-based resource identification. For example, the content
coverage changes more smoothly than the URL coverage
for Douban, Outbrain, and Yandex, indicating that some
resources of these three webpages have URL change but no
content updates.

9.3.2 Resource Synchronization
We then disable the stream-based priority-enabled resource
transmission between the local proxy and remote proxy, and
repeat the simulation test. All the resources are synchro-
nized to the client only when the local proxy explicitly sends
the request. We find that there is not obvious influence to the
improvement of data usage. However, the page load time
increases 39% on average compared to the current resource
loading without our system. For the warm load, compared
to our full-function system, the improvement of data usage
does not vary much and the average improvement of page
load time is reduced by 10.2%. Therefore, we conclude that
the stream-based and priority-enabled resource transmis-
sion is essential to the improvement of resource loading.

9.3.3 Resource Matching
To evaluate the performance of resource matching, we use
the same data set with that described in Section 9.3.1: five
websites are repetitively visited every 30 seconds for 100
visits. We use the records of 90 visits to train our model and
calculate the parameter values. Then we use records of the
last 10 visits as testing data to evaluate the performance.
For each resource whose URL is missing in the repository,
we calculate the matching score with all the other resources,
and choose the one with the highest score as the matched

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX 201X 10

(a) (b) (c) (d)

Fig. 7. Evaluation results. (a) Resource coverage when webpages are revisited every 30 seconds. (b) Specificity/Sensitivity Cut-off curve of resource
matching. (c) Distribution of CPU utilization of local proxy and Firefox. (d) Distribution of memory utilization of local proxy and Firefox.

resource. If the contents of two resources are the same,
the matching is correct. Otherwise, the matching fails. We
draw the Specificity/Sensitivity Cut-off curve by choosing
the threshold from 0 to 1 in Figure 7(b). The optimized
cut-off value is empirically set as 0.52, where the matching
precision can reach up to 95.8%.

There are two kinds of the remaining 4.2% mismatched
resources: one is the “false-accept” resources where the two
matched resources do not have the same content; the other
is “false-reject” resources where the resources to be matched
actually have the same content with a certain resource but
our algorithm fails to identify them. More specifically, the
“false-reject” resources account for about 2% of all resources,
while the “false-accept” resources account for 2.2%. In prac-
tice, the “false-reject” resources have no side effect on the
correctness of Web browsing, as the browser needs only
to download them again from the server. In contrast, we
need to carefully deal with the “false-accept” resources, as
they can possibly lead to returning wrong resources and
break the page semantics. However, by manually justifying
these resources, we find that all of the “false-accept” resources
originate from small GIF images related to advertisements.
Therefore, although these “false-accept” resources may possi-
bly affect the clicks of ads, our resource matching algorithm
is able to promise the normal page semantics of resources
including HTML, JavaScript, CSS, and most static media
objects. Additionally, as we later discuss in Section 10, these
“false-accept” resources can be avoided while preserving the
effects of our approach.

Indeed, the cut-off value can have impact on the final
precision of all matched resources as well as the “false-reject”
and “false-accept”. Our current empirically optimized value
is set as 0.52 after several rounds of experiments over our
current data set. In practice, such a value can be better
tuned based on the actual user visits of specific webpages,
to reduce the side-effect caused by “false-accept”.

9.4 System Overhead
To investigate the overhead of our system, we study the
CPU and memory usage of the local proxy and the remote
proxy, respectively. The data is gathered when we perform
the simulation tests.
Local proxy. Figures 7(c) and 7(d) show the distribution of
CPU and memory utilization of local proxy and Firefox,
respectively. For CPU overhead, the average utilization of
the local proxy is just about 2.7% , which is only 1/10 of
the utilization of Firefox. During the experiment, the CPU
utilization of local proxy does not change as significantly

(a) Number of saved network connections (b) Percentage of saved data traffic
C

D
F

C
D

F

Fig. 8. Results of evaluation based on real users.

as Firefox. The memory used by enabling the local proxy
is also about 1/10 of the Firefox. The memory usage does
not increase so much after loading some pages compared
with Firefox. These results can demonstrate that our local
proxy is lightweight without influencing the experience of
browsers.
Remote proxy. The memory usage of resource synchronizer
is about 37 MB when initially started. While synchronizing
resources with the local proxy, the memory usage is around
70 MB, which is about twice of the cold start. The Resource
Loading Graph Generator has more memory usage. When
initially started, it has 100 MB memory. When repetitively
loading 100 webpages one by one, the memory usage raises
about 30%. The CPU utilization is about 10%. On the whole,
the overhead of the remote proxy is considerable.
Network overhead. The resource synchronization requires
transferring the information of resource loading graph from
the remote proxy to the local proxy, incurring network
overhead. We then measure the size of resource loading
graph. For the 50 webpages that we use for simulation
test, the average size is about 3KB and the maximum is
below 8KB. So the overhead does not significantly impact
the performance of our system.

9.5 Evaluations with User Study
We conduct a user study to evaluate how SWAROVsky
performs in real scenarios. For SWAROVsky, we design
a customized WebView-based browser, which can record
the resource-loading information while browsing webpages.
For each resource, we record all the headers from HTTP
request and response messages, as well as the MD5 of the
response body. The recorded logs are daily uploaded to a
server when the smartphone is connected to WiFi. Then we

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX 201X 11

invite 10 college-student volunteers from Peking University
to install the customized browser for Web browsing instead
of using other browsers. Our customized browser does not
introduce any learning curve or additional cost to users.
To protect user privacy, the user identities (i.e., the serial
number of devices) are anonymized by a hashtag. All the
volunteers confirm the data-collection purpose and state-
ments. The data collection lasts for one week and we finally
get 1,883 records of webpage browsing.

We then compute how much data traffic can be saved
when the users set up SWAROVsky on their mobile devices.
For each record, we simulate the process of SWAROVsky
and calculate the total data traffic and number of network
connections, including the connection between the local
proxy and remote proxy, as well as the requests forwarded
to the original servers. Then we compare the recorded data
of real usage with the simulated data by SWAROVsky, and
compute the saved network connections and the saved data
traffic.

Figure 8(a) shows the distribution of the number of
saved network connections for all users’ visits to all web-
pages. The median is 20, indicating that 20 network connec-
tions can be saved. About 5% of visits to webpages have no
connection savings because some webpages have very small
number of resources and many of them are bypassed from
SWAROVsky. In best cases, about 1% of visits to webpages
save more than 100 connections. Figure 8(b) depicts the
distribution of the percentage of saved data traffic for all
users’ visits to all webpages. The median is 18%, indi-
cating that 18% of the transferred traffic could be saved
by SWAROVsky compared to directly visiting the original
browser. In summary, we can confirm that SWAROVsky
benefits users in real-world scenarios.

10 DISCUSSION

The preceding section demonstrates the effectiveness of our
system. In this section, we discuss some issues that our
current design and implementation have to address further.

10.1 Impact by HTTPS

The increased personalization of Internet services and ris-
ing concern over users’ privacy on the Internet have led
to a number of webpages accessing over HTTPS. HTTPS
requires the end-to-end encryption that all functionalities
must reside at the endpoints. Indeed, middleboxes such as
SWAROVsky inherently cannot realize such functionalities
in the context of HTTPS.

However, as middlboxes are so useful and desirable,
people have been proposing solutions to enable HTTPS
middlebox. One solution is the trusted middleboxes with
special keys that allow them to terminate and split TLS
connections [20]. The middleboxes are fully or partially
trusted by endpoints so that the trusted middleboxes can
function on the network. The other solution is to split traffic
into HTTP and HTTPS [21], respectively. Public contents can
be transferred via HTTP and thus benefit from the existing
middleboxes, while private contents are still transferred via
HTTPS to preserve security.

Given that SWAROVsky is deployed as a personal cloud
service to optimize the web resource loading for end users,
it could support HTTPS as a trusted middlebox, where
the communications and transmissions are assumed to be
secure. In such a case, the connection between the browser
and the local proxy, and the connection between the remote

proxy and the original server, can be built upon two sepa-
rated HTTPS connections, and our system intermediates the
communication and optimization. For the bypass mecha-
nisms, the local proxy initializes a new HTTPS connection to
the original Web server. In addition, the connection protocol
between the local proxy and the remote proxy can be built
atop SPDY/HTTP2. In practice, supporting HTTPS-based
middlebox is still rather challenging and various issues need
to be addressed, including certificate management of multi-
entities, explicit control and visibility to endpoints, etc. [20],
[22]. Hence, supporting HTTPS in SWAROVsky is out of the
scope of this article, and we do not evaluate the performance
improvement under HTTPS.

10.2 Page Semantics
One critical requirement for designing the proxy is to pre-
serve the consistent semantics of webpages. The content,
layout, and function of webpages must be consistent with
the case where the page is directly served from the original
Web servers. Our system introduces a resource matching
mechanism to avoid redundant transfers. Resources with
different URLs may be matched to the same one, resulting
in the possibility of breaking page semantics. Experimen-
tal results show that 2.8% resources are mismatched with
previously cached resources. After careful examination, we
find that these resources are all small images, most of which
are related to dynamically generated advertisements. In
contrast, the major resources including HTML, JavaScript,
CSS, and most static media objects can be consistently
matched by our algorithm. Therefore, these mismatched
resources do not break the correct layout and function, and
indeed benefit end-users in reducing data traffic. However,
developers may require these resources for special purpose,
such as advertisement and statistics. To alleviate the impact
of mismatched resources in page semantics, one solution is
to identify and enforce these resources to be directly fetched
from the original Web servers.

Our current implementation uses CEF to generate a
resource loading graph and obtain resource content. How-
ever, the same webpage may require different resources
on different browsers or devices. For example, high-quality
images are loaded on devices with large-size high-resolution
screens, while low-quality images are loaded on small-
screen devices. Furthermore, due to the differences of Web
engines, resource loading can vary a lot. As a possible
solution, we can configure the size and resolution of CEF to
simulate different devices. We plan to study the differences
across browsers in future work.

10.3 Scalability
In our current design, we do not take into account the
storage management of the local and remote proxies. Re-
sources are never cleaned out of the storage unless they
are explicitly updated. However, in practice, we should
efficiently manage those resources. The classic LRU algo-
rithm could correlate the resource request history with the
resource update history. For those resources that are hardly
requested or always updated, we can remove them from the
storage.

Our current design targets at improving the resource
loading process of a single webpage and enabling users to
configure which webpages to be optimized. In practice, we
could take inter-page relationship to proactively generate
or update resource loading graphs for subsequent pages.
For example, the remote proxy can refresh resource loading

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX 201X 12

graphs of all the pages referred by the hyperlinks in the
currently visited webpage, ensuring users to retrieve the
latest resources when moving to the next webpage. In
addition, it is possible to learn the browsing behaviors of
users to identify the webpages to be optimized. We leave
such user-based optimization as future work.

10.4 Deployment Alternatives
Currently, the remote proxy is designed to deploy on a
personal cloud to serve a specific user. There are two
deployment alternatives to satisfy different scenarios of
mobile Web browsing. On one hand, the remote proxy can
be deployed by cellular network operators or smartphone
venders that are always striving to improve user experiences
on mobile devices [23], [24]. In this scenario, the local
resource proxy can be integrated into the smartphone to
benefit all the users who have access to the proxy-deployed
cellular network. On the other hand, the remote resource
proxy can be deployed in the local WiFi network environ-
ment, leveraging the idea of cloudlet [25], [26], [27]. For
example, the remote proxy can be integrated into a wireless
router. In this scenario, the remote proxy can benefit all the
users who have access to the local wireless network.

11 RELATED WORK

Measuring and improving the user experience of mobile
Web browsing have gained much attention in recent years.
In this section, we highlight related work on resource load-
ing process of mobile Web browsing and compare them with
our approach.

11.1 Measurement of Resource Loading
Wang et al. [2] advocated that resource loading contributes
most to the browser delay. Wang et al. [28] designed a
lightweight in-browser profiler, called WProf, and studied
the dependencies of activities when browsers load a web-
page. Nejati et al. [29] extended WProf to WProf-M and
studied the differences of page loading process between
mobile and non-mobile browsers. Li et al. [30] designed
WebProphet to capture dependencies among Web resources
and to automate the prediction of user-perceived Web per-
formance. Our system uses a resource loading graph, which
is similar to WProf and WebProphet, but we focus only on
the network loading sequence. We do not explicitly consider
the computation dependencies that could potentially influ-
ence the loading order. Qian et al. [31] investigated the Web
caching on mobile devices and found that about 20% of the
total Web traffic under study is redundant due to imperfect
cache implementations. In their subsequent work [32], they
revealed poor resource utilizations of mobile Web browsing.
In our previous work [7], [8], we measured and analyzed
the poor performance of mobile Web caching resulted from
imperfect cache configurations. Our work in this article is
motivated by these previous measurement results that give
us the direction to optimize the resource loading process.

11.2 Improvement of Resource Loading
New protocols and specifications. The shortcomings of
HTTP/1.1 [33] are widely known. SPDY [9], [18] and
HTTP/2 [10] have been proposed to mitigate the shortcom-
ings by providing stream transmission, response priority,
and server push. HTML 5 provides two server hint mecha-
nisms [34], [35] to allow browsers to know what resources to

be loaded so that the browser can prefetch them. These pro-
tocols and specifications provide mechanisms to improve
resource loading but they rely on Web developers to adopt
and configure these protocols and specifications in their own
way.
Client-side improvement. Koukoumidis et al. [26] proposed
PocketSearch to prefetch slowly-changed resources on mo-
bile devices nightly when the devices are charging. In their
subsequent work [16], they designed PocketWeb to prefetch
dynamic resources in a timely fashion before user requests
arrive. Zhang et al. [36] designed CacheKeeper, a system-
wide service to effectively reduce overhead caused by poor
Web caching for Android apps. The local resource proxy in
our system plays a similar role as the CacheKeeper. Wang
et al. [37] examined how Web browsing can benefit from a
micro-cache that separately caches layout, code, and data at
a fine granularity. Wang et al. [1] examined three client-only
solutions to accelerate page load time: caching, prefetching,
and speculative loading. They argued that infrastructure
support to improve resource loading is necessary. Our sys-
tem performs prefetch on the remote proxy rather than on
the client device and we leverage the remote proxy to help
maintain the local cache.
Proxy-based improvement. Proxy-based solutions are
widely adopted in current Web architecture. Table 2 summa-
rizes some state-of-the-art proxy-based solutions for mobile
Web browsing. Some latest commodity browsers such as
Amazon Silk Browser [38] and OperaMini [39] leverage a
proxy architecture to offload some processes of page ren-
dering to the cloud. Sivakumar et al. [6] proposed PARCEL
to push Web resources in one or several bundles to a mobile
device. PARCEL has to maintain the resource status on all
its clients in order to reduce unnecessary transfers. Wang
et al. [40], [41] designed EEP for energy-efficient mobile
Web browsing. EEP follows the dual-proxy architecture.
The target webpages is first rendered on the proxy and
the resources are transferred to the client in a bundle.
Sehati et al. [42] designed WebPro, leveraging a proxy-
based approach to reduce latency. The proxy generates the
profiles for webpages indicating the resource list. Rather
than rendering the webpage when requested, WebPro uses
the resource profile to acquire latest resources.

Butkiewicz et al. [4] designed KLOTSKI to prioritize
resources that are most relevant to a user’s preferences.
KLOTSKI consists of two parts. The back-end captures
invariant characteristics of a webpage by repetitively load-
ing the webpage. The front-end determines transmission
priority of resources based on user-specified preferences.
Compared to KLOTSKI, our system not only realizes push-
ing resources before they are requested, but also focuses
on eliminating redundant resource requests. Therefore, we
could achieve reduction on both page load time and data
usage. Agababov et al. [5] presented Google’s data compres-
sion proxy Flywheel to reduce the network traffic of mobile
Web browsing. Flywheel adopts a number of techniques
to reduce transferred data, including image transcoding,
minification of JavaScript and CSS, and gzip compression.
The SWAROVsky system also uses gzip compression to
reduce the size of transferred resources. But we do more
work on not transferring unnecessary resources rather than
only compressing them. Han et al. [43] designed MetaPush,
a server push framework to reduce page load time without
increasing network traffic. MetaPush leverages a meta file
to make browsers aware of what resources to be loaded
in the current page as well as in the potential subsequent
pages. The client can determine what to prefetch according
to the meta file. The framework is similar to our resource

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX 201X 13

TABLE 2
Comparison between SWAROVsky and related systems.

Optimization
level Optimization process Timing to perform

the optimization Network transmission Deployment Application

SWAROVsky Resource object Preloading resources Preprocesss before webpage visits Private protocol above SPDY/HTTP2 Personal cloud service Work for all browsers
Silk Page Run complex computation On the webpage visits Private protocol above HTTPS Split browser Only work for the specific browser
OperaMini Page Pre-rendering and bundling On the webpage visits Private protocol above HTTPS Split browser Only work for the specific browser
Flywheel Resource object Compress On the webpage visits HTTPS Public service Only work for the specific browser
PARCEL Page Bundle resources Preprocesss before webpage visits Private protocol over TCP Public service Work for all browsers
EEP Page Pre-rendering and bundling On the webpage visits Private protocol over TCP Personal cloud service Work for all browsers
WebPro Resource object Profiling resources Preprocesss before webpage visits Private protocol over TCP Public service Work for all browsers
KLOTSKI Resource object Derive the transmission priority Preprocesss before webpage visits SPDY Public service No modification for browsers
MetaPush Resource object Retrieve resources to enable push Preprocesss before webpage visits HTTP2 Public service Modify the browser kernel
Shandian Page Offload computations On the webpage visits Private protocol over TCP Split browser Modify the browser kernel

synchronizer, but we also capture the dependencies of re-
sources and actively push resources back to the client. Wang
et al. [44] designed Shandian, a split-browser architecture
that restructures the page load process to speed up page
loads. For each page to be visited, Shandian first loads the
page on the proxy server, synchronizes the state of the page
load process to the client when the onload event is fired,
recovers the state on the client, and resumes the remaining
process. Shandian requires to modify the browser kernel
to realize the state synchronization, but our system can
work seamlessly with latest commodity browsers by just
deploying a separated client-side proxy.

12 CONCLUSION

In this article, we have presented SWAROVsky, a dual-
proxy system to optimize resource loading for mobile Web
browsing. Our system includes novel designs, including a
resource loading graph, a resource synchronizer, and a re-
source matching algorithm, to optimize the resource loading
without requiring modification of browsers and with quite
marginal system overhead.

Some further improvements are ongoing. First, we are
designing a storage management algorithm based on learn-
ing user access traces to remove unnecessary resources
stored in the local proxy. Second, we are studying the
shared resources of different webpages to build global re-
source loading graphs in order to further reduce redundant
transfers when users navigate among webpages. Third, we
plan to expand the user study and learn the user behav-
iors to further improve the applicability and efficiency of
SWAROVsky.

ACKNOWLEDGMENT
This work was supported by the High-Tech Research and De-
velopment Program of China under Grant No.2015AA01A203,
the Natural Science Foundation of China (Grant No. 61370020,
61421091, 61528201, 61529201), and the Microsoft-PKU Joint
Research Program. Tao Xie’s work was supported in part by
National Science Foundation under grants no. CCF-1409423,
CNS-1434582, CCF-1434596, CNS-1513939, CNS-1564274. The
first two authors, Xuanzhe Liu and Yun Ma, contributed equally
to this work.

REFERENCES

[1] Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie, “How far can client-
only solutions go for mobile browser speed?” in Proceedings of the
21st international conference on World Wide Web, WWW 2012, 2012,
pp. 31–40.

[2] ——, “Why are web browsers slow on smartphones?” in Pro-
ceedings of the 12th Workshop on Mobile Computing Systems and
Applications, HotMobile 2011, 2011, pp. 91–96.

[3] V. Sevani and B. Raman, “HTTPDissect: Detailed performance
analysis of HTTP web browsing traffic in TDMA mesh networks,”
IEEE Transactions on Mobile Computing, vol. 15, no. 4, pp. 853–867,
2016.

[4] M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha, and V. Sekar,
“Klotski: Reprioritizing web content to improve user experience
on mobile devices,” in 12th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2015, 2015, pp. 439–453.

[5] V. Agababov, M. Buettner, V. Chudnovsky, M. Cogan, B. Green-
stein, S. McDaniel, M. Piatek, C. Scott, M. Welsh, and B. Yin,
“Flywheel: Google’s data compression proxy for the mobile web,”
in Proceedings of 12th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2015, 2015, pp. 367–380.

[6] A. Sivakumar, S. P. Narayanan, V. Gopalakrishnan, S. Lee, S. Rao,
and S. Sen, “Parcel: Proxy assisted browsing in cellular networks
for energy and latency reduction,” in Proceedings of the 10th ACM
International on Conference on emerging Networking Experiments and
Technologies, CoNEXT 2014, 2014, pp. 325–336.

[7] X. Liu, Y. Ma, Y. Liu, T. Xie, and G. Huang, “Demystifying the
imperfect client-side cache performance of mobile web browsing,”
IEEE Transactions on Mobile Computing, vol. 15, no. 9, pp. 2206–
2220, 2016.

[8] Y. Ma, X. Liu, S. Zhang, R. Xiang, Y. Liu, and T. Xie, “Measurement
and analysis of mobile web cache performance,” in Proceedings of
the 24th International Conference on World Wide Web, WWW 2015,
2015, pp. 691–701.

[9] “Spdy protocol - draft 3,” 2015. [Online]. Available: http://www.
chromium.org/spdy/spdy-protocol/spdy-protocol-draft3

[10] “HTTP/2,” 2015. [Online]. Available: https://http2.github.io/
[11] “Jetty,” 2014. [Online]. Available: http://www.eclipse.org/jetty/
[12] “Chromium embedded framework,” 2015. [Online]. Available:

https://bitbucket.org/chromiumembedded/cef/
[13] “Chrome remote debugging protocol,” 2015. [On-

line]. Available: https://developer.chrome.com/devtools/docs/
debugger-protocol

[14] Y. Tian, B. Song, and E. N. Huh, “Towards the development of
personal cloud computing for mobile thin-clients,” in Proceedings
of International Conference on Information Science and Applications,
ICISA 2011, 2011, pp. 1–5.

[15] I. Drago, M. Mellia, M. M. Munafo, A. Sperotto, R. Sadre, and
A. Pras, “Inside Dropbox: understanding personal cloud storage
services,” in ACM Conference on Internet Measurement Conference,
IMC 2012, 2012, pp. 481–494.

[16] D. Lymberopoulos, O. Riva, K. Strauss, A. Mittal, and A. Ntoulas,
“Pocketweb: instant web browsing for mobile devices,” in Proceed-
ings of the 17th International Conference on Architectural Support for
Programming Languages and Operating Systems, APSLOS 2012, 2012,
pp. 1–12.

[17] “Alexa top sites,” 2016. [Online]. Available: http://www.alexa.
com/topsites

[18] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and
D. Wetherall, “How speedy is SPDY?” in Proceedings of the 11th
USENIX Symposium on Networked Systems Design and Implementa-
tion, NSDI 2014, 2014, pp. 387–399.

[19] “3G/4G wireless network latency: Comparing verizon, AT&T,
Sprint and T-Mobile in February 2014,” 2014.

[20] D. Naylor, K. Schomp, M. Varvello, I. Leontiadis, J. Blackburn,
D. R. López, K. Papagiannaki, P. R. Rodrı́guez, and P. Steenkiste,
“Multi-context TLS (mcTLS): Enabling secure in-network func-
tionality in TLS,” in Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, SIGCOMM 2015,
2015, pp. 199–212.

[21] Z. Zhou and T. Benson, “Towards a safe playground for HTTPS
and middle boxes with QoS2,” in Proceedings of the 2015 ACM
SIGCOMM Workshop on Hot Topics in Middleboxes and Network
Function Virtualization, HotMiddlebox 2015, 2015, pp. 7–12.

[22] T. Fossati, V. K. Gurbani, and V. Kolesnikov, “Love all, trust few:
on trusting intermediaries in HTTP,” in Proceedings of the 2015
ACM SIGCOMM Workshop on Hot Topics in Middleboxes and Network
Function Virtualization, HotMiddlebox@SIGCOMM 2015, 2015, pp.
1–6.

[23] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang, “An untold story
of middleboxes in cellular networks,” Acm Sigcomm Computer
Communication Review, vol. 41, no. 4, pp. 374–385, 2011.

http://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3
http://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3
https://http2.github.io/
http://www.eclipse.org/jetty/
https://bitbucket.org/chromiumembedded/cef/
https://developer.chrome.com/devtools/docs/debugger-protocol
https://developer.chrome.com/devtools/docs/debugger-protocol
http://www.alexa.com/topsites
http://www.alexa.com/topsites

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX 201X 14

[24] G. Huang, H. Cai, M. Swiech, Y. Zhang, X. Liu, and P. Dinda,
“DelayDroid: an instrumented approach to reducing tail-time
energy of android apps,” Science China Information Sciences, vol. 60,
no. 1, 2017.

[25] M. Satyanarayanan, P. Bahl, R. Cceres, and N. Davies, “The case
for VM-Based Cloudlets in mobile computing,” IEEE Pervasive
Computing, vol. 8, no. 4, pp. 14–23, 2009.

[26] E. Koukoumidis, D. Lymberopoulos, K. Strauss, J. Liu, and
D. Burger, “Pocket cloudlets,” in Proceedings of the 16th International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2011, 2011, pp. 171–184.

[27] Y. J. Xing, Y. Zhi, C. Chi, and Y. F. Dai, “Beehive: low-cost content
subscription service using cloudlets,” Science China Information
Sciences, vol. 56, no. 7, pp. 1–16, 2013.

[28] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and
D. Wetherall, “Demystifying page load performance with WProf,”
in Proceedings of USENIX Conference on Networked Systems Design
and Implementation, NSDI 2013, 2013, pp. 473–485.

[29] J. Nejati and A. Balasubramanian, “An in-depth study of mobile
browser performance,” in Proceedings of the 25th International Con-
ference on World Wide Web, WWW 2016, 2016.

[30] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A. Greenberg, and Y.-M.
Wang, “Webprophet: Automating performance prediction for web
services,” in Proceedings of the 7th USENIX conference on Networked
Systems Design and Implementation, NSDI 2010, 2010, pp. 143–158.

[31] F. Qian, K. S. Quah, J. Huang, J. Erman, A. Gerber, Z. Mao,
S. Sen, and O. Spatscheck, “Web caching on smartphones: ideal vs.
reality,” in Proceedings of the 10th International Conference on Mobile
Systems, Applications, and Services, MobiSys 2012, 2012, pp. 127–140.

[32] F. Qian, S. Sen, and O. Spatscheck, “Characterizing resource usage
for mobile web browsing,” in Proceedings of the 12th Annual In-
ternational Conference on Mobile Systems, Applications, and Services,
MobiSys 2014, 2014, pp. 218–231.

[33] “Rfc 2616,” 2014. [Online]. Available: http://www.w3.org/
Protocols/rfc2616/rfc2616.txt

[34] “Server hint (prefetch),” 2015. [Online]. Avail-
able: https://developer.mozilla.org/en-US/docs/Web/HTTP/
Link prefetching FAQ

[35] “Server hint (subresource),” 2015. [On-
line]. Available: https://www.chromium.org/spdy/
link-headers-and-server-hint/link-rel-subresource

[36] Y. Zhang, C. Tan, and L. Qun, “Cachekeeper: A system-wide web
caching service for smartphones,” in Proceedings of the 2013 ACM
International Joint Conference on Pervasive and Ubiquitous Computing,
UbiComp 2013, 2013, pp. 265–274.

[37] X. S. Wang, A. Krishnamurthy, and D. Wetherall, “How much
can we micro-cache web pages?” in Proceedings of the 2014 Internet
Measurement Conference, IMC 2014, 2014, pp. 249–256.

[38] “Amazon silk browser,” 2014. [Online]. Available: http://aws.
amazon.com/cn/documentation/silk/

[39] “Opera mini browser,” 2014. [Online]. Available: http://www.
opera.com/mobile/mini/iphone

[40] L. Wang, B. Yu, and J. Manner, “Proxies for energy-efficient web
access revisited,” in Proceedings of the 2nd International Conference
on Energy-Efficient Computing and Networking, 2011, pp. 55–58.

[41] L. Wang and J. Manner, “Energy-efficient mobile web in a bundle,”
Computer Networks, vol. 57, no. 17, pp. 3581 – 3600, 2013.

[42] A. Sehati and M. Ghaderi, “Webpro: A proxy-based approach for
low latency web browsing on mobile devices,” in Proceedings of the
23th International Workshop on Quality of Service, IWQoS 2015, 2015.

[43] B. Han, S. Hao, and F. Qian, “Metapush: Cellular-friendly server
push for http/2,” in Proceedings of the 5th Workshop on All Things
Cellular: Operations, Applications and Challenges, 2015, pp. 57–62.

[44] X. S. Wang, A. Krishnamurthy, and D. Wetherall, “Speeding up
web page loads with Shandian,” in Proceedings of the 13th USENIX
Symposium on Networked Systems Design and Implementation, NSDI
2016, 2016, pp. 109–122.

Xuanzhe Liu is an associate professor in the
School of Electronics Engineering and Com-
puter Science, Peking University, Beijing, China.
His research interests are in the area of services
computing, mobile computing, web-based sys-
tems, and big data analytics. He is a member
of the IEEE.

Yun Ma is a Ph.D student in the School of Elec-
tronics Engineering and Computer Science of
Peking University, Beijing, China. His research
interests include services computing and web
engineering.

Xinyang Wang received his Bachelor degree
in Computer Science from Peking University in
2015. He is currently pursing his Masters de-
gree in Computer Science at the University of
Washington. His field of interest includes mobile
network, wearable computing, and software en-
gineering.

Yunxin Liu is a Lead Researcher in Microsoft
Research. His research interests are mobile sys-
tems and networking.

Tao Xie is an associate professor and Willett
Faculty Scholar in the Department of Computer
Science at the University of Illinois at Urbana-
Champaign, USA. His research interests are
software testing, program analysis, software an-
alytics, software security, and educational soft-
ware engineering. He is a senior member of the
IEEE.

Gang Huang is a full professor in Institute of
Software, Peking University. His research inter-
ests are in the area of middleware of cloud com-
puting and mobile computing. He is a member
of the IEEE. He serves as the correspondence
of this article.

http://www.w3.org/Protocols/rfc2616/rfc2616.txt
http://www.w3.org/Protocols/rfc2616/rfc2616.txt
https://developer.mozilla.org/en-US/docs/Web/HTTP/Link_prefetching_FAQ
https://developer.mozilla.org/en-US/docs/Web/HTTP/Link_prefetching_FAQ
https://www.chromium.org/spdy/link-headers-and-server-hint/link-rel-subresource
https://www.chromium.org/spdy/link-headers-and-server-hint/link-rel-subresource
http://aws.amazon.com/cn/documentation/silk/
http://aws.amazon.com/cn/documentation/silk/
http://www.opera.com/mobile/mini/iphone
http://www.opera.com/mobile/mini/iphone

	Introduction
	Motivating Example
	Design Goals and Challenges
	Design Goals
	Challenges

	System Overview
	Resource Loading Graph
	Resource Loading Graph
	Graph Generation

	Resource Synchronization
	High-Level Procedure
	Priority Determination
	Resource Transmission
	Stream transmission
	Checksum-based redundancy removal
	Data compression

	Resource Matching
	Graph-based Positioning
	URL Similarity
	Matching Algorithm
	Bypass Mechanism

	Implementation and Deployment
	Evaluations
	Evaluation Setup
	Improvement of Resource Loading
	Evaluation of Each Component
	Graph Maintenance
	Resource Synchronization
	Resource Matching

	System Overhead
	Evaluations with User Study

	Discussion
	Impact by HTTPS
	Page Semantics
	Scalability
	Deployment Alternatives

	Related Work
	Measurement of Resource Loading
	Improvement of Resource Loading

	Conclusion
	References
	Biographies
	Xuanzhe Liu
	Yun Ma
	Xinyang Wang
	Yunxin Liu
	Tao Xie
	Gang Huang

