
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX 201X 1

ReWAP: Reducing Redundant Transfers for
Mobile Web Browsing via App-Specific

Resource Packaging
Xuanzhe Liu, Member, IEEE, Yun Ma, Student Member, IEEE, Shuailiang Dong, Yunxin Liu,

Member, IEEE, Tao Xie, Senior Member, IEEE, and Gang Huang, Member, IEEE

Abstract—Redundant transfer of resources is a critical issue for compromising the performance of mobile Web applications (a.k.a.,
apps) in terms of data traffic, load time, and even energy consumption. Evidence demonstrates that the current cache mechanisms are
far from satisfactory. With lessons learned from how native apps manage their resources, in this article, we present the ReWAP
approach to fundamentally reducing redundant transfers by restructuring the resource loading of mobile Web apps. ReWAP is based
on an efficient resource-packaging mechanism where stable resources are encapsulated and maintained into a package, and such a
package shall be loaded always from the local storage and updated by explicitly refreshing. By retrieving and analyzing the update of
resources, ReWAP maintains resource packages that can accurately identify which resources can be loaded from the local storage for
a considerably long period. ReWAP also provides a wrapper for mobile Web apps to enable loading and updating resource packages in
the local storage as well as loading resources from resource packages. ReWAP can be easily and seamlessly deployed into existing
mobile Web architectures with minimal modifications, and is transparent to end-users. We evaluate ReWAP based on continuous
15-day access traces of 50 mobile Web apps randomly chosen from Alexa top 500 ranking list. Compared to the original mobile Web
apps with cache enabled, ReWAP can significantly reduce the data traffic, with the median saving up to 51%. In addition, ReWAP can
incur only very minor runtime overhead of the client-side browsers and thus does not compromise user experiences.

Index Terms—Mobile Web Browsing, Redundant Transfer, Resource Package.

F

1 INTRODUCTION

R EDUNDANT transfer of web resources1 refers to the case
where a previously fetched resource is downloaded

again from the network before the resource is actually
updated. For mobile Web applications (a.k.a. apps) [1],
redundant transfers remain as a critical performance issue
leading to duplicated data transmission, long page load
time, and high energy drain [2], [3].

Redundant transfers originate from apps’ resource-
management mechanism, which is to determine whether a
resource should be loaded locally or remotely. Web cache is
a conventional resource-management mechanism adopted
by Web apps. Web developers can configure cache policies,
such as expiration time and validation flag, on those re-
sources that are likely to be loaded from the local storage.
The browser maintains a cache space and deals with the
cache logic for all the Web apps running in it. However,
our previous work [4], [5] indeed found that there is a
big gap between the ideal and actual cache performance
of mobile Web apps. For example, for the mobile versions

• Xuanzhe Liu, Yun Ma, Shuailiang Dong, Gang Huang are with the Key
Laboratory of High Confidence Software Technologies (Peking University),
Ministry of Education, Beijing, China, 100871. Email: {liuxuanzhe,
mayun, sldong, hg}@pku.edu.cn

• Yunxin Liu is with Microsoft Research, Beijing, China, 100084. Email:
yunxin.liu@microsoft.com

• Tao Xie is with the University of Illinois at Urbana-Champaign. Email:
taoxie@illinois.edu

• Xuanzhe Liu and Yun Ma contribute equally to this article.

Manuscript received 1 June. 2016; revised 28 Sept. 2016; accepted 15 Nov.
2016.

1. In this article, Web resources, in short as resources, refer to resource
objects constituting an app (such as HTML, JavaScript, CSS, and images
of a Web app; native code, media files, and layout files of a native app).

of top-100 websites of Alexa, although more than 70% of
resources can be loaded from the cache when these websites
are revisited after one day, less than 50% of these cacheable
resources are actually loaded from the cache. Surprisingly,
all resource transfers are redundant for some well-known
websites when they are revisited after one day. We also
revealed two major causes for redundant transfers: (1) the
imperfect cache configuration, such as heuristic expiration
and conservative expiration time; and (2) the undesirable
Web development practice, such as using random strings to
name resources for enforcing their refresh.

Due to the dynamics of mobile Web apps, it is difficult
for Web developers to properly configure the apps’ cache
policies. Short expiration time may lead to redundant trans-
fers, while long expiration time may result in the usage of
stale resources. As a result, simply using cache policies is
not a desirable mechanism to accurately determine whether
resources should be loaded locally or remotely [5].

To fundamentally reduce redundant transfers for mobile
Web apps, the resource management in native apps can
provide some useful inspirations. Resources of native apps
are managed directly and explicitly by app-specific logics
to control where to load resources and when to update the
local resources. Intuitively, native apps explicitly distinguish
their static resources from dynamic ones, and encapsulate
the static resources into a package that is installed into
a dedicated space allocated by the underlying operating
system. When a native app is running, the app logic controls
that only its dynamic resources are downloaded on demand
to provide the fresh data to users, while the static resources
in the installed package are always fetched locally. When
the static resources have to be updated, a new resource
package is downloaded and installed to refresh all the static
resources.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX 201X 2

However, there are two main challenges for Web de-
velopers to adopt such a package-based resource manage-
ment specific to a Web app. First, it is hard to maintain
the resource package. Resources of Web apps are loosely
coupled, and usually updated independently and casually
without influencing each other. As a result, it is tedious
and error-prone to decide which resources should be put
into the package and when to update the package. Second,
it is hard to enable mobile Web apps to use the package.
Modern Web apps are complex and there are many mature
Web development frameworks. As a result, a lot of manual
efforts are needed to realize or refactor mobile Web apps to
benefit from the package-based resource management.

To address these challenges, in this article, we present the
ReWAP approach to restructuring mobile Web apps to be
equipped with package-based resource management while
requiring minimal developer efforts. The key rationale of
ReWAP is to provide more efficient and app-specific control
of resource management rather than relying on only the
current mechanisms such as Web cache, to avoid the caused
unnecessary redundant resource transfers. By retrieving the
update of resources of mobile Web apps, ReWAP automati-
cally maintains resource packages by accurately identifying
which resources should be loaded from the local storage
for a considerably long period. Based on the package infor-
mation, the ReWAP-enabled Web app automatically checks
the update of resource packages, refreshes the resources in
the package when the resource package is updated, and
loads resources from the resource package. To integrate
ReWAP with existing mobile Web apps, Web developers
need to conduct only minor modifications to their existing
implementation. In summary, ReWAP shares the same spirit
of resource management mechanisms as those in the installation
package of native apps but in the way of Web.

To the best of our knowledge, our work is the first to
facilitate Web developers to effectively reduce redundant
transfers of mobile Web apps by conducting resource man-
agement in a similar way as native apps. More specifically,
this article makes the following main contributions:

• We design ReWAP, a packaging approach for a mo-
bile Web app to accurately identify resources that can
be loaded from the local storage for a considerably
long time. The maintained package can maximize the
benefit of data-traffic saving by considering all the
users of the mobile Web app.

• We implement ReWAP with the goal of minimizing
developer efforts of restructuring existing mobile
Web apps. Web developers can easily integrate Re-
WAP in their current implementation of a mobile
Web app, and the end-users are completely unaware
of the existence of ReWAP when they access the Web
apps.

• We conduct experiments based on 15-day access
logs of 50 mobile Web apps randomly chosen from
Alexa top 500 rank list to evaluate the effectiveness
of ReWAP. Compared to the original mobile Web
apps with default browser cache enabled, ReWAP
can significantly save the data traffic with the median
up to 51% and the maximum of almost 100%. In
addition, ReWAP incurs only quite small runtime
overhead of the client-side browsers.

The remainder of this article is organized as follows.
Section 2 illustrates the problem of redundant transfers
with an example and compares the resource-management

mechanisms of Web apps and native apps. Section 3 presents
the overview of the ReWAP approach. Sections 4 and 5
show the details of ReWAP’s key components, i.e., Pack-
age Engine and Wrapper, respectively. Section 6 describes
the implementation of ReWAP and demonstrates its easy
deployment. Section 7 presents the evaluations of ReWAP
based on top Web apps of Alexa. Section 8 discusses limi-
tations of ReWAP and possible solutions. Section 9 presents
the related work and Section 10 concludes this article.

2 BACKGROUND AND MOTIVATION
In this section, we present the background and motivation
for leveraging the resource-management mechanisms of na-
tive apps to improve Web apps. We first describe a motivat-
ing example to illustrate the problem of redundant transfers.
Then we compare the resource-management mechanisms of
Web and native apps.

2.1 Redundant Transfer in Mobile Web Apps
Although the resource management of Web apps is flexi-
ble enough to achieve easy-to-access and always-updated
features, it could lead to redundant transfers of resources.
We illustrate redundant transfers via an example shown in
Figure 1.

Figure 1(a) shows resource excerpts of a mobile Web app
“http://m.foo.com/”. The HTML resource indicates that
the app includes a layout resource “a.css” and a JavaScript
resource “b.js”. When “a.css” is being evaluated, a back-
ground image “bg.png” is identified. When parsing the
HTML resource is finished and the onload event is trig-
gered, JavaScript function f is executed to get the address
of an image by requesting a service “/image/address”.
Suppose that the returned address is “d.jpg?0.892”, and
then the image is retrieved. Therefore, when the app is
visited at the first time, 6 resources are actually retrieved.
Figure 1(b) shows the cache configuration of these resources.
The HTML is not configured with an explicit expiration
time so the browser assigns a random time that is usually
not very long, e.g., 30 minutes. The expiration time of CSS,
JavaScript, and images is configured as 1 day, 5 minutes,
and 1 year, respectively. The service “/image/address” is
configured as no-cache and no-store to ensure obtaining the
latest address at every visit. The top table in Figure 1(c)
shows the resources in the browser cache after the first visit.

Assume that the app is revisited after one hour and
all the related resources have not been updated except the
“/image/address”. The bottom table in Figure 1(c) shows
the cached resources before the second visit. It can be seen
that the background image “bg.png” has been removed out
of the cache due to the limited size of cache on mobile
devices because all the Web apps accessed by a browser
share a fixed size of cache space.

Given the current status of cache, when revisiting this
app, several resources that could have been loaded from the
cache are actually re-downloaded from the network, leading
to redundant transfers of resources falling in the following
main categories [2], [4].
RT1: Resources that are moved out of the cache.

Due to the imperfect implementation of cache on mobile
Web browsers such as limited size and non-persistent stor-
age, resources in the cache may be removed out of the cache
after some time. In the preceding example, the background
image “bg.png” is removed out of the cache and has to be
re-downloaded when the Web app is revisited.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX 201X 3

<html>
<head>
<link rel=“stylesheet”, href=“a.css”>
<script src=“b.js”>

</head>
<body onload=“f()”>

</body>
</html>

body {
background-image: url (“bg.png”);

}

function f() {
var c = document.getElementById(“c”);
c.src = ajax.get(“/image/address”);

}

http://m.foo.com/index.html http://m.foo.com/a.css

http://m.foo.com/b.js

URL Cache Configuration
index.html cache-control : public
a.css cache-control : public max-age : 86400
b.js cache-control : public max-age : 300
bg.png cache-control : public max-age : 31536000
/image/address cache-control : no-cache no-store
d.jpg?0.892 cache-control : public max-age : 31536000
d.jpg?0.157 cache-control : public max-age : 31536000

index.html
a.css
b.js
bg.png
d.jpg?0.892

index.html
a.css
b.js
d.jpg?0.892

after 1st visit

before 2nd visit

(a) (b) (c)

Fig. 1. Motivating example. (a) Resource excerpts of a Web app; (b) Cache configuration; (c) Cache entries between two visits.

RT2: Resources that are wrongly judged as expired.
Each resource has to be configured by developers with

a cache policy. Due to the imperfect cache configuration
of resources whose expiration time is either configured to
be too short or not configured but assigned heuristically
by browsers, many resources are incorrectly judged by
browsers as expired ones, and have to be validated or re-
downloaded. In the example, the HTML resource has not
been assigned an explicit expiration time, and the expiration
time of the JavaScript resource is configured to be too short.
As a result, these two resources cannot be loaded from the
local environment when the Web app is revisited.
RT3: Resources that are requested by new URLs but have
the same content with cached ones.

Resource Loader of browsers uses URLs to uniquely
distinguish resources. Resources with different URLs are
regarded as totally different ones. In the example, the same
image “d.jpg” has different URLs at two visits, resulting
in being fetched twice. URL changing is usually adopted
to realize backend load balance according to URL routing.
Although such a practice can improve the performance of
backend servers, it actually harms the loading process of
mobile Web apps.

2.2 Resource Management of Web Apps and Native
Apps
One key reason for the preceding redundant transfers is the
inefficient resource management of Web apps. Figure 2(a) il-
lustrates the resource-management mechanism of Web apps.
Web apps rely on the underlying browsers to manage their
resources. All Web apps in a browser share a common cache
space whose size is usually small on mobile devices. When
a user launches a Web app in the browser (1©), resources for
rendering the Web app are dynamically identified and all
the resource requests are handled by the Resource Loader
component in the browser (2©). Based on the Web cache
mechanism [6], the Resource Loader determines whether to
load the resource from the cache (3©) or download it from
the server (4©). After retrieving the resource, the Resource
Loader returns it to the Web app (5©). In summary, Web
apps rely on the app-independent browser logics to manage
resources. Such a mechanism makes Web apps flexible for
resource management so that Web apps can be always up-
to-date. However, Web apps cannot have the full control of
resources to be loaded from the local storage and when to
update the local resources. As a result, redundant transfers
arise when the cache policies are not configured properly or
the browser removes cached resources.

In contrast, the resource management of native apps
works in a different fashion and can be more efficient.

App Logic

Update
Manager

Dynamic
Resources

Static
Resources

Native App

Server

Check Update

Get Update

Resource Req.

Resource Package
App Space

Refresh

Resource Req.21

3

4

5

8
7

6

Resources

Browser

Server

Cache

Resource
Loader

Web App

1 Resource Req.2

Download4

Load From Cache3

5 Resource

(a)

(b)

Fig. 2. Resource management of (a) Web apps and (b) native apps.

Figure 2(b) illustrates the resource-management mechanism
of native apps. Native apps separate resources into two sets,
i.e., the dynamic resource set and the static resource set.
Static resources are encapsulated into a resource package.
Before using a native app, the resource package has to be
installed on the device. When a user launches the app (1©),
the App Logic controls to load static resources from the
App Space (2©) and dynamic resources from the server (3©).
Usually, there is a built-in Update Manager for updating the
static resources. The Update Manager checks update with
the server (4©) in some situations (e.g., every time when the
app is launched) to find whether the resource package has
been updated (5©). If a new package is retrieved, the Update
Manager confirms with the users whether to update the
app (6©). If agreed (7©), then the Update Manager refreshes
the static resources with the new resource package (8©). In
summary, native apps have app-specific logics to control the
resources loaded from the local environment and the update
of local resources.

Comparing the two resource-management mechanisms
indicates that native apps can manage their resources
based on app-specific logic along with resource packages
while Web apps cannot precisely manage their resources.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX 201X 4

Resources

Cache

Resource
Loader

ReWAP-enabled
mobile Web App

Package
Engine

Resource
Mapping

Package
Manifest

Wrapper

ReWAP

Browser

Server

Fig. 3. The ReWAP approach.

The insight underlying our new approach is that redun-
dant transfers originate from the principle of the resource-
management mechanism adopted by Web apps.

3 APPROACH OVERVIEW

To fundamentally reduce the redundant transfers, we pro-
pose our new solution with the key rationale of lessons
learned from the resource-management mechanism used by
native apps, while reserving the advantages of the mecha-
nism used by Web apps. More specifically, mobile Web apps
can encapsulate stable resources into a package and make
the resources in the package always loaded locally rather
than being fetched from the servers, while other resources
are regularly loaded by the browser’s default mechanism.
All the resources in the package are refreshed together also
by the default mechanism only when the resource package
gets updated. The update of the package should follow the
way of the Web as well without the intervention of end-
users.

To this end, we present the ReWAP approach to restruc-
turing mobile Web apps to be equipped with package-based
resource management. ReWAP can accurately identify the
resources that should be loaded from the local storage for
a considerably long time and that can be refreshed together
with minimal cost when the package is updated. Other than
the native apps, such a packaging mechanism follows the
conventional way of the Web, i.e., the updating and refresh-
ing of packaged resources still use the browser’s default
cache mechanism. The Web developers can simply integrate
ReWAP into their existing mobile Web apps with only minor
modifications. As is shown later in this article, the Web
developers need only to redirect the entrance of the app to
a Wrapper that delegates the resource loading. Meanwhile,
the client-side browser performs as usual without additional
modifications.

Figure 3 illustrates the overview of the ReWAP ap-
proach. ReWAP consists of two major components. The
Package Engine automatically generates and maintains the
resource packages of Web apps. The Wrapper enables the
Web apps to use and update resource packages at the local
storage. Each Web app has multiple pages and we maintain
a dedicated resource package for each page in our current
design. In the rest of this article, the term “Web app”
actually refers to a single Web page referenced by an HTML
document.

By retrieving the update of resources constituting a mo-
bile Web app, the Package Engine generates and maintains a
resource package with two configuration files: Package Man-
ifest and Resource Mapping. The Package Manifest specifies
which resources are in the resource package. The update of
Package Manifest indicates the update of the corresponding
resource package. The Resource Mapping keeps the relation-
ship between URL patterns and unique resource entities.
Resources that have the same content but are identified
by different URLs are mapped into one resource entity
according to Resource Mapping. Therefore, the generated
package is highly accurate to cover more resources.

The Wrapper is essentially a separate HTML page where
the Web developers can easily enable their mobile Web
apps with the package-based resource management. When a
ReWAP-enabled mobile Web app is launched, the Wrapper
is first fetched from the server. Then the Wrapper controls
the loading process on the browser (we use dotted lines
to represent the flow taking place on the client side). The
Wrapper checks whether the resource package has been
updated according to the Package Manifest. If updated, all
resources in the package are refreshed and stored into an
App-Specific Space according to Resource Mapping. Note
that the resource refreshing follows the regular mechanism
of Web resource loading so that only new or changed
resources incur network traffic to be refreshed. After the
refreshing, the Wrapper loads the app and intercepts all the
resource requests to determine whether to load a resource
from the App-Specific Space or as usual based on the
Package Manifest.

ReWAP is deployed as a service on the same server
with the target mobile Web app. For example, to in-
tegrate ReWAP with the motivating mobile Web app
in Section 2, a developer can specify the app’s URL
http://m.foo.com/index.html in ReWAP and then launches
ReWAP service on the server m.foo.com. The Pack-
age Engine is then automatically started as a back-
ground process at the server side, while the Wrap-
per is also generated on the server with a URL, e.g.,
http://m.foo.com/index/wrapper.html. At last, the devel-
oper configures the server, making the requests to in-
dex.html redirected to the URL of the Wrapper. When a user
visits the ReWAP-enabled app, the Wrapper is loaded first
to the browser, dealing with resource packages. Then the
Wrapper loads the index.html by an AJAX call and inter-
cepts all the resource requests. Overall, deploying ReWAP
requires only minimal modifications to existing mobile Web
apps.

In the next two sections, we present the technical details
on how the Package Engine maintains the resource package
and how the Wrapper supports the resource package at the
runtime of Web apps.

4 THE PACKAGE ENGINE
Figure 4 illustrates the four phases to maintain the re-
source package: (1) Retrieving Resources; (2) Normalizing
Resources; (3) Predicting Update Time; and (4) Generating
Package. We then illustrate the details of each phase.

4.1 Retrieving Resources
In the first phase, the Package Engine loads the Web app,
retrieves all the required resources, and stores them into
the Resource Repository. We define a “concrete resource”
structure to represent each retrieved resource. A “concrete

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX 201X 5

Retrieve
Resources

Normalize
Resources

Predict
Update Time

Generate
Package

Package
Manifest

Resource
Mapping

Resources

Resource
Repo.

Normalized
Resource Repo.

User
Distribution

Fig. 4. The workflow of the Package Engine.

resource” has four fields: (1) URL, which is the identifier of
the resource; (2) MD5, which is the checksum of the resource
content; (3) size, which is the length of the resource content;
(4) cache duration, which is the configured expiration time.
All these fields can be obtained from the HTTP response
message. We define Rt as the set of concrete resources
retrieved at time t.

The retrieved resources are the basis for package genera-
tion. The retrieving process should satisfy the following two
requirements.

First, all the resources constituting a mobile Web app
should be retrieved so that the package is accurately gen-
erated based on the complete set of resources. Since a lot
of resources may be missed by only parsing the HTML
document, we employ a real browser-runtime facility to
actually launch and render the Web app. All the HTTP traffic
is recorded in the progress of loading the Web app.

Second, all the updates of resources should be captured
so that the package is maintained and updated timely to
avoid inconsistencies. For simplicity, we currently use a
fixed retrieving frequency to trigger resource retrieving.
After a fixed time period, the Package Engine captures the
latest status of the Web app and retrieves all the resources.

4.2 Normalizing Resources

In the second phase, the Package Engine identifies the
resources that have different URLs but the same content
at different visits to the Web app. We denote this kind of
resources as “change-in-name-only resources” (CINO resources
in short). We normalize CINO resources into one normalized
resource, and keep the relationship of the normalized re-
source and one concrete resource in the Resource Mapping.
The final Package Manifest consists of normalized resources
so that CINO resources do not have to be re-downloaded
for multiple times.

We observe that there are two frequent URL patterns of
the CINO resources. One is the query strings generated by
JavaScript, e.g. Math.random(), or by server scripts. In the
motivating example, the URL of the image “d.jpg” has two
different query strings “?892” and “?157” at two visits but
the image does not change. In such a case, the URLs vary
only in the query, i.e., the random value. The other pattern

is the Content Delivery Network (CDN) prefixes. At differ-
ent visits, resources could be retargeted at different CDN
servers. In such a case, the paths of the URL are the same
but the domain part of the URL could be changed according
to the target CDN servers. Based on the two patterns, we
assume that the URLs of CINO resources can be different
in a certain part of the URL. Therefore, we can apply the
Longest-Substring algorithm to find the base string of the
URLs and use a regular expression to represent the changing
part. For example, the image “d.jpg” in the motivating Web
app has two different query strings “?892” and “?157” at
two visits. So we can use the regular expression “d.jpg\?∗”
to represent the normalized image resource.

We define a “normalized resource” structure to represent
a unique normalized resource. A normalized resource is
generated by aggregating CINO resources. It has all the
fields of the “concrete resource” structure. The additional
fields of “normalized resource” include (1) expression, which
describes the URL pattern of CINO resources; (2) predicted
time, which describes the estimated duration time that the
resource remains unchanged; and (3) status, which records
all the historic statuses of the resource. We use statust to
denote the status at time t. Each status can be “inexistent”,
“changed”, or “unchanged”. Such historic status information
is used to predict the update time. We define Ht as the set
of normalized resources at time t. Ht is updated every time
when concrete resources are retrieved.

Algorithm 4.1 describes the process of managing the
set of normalized resources. The key functionality of the
normalization is that we should enforce a one-to-one map-
ping between the normalized resources and the concrete
resources of each visit, in order to prevent resources with
different contents from being matched to one normalized
resource. To this end, we compare the MD5 of the resource
content to determine whether two resources are the same.
Given the last set of normalized resources Ht−1, and the
current set of concrete resources Rt, we assign Ht−1 to
Ht at first and initialize all resources’ status of time t as
“inexistent” (Lines 1-4). Then for each concrete resource r,
we first check whether there is another resource q whose
MD5 is the same with r. If exists, the regular expression
is derived and q is annotated as “unchanged” (Lines 8-11).
Otherwise, we check whether r’s URL could match to any
regular expressions of normalized resources in the set. If
only one match is found, then the matched resource is
updated as “changed” (Lines 12-15). If more than one match
are found, then all the matched resources are removed and
the new resource is added to Ht (Lines 16-19). Finally,
we need to handle conflicts in the new set of normalized
resources to ensure the one-to-one mapping (Line 21).

4.3 Predicting Update Time of Resources
In the third phase, we infer whether a resource is sufficiently
stable by predicting the update time of the resource. We
assume that the evolution history of a resource can reflect
the trend of resource updates. For example, if a resource is
updated every day in the history, it is likely to be updated
in the next day. Therefore, we design an algorithm to pre-
dict the update time of resources based on their evolution
histories, as shown in Algorithm 4.2.

By examining the evolution histories of some resources,
we find that after a resource disappears at one visit, the
possibility of its reappearance is rather small. So, every time
when an “inexistent” status is captured for a resource, we
immediately set its predicted time to 0 (Lines 1-3). For other

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX 201X 6

Input: Last set of normalized resources Ht−1, current
set of concrete resources Rt

Output: Updated set of normalized resources Ht

1 INITIAL Ht ← Ht−1;
2 foreach h ∈ Ht do
3 INITIAL h.statust ← “inexistent”;
4 end
5 foreach r ∈ Rt do
6 P ← FindSameURL(Ht, r);
7 q ← FindSameMD5(Ht, r);
8 if q 6= null then
9 q.expression←

CalRegExpr(q.expression, r.URL);
10 q.statust ← “unchanged”;
11 end
12 else if P.size = 1 then
13 P.statust ← “changed”;
14 UpdateResource(P);
15 end
16 else
17 RemoveResource(P);
18 AddResource(r);
19 end
20 end
21 CheckMapping(Rt, Ht);
22 return Ht.

Algorithm 4.1: Normalize resources.

resources, we mainly capture the total times of the “changed”
status and predict the next time when the resource is likely
to change. In some cases, the resource can update in an
unusual fashion, so we should not aggressively change the
predicted time. For example, if a resource is updated once
every day in the history and at one time it is updated one
hour after the last update, we should use a modest way to
reduce the predicted time. Here, we use the gradient descent
algorithm [7] to predict the resource update time (Line 5).
Furthermore, if no “changed” status is captured, we set the
predicted time according to the number of the “unchanged”
status other than infinite (Lines 6-8). Finally, we remove all
the resources whose predicted time is 0 in order to limit the
number of historic resources (Lines 10-12).

4.4 Generating Package

In general, the static resources of a mobile Web app should
be encapsulated into the resource package so that the pack-
age can keep stable for a considerable time length. However,
due to the dynamics of current mobile Web apps, there is no
ever-clear boundary between static resources and dynamic
resources. As a result, we use a revenue-based technique
to generate resource packages. We regard that resources in
the package can save data traffic for the users of the mobile
Web app. The set of resources that could save the largest
data traffic shall form the package. Given that different users
may revisit the Web app at different time and with different
frequencies, the saved data traffic can vary a lot. To measure
the overall saved data traffic with the packaged resources,
we assume a user distribution function σ to represent the
percentage of users at different revisiting intervals. We de-
fine a metric, namely the average saved data traffic, to quantify

Input: Historic status status0, . . . , statust of a
normalized resource h ∈ Ht, visiting interval vi

Output: Predicted update time of h
1 if h.statust = “inexistence” then
2 h.predictedtime← 0;
3 end
4 else
5 h.predictedtime← GDM(status0, . . . , statust);
6 if h.predictedtime = inf then
7 h.predictedtime← |status.unchanged| ∗ vi;
8 end
9 end

10 if h.predictedtime = 0 then
11 RemoveResource(h);
12 end
Algorithm 4.2: Predict update time of normalized re-
sources.

how much data traffic all users of the Web app can save on
average given the user distribution function.

Then, we present how to choose packaged resources
based on the average saved data traffic. Let us assume that
a subset of resources M ⊂ Ht are selected. Suppose that
T is the minimum predicted time in M , we then have
an expectation that such a resource package M will be
updated at time T . For each normalized resource in M , the
browser does not need to request this resource before T . On
the contrary, without the resource package, each resource
should be requested from the server after its cache duration.
Thus, for each resource, if T exceeds the cache duration,
the traffic saving comes from the difference between the
configured cache duration and our predicted time. If the
predicted time is less than the cache duration, the resource
can still be loaded from the cache according to our package
mechanism, incurring no extra traffic.

Algorithm 4.3 shows how to select the best resource
package. We first sort the normalized resources according to
the predicted time in the ascending order (Line 1). Among
all subsets of resources whose minimum predicted time
is T , the benefit of a smaller set cannot exceed that of a
bigger one. Thus, we do not need to enumerate all potential
packages. We enumerate the potential T (Lines 2-10), and
calculate the benefit of the largest set whose minimum
predicted time is T (Lines 5-10). Finally, we choose the
package that provides the maximum benefit (Lines 11-13).

To make the resource package sufficiently stable, we may
not always use the resource package with the largest benefit.
We first check whether the latest resource package is still
valid where all the resources in the latest package has not
been updated. If any resource is changed, we just use the
package generated by Algorithm 4.3 to replace the invalid
package. If the latest resource package is still valid, then we
replace the latest package only when the benefit of the new
package exceeds the current one by a given threshold.

5 THE WRAPPER

The functionality of the Wrapper is to equip mobile Web
apps with the ability to use the resource packages atop the
default resource-management mechanism of Web browsers.
Figure 5 shows the workflow of the Wrapper. The Wrapper
has an App-Specific Space, which is a dedicated local stor-
age to store packaged resources for each Web app. Each Web

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX 201X 7

Input: Current set of normalized resources Ht, user
distribution σ

Output: Resource package M
1 Sort Ht based on its predicted time in ascending order;
2 for i← 0 to |Ht| do
3 benefit(i)← 0;
4 T ← Hi.predictedtime;
5 for j ← i to |Ht| do
6 if Hj .cacheduration < T then
7 benefit(i)+ =

σ(Hj .cacheduration, T) ∗Hj .size;
8 end
9 end

10 end
11 Select i where benefit(i) is the largest;
12 M ← Ht(i, i+ 1, . . . , |Ht|);
13 return M .

Algorithm 4.3: Select the packaged resources.

Browser

Cache
Resource
Loader

Mobile Web App

Wrapper

A
pp-Specific Space

Check
Package Update

Refresh
Package Resources

Load Resources

Resources

Resource
Mapping

Package
Manifest

update

Fig. 5. The workflow of the Wrapper.

app has its own App-Specific Space that is not shared with
other Web apps.

When an end-user visits the ReWAP-enabled mobile
Web app, the Wrapper is first loaded from the server and
runs in the browser. It has three phases to load the target
mobile Web app.

Checking Package Update. After the Wrapper is loaded,
it checks whether the corresponding resource package has
been updated. The Wrapper communicates with the Pack-
age Engine to check whether the previously retrieved Pack-
age Manifest has been updated. If not updated, then there
is no need to refresh the local resources and the Wrapper
starts to load the target Web app. Otherwise, if the package
has been updated, the Wrapper refreshes the packaged
resources stored in the App-Specific Space. Only after the
App-Specific Space has finished refreshing, can the target
mobile Web app start loading in order to ensure all the
resources are up-to-date.

Refreshing Package. When the resource package has to
be updated according to the Package Manifest, the Wrapper
refreshes the resources in the package based on the regular
mechanism of Web resource management. Specifically, for
each resource, the Wrapper first checks whether the re-
source’s cache status is expired. If not expired, the resource

does not need to be updated. If expired, the Wrapper sends a
validation request to check with the original server whether
the resource has been changed. Only when the resource
is changed, does the Wrapper receive the whole resource.
Otherwise, the server returns only a Not Modified response.
For normalized resources, ReWAP checks the update status
of the corresponding concrete resource according to the
Resource Mapping.

Loading Resources. When the package update finishes,
the Wrapper loads the target Web app. While loading, the
Wrapper intercepts all the resource requests emitted by the
Web app. For each resource request, the Wrapper checks
the App-Specific Space by matching the URL with regular
expressions specified in the Package Manifest. If found, then
the resource is directly returned to the app from the App-
Specific Space. Otherwise, the request is forwarded to the
Resource Loader of browsers to retrieve the corresponding
resource either from the cache or from the server.

Note that the update check of resource packages and the
refresh of resources are actually handled by the Resource
Loader of the client-side browsers to manage the resource
package with the regular Web mechanism.

6 IMPLEMENTATION

Implementing ReWAP requires that the mobile Web app
has an app-specific cache space in order to manage the
packaged resources. With the popularity and wide adoption
of HTML5, modern Web browsers have provided some APIs
for Web apps to control the storage space, such as Web
Storage [8], Application Cache [9], and Service Worker [10].
Therefore, ReWAP implemented based on these APIs can
run directly on the latest mobile browsers. In this way, we
can realize the easy and fast deployment without introduc-
ing additional requirements to end-users.

Currently, we choose Application Cache (in short as
AppCache) for our implementation. The main reason is
that, apart from a dedicated cache space for every single
Web app, AppCache also provides a mechanism to check
the status for a bunch of resources rather than iteratively
checking each resource. This feature can be leveraged to
facilitate the implementation of the resource package. We
discuss other implementation alternatives in Section 8.

In this section, we first present some background knowl-
edge of AppCache and then describe the details of our
implementation and deployment.

6.1 HTML5 Application Cache
The Application Cache (AppCache) is HTML5’s feature that
aims to allow Web apps to be reliably accessed when the
browser is offline. To enable AppCache, developers provide
a manifest file to specify what resources are needed for
Web apps to work offline, and configure the manifest file
to the“manifest” attribute of an HTML document’s <html>
tag. The manifest file mainly consists of two sections. Each
section has a list of URLs specifying the behavior of the
corresponding resources.

• CACHE. Resources listed in this section are explicitly
cached after they are downloaded for the first time.
Even when the browser is online, these resources are
still loaded from the AppCache rather than being
downloaded from the network. Note that HTML
documents referring to manifest files are set in the
CACHE section by default.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX 201X 8

• NETWORK. Resources listed in this section can by-
pass the AppCache and be requested regularly by the
browser. When the browser is offline, these resources
cannot be loaded from the AppCache. A wildcard
flag “*” can be used to make any resource that is not
listed in the CACHE section bypass the AppCache
mechanism.

When an HTML document enables AppCache, the load-
ing process of the HTML is different from the regular
procedure. If the HTML is loaded for the first time, the
manifest file is first downloaded and then all the resources
specified in the CACHE section are retrieved. When a re-
source is requested, the browser first checks whether the
URL can be found in the AppCache. If found, the resource is
returned directly by the AppCache. Otherwise, the resource
is downloaded from the network. If the HTML is revisited
after some time when the browser is online, the browser
first checks whether the manifest file has been changed on
the server by an HTTP validation request. If the manifest is
not changed, the browser loads the Web page as usual and
resources are retrieved a prior from the AppCache. If the
manifest is changed, the browser pauses the HTML parsing,
reloads all the resources specified in the CACHE section,
and continues HTML parsing.

6.2 Implementation of the Package Engine
We implement the Package Engine in Java as a stand-alone
component that can be deployed as a service at the server
side. For the browser facility of the Package Engine, we
use the Chromium Embedded Framework [11] to render
the mobile Web apps and record the HTTP traffic. We
currently use a fixed frequency that could be configured by
developers to retrieve resource updates of the mobile Web
apps. We also assume a heuristic user distribution that the
percentage of user revisits equally ranges from 1 minutes to
1 day. The Package Manifest is implemented based on the
manifest file of the AppCache. We put the URLs of concrete
resources in the manifest and use the generated Resource
Mapping file to help check whether a resource is in the
package or not by matching with the Resource Mapping.

6.3 Implementation of the Wrapper
The Wrapper is implemented as an HTML page with the
AppCache enabled together with a JavaScript library. The
Wrapper is totally implemented by standard Web technolo-
gies so that it can run directly on modern mobile browsers.

The HTML page is configured to use the manifest file
generated by the Package Engine. The App-Specific Space
and Check Package Update can be provided by the Ap-
pCache. To realize loading the target Web app, the page
registers a JavaScript callback function on the onload event.
When loading the HTML page is finished, the callback
function is executed to dynamically fetch the root HTML
of the target Web app and modify the DOM tree to render
the actual page. Therefore, we can ensure that the retrieved
HTML file of the target Web app is up-to-date.

To intercept resource requests, we use JavaScript’s re-
flection mechanism to register callback functions for all
the cases of resource requests. When the requested URL
matches a URL’s regular expression in the Resource Map-
ping, we replace the requested URL with the corresponding
concrete URL to make the resource loaded from the App-
Cache.

Since the AppCache can work only in the next load
after refresh, we explicitly call the swap() function of the
AppCache when the AppCache’s update event is triggered
in order to make the AppCache use the latest resources.

6.4 Deployment
Given the implementations based on the AppCache, de-
velopers can easily deploy ReWAP on their mobile Web
architecture, requiring no extra cost to end users.

The whole ReWAP is deployed as a separate service on
the Web server. Developers can configure the target mobile
Web app to be integrated with ReWAP to launch a certain
instance of ReWAP. When ReWAP is launched, the Package
Engine is automatically started as a background process on
the server, and the Wrapper specific to the configured app
is created in a certain folder. While the Package Engine
is running, the two configuration files, Package Manifest
and Resource Mapping, are also generated in the same
folder as the Wrapper. The developers need to only make
the folder accessible by the standard HTTP protocol where
the Wrapper, Package Manifest, and Resource Mapping are
assigned dedicated URLs.

To make the Wrapper work for the target mobile Web
app, the developers need to only configure the server to
redirect the entrance of the Web app to the URL of the
Wrapper. There is no modification of any line of code for the
original Web app. When users visit the ReWAP-enabled app,
the Wrapper is first loaded to the browser. Nevertheless, the
users are unaware of the existence of ReWAP when they
request the target Web apps.

7 EVALUATIONS

We evaluate ReWAP from three main aspects. First, we
investigate the overall performance of ReWAP by measuring
how much data traffic can be saved for mobile Web apps
with ReWAP compared to the original apps that are with
regular cache mechanisms enabled. Second, we evaluate the
performance of the Package Engine, such as the resource
normalization and the prediction of update time. Third, we
evaluate the overhead of the Wrapper incurred to the mobile
Web apps.

7.1 Experiment Setup
The main goal of ReWAP is to reduce data traffic of mobile
Web apps when they are revisited. To evaluate how much
data traffic can be saved, it is essential to acquire the baseline
of how much the data traffic is originally consumed. In
addition, the resource package of a Web app is dynamically
generated and updated at the same time when resources of
the Web app get updated. As a result, we need actual re-
sources of Web apps to evaluate the performance of ReWAP.

Therefore, we use a simulation-based way to conduct
our experiments. The idea is that we gather all the resources
constituting a mobile Web app at several time points. Then
we simulate an ideal browser cache with unlimited storage
size to compute the actual data traffic when the app is re-
visited with different revisiting intervals. Meanwhile, based
on the gathered resources, we are also able to simulate the
process of ReWAP to generate and maintain the resource
packages. In this way, we can not only compute the data
traffic when the app is revisited with ReWAP, but also
investigate the internal components of ReWAP including
resource normalization and update time prediction.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX 201X 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Revisiting Interval (×0.5hour)

Pe
rc

en
tag

e o
f S

av
ed

 D
ata

 T
ra

ffi
c

Fig. 6. Distribution of saved data traffic comparing the case with ReWAP and the case without ReWAP.

We randomly choose 50 mobile Web apps2 from the
Alexa top 500 rank list and use the homepage of each
app for the evaluations. These mobile Web apps cover
typical categories such as news, entertainment, shopping,
and business. The size of pages ranges from 38KB to 4MB,
representing typical pages of real usage. Then we use
the resource-collection platform designed in our previous
work [5] to record all the resources of each page every 30
minutes. The platform uses a Chrome browser emulated to
retrieve the mobile version of each page by setting the user
agent parameter. We assume that the 30-minute interval is
sufficiently short to capture the changes of stable resources
of Web apps. Our data collection is carried out for 15 days
to reduce bias by using sufficiently many samples. Based on
this data set, we use the first 5 days’ records to train our
algorithms of normalization (Algorithm 4.1) and prediction
(Algorithm 4.2), and use the last 10 days’ records to gen-
erate resource packages. We also save all the internal data
produced in the progress of package generation to evaluate
the Package Engine.

7.2 Overall Performance

The overall performance of ReWAP is measured by how
much data traffic it can save for a mobile Web app, com-
pared to the same mobile Web apps that run with regular
browser cache mechanism. In fact, the overall performance
depends on how a mobile Web app is revisited by its users.
For example, users who revisit a Web app every 30 minutes
may have more traffic reduction than those who revisit
every day, because resources are more likely to change after
one day so as to deflate the performance of ReWAP. There-
fore, we examine different revisiting at every 30-minute
interval, i.e., there are 48 revisiting intervals (0.5 hour, 1
hour, 1.5 hours, . . . , 24 hours). For every single revisiting
interval ri, we assume that all users revisit the app with
the same interval ri, indicating that the user distribution
function σ in Algorithm 4.3 is 100% at ri and is 0 at all the
other revisiting intervals. Based on the assumption, we can
generate resource packages and compare the differences of
data traffic consumed by mobile Web apps with and without

2. Please visit https://sites.google.com/site/rewapsys/ for more de-
tails.

ReWAP. Note that the data traffic of ReWAP includes the
cost of the update of resource packages.

Figure 6 shows the overall performance of ReWAP in
terms of saved data traffic. We demonstrate the distribution
for each revisiting interval. Each distribution consists of
results from all the 50 chosen mobile Web apps. The median
of saved data traffic varies from 8% to 51%, indicating that
mobile Web apps with ReWAP can reduce averagely 8%
to 51% of the data traffic compared to the original Web
apps with only browser cache enabled. When the revisiting
interval becomes larger, the saved data traffic decreases
because the resource package has to be refreshed due to
the update of resources in the package.

For each revisiting interval, the distribution of saved
data traffic varies from a large range. In the best cases, the
saved data traffic can reach almost 100% when revisiting
intervals are shorter than 5 hours. In other words, almost all
the resources that should be downloaded from the network
by the original Web app can be directly loaded from the
local storage by ReWAP. In contrast, the largest saved data
traffic is only about 50% for most revisiting intervals that are
longer than 14 hours. The large variance of saved data traffic
is due to the original cache performance of the mobile Web
app. If resources of a Web app are configured with proper
cache policies, the original data traffic is almost optimized
so that there is little room for ReWAP to improve.

7.3 Performance of the Package Engine
The performance of ReWAP is determined by the resource
packages generated by the Package Engine. The more cap-
tured resources, the more accurate predicted update time
and the more stable resource packages, can lead to saving
more data traffic. We evaluate the performance of the Pack-
age Engine by the intermediate data gathered during the
generation of resource packages as illustrated in Section 7.1.

The Package Engine maintains a list of historic resources
that are the candidates to be packaged. The list is refreshed
every time when new resources are retrieved. Our current
design uses a fixed frequency to retrieve resources. It is
desirable if the resource list at a certain time t covers more
resources at the time later than t so that more resources have
the chances to be loaded from the resource package. Here
we investigate the resource coverage of the Package Engine.
Given a historic resource list Ht at the time t, the resource

https://sites.google.com/site/rewapsys/

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX 201X 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Interval (×0.5hour)

Re
so

ur
ce

 C
ov

er
ag

e

Fig. 7. Distribution of the resource coverage among different intervals.

coverage after an interval i is defined as the number of
common resources between Ht and Ht+i divided by the
number of resources in Ht+i. Figure 7 shows the distribu-
tion of resource coverage after different intervals ranging
from 0.5 hour to one day. We can observe that the median
coverage rate is around 70% and it is very stable for different
intervals, indicating that about 70% of resources can be
covered by the resource list among one day. This result
mainly accounts for the contribution of our normalization
technique that resources with different URLs but the same
content can be normalized to one resource. Therefore, more
resources can be covered for longer durations.

The Package Engine uses a predicted update time to
judge whether a resource is stable. Since the update time
is an important factor in calculating the benefit of resource
packages in Algorithm 4.2, the prediction needs to be precise
enough. The predicted update time is dynamically adjusted
every time when new statuses of resources are retrieved,
so we investigate the precision of prediction for different
intervals. Figure 8 shows the distribution of the precision of
predicted update time. We can observe that the precision
decreases as the interval increases. For all the intervals,
the median predicting precision is above 85%. For intervals
that are less than 5 hours, the median precision can reach
100%. Overall, such accuracy can be satisfactory to most
apps and can demonstrate the effectiveness of ReWAP. The
high prediction precision makes ReWAP better distinguish
stable resources so that the resource package could be stable
enough to avoid being updated frequently.

Indeed, the more stable the resource packages are, the
less refreshing the Wrapper performs. Less refreshing re-
duces the data traffic to update the resources in the package.
We calculate the time duration between every two updates
of resource packages. Figure 9 shows the distribution of
the duration over the number of package refreshes. We can
observe that the median duration of a resource package
is 5 hours, indicating that resource packages should be
updated every 5 hours in the medium cases. Therefore, the
performance of ReWAP is better for revisiting intervals less
than 5 hours for the experiment in Section 7.2.

7.4 Overhead of the Wrapper
When a ReWAP-enabled mobile Web app runs on the
browsers, the Wrapper can possibly introduce overhead

compared to the original app. The overhead lies in two
main aspects. One is the manifest file that specifies the
resource package. Downloading and refreshing the manifest
file need extra data traffic introduced by ReWAP. The other
is the computation logics of resource mapping and the
Application Cache itself. The computation may affect the
client side performance in terms of page load time, CPU
and memory usage.

We investigate the size of all the manifest files generated
during our experiment. Figure 10 shows the distribution of
manifest files’ size over the number of manifest files. We can
see that the median size is only 5 KB and the largest is not
more than 20 KB. Therefore, the overhead of manifest file is
quite marginal.

To evaluate the overhead of computation logics and their
influences on the page load time, we generate some test
pages whose number of resources ranges from 20 to 100, and
each resource is 100 KB. We assume that all these resources
are put into the resource package and 10% of the packaged
resources are normalized resources that are identified by
URL regular expressions. Then we visit each page twice
in the browser on a smartphone (Samsung Galaxy S4 with
Android 5.0 OS) with and without ReWAP. The browser
cache is cleared before the first visit to simulate the cold
start of the page, and the second visit is triggered just after
the first one finishes to simulate the warm load of the page.
We record the CPU usage and memory usage as well as the
page load time during loading each page with and without
ReWAP. We find that the average CPU usage is increased by
15% for pages with ReWAP while the memory usage is of
no significant differences.

Figure 11 shows the page load time for different pages
in four cases: cold start without ReWAP, cold start with
ReWAP, warm load without ReWAP, and warm load with
ReWAP. We can observe that as the number of resources
increases, the page load time increases in all cases, and
the gap between cold start and warm load becomes larger
no matter whether the app is equipped with or without
ReWAP. For cold start, the page load time of pages with
ReWAP is a little longer than that of pages without ReWAP.
However, for warm load, the page load time of pages with
ReWAP is much shorter than that of pages without ReWAP.
This observation implies that ReWAP can also reduce the

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX 201X 11

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Interval (×0.5hour)

Ac
cu

ra
cy

 o
f P

re
di

cti
on

Fig. 8. Distribution of the accuracy of predicted update time among different intervals.

0 20 40 60 80 100 120 140 160 180 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Manifest Duration (hour)

C
D

F

0

Fig. 9. Distribution of the durations of resource
package.

0 3 6 9 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size of Manifest (KB)

C
D

F

15

Fig. 10. Distribution of the size of Package
Manifest.

20 30 40 50 60 70 80 90 100

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of Resources
Pa

ge
 L

oa
d

Ti
m

e
(s

ec
on

d)

0

cold start w/o ReWAP
warm load w/o ReWAP
cold start w/ ReWAP
warm load w/ ReWAP

Fig. 11. Influences of ReWAP on page load
time for cold start and warm load.

page load time when mobile Web apps are revisited. In the
best cases, the page load time is reduced by more than 50%.

In summary, we can conclude that the overhead of the
Wrapper is very minor. ReWAP can significantly reduce
the page load time when mobile Web apps are revisited.
Therefore, the results demonstrate that ReWAP is practical
to be adopted and applied.

7.5 Threats to Validity

The preceding simulated experiments demonstrate the ef-
fectiveness of ReWAP. Some issues should be pointed out as
they may impact the generalization of these results.
• Data set. Our evaluations investigate only homepages
from 50 mobile Web apps. Homepages usually have more
static resources that can potentially be encapsulated into
packages. Therefore, ReWAP may perform better on these
homepages. We plan to gather more dynamic pages for
further evaluations, such as personal pages in Facebook and
pages related to Location-Based Services (LBS) in Yelp.
• Retrieving interval. In the experiment setup, we collect
the data of resource updates by retrieving resources every
30 minutes. We assume that the 30-minute interval is suf-
ficiently short to capture the changes of stable resources.
However, there may be some resources that could change
within 30 minutes. As a result, in order to ensure that all the
resources are up-to-date, we evaluate the saved data traffic
only for users whose revisiting interval is a multiple of 30

minutes. For other revisiting intervals, the saved data traffic
shall fall between the numbers corresponding to the two
nearest multiples of 30 minutes.
• User revisiting distribution. Since ReWAP generates a
unique resource package for all the users of a mobile Web
app, we use a user distribution function to calculate the ben-
efit brought by different resource packages and choose the
one with the largest benefit in our algorithm of generating
resource packages (Algorithm 4.3). Certainly, different dis-
tributions could lead to different performances of ReWAP.
In our evaluation, we use a 100% distribution function for
each revisiting interval to be investigated so that the traffic
reduction is an upper bound.
• Size of browser cache. Our comparison experiment as-
sumes an ideal cache with unlimited storage size, meaning
that resources can be always kept in the cache. However, in
a real case, the size of cache is limited on mobile devices and
cached resources are often removed out of the cache before
their configured expiration time. Since ReWAP maintains an
app-specific space for each mobile Web app, resources that
may be removed out of the browser cache in the original
app are also likely to be loaded from the app-specific space.
Therefore, more data traffic can be saved by ReWAP in such
real case.

8 DISCUSSION
Before ReWAP is deployed in real-world practice, some
potential issues need to be discussed and addressed.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX 201X 12

8.1 Up-to-date Resource Package
The resource packages maintained by ReWAP should al-
ways be up-to-date and keep consistency with the latest
version of the Web apps. For simplicity, our current im-
plementation assumes that the Package Engine updates its
maintained resources by periodically retrieving the changes
of Web apps with a fixed time interval, e.g., every 30
minutes. In practice, if the Web apps happen to change
between two “retrieving time points” of the Package Engine
and the client-side requests arrive just during this interval,
the Package Engine cannot provide the latest resource pack-
age. Since the Package Engine can be deployed at the same
server of the Web apps, one feasible solution is to provide a
notification service to inform the Package Engine whenever
the Web apps are changed. In this way, resource packages
maintained by the Package Engine can be always up-to-date
and accurately accessed by clients.

The Package Engine normalizes and generates a regu-
lar expression to represent the “Change-In-Name-Only” re-
sources. All resources whose URLs can match to the same
regular expression are regarded to be identical. A Resource
Mapping file is maintained between each regular expression
and the corresponding concrete resource. As a result, there
may be mismatches caused by the out-of-date Resource
Mapping. However, as mentioned previously, the Package
Engine can retrieve every change of Web apps with a
notification service. In addition, the Resource Mapping is
updated at the same time when the Package Engine retrieves
the latest resources of the Web app. In this way, the accuracy
of resource matching can be preserved.

Resources are selected into packages based on their pre-
dicted update time. One can argue that prediction may not
be always accurate. However, according to Algorithm 4.3,
the accuracy of prediction influences only the stableness
of resource packages and further affects how much data
traffic could be actually saved. The inaccurate prediction
inherently cannot lead to using stable resources or incurring
more data traffic. Even for the worst case, the data traffic
of ReWAP-enabled Web apps can never exceed that of the
original Web apps along with the size of the Package Man-
ifest, because we use the original cache policy of resources
as a baseline to select resources into packages.

8.2 Shared Resources Exploration
Our approach currently treats each Web page indepen-
dently, i.e., each Web page has a dedicated resource package.
However, a mobile Web app can consist of many pages. In
practice, pages belonging to the same Web app may share
a lot of same resources [12]. It is then possible to further
improve the performance by packaging resources from all
the Web pages of a Web app together. We plan to support
such mechanisms in our future work.

8.3 Alternative Implementation of the Wrapper
ReWAP currently relies on the HTML5 AppCache to imple-
ment the Wrapper. Other APIs that can provide app-specific
space, such as Web Storage [8] and Service Worker [10],
are alternatives to AppCache to control the browser-side
cache space. We can also analyze the feasibility as well
as advantages/disadvantages of these two options. Web
storage is a key-value database that can store data for Web
apps. The value of Web storage should be string. As a
result, if we implement ReWAP based on Web storage, we
can place only string-based resources into packages, where

binary resources such as images cannot be benefited by
ReWAP. Service worker provides a generic entry point for
event-driven background processing in the Web Platform.
It provides a hook API to intercept resource requests and
APIs to access the cache space. If we choose service worker
to implement the Wrapper, the request interception can
be naturally supported since service worker can launch a
stand-alone process to handle the task. However, we should
implement the logics to maintain the dedicated cache space,
to check updates of resource packages, and to refresh pack-
aged resources if the package is updated. In fact, such logics
are now conveniently supported by AppCache. However,
in any case of AppCache, Web storage, and service worker,
the Wapper’s core functionalities of processing normalized
resources are always the same. We plan to explore service
worker in our future work and compare the developers’ cost
and actual performance with those of the current ReWAP, in
order to decide the more efficient solutions.

8.4 Energy Efficiency
Since ReWAP reduces redundant transfers, ReWAP-enabled
mobile Web apps are expected to consume less energy
than the original ones. We plan to measure the energy
consumption of mobile Web apps with and without ReWAP
in our future work. Here we theoretically analyze ReWAP’s
potential influence on energy consumption. The energy
consumption of a mobile Web app has a relationship with
the network data traffic as well as the page load time. Less
data traffic and shorter page load time could save energy
consumption. In Section 7.4, we compare the page load time
of 80 synthetic test pages with and without ReWAP in the
cases of cold start and warm load. The page load time of
ReWAP-enabled pages increases by a small margin in the
case of cold start and decreases up to 50% in the case of
warm load. Therefore, ReWAP may introduce a little extra
energy consumption when the ReWAP-enabled apps are
loaded for the first time, but can save energy when they
are revisited.

9 RELATED WORK
It is well known that the user experiences of mobile Web
apps are far from satisfactory in terms of the page load time,
data traffic drain, and energy consumption. Redundant
transfers of resources are the most dominant issue leading to
such inefficiency. Our work focuses on reducing redundant
transfers to improve the user experiences of mobile Web
apps. We then discuss related work.
• Measurement studies on resource loadings of mobile
Web apps. Wang et al. [13] advocated that resource load-
ing contributes most to the browser delay. Wang et al. [3]
designed a lightweight in-browser profiler, called WProf,
and studied the dependencies of activities when browsers
load a webpage. Nejati et al. [14] extended WProf to WProf-
M and studied the differences of page loading process
between mobile and non-mobile browsers. Li et al. [15]
designed WebProphet to capture dependencies among Web
resources and to automate the prediction of user-perceived
Web performance. The poor performance of mobile Web
cache is a key issue leading to redundant transfers. Qian
et al. [2] measured the performance of mobile Web cache in
terms of the cache implementation and revealed that about
20% of the total Web traffic examined is redundant due to
imperfect cache implementations. In their later work [16],
they studied the caching efficiency for the most popular

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX 201X 13

500 websites and found that caching is poorly utilized for
many mobile sites. Wang et al. [12] found that cache has
very limited effectiveness: 60% of the requested resources
either are expired or are not in the cache. Our previous
work [4], [5] adopted a proactive approach to measuring
the performance of mobile Web cache and found that more
than 50% of resource requests are redundant on average for
55 popular mobile websites. In particular, we found some
underlying factors leading to redundant transfers of mobile
Web apps, i.e., Same Content, Heuristic Expiration, and
Conservative Expiration Time. These measurement studies
motivate us to reduce redundant transfers for mobile Web
apps.
• Techniques to reduce redundant transfers. Wang et al. [17]
investigated how Web browsing can benefit from micro-
cache that separately caches layout, code, and data at a fine
granularity. They studied how and when these resources
are updated, and found that the layout and code that block
subsequent object loads are highly cacheable. Our resource
packaging can be viewed as to realize similar features
proposed by micro-cache in the resource granularity. Most
of the stable layout and code resources are put into the
package to always be loaded from the local environment.
Zhang et al. [18] implemented a system-wide service called
CacheKeeper, to effectively reduce overhead caused by poor
Web caching of mobile apps. CacheKeeper can also work
for browsers but it relies on the support of operating sys-
tems. Our implementation of ReWAP utilizes the standard
HTML5. HTML5 has been supported by all the commodity
mobile Web browsers. So we can achieve fast and easy
deployment with no cost to end-users.
• General techniques to improve the performance of
mobile Web. Some previous work focuses on improving
the compute-intensive operations for mobile Web browsers,
such as style formatting [19], layout calculation [20], [21],
and JavaScript execution [22], [23]. However, Wang et al. [13]
argued that the key to improve the performance of mobile
Web is to speed up resource loading. Various solutions have
been proposed to optimize resource loading. These solutions
include new network protocols such as SPDY [24] and
HTTP2 [25], browser optimization such as prefetching [26]
and speculative loading [12], and proxy-based systems such
as Flywheel [27] and KLOTSKI [28]. These previous solu-
tions are orthogonal to reducing redundant transfers.
• Dynamics and user revisits of Web pages. Douglis et
al. [29] performed a live study on the influences of resource
changes and user revisits on the Web caching in early 1997.
Fetterly et al. [30] measured the degree of Web page changes
and investigated the factors correlated with change inten-
sity. Adar et al. [31] studied the Web revisiting behaviors
from a live data set. They identified four revisiting patterns
for different kinds of Web pages. In their later work [32],
they studied the relationship between the dynamics of Web
pages and user revisiting patterns. Although all these pre-
vious efforts focus on the Web for desktop computers, their
findings can be partly leveraged by the mobile Web. Our
work depends on the dynamics and user revisits of Web
pages to maintain the resource package.

10 CONCLUDING REMARKS AND FUTURE WORK

In this article, we have presented the ReWAP approach,
by radically making the resource management of mobile
Web apps perform in a similar fashion to native apps. The
key rationale of ReWAP is to provide more efficient and

“application-aware” control of resource management rather
than relying on only the current mechanisms such as Web
cache, to avoid the caused unnecessary redundant resource
transfers. To realize the efficient resource packaging, Re-
WAP includes a normalization technique to identify the
same resources but with different URLs, a learning-based
technique to accurately predict the updates of resources,
and an algorithm to minimize the refresh frequency of
resource packages as well as reducing the overhead. We
have evaluated ReWAP based on long-term (15-day) traces
of existing mobile Web apps and the results demonstrate
our approach’s effectiveness and efficiency.

Given that ReWAP can be easily deployed into existing
Web apps with very few manual efforts, our ongoing work
is to encapsulate ReWAP as an independent module into
currently popular Web servers such as Apache, Nginx, and
Node.js. When ReWAP is deployed and the actual access
logs are obtained, we can derive the distribution of a user’s
visit frequency for a given Web app, and thus optimize the
prediction algorithm by tuning the parameters and design-
ing online learning kernels. Apart from the data traffic and
page load time, other performance issues, e.g., the energy
drain, need to be addressed as well in future work.

ACKNOWLEDGMENT
This work was supported by the High-Tech Research and De-
velopment Program of China under Grant No.2015AA01A202,
the Natural Science Foundation of China (Grant No. 61370020,
61421091, 61528201). Tao Xie’s work was supported in part by
National Science Foundation under grants no. CCF-1409423,
CNS-1434582, CCF-1434596, CNS-1513939, CNS-1564274.

REFERENCES

[1] N. Serrano, J. Hernantes, and G. Gallardo, “Mobile web apps,”
IEEE Software, vol. 30, no. 5, pp. 22–27, 2013.

[2] F. Qian, K. S. Quah, J. Huang, J. Erman, A. Gerber, Z. Mao,
S. Sen, and O. Spatscheck, “Web caching on smartphones: ideal vs.
reality,” in Proceedings of the 10th International Conference on Mobile
Systems, Applications, and Services, MobiSys 2012, 2012, pp. 127–140.

[3] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and
D. Wetherall, “Demystifying page load performance with WProf,”
in Proceedings of USENIX Conference on Networked Systems Design
and Implementation, NSDI 2013, 2013, pp. 473–485.

[4] Y. Ma, X. Liu, S. Zhang, R. Xiang, Y. Liu, and T. Xie, “Measurement
and analysis of mobile web cache performance,” in Proceedings of
the 24th International Conference on World Wide Web, WWW 2015,
2015, pp. 691–701.

[5] X. Liu, Y. Ma, Y. Liu, T. Xie, and G. Huang, “Demystifying the
imperfect client-side cache performance of mobile web browsing,”
IEEE Transactions on Mobile Computing, vol. 15, no. 9, pp. 2206–
2220, 2016.

[6] “RFC 2616.” [Online]. Available: http://www.w3.org/Protocols/
rfc2616/rfc2616.txt

[7] T. Zhang, “Solving large scale linear prediction problems using
stochastic gradient descent algorithms,” in Proceedings of the 21st
International Conference on Machine Learning, ICML 2004, 2004, pp.
919–926.

[8] “Web Storage.” [Online]. Available: https://www.w3.org/TR/
webstorage/

[9] “Application Cache.” [Online]. Available: https://www.w3.org/
TR/2011/WD-html5-20110525/offline.html

[10] “Service Worker.” [Online]. Available: https://www.w3.org/TR/
service-workers/

[11] “Chromium embedded framework.” [Online]. Available: https:
//bitbucket.org/chromiumembedded/cef/

[12] Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie, “How far can client-
only solutions go for mobile browser speed?” in Proceedings of the
21st International Conference on World Wide Web, WWW 2012, 2012,
pp. 31–40.

[13] ——, “Why are web browsers slow on smartphones?” in Pro-
ceedings of the 12th Workshop on Mobile Computing Systems and
Applications, HotMobile 2011, 2011, pp. 91–96.

http://www.w3.org/Protocols/rfc2616/rfc2616.txt
http://www.w3.org/Protocols/rfc2616/rfc2616.txt
https://www.w3.org/TR/webstorage/
https://www.w3.org/TR/webstorage/
https://www.w3.org/TR/2011/WD-html5-20110525/offline.html
https://www.w3.org/TR/2011/WD-html5-20110525/offline.html
https://www.w3.org/TR/service-workers/
https://www.w3.org/TR/service-workers/
https://bitbucket.org/chromiumembedded/cef/
https://bitbucket.org/chromiumembedded/cef/

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX 201X 14

[14] J. Nejati and A. Balasubramanian, “An in-depth study of mobile
browser performance,” in Proceedings of the 25th International Con-
ference on World Wide Web, WWW 2016, 2016.

[15] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A. Greenberg, and Y.-M.
Wang, “WebProphet: Automating performance prediction for web
services,” in Proceedings of the 7th USENIX Conference on Networked
Systems Design and Implementation, NSDI 2010, 2010, pp. 143–158.

[16] F. Qian, S. Sen, and O. Spatscheck, “Characterizing resource usage
for mobile web browsing,” in Proceedings of the 12th Annual In-
ternational Conference on Mobile Systems, Applications, and Services,
MobiSys 2014, 2014, pp. 218–231.

[17] X. S. Wang, A. Krishnamurthy, and D. Wetherall, “How much
can we micro-cache web pages?” in Proceedings of the 2014 Internet
Measurement Conference, IMC 2014, 2014, pp. 249–256.

[18] Y. Zhang, C. Tan, and L. Qun, “Cachekeeper: A system-wide web
caching service for smartphones,” in Proceedings of the 2013 ACM
International Joint Conference on Pervasive and Ubiquitous Computing,
UbiComp 2013, 2013, pp. 265–274.

[19] H. Wang, M. Liu, Y. Guo, and X. Chen, “Similarity-based web
browser optimization,” in Proceedings of the 23rd International World
Wide Web Conference, WWW 2014, 2014, pp. 575–584.

[20] K. Zhang, L. Wang, A. Pan, and B. B. Zhu, “Smart caching for
web browsers,” in Proceedings of the 19th International Conference on
World Wide Web, WWW 2010, 2010, pp. 491–500.

[21] D. Mazinanian, N. Tsantalis, and A. Mesbah, “Discovering refac-
toring opportunities in cascading style sheets,” in Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2014, 2014, pp. 496–506.

[22] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl,
“Anatomizing application performance differences on smart-
phones,” in Proceedings of the 8th International Conference on Mobile
Systems, Applications, and Services, MobiSys 2010, 2010, pp. 165–178.

[23] L. Gong, M. Pradel, and K. Sen, “JITProf: pinpointing jit-
unfriendly Javascript code,” in Proceedings of the joint meeting of
the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, ESEC/FSE
2015, 2015, pp. 357–368.

[24] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and
D. Wetherall, “How speedy is SPDY?” in Proceedings of the 11th
USENIX Symposium on Networked Systems Design and Implementa-
tion, NSDI 2014, 2014, pp. 387–399.

[25] “HTTP/2.” [Online]. Available: https://http2.github.io/
[26] D. Lymberopoulos, O. Riva, K. Strauss, A. Mittal, and A. Ntoulas,

“PocketWeb: instant web browsing for mobile devices,” in Proceed-
ings of the 17th International Conference on Architectural Support for
Programming Languages and Operating Systems, APSLOS 2012, 2012,
pp. 1–12.

[27] V. Agababov, M. Buettner, V. Chudnovsky, M. Cogan, B. Green-
stein, S. McDaniel, M. Piatek, C. Scott, M. Welsh, and B. Yin,
“Flywheel: Google’s data compression proxy for the mobile web,”
in Proceedings of 12th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2015, 2015, pp. 367–380.

[28] M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha, and V. Sekar,
“Klotski: Reprioritizing web content to improve user experience
on mobile devices,” in 12th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2015, 2015, pp. 439–453.

[29] F. Douglis, A. Feldmann, B. Krishnamurthy, and J. C. Mogul, “Rate
of change and other metrics: a live study of the world wide web,”
in Proceedings of the 1st USENIX Symposium on Internet Technologies
and Systems, USITS 1997, 1997.

[30] D. Fetterly, M. Manasse, M. Najork, and J. L. Wiener, “A large-
scale study of the evolution of web pages,” in Proceedings of the
12th International World Wide Web Conference, WWW 2003, 2003,
pp. 669–678.

[31] E. Adar, J. Teevan, and S. T. Dumais, “Large scale analysis of
web revisitation patterns,” in Proceedings of the 2008 Conference on
Human Factors in Computing Systems, CHI 2008, 2008, pp. 1197–
1206.

[32] ——, “Resonance on the web: web dynamics and revisitation
patterns,” in Proceedings of the 27th International Conference on
Human Factors in Computing Systems, CHI 2009, 2009, pp. 1381–
1390.

Xuanzhe Liu is an Associate Professor in the
School of Electronics Engineering and Com-
puter Science, Peking University, Beijing, China.
His research interests are in the area of services
computing, mobile computing, web-based sys-
tems, and big data analytic. He is a member of
the IEEE.

Yun Ma is a Ph.D student in the School of Elec-
tronics Engineering and Computer Science of
Peking University, Beijing, China. His research
interests include services computing and web
engineering.

Shuailiang Dong is an undergraduate student
from Peking University majoring in computer sci-
ence and technology. His research interests in-
clude mobile network and software engineering.

Yunxin Liu is a Lead Researcher in Microsoft
Research. His research interests include mobile
systems and networking.

Tao Xie is an Associate Professor and Willett
Faculty Scholar in the Department of Computer
Science at the University of Illinois at Urbana-
Champaign, USA. His research interests are
software testing, program analysis, software an-
alytics, software security, and educational soft-
ware engineering. He is a senior member of the
IEEE.

Gang Huang is a Full Professor in Institute of
Software, Peking University. His research inter-
ests are in the area of middleware of cloud com-
puting and mobile computing. He is a member of
the IEEE. He is the corresponding author of this
article.

https://http2.github.io/

	Introduction
	Background and Motivation
	Redundant Transfer in Mobile Web Apps
	Resource Management of Web Apps and Native Apps

	Approach Overview
	The Package Engine
	Retrieving Resources
	Normalizing Resources
	Predicting Update Time of Resources
	Generating Package

	The Wrapper
	Implementation
	HTML5 Application Cache
	Implementation of the Package Engine
	Implementation of the Wrapper
	Deployment

	Evaluations
	Experiment Setup
	Overall Performance
	Performance of the Package Engine
	Overhead of the Wrapper
	Threats to Validity

	Discussion
	Up-to-date Resource Package
	Shared Resources Exploration
	Alternative Implementation of the Wrapper
	Energy Efficiency

	Related Work
	Concluding Remarks and Future Work
	References
	Biographies
	Xuanzhe Liu
	Yun Ma
	Shuailiang Dong
	Yunxin Liu
	Tao Xie
	Gang Huang

