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Abstract—Identifying driving anomalies is of great significance
for improving driving safety. The development of the Internet-
of-Vehicles (IoV) technology has made it feasible to acquire
big data from multiple vehicle sensors and such big data play
a fundamental role in identifying driving anomalies. Existing
approaches are mainly based on either rules or supervised
learning. However, such approaches often require labeled data,
which are typically not available in big data scenarios. In
addition, because driving behaviors differ under vehicle statuses
(e.g., speed, gear position), to precisely model driving behaviors
needs to fuse multiple sources of sensor data. To address these
issues, in this article, we propose SafeDrive, an online and status-
aware approach, which does not require labeled data. From a
historical data set, SafeDrive statistically offline derives a state
graph (SG) as a behavior model. Then SafeDrive splits the online
data stream into segments, and compares each segment with
the SG. SafeDrive identifies a segment that significantly deviates
from the SG as an anomaly. We evaluate SafeDrive on a cloud-
based IoV platform with over 29,000 real connected vehicles.
The evaluation results demonstrate that SafeDrive is capable of
identifying a variety of driving anomalies effectively from a large-
scale vehicle data stream with an overall accuracy of 93%; such
identified driving anomalies can be used to timely alert drivers
to correct their driving behaviors.

Index Terms—Big Data, Driving Behavior, State Graph,
Internet-of-Vehicles, OBD, Anomaly, Data Stream

I. INTRODUCTION

IDENTIFYING abnormal driving behaviors is known to be
an important research focus due to its significant influence

on people’s daily life. Apart from the impact on fuel consump-
tion [1], driving behaviors also play a key role in transportation
safety [2]. With in-vehicle sensing and Internet-of-Vehicles
(IoV) technologies, we are capable of collecting abundant
driving data, such as speed and engine parameters, from a
large number of vehicles. Such data are characterized as large
volume, multi-frequency, and multi-source, which largely re-
flect the vehicle status and thereby are widely used to evaluate
driving behaviors. For example, insurance companies provide a
new ‘pay-as-you-drive’ service to customers by collecting their
driving data and judging their driving behaviors [3]. With the
collected data, fleet-operating companies regulate their drivers
to behave more properly, lowering the accidental risk and fuel
consumption.

These applications have inspired previous research on iden-
tifying driving anomalies. Rule-based techniques are often
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Fig. 1. Accelerations when driving at different speed ranges. It can be ob-
served that acceleration of 1m/s2 when the vehicle speed exceeds 100km/h
would be abnormal, while the same acceleration would be normal when the
speed is lower than 60km/h.

adopted to extract abnormal driving behaviors due to its
simplicity and high efficiency [4], [5]. Supervised-learning-
based techniques are another kind of popular solution. With
predefined abnormal patterns and manually labeled training
data, a classifier can be trained and further used to identify
similar patterns [6], which are marked as anomalies. Such
techniques basically require manually labeled training data,
where fixed behavioral definitions such as patterns and rules
(e.g., fast acceleration) need to be predefined.

However, the prior research cannot effectively identify ab-
normal driving behaviors for three main reasons. First, in
IoV, the volume of data is huge. They are collected from
multiple sensors and are with complicated relations, making it
infeasible to label normal and abnormal behaviors. Second,
the process of manually labeling the huge volume of the
data stream can be difficult and biased because abnormal
driving behaviors can be uncertain and human perceptions
can be error-prone. Third, whether a driving behavior is
abnormal or not is heavily dependent on the current vehicle
status (e.g., speed, gear position). For instance, Fig. 1 shows
the relationship between acceleration behaviors and vehicle
speed statuses. It can be observed that drivers would normally
accelerate more slowly when driving at high speed. Such
behavior is a kind of contextual-status-related behaviors. As a
comparison, another behavior can be observed in the relations
between different types of data, and such behavior is a kind
of correlational-status-related behaviors.

To effectively identify driving anomalies requires consider-
ing such detailed status-related characteristics. Moreover, the
evaluation criterion for anomaly detection should be based
on objective data instead of subjective judgment. To address
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the preceding issues, in this article, we propose SafeDrive,
an online and status-aware approach for detecting driving
anomalies. SafeDrive does not require costly labeled data, by
employing a State Graph (SG). SafeDrive fuses data on both
the vehicle-sensor level and fleet level; such data precisely
reflect the normal driving styles. For the online detection,
SafeDrive compares the real-time driving data stream with the
SG to detect anomalies. SafeDrive includes novel techniques to
address two main challenges: (1) uniformly modeling a variety
of vehicle statuses represented by complex data relations; (2)
capturing how people normally drive based on the modeled
relations between statuses.

In particular, SafeDrive includes a SG to model (1) contex-
tual relations between statuses of the same type of data, such
as speed, at different timings and (2) correlational relations
between statuses of different types of data, such as the vehicle
Revolutions Per Minute (RPM) and gear position, at the same
timing. SafeDrive represents all the statuses as states and
connected with edges in the graph. To construct an objective
driving model, SafeDrive fuses different vehicles’ historical
data together and statistically calculates the structure of SG.
In the online setting, SafeDrive identifies driving anomalies
by splitting the data stream into segments and comparing each
segment with the SG. SafeDrive considers as abnormal those
segments that largely deviate from the SG.

We implement SafeDrive on a real-world cloud-based IoV
platform, which connects over 29,000 vehicles from 60 cities.
Each vehicle is equipped with an On-Board Diagnostics
(OBD) connector to collect the vehicle’s parameter values
and send the data to the server through the mobile wireless
network. The evaluation results demonstrate that SafeDrive
is able to effectively identify driving anomalies including
aggressive acceleration, sudden breaking, fast turn, and even
mismatching of RPM with speed.

In summary, the article makes the following main contribu-
tions:
• A status-aware behavior model, which is able to combine

multi-sensor data of different vehicles, to characterize
normal driving behaviors quantitatively.

• A light-weight online anomaly detector for detecting a
variety of abnormal driving behaviors from large scale
vehicle data.

• An implementation of SafeDrive upon a large-scale
cloud-based IoV platform, and an evaluation of SafeDrive
with a huge volume of real-world driving data.

The reminder of this article is organized as follows. Sec-
tion II summarizes related work. Section III presents an
overview of the proposed SafeDrive approach. Section IV
illustrates SafeDrive’s online detection of driving anomalies.
Section V presents our evaluation of SafeDrive. Section VI
concludes this article.

II. RELATED WORK

Safe driving is one of the major public concerns, and
identifying abnormal driving behaviors is an indispensable part
of improving driving safety [2], [7]. In recent years, various
techniques have been proposed to detect driving anomalies.

Rule-based techniques employ thresholds to filter out data
of specific ranges and mark these data as driving events.
These techniques are often adopted in previous work as
system solutions and basic behavior-evaluation mechanisms
due to their simplicity and efficiency [4], [5]. For example,
using sensor data collected from smartphones, Zhao et al.
[8] detect aggressive driving events based on thresholds. To
detect drunk driving, Dai et al. [9] propose a pattern-matching
algorithm that compares acceleration with pre-defined drunk
driving thresholds. Fazeen et al. [10] combine rule-based
behavior analysis with road-condition evaluation to construct
a smartphone-based safe driving system. Moreover, Taha et
al. [11] propose a threshold-based framework to evaluate the
driving behaviors from Controller Area Network (CAN-bus)
data collected by OBD connectors.

Supervised-learning-based techniques are another kind of
widely adopted techniques. By using labeled data, a classifier
can be trained and further used to predict unlabeled data.
Specifically, Chen et al. [4] propose a classifier based on
Support Vector Machine (SVM) to recognize abnormal driving
styles, such as swerving and fast U-turn, from smartphone
sensors in real time. Quintero et al. [12] propose a technique
based on Artificial Neural Network (ANN) to detect erratic
driving from OBD and GPS data, and the model is evaluated
on a driving simulator. Hone et al. [6] propose a technique
of data fusion by combing accelerometer data with OBD data
and using a naive Bayes classifier to identify aggressive driving
behaviors. Jaramillo et al. [13] propose an online monitoring
system based on a fuzzy clustering algorithm.

In addition, Johnson et al. [14] use Dynamic Time Warping
(DTW) to detect aggressive driving using smartphone sensor
data. Li et al. [15] construct a driving analysis system via
operation-mode classification. Miyajima et al. [19] propose a
Gaussian Mixture Model (GMM) to model driving behaviors
and further to identify drivers. As foundational research, Con-
stantinescu et al. [17] investigate driving-style categories with
a clustering algorithm. Bolovinou et al. [16] survey techniques
of driving-style recognition for co-operative driving. Banerjee
et al. [22] propose an algorithm named Skill-Aggression-
Quantifier (SAQ) to evaluate driving behaviors. They also
implement a tool named MyDrive based on the SAQ algorithm.
Lei [23] design a framework to detect anomalies in trajectory
behaviors, which can be considered as another kind of driving
behaviors. There are also various other techniques [20], [21]
in this research area.

In summary, although there exist various previous tech-
niques [24]–[26] of unsupervised or semi-supervised anomaly
detection, in driving-analysis scenarios, previous work is
mainly based on the definition of driving behaviors, such
as rules or patterns. To identify a specific type of driving
anomalies, it is usually necessary to define anomaly patterns
and prepare labeled data first. However, in a real-world IoV
scenario, such labeled data are not available because the data
are collected automatically, and thus manually labeling driving
styles is not applicable. In addition, driving behaviors are
status-aware, and the behavioral model should be able to
reflect detailed characteristics of driving. Therefore, based on
an IoV system and the huge volume of collected data, in
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Fig. 2. Overview of SafeDrive.

this article, we propose SafeDrive, an online, data driven, and
status-aware approach for driving-anomaly detection.

III. OVERVIEW OF SafeDrive

Modeling of driving behaviors plays a fundamental role
for detecting driving anomalies but is quite challenging. As
stated earlier, to detect driving anomalies, a behavioral model
should be able to (1) cover variable relationships of driving
data and (2) reflect driving styles quantifiably. From the
data perspective, the model should reflect the relationships
of different types of data and their patterns. To that end, we
propose a state-graph-based behavioral model, as discussed in
detail in this section.

The overview of SafeDrive is shown in Figure 2. The
model contains two main parts: the offline building of a
driving behavioral model and the online detection of driving
anomalies. Overall, we use the model built offline based on
the historical data, to online identify the newly-arrived data
stream.

Offline building of a driving behavioral model. Our basic
idea is to uniformly model the status relations of streamed
vehicle data in a weighted state graph, in which the state
is a term used to represent the value (or its range) of data
attributes. Specifically, we adopt discrete states to quantify
status (data values) and employ weighted edges (connections
between states) to measure the relationship between states. The
states are generated from different sensor data and connected
with each other via weighted edges, in which manner the
model can combine multiple data, even those with different
frequencies. The structure of the graph is constructed based on
statistics of the historical data; as a result, the graph becomes a
detailed behavioral model for fusing different vehicles’ data.
In this way, the graph structure can objectively reflect how
people usually drive under different conditions or statuses
since the weights are generated from real-world data. The
formal definition of SG is given in Definition 1.

Definition 1. SG A SG =< S,E > is a weighted directed
graph, where S is a set of states and E is a set of weighted
edges. A weighted edge e ∈ E corresponds to a kind of
relation between states, where weight w ∈ (0, 1].

Online anomaly detection. In many cloud-based applica-
tions, the collected driving data are often organized as a stream
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Fig. 3. An example of SG in which bidirectional arrows represent correlational
edges and unidirectional arrows represent contextual edges.

or data sequence where each data instance contains different
attributes. The stream, as stated earlier, reflects driving behav-
iors (related to contextual and correlational statuses) where
anomalies may occur. To detect anomalies online, we first split
the newly arrived data instances in data stream into segments
and then map each segment as a temporal sub-graph (TS-SG),
which is further evaluated by being compared with the offline-
generated state graph model. The sub-graph (or segment) that
significantly deviates from the state graph model is considered
as an anomaly. The formal definition of a temporal sub-graph
is given in Definition 2.

Definition 2. TS-SG A TS-SG=< S∗, E∗ > is a temporal
sub-graph of a state graph, generated by a data sub-sequence,
where S∗ ∈ S and E∗ ∈ E. A specific state may repeatedly,
with different time stamps, appear in a TS-SG.

Formally, in SafeDrive, a state s ∈ S represents a category
or a set of data instances. For numerical data, states can
be acquired by discretization, while for categorical data, the
category itself can be used as a state. In our evaluation
(described in Section V), for example, the vehicle speed
is generated into 100 states each of which covers a speed
range of ±1km/h. Acceleration and deceleration behaviors
can be reflected by the transitions between those speed states.
Therefore, the abnormal level of acceleration behaviors can be
evaluated by the connection weight from speed states with a
smaller value to states with higher values. We regard the edge
between the same type of states as the contextual edge, which
models the contextual driving behaviors reflected by the same
kind of OBD data parameters. Note that for numerical data
attributes, a potential risk of discretization is state explosion:
a huge number of states might be generated and thus cause
an extremely large graph. However, in most real-world cases,
only a limited scope of ranges or data sources are used in
practice, largely limiting the scale of the graph.

In SafeDrive, different parameters are separately generated
into different types of states. The co-occurrence relations
between different types of data reflect the correlational-state-
related behaviors. For instance, the speed has a correlation with
RPM, e.g., a high RPM value usually implies high vehicle
speed. To strengthen the expression ability of SafeDrive,
we use correlational weighted edges to represent the co-
occurrence relationships between different types of states. As
a result, two kinds of edges are enclosed in the SG, i.e.,
contextual edges and correlational edges. Figure 3 illustrates
an abstract example of a state graph with two types of states,
Sa and Sb. Note that in SafeDrive, the state graph may contain
cycles since the data in a stream can be repeatable.
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As discussed earlier, the state-graph behavioral model is
built by two steps: state generation and graph construction.
The first step uses discretization to transfer data ranges of
OBD parameters into states, while the second step scans the
historical data set statistically, from which the edges between
states and their weights are derived and calculated. The value
of the weight of a contextual edge is computed by Equation
1 where t is a time stamp referring to the relative temporal
relationship between states. The value of connection weight
denotes the conditional probability of s2 appearing at time
(t+1) when s1 appears at t.

w(s1, s2) = p(s2(t+ 1)|s1(t)) (1)

For correlational relationship between two different types
of states sa and sb, with the objective of presenting a de-
tailed reflection of the correlation, we implement it with two
conditional edges separately, i.e., from sa to sb and from sb

to sa. Their weights can be calculated according to Equation
2. As can been seen in Equation 2, the values of connection
weights denote the probability of sb appearing at time t given
the condition of sa appears at t, and the probability of sa

appearing at time t given the condition of sb appears at t. Note
that the correlational edges between sa and sb are asymmetric
since w(sa, sb) is usually not equal to w(sb, sa).

w(sa, sb) = p(sb(t)|sa(t))
w(sb, sa) = p(sa(t)|sb(t)) (2)

The finally realized model includes 308 states: 100 states for
driving speed from 0km/h to 200km/h, 100 states for engine
RPM from 0 to 5000, 100 states for swing angle from 0-360
degrees, and the remaining 8 states for gear positions.

Building a state graph model that combines different types
of data makes it feasible to model a variety of driving behav-
iors. For example, the speed states and their connections reflect
acceleration and deceleration behaviors, while the connections
between states of speed and gear position reflect the combined
control behaviors of vehicle speed and gear position.

IV. ONLINE ABNORMAL DETECTION WITH SafeDrive

Typically, we evaluate driving behaviors for each short
period of time. To that end, after the SG is built, we use it
to measure the online stream data. As shown in Figure 2, the
stream is split into segments, each of which is a behavior unit
and being mapped to a TS-SG. The segmentation length is
based on the time duration for completing a behavior. Our
empirical investigation suggests that an interval of 10 to 15
seconds is suitable to represent a driving behavior.

Unlike other sub-graphs, a TS-SG contains contextual in-
formation of data stream. In such a graph, a state is allowed
to appear repeatedly given that specific data are likely to be
generated repeatedly. For example, when driving in a stable
status, many of the sampled speed data in the uploading
stream might be the same; hence, the TS-SG may contain some
recurring states with different time stamps.

The states of TS-SG are generated in the same way that
the states of SG are generated. The edges in TS-SG also have
weight values assigned according to their counterpart edges in
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Fig. 4. Temporal sub-graph that contains an anomaly, where a red dashed
line represents an abnormal connection with low probability. (a) Contextual
Anomaly, (b) Correlational Anomaly.

the original state graph. For example, if there is an edge from
sa to sb in a TS-SG, then its weight value equals to the value
of w(sb, sa) in SG. Specifically, if no such edge exists in the
SG, the graph would be updated by SafeDrive automatically.

f(TS − SG) = 1

m

∑
si,sj∈S∗

w(si, sj)
−1 (3)

After the TS-SG of each segment is generated, according to
Equation 3, we compute an anomaly score for the sub-graph
TS-SG, marked as f(TS-SG). Given that the aim of the score
is to filter out those state connections with low probabilities,
we hereby employ an inverse proportional function to con-
struct f(TS-SG). In this manner, we are able to amplify low
probabilities and filter them out. Note that m is the number
of edges in the sub-graph. Basically, we consider TS-SG with
low-probability edges, which usually cause a high value of
f(TS-SG), as an anomaly. The score is compared with δ, a
threshold defined manually. If f(TS − SG) > δ , then the
sub-graph is marked as an anomaly. In practice, it is suggested
to choose the threshold δ according to the distribution of score
f(TS-SG).

Figure 4 shows two abstract examples of sub-graph with
different types of anomalies caused by contextual and cor-
relational relationships, respectively. In real-world driving
scenarios, contextual and correlational driving anomalies may
occur simultaneously because the data are generated by vehicle
components closely working together, and a specific abnormal
driving behavior or operation may cause various anomalies.

By analyzing the structure of the abnormal TS-SG and
evaluating which kind of edge causes a high score value,
data analysts are able to understand the detailed reason for
this anomaly. For example, if the cause of high f(TS-SG)
is vehicle-speed state transition, it signifies that the driver
behaves not so well in accelerating or decelerating. While if
RPM states cause the high score, it signifies that the driver
does not take a smooth control of accelerator pedal or gear
position, suggesting that the driver drives either aggressively
or unskillfully.

Note that due to the limitation of historical data, change
of environment, or people’s driving styles, the structure of
the graph may need to be able to evolve over time. Such
characteristic is known as concept drift in anomaly detection
for streaming data [18]. In this scenario, for example, given
two states, si and sj , when measured in different times,
w(si, sj) could be different. As a result, the abnormal level of
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Algorithm 1 Online Anomaly Detection Algorithm

Input: (1) DS;(2) SG.
Output: (1) Anomaly.

1: SegmentSet ← Split{DS}
2: //split the data sequence into segments
3: for each Segment Seg in SegmentSet do
4: TS-SG ← Match{Seg,SG}
5: matching the Seg with SG, generate a TS-SG
6: calculate f(TS − SG)
7: if(f(TS − SG) > δ)
8: Output Seg and TS-SG as an anomaly
9: end for

sequence si, sj changes over time. Failing to sense or account
for such change could lower the performance of the detector
by causing many false alarms. We address this problem by
designing a module in the cloud named SG-Maintainer to
maintain and update the state graph. In practice, the SG-
Maintainer maintains an array that records the connection
number between states. It updates the array when each data
arrives and then periodically calculates the connection weights
of the SG according to the array.

Given a data sequence DS, the online detection is described
in Algorithm 1.

V. EVALUATION

We comprehensively evaluate the effectiveness and effi-
ciency of SafeDrive. In this section, we first present the data
description used in the evaluation, followed by a detailed
category analysis of the detected abnormal driving behaviors.
We quantitatively evaluate the detection accuracy and com-
putational performance of SafeDrive, and compare SafeDrive
with other related approaches.

A. System and Data Description

We evaluate the performance of SafeDrive on a real-world
IoV system. The system is designed as a cloud-based IoV
architecture in which driving data are collected with OBD de-
vices plugged in the vehicles. Each OBD device has integrated
a wireless communication module to maintain connections
with the back-end server and send the collected data to the
server with an adjustable time interval. Over 29,000 real
vehicles from 60 cities have been connected to the system.
This system collects around 0.2 billion data instances daily.

Table I lists the details of the data attributes used in the
evaluation, including speed, RPM, swerve angle, and gear
position. The OBD connector is capable of sampling various
attributes from vehicles, such as the door status or break pedal
status, and we are aware that employing more parameters may
improve the analysis performance. However, due to the fact
that different vehicle manufacturers use different CAN-BUS
protocols, it is not easy to collect all the parameters from all
the vehicles in the fleet. Hence, to assure the applicability of
the learned model, we construct it based on attributes that
could be collected from almost any kind of vehicles. Also,
such attributes are considered as directly influenced by driving
behaviors, and they can reflect driving behaviors to a large
extent. We use these attributes to evaluate the lateral and

TABLE I
DATA SPECIFICATION

Name Type Range Description
Speed Numerical 0-200km/h Vehicle speed
RPM Numerical 0-8000 Engine round per minute
Swerving Numerical 0-270

degree
The change of vehicle di-
rection

Gear posi-
tion

Enum 8 positions Gear position

longitudinal dynamic of a vehicle. Note that the swerve angle
is not directly collected but is calculated based on position
data collected from the GPS module embedded in the OBD
connector.

The vehicles in this system belong to a chauffeur company
and the drivers are hired after a strict selection, most of whom
are experienced and well trained. Thus, we assume that the
behaviors of most drivers, under most situations, are normal.
Therefore, it makes sense to use the state graph generated in
this system as a benchmark for evaluating abnormal driving.
In the training phase, the data collected in the first month are
used to construct the graph, and then the generated state graph
is deployed to analyze the data of subsequent months.

However, note that in other driving scenarios, it is possible
that SafeDrive may ignore some unsafe driving styles if many
drivers perform unsafe behaviors habitually. For example,
according to a report [27], nearly 35% American drivers are
aggressive. Therefore, some aggressive driving styles might be
identified as normal by our learned model. In such situation,
the training data should be collected in a manner such that
the training data represent only non-aggressive driving styles.
Hence, it is suggested to collect the training data with selected
drivers driving under safe instructions.

SafeDrive is initially implemented as a cloud service be-
cause the infrastructure of the system is designed and imple-
mented with the cloud so that data can be collected. Therefore,
the analysis of driving behaviors is conducted in the cloud.
However, it is known that driving alert is safety-critical and
the application may suffer from network delay; thus, to acquire
a faster reaction, the model is further implemented into a
smartphone application. The smartphone is supposed to be
in the vehicle and maintains communication with the OBD
connector to sample data in a higher frequency, and with
the cloud to update its model. In this manner, the backend
server takes charge of collecting driving data from the fleet
and updating the state graph model, which is updated to the
smartphone application periodically.

The system is running on a cluster with 25 computation
servers, each of which is equipped with 16GB memory and
a quad-core processor. The data stream is uploaded from
each vehicle and collected by 2 TCP servers. Then the data
is loaded into a distributed data bus system. The streaming
computing system takes 5 of the servers. The information from
the cluster and application monitoring shows that the real-time
data uploaded by the vehicles are easily handled by the system,
and the CPU and memory use ratio maintains lower than
20%. To further assess the computational cost of SafeDrive,
we replay the historical data with a much higher ratio on a
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TABLE II
ABNORMAL DRIVING BEHAVIORS DETECTED BY SafeDrive

Anomaly Behavior Corresponding Anomaly in TS-SG
Rapid Acceleration Speed states with small value connect to states with

large value and the connection weights are low.
Sudden Breaking Speed states with large value connect to states with

small value and the connection weights are low.
RPM-Speed
Mismatching

RPM states with large value connect to speed states
with small value and the connection weights are
low.

Over speed Speed states with extremely high value occurs.
These ‘rare states’ often have very low connection
weight with other states.

RPM Anomaly RPM states with extremely high value occurs
(which are rare) and have very low connection
weight with other states.

Rapid Swerving Swerving states with large value connect to speed
states with large value and the connection weights
are low.

Neutral Taxiing Neutral gear position states connect to speed states
with value larger than 0km/h.

personal computer with quad-core Intel processor and 8GB
memory, and the data is processed by SafeDrive implemented
with Java. The simulation result suggests that the model is
able to process millions of data instances per second on that
single computer, indicating that SafeDrive has a potential to
be employed to deal with large-scale IoV scenarios.

B. Anomaly-Category Analysis

The detection results are classified and analyzed based on
driving behavioral semantics. As previously stated, SafeDrive
calculates an anomaly score for each sequence segmentation
based on its inner data relations, and then identifies anomalies
by comparing the score with a threshold. The evaluation
itself does not provide a semantic description for the detected
abnormal behaviors. Therefore, to better understand what kind
of behaviors SafeDrive is capable of identifying, we manually
classify the results according to the structure of the abnormal
TS-SG. Table II lists the categories of abnormal driving
behaviors identified by SafeDrive. Seven kinds of abnormal
driving behaviors can be detected.

SafeDrive is a status-aware anomaly detector in that it evalu-
ates driving behaviors under a specific status. The connection
weight of SG is actually the condition probability. The de-
tected anomalies are classified into two categories: contextual
anomalies and correlational anomalies. This classification is
based on the type of edge that causes a high value of f(TS-
SG). If a contextual edge causes a high score, then the anomaly
is a contextual anomaly. If a correlational edge causes a high
score, then the anomaly is a correlational anomaly.

SafeDrive learns an unsupervised model and automatically
detects anomalies, but the detection results provide no se-
mantic description beyond true or false, limiting the practical
use of the system. Therefore, to provide readable warning
information to drivers, based on Table II and manual analysis,
we use a rule set to translate the detected anomalies into their
corresponding semantic explanations. For example, a rapid
acceleration warning is given if an anomaly is caused by the
transition from a speed state with a small value to a speed
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Fig. 5. Examples of contextual driving anomalies.

state with a large value. This section provides a number of
anomaly examples and discusses how they are detected. Note
that the horizontal axis in Figures 5 and 7 (for showing the
anomaly examples) represents the relative index of the data
instances, reflecting their temporal relationships in the stream.

1) Contextual Abnormal Behaviors: In the uploaded data
stream, the value of RPM or speed is a behavioral attribute
and the time is a contextual attribute. Driving anomalies are
identified by evaluating the behavioral attributes under a spe-
cific context. For driving evaluation, the behavioral attributes
under different contexts are quantified and expressed in an
SG, and hence it is reasonable to apply this model to identify
contextual anomalies.

Figure 5 illustrates two sequences with detected RPM and
acceleration anomalies, as marked by the red boxes. Rapid
acceleration or deceleration (sudden breaking) is the most
straightforward contextual anomaly. They are detected by
SafeDrive for the reason that, given a current speed state,
its connection weight with a much higher speed state is
small, causing a higher anomaly score. These driving styles
are considered as anomalies and are not advocated because
they could cause more fuel consumption and increase vehicle-
component wear. Most drivers usually do not adopt such
driving styles.

The RPM anomaly shown on the left-hand side of Figure 5
suggests that the engine raves are extremely high, being
unusual and considered as an anomaly. These high values
correspond to ‘rare states’ in the state graph because the
probability of incurring such states (values) is extremely low,
meaning that only a few states are connected with those
states and the edges to them have low connection weights.
As discussed earlier, the state graph has 100 initialized RPM
states and does not contain a value exceeding 5000. For
the implementation, when these rare states occur, they are
inserted into the graph by the SG-Maintainer module in case
of concept drift. Although they are inserted into the graph, still
these rare states do not have a close relationship with other
states. The rare RPM states with high values are sensitive to
contextual attributes, further causing them to be identified as
an anomaly. SafeDrive detects several over-speed anomalies
exceeding 150km/h for the same reason. Figure 6 shows the
number of connections of each speed state. It can be seen that
states of higher speed tend to have sparse connections with
other states in the graph. This sparsity characteristic is the
main reason why the anomalies are detected.
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Fig. 6. The connection number of each speed state.

SafeDrive is able to detect this kind of driving anomalies,
whereas other previous approaches have to rely on a com-
prehensive rule set to accomplish such detection. Still, future
work, such as introducing information of location and road
network into SafeDrive, is required to improve detection of
anomalies such as over speed, because the dangerous level
of such anomalies varies depending on the specific road
condition.

2) Correlational Abnormal Behaviors: Correlational be-
haviors exist between co-evolving or correlational sequences,
such as (speed, RPM) and (speed, gear position). A cor-
relational anomaly can be detected when the data deviates
the relationships between the data sequences. As listed in
Table II, there are three kinds of correlational anomalies
detected by SafeDrive, including rapid swerving, RPM-speed
mismatching, and neutral taxiing. SafeDrive is also able to
identify correlational abnormal behaviors by jointly evaluating
two or more types of data attributes.

A representative correlational driving anomaly in this ap-
plication is rapid swerving, which could be identified by
speed and swerving angle. For swerving data, due to a high
possibility of making a turn for a vehicle running on an urban
road network, the extent of swerving angle change by itself
would not provide much value in anomaly detection. But by
combining such information with vehicle speed, SafeDrive can
detect a rapid serving anomaly.

Figure 7 shows examples of detected RPM-speed mismatch-
ing and rapid swerving anomalies. It can be seen from the
mismatching anomaly that the vehicle RPM is too high for the
corresponding vehicle speed. RPM-speed mismatching occurs
when the vehicle speed is low and the driver pushes the gas
pedal aggressively. Fast acceleration usually happens with this
behavior; however, depending on specific road conditions or
gear positions, the vehicle speed does not always dramatically
increase, causing this RPM-speed mismatching. For the rapid
swerving anomaly, the vehicle continuously takes two turns;
before that, the vehicle was running at a fast speed of nearly
100km/h. Although the driver slows down the vehicle in
advance, the speed is still too fast for turning over 100 degrees.
In the state graph model, most high-speed states are connected
with lower swerve angle states, causing SafeDrive to identify
those fast turn anomalies.

For a neutral taxiing anomaly, the gear is put in a neutral
position while the vehicle is still running at a relatively high
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Fig. 7. Examples of correlational driving anomaly.

speed. Such anomaly is another representative correlational
driving anomaly that can be detected by SafeDrive. This
behavior usually occurs on the downhill path or straight road
when the vehicle speed is high. Some drivers’ driving exhibits
such behavior because they think it is a fuel-efficient way of
driving. But in fact, neutral taxiing is not fuel efficient for
most automatic transmission vehicles, and it could also be
dangerous because it increases the breaking distance when
danger happens. This behavior can hardly be detected only
by speed data; however, by combing speed data with gear
position, the detection would be much easier. In the state
graph model, the gear position states with higher values tend
to connect with vehicle speed states with higher value, while
normally neutral position states only connect with the speed
states with values lower than 10km/h.

In the evaluation, note that some abnormal behaviors, such
as fast acceleration and RPM anomalies, could occur simul-
taneously because the data are generated by highly correlated
vehicle components. Due to the complexity of driving envi-
ronments, some behaviors could also occur alone.

C. Quantitative Evaluation

To understand the applicability of SafeDrive, we manually
analyze the detection results of an arbitrarily chosen week.
Figure 8 shows the False Positive Rate (FPR) evaluation of
the model on detecting contextual and correlational anomalies
under different score threshold δ. FPR is the probability that
a normal behavior being detected as abnormal. A long tail
effect can be observed from the curves as the FPR decreases
fast with the increase of threshold δ. When setting a smaller
threshold δ, many false alarms would be raised by SafeDrive
due to the fact that most of the behaviors are normal with a low
score. As shown in the curve, when the threshold is relatively
small, the FPR of correlational anomaly detection is lower
than contextual anomaly detection. Such result shows that
the discrimination between normal and abnormal correlational
behavior is higher than that of contextual behavior.

The trend of FPR curve with threshold also shows the
distribution characteristic of the anomaly score. Therefore,
in practice, it is suggested to set the threshold according to
statistical principles. For example, let δ > µ + 3σ, where µ
is the mean value of anomaly score and σ is the standard
deviation of the score.

Many industrial solutions use rule-based techniques to ad-
dress the problem of driving-behavior detection. Therefore, in
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our evaluation, we first compare the performance of SafeDrive
with a rule-based approach, which is frequently being used as
an industrial solution. In the rule-based approach, the used rule
set contains a number of rules that define the outlier threshold
such as acceleration > 1.5m/s2.

Figure 9 shows the recall evaluation and the comparison
with the rule-based approach. The speed anomaly in the figure
refers to fast acceleration, deceleration, and over speed. In
the evaluation, it is found that the rule-based approach may
have ignored anomalies in several specific situations, such as
the fast acceleration when driving at a high speed requiring a
smaller threshold for the rules, and also the swerving anomaly,
which might need a more comprehensive rule set. It might be
possible to build a comprehensive rule set to perform much
better. However, in some cases, such as driving monitoring,
it might be hard to build such a reasonable rule set manually
because the data might have many attributes and have complex
relationships with each other. SafeDrive fills this gap by
automatically extracting complex relationships from the data
set and representing such relationships with a state graph
model.

Recent research uses Hidden Markov Model (HMM) and
SVM to detect driving anomalies. Thus, we further compare
SafeDrive with an HMM-based detector and an SVM-based
detector. As shown in Table III, with our data set, SafeDrive
outperforms both SVM-based and HMM-based detectors in
the detection accuracy. Given that the data set of SafeDrive

TABLE III
PRECISION OF HMM-BASED DETECTOR AND SafeDrive

Model Contextual Correlational Averave Precision
SafeDrive 94.0% 92.0% 93.0%
HMM 90.0% 88.0% 89.0%
HMM 85.0% 84.0% 84.5%

is too huge to label them all, to train the model, parts of
the training data are labeled as a training data set for HMM
and SVM. The testing result is even lower than 86%. The
performance is improved as we increase the labeled training
set. However, in IoV scenarios, it is hard to prepare sufficient
labeled data to train the model because the collected data vol-
ume is too huge to label. Our SafeDrive approach outperforms
those popular supervised algorithms because SafeDrive does
not require labeled data and thus it can largely utilize the huge
training set to improve the performance. It is believed that
supervised learning algorithms can also produce a better result,
but the high cost in large scale industrial scenarios might not
be desirable.

By fusing different data in a state graph, SafeDrive is
able to detect detailed anomalies from streamed driving data.
However, the fusion of multiple data in one model may also
have negative effects. As the results suggest, the combination
may cover several anomalies because the data may interfere
with each other and thus lower the sensitivity of the model.
In practice, for different data attributes, it is suggested to do a
correlation analysis for different data attributes and to regulate
the state graph by removing the connections between attributes
with no obvious correlations.

Compared with other approaches, SafeDrive has several
main advantages. First, it uses an SG to represent normal
driving behavior. The graph is derived from a large data set,
and thus this metric is more objective. Second, SafeDrive does
not require labeled data to train the detector. Such factor is
important for IoV scenarios because labeled abnormal data
are often hard to acquire. Third, the SG can be updated with
new data arriving, making SafeDrive sensitive and adaptive
to the change of the environment. Finally, SafeDrive has low
computation cost. Its major cost is matching the newly arrived
data as a temporal sub-graph, and such matching can be very
efficiently implemented by indexing. These advantages make
SafeDrive applicable for large-scale IoV scenarios.

However, SafeDrive also has its limitations as driving is not
only status-aware but also environment-aware. Since driving
behaviors are affected by many environment factors such as
traffic and road conditions, and they can be also affected by
other drivers’ behaviors. Therefore, several detected unsafe
behaviors may actually correspond to safe behaviors depend-
ing on specific environments. For example, a hard break to
avoid a collision may be considered as safe behaviors when
the vehicle driving in the front suddenly breaks or there are
some obstacles on the way. Unfortunately, this problem can
hardly be solved solely with vehicle data. Other data types
such as video or radar data should be introduced to sense
environment conditions. In fact, part of our ongoing work is
to develop a mobile-phone-based application to collect and
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analyze driving video and g-sensor data, aiming at extracting
information about road conditions, and thus to enhance the
detection of traffic conditions from driving video data. But
for the time being this application has not been widely
deployed. Nevertheless, to construct a comprehensive driving
sensing platform, it is necessary to fuse different types of
driving data. Such direction is becoming an important research
trend. Another potential limitation of this work could be not
taking personal characteristics into consideration. This model
addresses the problem of the driver’s behavior evolution in
general but does not consider the change of personal behaviors
as one might change his or her driving style over time. The
personalized behavioral analysis should be carefully addressed
because a driver may have a habitual bad driving behavior,
which might be inappropriately considered as normal and thus
be ignored in our solution.

VI. CONCLUSION

We have proposed an online, unsupervised, and status-
aware approach, named SafeDrive, to detect abnormal driving
behaviors from large scale vehicle data. Compared with other
approaches, SafeDrive uses normal behaviors, which are repre-
sented by an SG extracted from a large data set, as benchmarks
for identifying abnormal behaviors. The realtime-uploaded
driving data stream is split into segments by SafeDrive and
each segment is mapped as a TS-SG, which is further compared
with the SG. A real-world IoV system with over 29,000 real
vehicles connected is used to evaluate the performance of
SafeDrive. The results suggest that our model performs well
in detecting various driving anomalies without using labeled
training data. The computational cost of SafeDrive is very low,
and a single PC is capable of dealing with millions of data
instances per second, enabling SafeDrive as an ideal option to
detect driving anomalies from large-scale vehicle data. Still,
future work on analyzing driving behavior patterns by fusing
vehicle data and video, and even road network, needs to be
conducted to provide comprehensive understanding of driving
behaviors.
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