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Firewalls are critical components of network security and have been widely deployed for protecting
private networks. A firewall determines whether to accept or discard a packet that passes through
it based on its policy. However, most real-life firewalls have been plagued with policy faults,
which either allow malicious traffic or block legitimate traffic. Due to the complexity of firewall
policies, manually locating the faults of a firewall policy and further correcting them are difficult.
Automatically correcting the faults of a firewall policy is an important and challenging problem.
In this paper, we first propose a fault model for firewall policies including five types of faults.
For each type of fault, we present an automatic correction technique. Second, we propose the
first systematic approach that employs these five techniques to automatically correct all or part
of the misclassified packets of a faulty firewall policy. Third, we conducted extensive experiments
to evaluate the effectiveness of our approach. Experimental results show that our approach is
effective to correct a faulty firewall policy with three of these types of faults.
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1. INTRODUCTION

1.1 Motivation

Firewalls serve as critical components for securing the private networks of business,
institutions, and home networks. A firewall is often placed at the entrance between
a private network and the outside Internet so that it can check all incoming and
outgoing packets and decide whether to accept or discard a packet based on its
policy. A firewall policy is usually specified as a sequence of rules that follow the
first-match semantics where the decision for a packet is the decision of the first rule
that the packet matches. However, most real-life firewall policies are poorly config-
ured and contain faults (i.e., misconfigurations) [Wool 2004]. A policy fault either
creates security holes that allow malicious traffic to sneak into a private network or
blocks legitimate traffic and disrupts normal business processes. In other words, a
faulty firewall policy evaluates some packets to unexpected decisions. We call such
packets misclassified packets of a faulty firewall policy. Therefore, it is important to
develop an approach that can assist firewall administrators to automatically correct
firewall faults. Besides, the automatic fault fixing techniques are under-investigated
in many areas of computer and networking, and these techniques are very important
for building self-organizing systems and autonomic computing systems. Because in
reality, we cannot avoid errors or faults in any computer or networking systems.
Without automatic fault fixing techniques, one fault may cause a system to fail.
Thus, we hope to attract attention from the research community on this important,
yet challenging, problem.

1.2 Technical Challenges

There are three key challenges for automatic correction of firewall policy faults.
First, it is difficult to determine the number of policy faults and the type of each
fault in a faulty firewall. The reason is that a set of misclassified packets can
be caused by different types of faults and different number of faults. Second, it is
difficult to correct a firewall fault. A firewall policy may consist of a large number of
rules (e.g., thousands of rules) and each rule has a predicate over multi-dimensional
fields. Locating a fault in a large number of rules and further correcting it by
checking the field of each dimension are two difficult tasks. Third, it is difficult to
correct a fault without introducing other faults Due to the first-match semantics of
firewall policies, correcting a fault in a firewall rule affects the functionality of all
the subsequent rules, and hence may introduce other faults into the firewall policy.

1.3 Our Approach

To correct a faulty firewall policy, essentially we need to correct all misclassified

packets of the policy such that all these packets will be evaluated to expected
decisions. However, it is not practical to manually find every misclassified packet
and then correct it due to the large number of misclassified packets of the faulty
policy.
The idea of our approach is that we first find some samples of all the misclassified

packets and then use these samples to correct all or part of the misclassified packets
of the faulty policy. We propose the first comprehensive fault model for firewall
policies. The proposed fault model includes five types of faults, wrong order, missing

rules, wrong decisions, wrong predicates, and wrong extra rules. For each type of
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fault, we propose a correction technique based on the passed and failed tests of a
firewall policy. Passed tests are packets that are evaluated to expected decisions.
Failed tests are packets that are evaluated to unexpected decisions. Note that the
failed tests are samples of all misclassified packets.
To generate passed and failed tests, we first employ automated packet genera-

tion techniques [Hwang et al. 2008] to generate test packets for a faulty firewall
policy. The generated packets can achieve high structural coverage, i.e., covering
all or most rules [Hwang et al. 2008]. Second, administrators classify these pack-
ets into passed and failed tests by checking whether their evaluated decisions are
correct. Identifying passed/failed tests can be automated in some situations, e.g.,
when policy properties are written, or multiple implementations of the policy are
available. Even if this operation cannot be done automatically, manual inspec-
tion of passed/failed tests is also common practice for ensuring network security
in industry. For example, applying some existing vulnerability testing tools, such
as Nessus [Nessus 2004] and Satan [Satan 1995], does need manual inspection. In
this paper, our goal is to automatically correct policies after we have passed/failed
packets. Identifying passed/failed tests is out of scope of this paper.
Given passed and failed tests, correcting a faulty firewall policy is still difficult

because it is hard to identify the number of faults and the type and the location
of each fault in the firewall policy. To address this problem, we propose a greedy
algorithm. In each step of the greedy algorithm, we try every correction technique
and choose one technique that can maximize the number of passed tests. We then
repeat this step until there are no failed tests.
Our proposed approach is not guaranteed to correct all faults in a firewall policy

because it is practically impossible unless the formal representation of the policy
is available. However, in practice, most administrators do not have such formal
representations of their firewall policies. To correct a faulty firewall policy without
its formal representation, administrators need to examine the decisions of all 2104

packets1 and manually correct each of misclassified packets; doing so is practically
impossible. This paper represents the first step towards automatic correction of fire-
wall policy faults. We hope to attract more attention from the research community
on this important and challenging problem.

1.4 Key Contributions

Our major contributions can be summarized as below:

(1) We propose the first systematic approach that can automatically correct all or
part of the misclassified packets of a faulty firewall policy.

(2) We conduct extensive experiments on real-life firewall policies to evaluate the
effectiveness of our approach.

1.5 Summary of Experimental Results

We generated a large number of faulty firewall policies from 40 real-life firewalls,
and then applied our approach over each faulty policy and produced the fixed policy.

1A packet typically includes five fields, source IP (32 bits), destination IP (32 bits), source port
(16 bits), destination port (16 bits), and protocol type (8 bits). Thus, the number of possible
packets is 232+32+16+16+8 = 2104.
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Faulty policies with k faults (1≤k≤5) were tested. These faults in a faulty policy
were of the same type. The experimental results show that for three types of faults,
wrong order, wrong decisions, and wrong extra rules, our approach can effectively
correct misclassified packets. When k≤4, our approach can correct all misclassified
packets for over 53.2% faulty policies. This result is certainly encouraging and we
hope that this paper will attract more attention from the research community to
this important problem. For two other types of faults, missing rules and wrong
predicates, our approach does not achieve satisfactory results, deserving further
study.

2. RELATED WORK

2.1 Firewall Policy Fault Localization

Fault localization for firewall policies has drawn attention recently [Hwang et al.
2009; Marmorstein and Kearns 2007]. Marmorstein et al. proposed a technique
to find failed tests that violate the security requirement of a firewall policy and
further use the failed tests to locate two or three faulty rules in a firewall pol-
icy [Marmorstein and Kearns 2007]. However, they did not provide a systematic
methodology to identify faulty rules according to different types of firewall faults,
e.g., wrong order of firewall rules. Furthermore, they applied their approach only
to a simple firewall policy (with 5 rules), which cannot strongly demonstrate the
effectiveness of their approach.
Our previous work proposed a technique to locate a fault in a firewall policy

[Hwang et al. 2009]. The approach first analyzes a faulty firewall policy and its
failed tests and then finds the potential faulty rules based on structural coverage
metrics2. However, this work has three limitations: (1) it considers only two types
of faults, which are wrong decisions and wrong predicates, while a firewall policy
may contain other types of faults; (2) it considers only a firewall policy with a single
fault, while a firewall policy may contain multiple faults; (3) it does not propose a
technique to correct the faults in a firewall policy.

2.2 Firewall Policy Analysis and Testing

Firewall policy analysis tools, i.e., conflict detection, anomaly detection, and change
impact analysis, have been proposed in prior work (e.g., [Al-Shaer and Hamed 2004;
Baboescu and Varghese 2002; Hari et al. 2000; Tang et al. 2008; Liu 2007; Yuan
et al. 2006]). Tools for detecting potential firewall policy faults by conflict detection
were proposed in [Baboescu and Varghese 2002; Hari et al. 2000; Tang et al. 2008].
Similar to conflict detection, some other tools were proposed for detecting anomalies
in a firewall policy [Al-Shaer and Hamed 2004; Yuan et al. 2006]. Detecting conflicts
or anomalies is helpful for finding faults in a firewall policy. However, the number
of conflicts or anomalies could be too large to be manually inspected. Therefore,
correcting a faulty policy is difficult by using these firewall policy analysis tools.
Change impact analysis of firewall policies has also been studied [Liu 2007]. Such
tools are helpful to analyze the impact after changing a firewall policy, but no
algorithm has been presented for correcting a faulty firewall policy.

2Firewall policy coverage is measured based on which entities (e.g., rules or fields) are involved
(called “covered”) during packet evaluation.
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Firewall policy testing tools have also been explored in prior work (e.g., [CERT
2001; Jürjens and Wimmel 2001; Lyu and Lau 2000; Hoffman and Yoo 2005; Al-
Shaer et al. 2009]). Such tools focus on injecting packets as tests into a firewall
to detect faults in the firewall policy. If the evaluated decision of a packet is not
as expected, faults in the firewall policy are exposed. However, because a firewall
policy may have a large number of rules and the rules often conflict, it is difficult
to manually locate faults and correct them based on the passed and failed tests.

2.3 Software Fault Localization and Fixing

Fault localization and fixing have been studied for years in the software engineering
and programming language communities. Such research focuses on locating and
fixing a fault in a software program. For example, Zeller et al. proposed a technique
based on delta debugging, which isolates causes based on difference of program runs
[Zeller 2002]. While their approach finds likely fault locations (e.g., fault-inducing
variables among set of variables) based on difference of program runs, our approach
finds and fixes likely fault locations based on an increase in the number of passed
tests. Furthermore, using delta debugging in the context of firewall policies is not
effective. Delta debugging relies on dependency information (cause-effect chain) of
variables. However, in our context, values assigned for fields do not change over
evaluation and there is no dependency (i.e., data dependency) among the fields of
the firewall policy.

3. BACKGROUND

3.1 Firewall Policies

A firewall policy is a sequence of rules 〈r1, · · · , rn〉 and each rule is composed of
a predicate over d fields, F1, · · · , Fd and a decision for the packets that match
the predicate. Figure 1 shows a firewall policy, whose format follows Cisco Access
Control Lists [Cisco Reflexive ACLs ].
A field Fi is a variable of finite length (i.e., of a finite number of bits). The domain

of field Fi of w bits, denoted as D(Fi), is [0, 2w−1]. Firewalls usually check five
fields, source IP (32 bits), destination IP (32 bits), source port (16 bits), destination
port (16 bits), and protocol type (8 bits). For example, the domain of the source
IP is [0, 232 − 1]. Note that in this paper we only consider the stateless firewalls
which make decisions by checking the packet itself. Stateful firewalls, which make
decisions by checking not only the packet but also the packets that were accepted
previously, are out of the scope of this paper.
A packet p over the d fields F1, · · · , Fd is a d-tuple (x1, · · · , xd) where each xi

(1 ≤ i ≤ d) is an element of D(Fi). An example packet over these five fields is
(1.2.3.5, 192.168.1.1, 78, 25, TCP).
A predicate defines a set of packets over the fields F1, · · · , Fd, and is specified as

F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd. Each Si is a subset of D(Fi) and is specified as either
a prefix or a range. A prefix {0, 1}k{∗}w−k (with k leading 0s or 1s) denotes the
range [{0, 1}k{0}w−k, {0, 1}k{1}w−k]. For example, prefix 01** denotes the range
[0100, 0111].
A decision is an action for the packets that match the predicate of the rule.

For firewalls, the typical decisions include accept, discard, accept with logging, and
discard with logging.
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Note that some firewall policies may not follow the above firewall model. For
example, a Linux firewall policy may consist of multiple chains and each chain
consists of a sequence of rules with first-match semantics. The decision of a rule
could be jump to other chain. The stateless firewall policy in Linux can also be
converted to our firewall policy model. For the rules in each chain of a Linux firewall
policy, it is trivial to convert their predicates into our firewall model. Without loss
of generality, we assume that the decision of a rule ri in chain c1 is jump to chain

c2 and chain c2 consists of 2 rules rj1 , rj2 with the default decision discard. Rule ri
in chain c1 and chain c2 are shown as follows.

Rule ri in chain c1
ri : F1 ∈ Si

1 ∧ · · · ∧ Fd ∈ Si
d → jump to c2

Chain c2 with the default decision discard

rj1 : F1 ∈ Sj1
1 ∧ · · · ∧ Fd ∈ Sj1

d → decisionj1

rj2 : F1 ∈ Sj2
1 ∧ · · · ∧ Fd ∈ Sj2

d → decisionj2

Then we can convert rule ri to three rules ri1 , ri2 , ri3 as follows:

ri1 : F1 ∈ (Si
1 ∩ Sj1

1 ) ∧ · · · ∧ Fd ∈ (Si
d ∩ Sj1

d ) → 〈decisionj1 〉

ri2 : F1 ∈ (Si
1 ∩ Sj2

1 ) ∧ · · · ∧ Fd ∈ (Si
d ∩ Sj2

d ) → 〈decisionj2 〉
ri3 : F1 ∈ Si

1 ∧ · · · ∧ Fd ∈ Si
d → 〈discard〉

It is trivial to prove that the functionality of the three rules ri1 , ri2 , ri3 is equivalent
to that of rule ri with the decision jump to c2. Thus, we can replace ri with
ri1 , ri2 , ri3 in chain c1. Repeat the above steps for rules with the decision jump

to other chain. Finally we can convert a stateless Linux firewall policy into our
firewall model.
A packet (x1, · · · , xd) matches a rule F1 ∈ S1 ∧ · · · ∧Fd ∈ Sd → 〈decision〉 if and

only if the condition x1 ∈ S1∧· · ·∧xd ∈ Sd holds. For example, the packet (1.2.3.5,
192.168.1.1, 78, 25, TCP) matches the rule r1 in Figure 1.
A rule F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd → 〈decision〉 is called a singleton rule if and only

if each Si has only one element.

Rule Src. IP Dest. IP Src. Port Dest. Port Prot. Dec.

r1 1.2.3.* 192.168.1.1 * 25 TCP accept
r2 * * * * * discard

Fig. 1. An example firewall

A firewall policy 〈r1, · · · , rn〉 is complete if and only if for any packet p, there is
at least one rule that p matches. To ensure that a firewall policy is complete, the
predicate of the last rule is usually specified as F1 ∈ D(F1)∧ · · · ∧Fd ∈ D(Fd), i.e.,
the last rule r2 in Figure 1.
Two rules in a firewall policy may overlap; that is, there exists at least one packet

that matches both rules. Two rules may conflict ; that is, the two rules not only
overlap but also have different decisions. For example, in Figure 1, two rules r1, r2
overlap and conflict because the packet (1.2.3.5, 192.168.1.1, 78, 25, TCP) matches
r1 and r2, and the decisions of r1 and r2 are different.
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Firewalls typically resolve conflicts by employing the first-match semantics where
the decision for a packet p is the decision of the first (i.e., highest priority) rule that
p matches in the firewall policy. Thus, for the packet (1.2.3.5, 192.168.1.1, 78, 25,
TCP), the decision of the firewall policy in Figure 1 is accept.

3.2 Packet Generation

To check the correctness or detect faults in a firewall policy, administrators need
to generate test packets to evaluate that the policy is correct. In our previous
work [Hwang et al. 2008], we developed automated packet generation techniques to
achieve high structural coverage. One cost-effective technique is packet generation
based on local constraint solving. In this paper, we use this technique to generate
packets for firewall policies. This technique statically analyzes rules to generate
test packets. Given a policy, the packet generator analyzes the predicate in an
individual rule and generates packets to evaluate the constraints (i.e., rule fields)
to be true or false. The generator first constructs constraints to evaluate each
field in a rule to be either false or true, and then it generates a packet based on
the concrete values derived by constraint solving. For example, given rule r1 in
Figure 1, the generator analyzes r1 and generates a packet (e.g., packet (1.2.3.5,
192.168.1.1, 23447, 25, TCP)) to cover r1; this packet evaluates each of r1’s fields
to be true during evaluation. Then, the generator analyzes r2 and generates a
packet (e.g., packet (2.2.3.5, 192.168.1.1, 23447, 26, UDP)) to cover r2; this packet
evaluates each of r2’s fields to be true during evaluation. When firewall policies
do not include many conflicts, this technique can effectively generate packets to
achieve high structural coverage.

4. A FAULT MODEL OF FIREWALL POLICES

A fault model of firewall policies is an explicit hypothesis about potential faults in
firewall policies. Our proposed fault model includes five types of faults.

(1) Wrong order. This type of fault indicates that the order of rules is wrong.
Recall that the rules in a firewall policy follow the first-match semantics due to
conflicts between rules. Misordering firewall rules can misconfigure a firewall
policy. Wrong order of rules is a common fault caused by adding a new rule
at the beginning of a firewall policy without carefully considering the order
between the new rule and the original rules. For example, if we swap r1 and r2
in Figure 1, all packets will be discarded.

(2) Missing rules. This type of fault indicates that administrators need to add new
rules to the original policy. Usually, administrators add a new rule regarding a
new security concern. However, sometimes they may forget to add the rule to
the original firewall policy.

(3) Wrong predicates. This type of fault indicates that predicates of some rules are
wrong. When configuring a firewall policy, administrators define the predicates
of rules based on security requirements. However, some special cases may be
overlooked.

(4) Wrong decisions. This type of fault indicates that the decisions of some rules
are wrong.
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(5) Wrong extra rules. This type of fault indicates that administrators need to
delete some rules from the original policy. When administrators make some
changes to a firewall policy, they may add a new rule but sometimes forget to
delete old rules that filter a similar set of packets as the new rule does.

In this paper, we consider faults in a firewall policy that can be represented as
a set of misclassified packets. Under this assumption, given a set of misclassified
packets, we can always find one or multiple faults in our fault model that can
generate the same set of misclassified packets. One simple way to find such faults
is that for each misclassified packet, we consider that the faulty policy misses a
singleton rule for this misclassified packet. Therefore, we can always find multiple
missing rules faults that can generate the same set of misclassified packets.
The correction techniques for these five types of faults are called wrong-order

correction, missing-rule correction, wrong-predicate correction, wrong-decision cor-

rection, and wrong-extra-rule correction, respectively. Each operation in these five
techniques is called a modification.

5. AUTOMATIC CORRECTION OF FIREWALL POLICY FAULTS

Normally, a faulty firewall policy is detected when administrators find that the pol-
icy allows some malicious packets or blocks some legitimate packets. Because the
number of these observed malicious packets or legitimate packets is typically small,
these packets may not provide enough information about the faults in the firewall
policy, and hence correcting the policy with these packets is difficult. Therefore, af-
ter finding a faulty firewall policy, we first employ the automated packet generation
techniques [Hwang et al. 2009], which can achieve high structural coverage, to gener-
ate test packets for the faulty policy. Second, administrators identify passed/failed
tests automatically or manually. According to security requirements for the firewall
policy, if the decision of a packet is correct, administrators classify it as a passed
test; otherwise, administrators classify it as a failed test. In some situations, e.g.,
when some policy properties are written, classifying some test packets can be auto-
mated. Manual inspection is also a common practice for ensuring network security
in industry. For example, applying some existing vulnerability testing tools, such
as Nessus [Nessus 2004] and Satan [Satan 1995], does need manual inspection. Our
goal is to automatically correct policies after we have passed/failed packets. Iden-
tifying passed/failed tests is out of the scope of this paper.
Figure 2 shows a faulty firewall policy and its passed and failed tests. This policy

includes 5 rules over two fields F1 and F2, where the domain of each field is [1,10].
We use a as a shorthand for “accept” and d as a shorthand for “discard”. For

the passed and failed tests, we use a and d to denote expected decisions. We assign
each test a distinct ID pi (1≤i≤8).
Given passed and failed tests, it is difficult to automatically correct a faulty

firewall policy for three reasons. First, it is difficult to locate the faults because a
firewall policy may consist of a large number of rules, and the rules often conflict.
Second, before correcting a fault, we need to first determine the type of the fault
and then use the corresponding correction technique to fix this fault. However,
it is difficult to determine the type of a fault because the same misbehavior of a
firewall policy, i.e., the same set of misclassified packets, can be caused by different
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r1 : F1 ∈ [1, 5] ∧ F2 ∈ [1, 10] → a

r2 : F1 ∈ [1, 6] ∧ F2 ∈ [3, 10] → a

r3 : F1 ∈ [6, 10] ∧ F2 ∈ [1, 3] → d

r4 : F1 ∈ [7, 10] ∧ F2 ∈ [4, 8] → a

r5 : F1 ∈ [1, 10] ∧ F2 ∈ [1, 10] → d

(a) An example faulty firewall policy

p1 : (3, 2) → a

p2 : (5, 7) → a

p3 : (6, 7) → a

p4 : (7, 2) → d

p5 : (8, 10) → d

(b) A set of passed tests

p6 : (6, 3) → d

p7 : (7, 9) → a

p8 : (8, 5) → d

(c) A set of failed tests

Fig. 2. An example faulty firewall policy with its failed and passed tests

types of faults. Third, it is difficult to correct a fault. Due to the first-match
semantics, changing a rule can affect the functionality of all the subsequent rules.
Without thorough consideration, correcting a fault may introduce a new fault into
the firewall policy.
In this paper, we formalize the problem of correcting a faulty firewall policy as

follows.

5.1 Problem Statement

Given a faulty firewall policy FW , a set of passed tests PT , and a set of failed tests
FT , where |PT |≥0 and |FT |>0, find a sequence of modifications 〈M1, · · · ,Mm〉,
where Mj (1≤j≤m) denotes one modification, such that the following two condi-
tions hold:

(1) After applying 〈M1, · · · ,Mm〉 to FW , all tests in PT ∪FT become passed tests.

(2) No other sequence that satisfies the first condition has a smaller number of
modifications than m.

Correcting a faulty firewall policy with the minimum number of modifications is
a global optimization problem and hard to solve because the policy may consist of
a large number of rules, and different combinations of modifications can be made.
To address this problem, we propose two algorithms: a greedy algorithm and its
improved algorithm that considers the preference of different modifications.

5.2 Greedy Algorithm

In the greedy algorithm, for each step, we correct one fault in the policy such that
the number of passed tests increases (in other words, the number of failed tests
decreases). To determine which correction technique should be used at each step,
we try the five correction techniques. Then, we calculate the number of passed tests
for each type of modifications and choose the correction technique that corresponds
to the maximum number of passed tests. We then repeat the preceding step until
there are no failed tests. Figure 3 illustrates this greedy algorithm for automatic
correction of firewall policy faults.
Our greedy algorithm can guarantee to find a sequence of modifications that

satisfies the first condition in the problem statement. For each step, the greedy
algorithm can increase at least one passed test because of themissing-rule correction
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Fig. 3. The greedy algorithm for automatically correcting a faulty firewall policy

technique. Using this technique, we can convert each failed test to a singleton rule
and then add these singleton rules at the beginning of the faulty firewall policy.
For example, convert the failed test (6, 3) → d in Figure 2(c) to a singleton rule
F1 ∈ [6, 6]∧F2 ∈ [3, 3] → d. Note that adding a singleton rule for each failed test is
the worst case of our greedy algorithm, i.e., the maximum number of modifications,
while in most cases our greedy algorithm rarely generates singleton rules. According
to our missing-rule correction technique in Section 7, the worst case happens if
and only if in each round of our greedy algorithm two conditions hold: (1) only
missing-rule correction technique can increase the number of passed tests while
other four fixing techniques cannot; (2) missing-rule correction technique cannot
add a firewall rule, which is not a singleton rule, to correct multiple failed tests
without changing passed tests to failed tests. These two conditions are very difficult
to achieve in reality. However, the greedy algorithm cannot guarantee to find
the global optimization solution that satisfies the second condition in the problem
statement.

5.3 Improved Algorithm

In the improved algorithm, we consider correction technique preferences over five
correction techniques. We prefer to correct the faulty firewall policy using three
techniques, wrong-order correction, wrong-decision correction, and wrong-extra-
rule correction. Figure 4 illustrates the improved algorithm for automatic correc-
tion of firewall policy faults. In this algorithm, for each step, we first try three
techniques, wrong-order correction, wrong-decision correction, and wrong-extra-
rule correction, and then find out which one can decrease the maximum number of
failed tests. If none of them can decrease the number of failed tests, we try two
other correction techniques, missing-rule correction and wrong-predicate correction.
Note that administrators can supervise this process. For each step, adminis-

trators can choose their preferred technique for correcting a fault in the policy.
If administrators do not want to supervise the process, our greedy algorithm can
automatically produce the fixed policy.
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Fig. 4. The improved algorithm for automatically correcting a faulty firewall policy

Further note that without any restriction, our automatic approach for correcting
firewall policy faults could introduce potential faults in the firewall policy. However,
an administrator typically has some critical requirements when he/she designs the
firewall policy. These critical requirements define that some packets should be
accepted or discarded. The administrator can restrict the proposed approach not
to violate the critical requirements. Consider a critical requirement that a data
server in an organization should not be accessed by any outside connection. For
each step of our greedy algorithm, if the modification generated in this step violates
the requirement, the approach can simply choose the next modification that does
not violate the requirement.
In the next five sections, we discuss our scheme for each correction technique,

respectively. Recall that the last rule of a firewall policy is usually specified as
F1∈D(F1)∧· · ·∧Fd∈D(Fd) → 〈decision〉. Checking whether the last rule is correct
is trivial. Therefore, we assume that the last rule of a firewall policy is correct in
our discussion.

6. WRONG-ORDER CORRECTION

Due to the first-match semantics, changing the order of two rules in a firewall policy
(i.e., swapping two rules) affects its functionality. Therefore, after swapping two
rules of a firewall policy, we need to test and reclassify all passed tests and failed
tests. It is computationally expensive to directly swap every two rules in a faulty
firewall policy and then find the two rules such that swapping them can maximize
colorredthe increase in the number of passed tests. Given a firewall policy with n
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rules, without considering the last rule, there are (n − 1)(n − 2)/2 pairs of rules
that can be swapped. Furthermore, for each swapping, we need to reclassify all
passed and failed tests. Assume that the number of passed tests is m1 and the
number of failed tests is m2. The computational cost of this brute-force way is
(n− 1)(n− 2)(m1 +m2)/2.
To address this challenge, we use all-match firewall decision diagrams (all-match

FDDs) [Liu et al. 2008] as the core data structure. An all-match FDD is a canonical
representation of a firewall policy such that any firewall policy can be converted
to an equivalent all-match FDD. Figure 5 shows the all-match FDD converted
from the faulty firewall policy in Figure 2. An all-match FDD for a firewall policy
FW :〈r1, · · · , rn〉 over attributes F1, · · · , Fd is an acyclic and directed graph that
has the following five properties:

(1) There is exactly one node that has no incoming edges. This node is called the
root. The nodes that have no outgoing edges are called terminal nodes.

(2) Each node v has a label, denoted as F (v). If v is a nonterminal node, then
F (v) ∈ {F1, · · · , Fd}. If v is a terminal node, then F (v) is a list of integer values
〈i1, · · · , ik〉 where 1≤i1<· · ·<ik≤ n.

(3) Each edge e:u→v is labeled with a nonempty set of integers, denoted as I(e),
where I(e) is a subset of the domain of u’s label (i.e., I(e)⊆D(F (u))). The
set of all outgoing edges of a node v, denoted as E(v), satisfies two conditions:
(1) consistency: I(e)∩I(e′)=∅ for any two distinct edges e and e′ in E(v); (2)
completeness :

⋃
e∈E(v) I(e)=D(F (v)).

(4) A directed path from the root to a terminal node is called a decision path.
No two nodes on a decision path have the same label. Given a decision path
P :(v1e1 · · · vdedvd+1), the matching set of P is defined as the set of all pack-
ets that satisfy F (v1)∈I(e1)∧· · ·∧F (vd)∈I(ed). We use C(P) to denote the
matching set of P .

(5) For any decision path P : (v1e1 · · · vdedvd+1) where F (vd+1) = 〈i1, · · · , ik〉, if
C(P) ∩ C(rj) 6= ∅, C(P) ⊆ C(rj) and j ∈ {i1, · · · , ik}.

For ease of presentation, we use {P1, · · · ,Ph} to denote the all-match FDD of the
firewall policy FW . The following theorem is based on this definition, the proof of
which is in Appendix A.

Theorem 6.1. Given two firewall policies FW1:〈r11 ,· · ·,r
1
n〉 and FW2:〈r21 ,· · ·,r

2
n〉,

and their all-match FDDs {P1
1 ,· · ·, P

1
h1
} and {P2

1 ,· · ·,P
2
h2
}, if {r11,· · ·,r

1
n} = {r21,· · ·,r

2
n},

without considering terminal nodes, {P1
1 , · · · ,P

1
h1
} = {P2

1 , · · · ,P
2
h2
}.

According to Theorem 6.1, for swapping two rules, we only need to swap the
sequence numbers of the two rules in the terminal nodes of the all-match FDD. For
finding two rules such that swapping them maximizes the number of passed tests,
our correction technique includes five steps:

(1) Convert the policy to an equivalent all-match FDD.

(2) For each failed test p, we find the decision path P : (v1e1 · · · vdedvd+1) that
matches p (i.e., p ∈ C(P)). Let 〈i1, · · · , ik〉 (1≤i1<· · ·<ik≤n) denote F (vd+1).
Note that the decision of ri1 is not the expected decision for the failed test p;
otherwise, p should be a passed test.
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(3) Find the rules in {ri2 , · · · , rik} whose decisions are the expected decision of p.
Suppose {rj1 , · · · , rjg} are those rules that we find for p, where {rj1 , · · · , rjg}
⊆ {ri2 , · · · , rik}. Because the decision of rules in {rj1 , · · · , rjg} is the expected
decision for p, swapping ri1 with any rule in {rj1 , · · · , rjg} changes p to a passed
test. Note that because the last rule of a firewall is a default rule, colorredit is
pointless to swap it with any preceding rule. If rjg is the last rule of the faulty
firewall (i.e., jg = n), we delete rjg from {rj1 , · · · , rjg}.

(4) For all failed tests, we find out all rule pairs such that swapping two rules in a rule
pair may increase the number of passed tests. Then we swap two rules in each
rule pair. Note that swapping two rules in a rule pair changes the corresponding
failed test to a passed test. However, this modification may change some passed
tests to failed tests. Therefore, after swapping two rules in each rule pair, we
reclassify all tests and calculate the number of passed tests.

(5) Find a rule pair such that swapping the two rules in this pair can maximize the
number of passed tests.

Note that if there are more than one rule pair such that swapping two rules in each
pair can maximize colorredthe increase in the number of passed tests, we choose the
rule pair that affects the functionality of the minimum number of original firewall
rules. Let (ri1 , rj1 ), · · · , (rig , rjg ) denote these rule pairs, where ik≤jk (1≤k≤g).
Due to the first-match semantics, we choose the rule pair (ri, rj) where i is the
maximum integer in {i1, · · · , ig}.

[1, 5] [7, 10]
F1

[1, 2]

F2 F2

[1,2]

F2

[3, 10]
[3,3]

[4,10] [1,3]
[4,8]

[9,10]

[6, 6]

1,5 1,2,5 3,5 2,3,5 2,5 3,5 4,5 5

Fig. 5. All-match FDD converted from the faulty firewall policy in Figure 2

For the faulty firewall policy in Figure 2, we first convert the faulty firewall policy
to an all-match FDD, which is shown in Figure 5. Second, for each failed test, we
find the corresponding rule pairs. In the example, we find only one rule pair (r2, r3)
for the failed test (6, 3) → d. Third, after swapping r2 and r3, (6, 2) → d becomes
a passed test and no passed test changes to a failed test. Therefore, swapping r2
and r3 increases the number of passed tests by 1.

7. MISSING-RULE CORRECTION

There are two challenges for adding a rule to a faulty firewall policy. First, given a
faulty firewall policy with n rules, there are n positions where we can add a rule.
Determining which position is the best for adding a rule is a challenge. Second,
because the predicate of a firewall rule is composed of multiple fields and the num-
ber of possible values in each field is typically large, brute-force addition of every
possible rule for each position is computationally expensive. Considering a firewall
rule with five fields (i.e., 32-bit source IP, 32-bit destination IP, 16-bit source port,
16-bit destination port, and 8-bit protocol type) and two possible decisions (i.e.,
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accept and discard), the number of possible firewall rules that we can add for each
position is O(2204), because for each field with d-bit length, the number of pos-
sible ranges is (22d)=O(22d−1). Furthermore, after adding a rule, we still need to
reclassify all passed and failed tests.
The basic idea of our solution is that for each position, we first find all possible

failed tests that can be corrected by adding a rule at this position, and then compute
a rule that matches the maximum number of failed tests. To avoid changing a passed
test to a failed test, the rule that we compute does not match any possible passed
test. More formally, given a faulty firewall policy with n rules 〈r1, · · · , rn〉, let
position i (1≤i≤n) denote the position between ri−1 and ri. Note that we cannot
add a rule after rn because rn is the default rule. Our correction technique for
adding a rule includes five steps:

(1) For each position i, find a set of passed tests PT (i) and a set of failed tests FT (i)
such that colorredno test p in PT (i)∪FT (i) matches any rule rj (1 ≤ j ≤ i− 1).
Note that when i = 1, rj does not exist. In such case, PT (1) = PT and FT (1) =
FT . Due to the first-match semantics, if a failed test p matches a rule ri, adding
a rule after rule ri cannot change the decision of p and hence cannot correct p.
Therefore, the set FT (i) includes all possible failed tests that we can correct by
adding a rule at position i.

(2) Based on the expected decisions of tests, divide PT (i) into two sets PT (i)a and
PT (i)d where PT (i)a consists of all passed tests with expected decision accept

and PT (i)d consists of all passed tests with discard. Similarly, we divide FT (i)
into two sets FT (i)a and FT (i)d. The purpose is that adding a rule cannot
correct two failed tests with different expected decisions.

(3) For set FT (i)a, compute a rule with decision accept, denoted as r′i,a, that satisfies
two conditions:

(a) No passed test in PT (i)d matches r′i,a.

(b) Under Condition (a), r′i,a matches the maximum number of failed tests in
FT (i)a.

The algorithm for computing rule r′i,a based on FT (i)a and PT (i)d is discussed
in Section 7.1.

(4) Similar to Step 3, for set FT (i)d, compute a rule with decision discard, denoted
as r′i,d, that satisfies two conditions:

(a) No passed test in PT (i)a matches r′i,d.

(b) Under Condition (a), r′i,d matches the maximum number of failed tests in
FT (i)d.

(5) Find a rule r′j, decision (1≤j≤n) that corrects the maximum number of failed tests
and then add r′j, decision to position j.

Note that if there is more than one rule that can correct the maximum number of
failed tests, we choose rule r′j, decision where j is the maximum integer among these
rules such that adding this rule affects the functionality of the smallest number of
original rules in a firewall policy.
For the faulty policy in Figure 2, Figure 6 shows the four sets PT (i)a, PT (i)d,

FT (i)a, and FT (i)d for each rule of the policy.
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PT (i)a PT (i)d FT (i)a FT (i)d
r1 p1, p2, p3 p4, p5 p7 p6, p8

r2 p3 p4, p5 p7 p6, p8

r3 – p4, p5 p7 p8

r4 – p5 p7 p8

r5 – p5 p7 –

Fig. 6. PT (i)a, PT (i)d, FT (i)a, and FT (i)d for each rule in Figure 2

7.1 Computing Rules r′i,a and r′i,d

Without loss of generality, in this section, we discuss the algorithm for computing
r′i,a based on a set of failed tests FT (i)a and a set of passed tests PT (i)d. First,
we generate a rule that can match all failed tests in FT (i)a. Suppose that the
predicate of a firewall rule is composed of d fields. For each field j (1≤j≤d), assume
that xj is the minimum value of all failed tests in FT (i)a and yj is the maximum
value. Therefore, the rule r:F1∈[x1, y1]∧· · ·∧Fd∈[xd, yd]→a matches all failed tests
in FT (i)a. Second, we use the passed tests in PT (i)d to split the rule to multiple
rules, each of which does not match any passed test. Let (z1, · · · , zd)→d denote the
first passed test p in PT (i)d. If rule r matches p, for each field j, we generate two
rules by using zj to split [xj , yj] into two ranges [xj , zj − 1] and [zj + 1, yj]. The
resulting two rules for field j are as follows.

F1∈[x1, y1]∧· · ·∧Fj−1∈[xj−1, yj−1]∧Fj∈[xj, zj − 1]
∧Fj+1∈[xj+1, yj+1]∧· · ·∧Fd∈[xd, yd]→a

F1∈[x1, y1]∧· · ·∧Fj−1∈[xj−1, yj−1]∧Fj∈[zj + 1, yj]
∧Fj+1∈[xj+1, yj+1]∧· · ·∧Fd∈[xd, yd]→a

Note that if xj>zj−1 (or zj+1>yj), the rule that includes [xj , zj−1] (or [zj+1, yj])
is meaningless and it should be deleted from the resulting rules. If rule r does not
match p, p cannot split r. Then, we use the second test in PT (i)d to split the
resulting rules generated from p. Repeat this step until we check all the passed
tests in PT (i)d. Finally, we choose one rule that matches the maximum number of
failed tests.
Take two sets PT (2)a and FT (2)d in Figure 6 as an example, rule r′2,d can be

computed as F1 ∈ [6, 8]∧ F2 ∈ [3, 5] → d, which can correct two failed tests p6 and
p8.

8. WRONG-PREDICATE CORRECTION

There are two challenges for fixing a predicate in a faulty firewall policy. First, for
a faulty firewall policy with n rules, there are n−1 possible predicates that we can
correct. Note that the last rule rn is the default rule. Second, similar to adding
rules, brute-force fixing of the predicate for each rule is computationally expensive.
The number of possible predicates for each rule is O(2203).
The basic idea for wrong-predicate correction is similar to adding rules. We first

find all possible failed tests that can be corrected by fixing a predicate, and then
compute a rule that matches the maximum number of failed tests. However, there
are two major differences. First, for fixing the predicate of ri, we compute only
a rule with the same decision of ri. Second, after fixing the predicate of rule ri,
the original rule ri does not exist in the firewall policy. Therefore, the passed tests
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whose first-matching rule is ri may become failed tests. The set of these passed
tests for ri can be computed as PT (i)−PT (i+1) (shown in Figure 8). The passed
tests whose first-matching rule is not ri should be prevented from changing to
failed tests. Therefore, the set of all possible failed tests that we can correct by
fixing ri’s predicate is FT (i)∪(PT (i)−PT (i + 1)). Our correction technique for
wrong-predicate correction includes five steps:

(1) For each position i (1≤i≤n), find a set of passed tests PT (i) and a set of failed
tests FT (i) such that no test p in PT (i)∪FT (i) matches any rule rj (1≤j≤i−1).

(2) For each rule ri (1≤i≤n−1), compute the set of all possible failed tests

FT (i)∪(PT (i)−PT (i+1)) that we can correct by fixing ri’s predicate. Let F̂ T (i)
denote FT (i)∪(PT (i)−PT (i+ 1)). The complement of the set
FT (i)∪(PT (i)−PT (i+1)) is PT (i+ 1), which is the set of passed tests that we
cannot change to failed tests by fixing ri’s predicate.

(3) Based on the expected decisions of tests, divide PT (i+1) into two sets PT (i+1)a

and PT (i+ 1)d, and divide F̂ T (i) into two sets F̂ T (i)a and F̂ T (i)d.

(4) Without loss of generality, assume that ri’s decision is accept. For set F̂ T (i)a,
we compute r′′i,a that satisfies two conditions:
(a) No passed test in PT (i+ 1)d matches r′′i,a.
(b) Under condition (a), r′′i,a matches the maximum number of failed tests in

F̂ T (i)a.

The algorithm for computing rule r′′i,a based on F̂ T (i)a and PT (i + 1)d is the
same as that in Section 7.1. Let r′′i denote the resulting rule.

(5) Find a rule r′′j (1≤j≤n−1) that can correct the maximum number of failed tests
and then replace rule rj .

Note that if there is more than one rule that can correct the maximum number of
failed tests, we choose rule r′′j where j is the maximum integer among these rules.
For the faulty policy in Figure 2, Figure 7 shows the four sets PT (i+1)a, PT (i+

1)d, F̂ T (i)a, and F̂ T (i)d for each rule. Rule r′′2,a can be computed as F1 ∈ [6, 7] ∧
F2 ∈ [7, 9] → a, which can correct one failed test p7.

PT (i+ 1)a PT (i+ 1)d F̂ T (i)a F̂ T (i)d
r1 p3 p4, p5 p1, p2, p7 p6, p8

r2 – p4, p5 p3, p7 p6, p8

r3 – p5 p7 p4, p8

r4 – p5 p7 p8

Fig. 7. PT (i+1)a, PT (i+1)d, F̂ T (i)a, and F̂ T (i)d for each rule in Figure 2

9. WRONG-DECISION CORRECTION

The idea of fixing a decision is that for each rule ri, we first find the passed tests
and failed tests whose first-matching rule is ri. The colorredset of passed tests for
ri can be computed as PT (i)−PT (i+1) and the set of the failed tests for ri can
be computed as FT (i)−FT (i+1). If we change the decision of ri, the passed tests
in PT (i)−PT (i+1) become failed tests and the failed tests in FT (i)−FT (i+1)
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become passed tests. Then, we can calculate colorredthe increase in the number
of passed tests by fixing ri’s decision. Finally, we fix the decision of the rule that
corresponds to the maximum increased number of passed tests. Our correction
technique for fixing a decision includes three steps:

(1) For each rule ri (1 ≤ i ≤ n − 1), compute two sets: PT (i) − PT (i + 1) and
FT (i)− FT (i+ 1).

(2) Calculate colorredthe increase in the number of passed tests by fixing ri’s decision,
which is |FT (i)−FT (i+1)|−|PT (i)−PT (i+ 1)|.

(3) Fix the decision of a rule that can maximize colorredthe increase in the number
of passed tests.

Note that if there is more than one rule such that fixing the decision of each of
them can maximize colorredthe increase in the number of passed tests, we choose
the rule with the largest sequence number.
For the faulty policy in Figure 2, Figure 8 shows the two sets PT (i)−PT (i+1)

and FT (i)− FT (i+ 1) for each rule. Clearly, fixing the decision of r4 can change
the failed test p8 to a passed test.

PT (i)− PT (i+ 1) FT (i)− FT (i+ 1)

r1 p1, p2 –
r2 p3 p6

r3 p4 –
r4 – p8

Fig. 8. PT (i)−PT (i+1) and FT (i)−FT (i+1) for each rule in Figure 2

10. WRONG-EXTRA-RULE CORRECTION

The idea of deleting a firewall rule is that we use the all-match FDD to calculate
colorredthe increase in the number of passed packets by deleting each rule, and
then delete the rule that can maximize colorredthe increase in the number of passed
packets. Given a faulty policy with n rules and its all-match FDD, our correction
technique for deleting a rule includes three steps:

(1) For each rule ri (1≤i≤n−1), find every decision path P :(v1e1 · · · vdedvd+1) such
that C(P)⊆C(ri) and i is the first rule id in F (vd+1). Let {P i

1, · · · ,P
i
h} denote

the set of such decision paths.

(2) For each decision path P i
g:(v1e1 · · · vdedvd+1) (1 ≤ g ≤ h), find the set of passed

tests PT (P i
g) and the set of failed tests FT (P i

g), where any test in PT (P i
g) or

FT (P i
g) matches P i

g. Let 〈i1, · · · , ik〉 (1≤i1<· · ·<ik≤n) denote F (vd+1). Note
that i1 = i because of the first-match semantics. Let lg denote colorredthe
increase in the number of passed tests that match P i

g after deleting rule ri. To
calculate lg, we need to check whether ri and ri2 have the same decision. If ri
and ri2 have the same decision, deleting ri does not change the two sets PT (P i

g)

and FT (P i
g). In this case, lg=0. Otherwise, the passed tests in PT (P i

g) become

failed tests and the failed tests in FT (P i
g) become passed tests. In this case,

lg = |FT (P i
g)| − |PT (P i

g)|. Therefore, colorredthe increase in the number of

passed packets after deleting rule ri can be computed as
∑h

g=1 lg.
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(3) Delete the rule that can maximize the number of passed packets.

Note that if rule ri is not the first-matching rule for any failed test, |FT (P i
g)|=0

(1≤g≤h) and hence
∑h

g=1 lg ≤ 0. In this case, deleting ri cannot increase the
number of passed packets. We can easily find such rules by computing the set
FT (i)−FT (i+ 1) for each rule ri. Further note that if there is more than one rule
such that deleting each of them can maximize colorredthe increase in the number
of passed tests, we choose the rule with the maximum sequence number.
For the faulty firewall policy in Figure 2, by checking FT (i)−FT (i+1) in Figure

8, we find that deleting rule r1 or r3 cannot increase the number of passed packets.
In the all-match FDD of the faulty policy (shown in Figure 5), for rule r2, there are
two paths, F1∈[6, 6]∧F2∈[3, 3] and F1∈[6, 6]∧F2∈[4, 10], where 2 is the first integer
in their terminal nodes. Because the failed test p6 matches the first path, and r2
and r3 have different decisions, deleting r2 changes p6 to a passed test. Because
the passed test p3 matches the second path, and r2 and r5 have different decisions,
deleting r2 changes p3 to a failed test. Therefore, deleting r2 does not increase
the number of passed tests. Similarly, deleting r4 changes p8 to a passed test, and
hence increases the number of passed tests by 1.

11. EXPERIMENTAL RESULTS

11.1 Evaluation Setup

In our experiments, faulty firewall policies were generated from 40 real-life firewall
policies that we collected from universities, ISPs, and network device manufacturers.
The 40 real-life policies were considered as correct policies with respect to these
faulty policies. Each firewall examines five fields: source IP, destination IP, source
port, destination port, and protocol type. The number of rules for each policy
ranges from dozens to thousands.
To evaluate the effectiveness and efficiency of the greedy algorithm, we first em-

ployed the technique of mutation testing [DeMillo et al. 1978] to create faulty
firewall policies. The technique for injecting synthetic faults with mutation testing
is a well-accepted mechanism for carrying out testing experiments in real practice.
Particularly, each faulty policy contains one type of fault, and the number of faults
in a faulty firewall policy ranges from 1 to 5. Given a real-life firewall with n rules,
for each type of fault, we employed mutation testing [DeMillo et al. 1978] to ran-
domly create n−1 faulty policies. In other words, we created 5×(n−1) policies for
each real-life firewall with n rules. Recall that it is trivial to check whether the last
rule is correct. Thus, we did not change the last rule for generating faulty policies
in our experiments. For example, to create a faulty firewall policy with k wrong

decisions faults, we randomly changed the decisions of the k rules in a real-life fire-
wall policy. Overall, we generated 35618 faulty firewall policies in our experiments.
Second, for each faulty policy, we employed the firewall testing tool [Hwang et al.
2008] to generate test packets. Note that the test packets were generated based
on the faulty policy rather than its corresponding real-life policy. For each faulty
policy, on average, the total number of passed and failed tests is about 3n, where
n is the number of rules in the policy. Third, we classified the test packets into
passed and failed tests. Recall that the real-life firewall policies were considered as
correct policies in our experiments. Thus, to classify each test packet, we compared
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two decisions generated by the faulty policy and its corresponding real-life policy.
If the two decisions were the same, we classified the test packet as a passed test;
otherwise, we classified it as a failed test. Note that in practice this step should be
done by administrators. Finally, we implemented and applied our greedy algorithm
over the faulty firewall policy, and then produced the fixed policy. For each step
of the greedy algorithm, if different techniques increase the same number of passed
tests, we randomly colorredchose one technique.
To evaluate the effectiveness and efficiency of the improved algorithm, we first

created another set of n−1 faulty policies for each real-life firewall with n rules. Each
faulty policy contains five faults and each fault is one distinct fault type defined in
the fault model of firewall policies (Section 4). Note that these n−1 faulty policies
are different from 5×(n−1) faulty policies we generated for evaluating the greedy
algorithm. Second, we employed the firewall testing tool [Hwang et al. 2008] to
generate test packets and classified them into passed and failed tests. Third, we
applied our improved algorithm over the faulty firewall policies and produced the
fixed policies. To compare the improved algorithm with the greedy algorithm, we
also applied our greedy algorithm over these n−1 faulty policies. The reason of
creating anther set of n−1 faulty policies is that we can evaluate the effectiveness
of the two algorithms over the faulty policies with different types of faults instead of
the faulty policies with a single type of faults, which provides another perspective
to understand the two algorithms.

11.2 Methodology

To measure the effectiveness of our approach, we need to first define the difference

between two firewall policies. Given two policies FW1 and FW2, the difference

between FW1 and FW2, denoted as ∆(FW1, FW2), is the total number of packets
each of which has different decisions evaluated by FW1 and FW2. To compute
∆(FW1, FW2), we employed the firewall comparison algorithm [Liu and Gouda
2008]. This algorithm first finds the functional discrepancies between FW1 and
FW2, where each discrepancy denotes a set of packets and each packet has different
decisions evaluated by the two policies, and then compute the number of packets
included by all the discrepancies.
Next, we define three metrics to measure the effectiveness of our approach. Let

FWreal denote a real-life firewall policy and FWfaulty denote a faulty policy created
from FWreal. Let FT denote the set of failed tests and |FT | denote the number
of failed tests. Let FWfixed denote the fixed policy by correcting FWfaulty and
m(FWfaulty) denote the number of modifications. Let S(t, k) denote a set of faulty
policies, where t denotes the type of fault and k denotes the number of faults in
each faulty policy. We define the three metrics for evaluating the effectiveness of
our approach as follows:

(1) The difference ratio over FWreal, FWfaulty , and FWfixed:

∆(FWreal, FWfixed)

∆(FWreal, FWfaulty)

(2) The correction rate over FT and FWfixed:
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∆(FWreal, FWfaulty)−∆(FWreal, FWfixed)

|FT |

(3) The average number of modifications over S(t, k):

∑
FWfaulty∈S(t,k) m(FWfaulty)

|S(t, k)|

The intuition behind the difference ratio
∆(FWreal,FWfixed)
∆(FWreal,FWfaulty)

is to measure what

percentage of misclassified packets were corrected after applying our approach. Be-
cause ∆(FWreal, FWfaulty) denotes the total number of misclassified packets in the
faulty firewall policy, and ∆(FWreal, FWfaulty) denotes the total number of mis-

classified packets in the fixed firewall policy. If
∆(FWreal,FWfixed)
∆(FWreal,FWfaulty)

= 0, FWfixed

corrects all misclassified packets, which means that FWfixed is equivalent to FWreal

in terms of functionality. For the example policy in Figure 1, if we generate a faulty
firewall policy by changing r1’s decision to discard, the difference between the faulty
policy and the example policy, ∆(FWreal, FWfaulty), is 28×216=224. Hence, the
total number of packets that are misclassified by the faulty firewall policy is 224.
If the fixed firewall policy corrects r1’s decision in the faulty firewall policy, the
difference between the fixed policy and the example policy, ∆(FWreal, FWfixed),

is 0. Thus,
∆(FWreal,FWfixed)
∆(FWreal,FWfaulty)

= 0, which means that FWfixed is equivalent to

FWreal in terms of functionality.

The intuition behind correction rate
∆(FWreal,FWfaulty)−∆(FWreal,FWfixed)

|FT | is to

measure how much our algorithms outperform the algorithm of adding singleton
rules to correct the failed tests. Note that FT is only a small portion of all
misclassified packets in FWfaulty . The algorithm of adding singleton rules can
only fix the failed tests in FT . For ease of presentation, we call the algorithm of
adding singleton rules the simple algorithm. Based on the discussion of the dif-
ference ratio, we know that ∆(FWreal, FWfaulty) −∆(FWreal, FWfixed) denotes
the number of misclassified packets that have been fixed by our algorithms. If
∆(FWreal,FWfaulty)−∆(FWreal,FWfixed)

|FT | >> 1, our algorithms significantly outper-

form the simple algorithm. If
∆(FWreal,FWfaulty)−∆(FWreal,FWfixed)

|FT | = 1, our algo-

rithms have the same effectiveness as the simple algorithm. In other words, our
algorithms are not better than the simple algorithm.

11.3 Effectiveness of the Greedy Algorithm

Figures 9(a)-9(e) show the cumulative distribution of difference ratios over FWreal,
FWfaulty , and FWfixed for each type of fault. In Figures 9(a)-9(e), we use “One
Fault”, · · ·, “Five Faults” to denote the number of faults in faulty firewall policies.
A point (X, Y) in these figures describes that the difference ratios of X% fixed
policies are less than or equal to Y%. For example, the point (73.5, 0) in Figure 9(a)
describes that the difference ratios of 73.5% fixed policies are equal to 0. In other
words, 73.5% fixed policies are equivalent to the corresponding real-life policies. We
observe that for three types of faults, wrong order, wrong decisions, and wrong extra
rules, fixed policies can significantly reduce the number of misclassified packets. For
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(c) Wrong Extra Rules
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(e) Wrong Predicates
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Fig. 9. Cumulative distribution of difference ratio and average number of modifi-
cations for each type of firewall policy faults
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faulty policies with k faults, where k faults are one of these three types and k ≤ 4,
over 53.2% fixed policies are equivalent to their corresponding real-life policies. For
faulty policies with 1 to 5 wrong decisions faults, the percentages of fixed policies
that are equivalent to their corresponding real-life policies are 73.5%, 68.8%, 63.7%,
59.3%, and 53.8%, respectively. For faulty policies with 1 to 5 wrong order faults,
the percentages of fixed policies that are equivalent to their corresponding real-
life policies are 69.7%, 64.2%, 59.7%, 54.3%, and 48.9%, respectively. For faulty
policies with 1 to 5 wrong extra rules faults, the percentages of fixed policies that
are equivalent to their corresponding real-life policies are 68.3%, 63.5%, 59.3%,
53.2%, and 47.3%, respectively.
We also observe that fixed policies can reduce only a small number of misclassified

packets for two types of faults, missing rules and wrong predicates. For faulty
policies with 1 to 2 missing rules faults, the percentages of fixed policies that have
50% difference ratio with their corresponding real-life policies are 15.7% and 8.32%,
respectively. For faulty policies with 1 to 2 wrong predicates faults, the percentages
of fixed policies that have 50% difference ratio with their corresponding real-life
policies are 17.3% and 9.1%, respectively. The reason is that, in most cases, the
information provided by failed tests is not enough to recover the missing rule (or
correct predicate). A firewall rule (or predicate) with 5 fields can be denoted as a
hyperrectangle over a 5-dimensional space, and failed tests are only some points in
the hyperrectangle. To recover the missing rule (or correct the wrong predicate),
for each surface of the hyperrectangle, there should be at least one point on it.
However, the chance of such a case is very small.
Figure 9(f) shows the average number of modifications for each type of faults.

We observe that for faulty firewall policies with k faults (k ≤ 5), the ratio between
the average number of modifications and the number of faults is less than 2.
We also measured the correction rates for the fixed firewall policies. Our ex-

perimental results show that all the correction rates are larger than 158, and the
average correction rate is 2268, which demonstrates that our algorithms significantly
outperform the simple algorithm.

11.4 Effectiveness of the Improved Algorithm

Figure 10 shows the cumulative distribution of difference ratios over FWreal, FWfaulty ,
and FWfixed by applying both the greedy and improved algorithms to the firewall
policies with five different faults. We observe that the improved algorithm performs
better than the greedy algorithm in terms of percentage of fixed policies. The per-
centage of fixed policies generated by the improved algorithm is 5% more than that
of fixed policies generated by the greedy algorithm.
Similar as evaluating the greedy algorithm, we also measured the correction rates

for the fixed firewall policies. Our experimental results show that all the correction
rates are larger than 137, and the average correction rate is 2537, which demon-
strates that our algorithms significantly outperform the simple algorithm.

11.5 Efficiency of Our Approach

We implemented our approach using Java 1.6.0. In our experiments, for a faulty
firewall policy, we measure the total processing time of generating test packets,
classifying packets into passed and failed tests, and fixing the policy to evaluate
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Fig. 10. Cumulative distribution of difference ratio for firewall policies with five different faults

the efficiency of our approach. Note that classifying test packets is automatically
done in our experiments by comparing two decisions evaluated by the faulty firewall
and its corresponding real-life firewall for test packets. In practice, this step should
be done by administrators. Our experiments were carried out on a desktop PC
running Linux with 2 quad-core Intel Xeon at 2.3GHz and 16GB of memory. Our
experimental results show that for the faulty firewall policy with 7652 rules, the
total processing time for fixing this faulty policy is less than 10 minutes.

12. CASE STUDY

In this section, we applied our automatic correction tool for firewall policy faults to
a real-life faulty firewall policy with 87 rules and demonstrated that our tool can
help the administrator to correct the misconfiguration in the firewall policy. The
real-life firewall policy is shown in the Appendix B where the policy is anonymized
due to the privacy and security concern.
We first employed the automated packet generation techniques [Hwang et al.

2009] to generate test packets for the firewall policy and then asked the adminis-
trator to identify passed/failed tests. The total number of generated tests is 162
and classifying all these tests takes less than 30 minutes. Among these test packets,
we obtained seven failed tests, which are shown in Table I. Second, we applied our
proposed solution to this firewall policy and generated a sequence of modifications
to correct the seven failed tests in Table I. The resulting sequence includes four
modifications: swapping rule 6 and rule 38, deleting rules 48, 49, and 50, which sug-
gest that the firewall policy has one wrong-order fault and three wrong-extra-rule
faults. We confirmed these faults with the administrator and he admitted that the
resulting sequence of modifications generated by our tool can correct these faults
automatically.

13. CONCLUSIONS

We make two key contributions in this paper. First, we propose the systematic
approach that can automatically correct all or part of the misclassified packets of
a faulty firewall policy. To the best of our knowledge, our paper is the first one for
automatic correction of firewall policy faults. Second, we implemented our approach
and evaluated its effectiveness on real-life firewalls. To measure the effectiveness
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p1 : (157.96.252.36, 157.96.252.66, 13249, 25341, IP ) → a

p2 : (67.48.121.156, 157.96.139.10, 4537, 109, TCP ) → a

p3 : (35.121.47.232, 157.96.139.10, 21374, 109, TCP ) → a

p4 : (25.35.113.153, 157.96.139.10, 7546, 110, TCP ) → a

p5 : (154.182.56.79, 157.96.139.10, 16734, 110, TCP ) → a

p6 : (193.21.135.85, 157.96.139.10, 19678, 143, TCP ) → a

p7 : (213.174.191.25, 157.96.139.10, 24131, 143, TCP ) → a

Table I. Seven failed tests for the real-life firewall policy

of our approach, we propose three metrics, which we believe are general metrics
for measuring the effectiveness of firewall policy correction tools. The experimental
results demonstrated that our approach is effective to correct a faulty firewall policy
with three types of faults: wrong order, wrong decisions, and wrong extra rules.
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Appendix A

Before we prove Theorem 6.1, we first prove the following two lemmas.

Lemma 13.1. Given a firewall policy FW :〈r1,· · ·,rn〉 and its all-match FDD

{P1,· · ·,Ph}, for any rule ri in FW , if Pi1 ,· · ·,Pim are all the decision paths whose

terminal node contains ri, the following condition holds: C(ri) = ∪m
t=1C(Pit).

Proof : According to property 5 in the definition of all-match FDDs, we have
∪m
t=1C(Pit) ⊆ C(ri). Consider a packet p in C(ri). According to the consistency

and completeness properties of all-match FDDs, there exists one and only one
decision path that p matches. Let P denote this path. Thus, we have p ∈ C(ri) ∩
C(P). According to property 5, i is in the label of P ’s terminal node. Thus, we
have P ∈ {Pi1 , · · · ,Pim}. Therefore, p ∈ ∪m

t=1C(Pit). Thus, we have ∪
m
t=1C(Pit) ⊇

C(ri).

Lemma 13.2. Given a firewall policy FW :〈r1,· · ·,rn〉 and its all-match FDD

{P1,· · ·,Ph}, for any rule ri in FW , there exists only one set of paths P ∈ {Pi1 , · · · ,Pim}
such that C(ri) = ∪m

t=1C(Pit).

Proof : Suppose there exists another one set of path {P ′
i1
, · · · ,P ′

il
}, which is dif-

ferent from P ∈ {Pi1 , · · · ,Pim}. Thus, there exists at least one P ′
is
6∈ {Pi1 , · · · ,Pim}

(1 ≤ s ≤ l). According to the consistency and completeness properties of all-match
FDDs, for any Pit (1 ≤ t ≤ m), Pit ∩ P ′

is
= ∅. Thus, ∪m

t=1C(Pit) 6= ∪l
s=1C(P ′

is
),

which contradicts with our assumption.

Next we can prove Theorem 6.1 based on Lemma 13.1 and Lemma 13.2.
Proof of Theorem 6.1: Based on Lemma 13.2, for each rule r1i ∈ {r11, · · · , r

1
n}

(1 ≤ i ≤ n), we can find only one set of paths P ∈ {P1
1 ,· · ·, P1

h1
} such that

C(r1i ) = ∪m
t=1C(P1

it
). Because {r11 ,· · ·,r

1
n} = {r21 ,· · ·,r

2
n}, there exists r

2
j (1 ≤ j ≤ n)

such that r2j = r1i . Thus, for each rule r1i and its corresponding rule r2j , we have

C(r1i ) = C(r2j ) = ∪m
t=1C(P1

it
)
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We also know that for the all-match FDD {P1
1 ,· · ·, P

1
h1
} generated from FW1:〈r11 ,· · ·,r

1
n〉,

the following condition holds:

∪n
i=1(∪

m
t=1P

1
it
) = {P1

1 , · · · ,P
1
h1
}

Similarly, for the all-match FDD {P2
1 , · · · ,P

2
h2
} generated from FW2:〈r21 , · · · , r

2
n〉,

we have

∪n
i=1(∪

m
t=1P

1
it
) = {P2

1 , · · · ,P
2
h2
}

Thus, {P1
1 , · · · ,P

1
h1
} = {P2

1 , · · · ,P
2
h2
}.

Appendix B

The real-life firewall policy with 87 rules is shown as follows.

# Src IP Dest IP Src Port Dest Port Protocol Action
1 67.54.138.163 157.96.119.153 * 9100 TCP accept
2 67.54.138.163 157.96.119.153 * 161 UDP accept
3 * * * * 53 deny
4 * * * * 55 deny
5 * * * * 77 deny
6 * 157.96.252.66 * * IP accept
7 32.45.186.83 * * * IP deny
8 * 157.96.139.14 * 443 TCP deny
9 231.49.182.251 * * * IP deny
10 * * * 3127 TCP deny
11 * * * 2745 TCP deny
12 * * 4000 * UDP deny
13 * * * 111 UDP deny
14 * * * 111 TCP deny
15 * * * 2049 UDP deny
16 * * * 2049 TCP deny
17 * * * 7 UDP deny
18 * * * 7 TCP deny
19 * * * 6346 TCP deny
20 * * * 7000 TCP deny
21 * * * 161 UDP deny
22 * * * 162 UDP deny
23 * * * 1993 UDP deny
24 * * * 67 UDP deny
25 * * * 68 UDP deny
26 * * * 49 UDP deny
27 178.95.49.* * * * IP deny
28 157.96.119.* * * * IP deny
29 157.96.120.* * * * IP deny
30 157.96.121.* * * * IP deny
31 157.96.122.* * * * IP deny
32 157.96.130.* * * * IP deny
33 157.96.138.* * * * IP deny
34 157.96.139.* * * * IP deny
35 157.96.143.* * * * IP deny
36 157.96.144.* * * * IP deny
37 157.96.158.* * * * IP deny
38 157.96.252.* * * * IP deny
39 * 157.96.139.9 * 1949 UDP accept
40 * 157.96.139.10 * 1949 UDP accept
41 * 157.96.120.2 * 1949 UDP accept
42 * 157.96.139.9 * 1949 TCP accept
43 * 157.96.139.10 * 1949 TCP accept
44 * 157.96.120.2 * 1949 TCP accept
45 255.255.255.255 * * * IP deny
46 0.0.0.0 * * * IP deny
47 * 157.96.119.* * * IP deny
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# Src IP Dest IP Src Port Dest Port Protocol Action
48 * 157.96.139.10 * 109 TCP accept
49 * 157.96.139.10 * 110 TCP accept
50 * 157.96.139.10 * 143 TCP accept
51 62.78.103.* * * * IP deny
52 * * * 6667 TCP deny
53 * * * 6112 TCP deny
54 * * * 109 TCP deny
55 * * * 110 TCP deny
56 * * * 1433 UDP deny
57 * * * 1434 UDP deny
58 * * * 135 TCP deny
59 * * * 137 TCP deny
60 * * * 138 TCP deny
61 * * * 139 TCP deny
62 * * * 445 TCP deny
63 * * * 135 UDP deny
64 * * * 137 UDP deny
65 * * * 138 UDP deny
66 * * * 139 UDP deny
67 * * * 445 UDP deny
68 * * * 143 TCP deny
69 * * * 515 TCP deny
70 * * * 512 TCP deny
71 * * * 514 UDP deny
72 * * * 69 UDP deny
73 * * * 514 TCP deny
74 * 157.96.138.138 * 5900 TCP accept
75 * 157.96.138.138 * 5166 TCP accept
76 * 157.96.138.138 * * IP deny
77 * 157.96.138.101 * 5900 TCP accept
78 * 157.96.138.101 * 5166 TCP accept
79 * 157.96.138.101 * * IP deny
80 * 157.96.138.80 * * IP deny
81 * 157.96.138.82 * * IP deny
82 * 157.96.138.234 * * IP deny
83 * 157.96.138.235 * * IP deny
84 * 157.96.138.236 * * IP deny
85 * 157.96.128.* * * IP accept
86 * 157.96.140.* * * IP deny
87 * * * * IP accept

ACM Journal Name, Vol. V, No. N, Month 20YY.


