
Detection of Multiple-Duty-Related Security Leakage in Access Control Policies

JeeHyun Hwang1 Tao Xie1 Vincent C. Hu2

1 Department of Computer Science, North Carolina State University, Raleigh, NC 27695-8206
2 Computer Security Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8930

jhwang4@ncsu.edu xie@csc.ncsu.edu vincent.hu@nist.gov

Abstract

Access control mechanisms control which subjects (such

as users or processes) have access to which resources.

To facilitate managing access control, policy authors in-

creasingly write access control policies in XACML. Access

control policies written in XACML could be amenable to

multiple-duty-related security leakage, which grants unau-

thorized access to a user when the user takes multiple duties

(e.g., multiple roles in role-based access control policies).

To help policy authors detect multiple-duty-related security

leakage, we develop a novel framework that analyzes poli-

cies and detects cases that potentially cause the leakage. In

such cases, a user taking multiple roles (e.g., both r1 and

r2) is given a different access decision from the decision

given to a user taking an individual role (e.g., r1 and r2,

respectively). We conduct experiments on 11 XACML poli-

cies and our empirical results show that our framework ef-

fectively pinpoints potential multiple-duty-related security

leakage for policy authors to inspect.

Keywords: Validation, Policy Verification, Access Control

Policies.

1 Introduction

Access control is one of the most fundamental and

widely used security mechanisms. It controls which prin-

cipals (such as users or processes) have access to which

resources in a system. To facilitate managing and main-

taining access control, access control policies are increas-

ingly written in specification languages such as XACML [1]

and Ponder [7]. Whenever a principal requests access to

a resource, that request is passed to a software component

called a Policy Decision Point (PDP). A PDP evaluates the

request against the specified access control policies to de-

cide whether the request is permitted or denied accordingly.

In this paper, we focus on access control policies writ-

ten in XACML (eXtensible Access Control Markup Lan-

guage) [1, 13, 14], which has become the de facto standard

for specifying access control policies for various applica-

tions, especially web applications.

Assuring the correctness of policy specifications is be-

coming an important and yet challenging task, especially

as access control policies become more complex and are

used to manage a large amount of sensitive information or-

ganized into sophisticated structures in a network. Identi-

fying discrepancies between policy specifications and their

intended function is crucial because correct implementation

and enforcement of policies by applications is based on the

premise that the policy specifications are correct. As a re-

sult, policy specifications must undergo rigorous verifica-

tion and validation to ensure that the policy specifications

truly encapsulate the desires of the policy authors.

Role-Based Access Control (RBAC) [8] assigns permis-

sions of specific actions on resources to authorized users

called roles. In XACML policies, rules are written to spec-

ify such permissions on roles. However, specifying correct

behaviors of roles in policies is not an easy task, especially

for a user with multiple roles. For example, in a policy,

multiple rules can be applicable to a request (including mul-

tiple roles), and the policy needs to be specified correctly

to select which rule should be given higher priority than

other rules if access decisions from the rules are conflict-

ing. In XACML, such scenarios are described using rule

combining algorithms. These algorithms describe when a

certain rule overrides other rules. Although each rule could

be specified correctly, rule combining algorithms or the rule

order may include a fault to produce security leakage (i.e.,

actual and expected decisions are inconsistent), where mul-

tiple rules are applicable to a request involving a user taking

multiple roles and the given priority among the rules is in-

correct. We refer to such a security issue as multiple-duty-

related security leakage.

In XACML, as the first-applicable algorithm, a com-

monly used rule combining algorithm, takes into account

the order of rules in evaluation, incorrect order may be a

source to introduce multiple-duty-related security leakage.

In addition, some roles may be mutually exclusive and their

combination is restricted through Separation of Duty (SoD)

enforcement on policies [8]. SoD is used to avoid or deny

a request that a user in mutually disjoint roles tries to re-

quest access permissions. Incorrect SoD enforcement may

produce multiple-duty-related security leakage as well.

When rules are specified on a case-by-case basis, the pol-

icy authors may often forget to handle corner cases where

a user can take multiple roles. As multiple-duty-related se-

curity leakage is often caused by mistakes in handling mul-

tiple roles, efforts to verify each role’s behavior individu-

ally is not sufficient to detect the leakage. In particular, if a

role is added/deleted in policies, the policy authors should

verify how the role interacts with other roles besides verify-

ing each role’s behavior individually. Without effective tool

support, it is tedious and error-prone for policy authors to

manually verify interactions among roles and hence detect

security leakage related to corner cases.

One typical approach is to enforce Separation of Duty

(SoD) on every combination of roles for preventing such

leakage. Therefore, requests with multiple role are dis-

carded, and only requests with a single role are valid to be

evaluated in that approach. This approach is often found to

be rigid and limits the flexibility of XACML. More specif-

ically, Static SoD (SSD) limits the conflicting-role assign-

ments that are associated with a user [8]. For example, if

a Student role and a Faculty role are declared as SoD

constraints statically, no permission is given to a user who

is assigned to both the Student role and the Faculty

role. However, an SSD policy is often found to be too rigid

for practical use because in some cases a faculty member

should be allowed to get enrolled to become a student at the

same time. The only restriction is that if a user has both

the Student and the Faculty roles, the user cannot write

grades. While Dynamic SoD (DSD) [8] is known to be

more flexible than SSD, the XACML profile for RBAC [5]

does not provide direct support of the DSD enforcement

mechanism. Due to the limitations of these existing ap-

proaches, our work focuses on helping write policies in a

way that can avoid multiple-duty-related security leakage.

To the best of our knowledge, there is no prior research

work on verifying policies with regards to multiple-duty-

related leakage. To help policy authors detect multiple-

duty-related security leakage, we develop a novel static pol-

icy analysis framework that detects cases where a user tak-

ing multiple roles (e.g., r1 and r2) is given a different access

decision than the user taking an individual role (r1 or r2).

The policy authors inspect such cases to determine whether

the cases can cause security leakage. If the policy authors

determine that the reported leakage is real, they can modify

the policy to prevent such leakage.

This paper makes three main contributions:

• To the best of our knowledge, we are the first to

present the problem of multiple-duty-related leakage

in XACML policies for policy authors to verify.

• Our framework addresses the problem of detecting po-

tential multiple-duty-related leakage where a user tak-

ing multiple roles (e.g., r1 and r2) is given a different

access decision than the user taking an individual role

(e.g., r1 and r2, respectively).

• We conduct experiments on 11 XACML policies col-

lected from various sources. Our empirical results

show that our framework can effectively pinpoint po-

tential multiple-duty-related security leakage for pol-

icy authors to inspect.

The rest of the paper is organized as follows. Section 2

presents the XACML specification language. Section 3

presents an example to illustrate potential security leakage

with regards to multiple duties. Section 4 presents the re-

quest evaluation for policies. Sections 5 and 6 present our

framework and its implementation, respectively. Section 7

describes the evaluation where we apply our framework on

various XACML policies. Section 8 discusses related work.

Section 9 concludes the paper.

2 Background

XACML (eXtensible Access Control Markup Lan-

guage) [1] is a language specification standard published

by OASIS (Organization for the Advancement of Structured

Information Standards). It was mainly designed as a stan-

dard for expressing both access requests and access con-

trol policies. XACML offers a large set of built-in func-

tions, data types, combining logic, and standard extension

interfaces for defining application-specific features. Various

domain-specific access control languages [13,14] have been

designed using XACML. Open source XACML implemen-

tations are also available for different platforms (e.g., Sun’s

XACML implementation [2] and XACML.NET [3]).

An XACML access control specification consists of a

policy set and a policy combining algorithm. A policy set

is an ordered list of policies. A policy includes a target,

a rule set, and a rule combining algorithm. A target is a

predicate over the subject, the resource, and the action of

access requests, specifying the type of requests to which

the policy can be applied. If a request satisfies the target of

an access control policy, then the request is further checked

against the rule set of the policy; otherwise, the policy is

skipped without further examining its rules. A rule set is

an ordered list of rules. A rule consists of a target, a con-

dition, and an effect. The target of a rule is similar to the

target of a policy, but specifies whether the rule is applica-

ble to a request. Given a request, if a rule is applicable,

the condition (i.e., a boolean function) associated with the

rule is evaluated. If the condition is evaluated to be true,

the rule’s effect (i.e., Permit or Deny) is returned as a deci-

sion; otherwise, NonApplicable is returned as a decision.

1<Policy PolicyId="univ" RuleCombAlgId="first-applicable">

2 <Target>

3 <Subjects> <AnySubjects/> </Subjects>

4 <Resources> <AnyResource/> </Resources>

5 <Actions> <AnyAction/> </Actions>

6 </Target>

7 <Rule RuleId="1" Effect="Permit">

8 <Target>

9 <Subjects><Subject> Faculty </Subject></Subjects>

10 <Resources>

11 <Resource> ExternalGrades </Resource>

12 <Resource> InternalGrades </Resource>

13 </Resources>

14 <Actions><Action> View </Action>

15 <Action> Write </Action></Actions>

16 </Target></Rule>

17 <Rule RuleId="2" Effect="Permit">

18 <Target>

19 <Subjects><Subject> Student </Subject></Subjects>

20 <Resources>

21 <Resource> ExternalGrades </Resource>

22 </Resources>

23 <Actions><Action> View </Action></Actions>

24 </Target>

25 </Rule>

26 <Rule RuleId="3" Effect="Deny">

27 <Target>

28 <Subjects><Subject> Student </Subject></Subjects>

29 <Resources>

30 <Resource> ExternalGrades </Resource>

31 </Resources>

32 <Actions><Action> Write </Action></Actions>

33 </Target>

34 </Rule>

35 <!-- A final, "fall-through" rule that always Denies -->

36 <Rule RuleId="FinalRule" Effect="Deny"/>

37</policy>

Figure 1. An example XACML policy

In general, NonApplicable is considered Deny. If an er-

ror occurs when a request is applied against policies or their

rules, Indeterminate is returned as a decision.

More than one rule in a policy may be applicable

to a given request. The rule combining algorithm is

used to combine multiple rule decisions into a single de-

cision. There are four standard rule combining algo-

rithms: deny-overrides, permit-overrides, first

applicable, and only-one-applicable, whose mean-

ings are self-evident from the algorithm naming [1]. Four

similar policy combining algorithms are also used to com-

bine multiple policy decisions into a single decision.

3 Example

Figure 1 shows an example XACML policy adapted

from a sample policy used by Fisler et al. [10]. This exam-

ple illustrates a policy that uses the first-applicable

algorithm, which determines to return the evaluated deci-

sion of the first applicable rule. In this example, there are

two subjects or roles (Faculty, Student), two resources

(ExternalGrades, InternalGrades), and two actions

(View, Write).

There are four rules in the policy. Lines 7-16 define

the first (permit) rule, which allows a faculty to view or

write external or internal grades. Lines 17-25 define the

second (permit) rule, which allows a student to view exter-

nal grades. Lines 26-34 define the third (deny) rule, which

denies a student to write external grades. Line 36 defines

the last default (deny) rule, which denies any request that

does not match any of the three preceding rules.

We simplify and represent the illustration of the exam-

ple policy in Figure 1 in IF-THEN statements as shown in

Figure 2. As the example policy uses the first applicable

algorithm, the IF-THEN statements illustrate the same pol-

icy behavior by mapping the predicates and their decisions

as the conditional elements and the values in the branches,

respectively.

1 If role = Faculty

2 and resource = (ExternalGrades or InternalGrades)

3 and action = (View or Write) then Permit

4 If role = Student

5 and resource = ExternalGrades

6 and action = View then Permit

7 If role = Student

8 and resource = ExternalGrades

9 and action = Write then Deny

10 Deny

Figure 2. Rules in the example XACML policy

Consider that the following three requests are evaluated

against the example policy by a PDP:

• Req1: a member of Faculty role wishes to Write

ExternalGrades.

• Req2: a member of Student role wishes to Write

ExternalGrades.

• Req3: a member of Student and Faculty roles

wishes to Write ExternalGrades.

Req1 and Req2 are single-valued requests, each of which

has only a single attribute id-value pair of the subject, ob-

ject, and action attributes. Req1 is permitted by the speci-

fied condition (Lines 1-3 of Figure 2). Req2 is denied by the

specified condition (Lines 7-9 of of Figure 2). For the two

cases, the decision is specified in the rule. As shown be-

fore, the evaluation of single-valued requests by the PDP is

straightforward. The corresponding policy behavior (about

a request) is often described explicitly in a rule of the policy.

Req3 is a multi-valued request, which contains multiple

id-value pairs in the subject, resource, or action attribute.

Req3 is applicable to multiple conditions (Lines 1-3 and

Lines 7-9) in the example policy. The PDP’s final deci-

sion is made according to the decision of each rule and

a conflict-resolution algorithm. Because the policy uses

the first-applicable combining algorithm, the earlier-

placed condition is given higher priority. Req3 is permit-

ted based on the decision of the first-applicable condition

(Lines 1-3). To this request, the later-placed condition

(Lines 7-9) is shadowed by the condition (Lines 1-3) that

is the first-applicable condition.

Req3’s partial attribute values (Faculty, Write, and

ExternalGrade) is sufficient to satisfy the first condition

(Lines 1-3) without using a Student role. However, be-

cause the permission is given to Req3, a student (when hold-

ing a faculty role together) can write an external grade; this

case is not explicitly specified in any rule of the example

policy. Req3 represents cases, where the request evalua-

tion interacts with multiple conditions to output inconsistent

decisions with Req1 or Req2, and may indicate a potential

fault. A fault in the policy specification can be discovered

by investigating the responses of Req1, Req2, and Req3.

In this example, the policy authors shall not intend for a

student to have permissions to write her own grade. This

fault is the same discrepancy found by Fisler et al. [10]

(whose approach requires application-specific policy prop-

erties not required in our framework), which is a result of

a subtlety of the XACML language. The root cause of the

problem is that XACML allows an arbitrary number of val-

ues for a given attribute. This example illustrates that the

investigation of requests and responses can lead to the de-

tection of a fault in policy specifications. The fault may

lead to leakage of privilege that is not intended by the pol-

icy authors. In this paper, we call this fault as multiple-

duty-related security leakage; the fault may not be trivial to

be detected in complex policies without using an effective

detection mechanism. To address these issues, we propose

a framework to analyze the policy under test statically and

detect such corner cases for the policy authors to inspect.

4 XACML Policies and Evaluation

This section describes the XACML structure to evaluate

a request.

4.1 Rule Applicability

XACML policies are composed of a set of rules, which

specify under what conditions a subject is allowed or de-

nied access to certain objects (i.e., resources) in a system.

To discuss rule applicability, we model access requests and

policies in this paper as follows.

Let S, O, and A denote respectively the set of all the sub-

jects, objects, and actions in an access control system. Each

subject, object, or action is associated with a set of attributes

that may be used for access control decisions. For example,

a subject’s attributes may include a user’s role, rank, and

security clearance. An object’s attributes may include a file

type, a document’s security class, and a printer’s location.

An access control policy P is a sequence of rules, each

of which is of the form as shown below.

Rule : (Conds ,Condo ,Conda , decision,Condg)

where Conds , Condo , and Conda are constraints over

the attributes of a subject, object, and action, respectively.

Condg is a general constraint that may potentially be over

all the attributes of subjects, objects, actions, and other

properties of a system (e.g., the current time and the load

of a system). A decision is either deny or permit.

An access request q is a tuple (s, o, a), where s ⊆ S,

o ⊆ O and a ⊆ A. A request (s, o, a) means that sub-

ject s requests to take action a on object o. Given a request

(s, o, a), if Conds(s), Condo(o), Conda(a), and Condg

are all evaluated to be true, then the request is either per-

mitted or denied, according to the decision in the rule. In

such a case, we say that the rule is applicable to the request.

Note that a rule is still applicable by a request that includes

additional attributes over the minimal set of (s, o, a) to sat-

isfy the rule’s constraints.

4.2 Policy and PolicySet

An XACML policy is constructed as a tree structure. An

XACML policy consists of a policy set, which consists of

policy sets and policies. A policy consists of a sequence of

rules. A policy set and a policy are of the forms as shown

below.

PolicySet:

(Conds , Condo , Conda , PSSet, PSet, ComAlg)

Policy:

(Conds , Condo , Conda , RSet, ComAlg)

where Conds , Condo and Conda are constraints over the

attributes of a subject, object, and action, respectively, and

PSSet , PSet , RSet , and ComAlg are a set of XACML pol-

icy sets, a set of XACML policies, a set of rules, and a com-

bining algorithm, respectively.

Given a request (s, o, a), applicable policy sets and poli-

cies are collected in a depth-first traversal. For applica-

ble policy sets and policies, the corresponding Conds(s),
Condo(o), Conda(a), and Condg should be evaluated to

be true; otherwise, the policy set or policy is skipped when

evaluating the request. In the policy and rule collection,

from the top to the bottom, we apply the combining al-

gorithm ComAlg to resolve multiple applicable policies or

rules. The algorithm can be denial overriding permission

(where a request is denied if it is denied by at least one

rule/policy), permission overriding denial (where a request

is permitted if it is permitted by at least one rule/policy), or

first applicable (where the final decision is the same as that

of the first applicable rule/policy in a sequence of policies

or rules).

5 Framework

This section presents our framework for detecting

multiple-duty-related security leakage. Our framework in-

Figure 3. Framework overview

cludes three phases: inconsistency detection, policy fix-

ing, and change-impact analysis. In the inconsistency de-

tection phase, our inconsistency detection component de-

tects inconsistency of the responses of multiple-valued re-

quests and their corresponding single-valued requests. In

the policy fixing phase, the policy authors can inspect the

reported inconsistencies and fix the policy by modifying the

policy in appropriate ways. In the change-impact analy-

sis phase, our framework detects whether the policy fixes

are expected, i.e., whether only the expected behavioral

changes, i.e., bug-fixing changes, (and no other unintended

changes) are caused by the policy modification. If there

is any unexpected change, the policy fixing phase and the

change-impact analysis phase are iterated until the policy

behavior is expected.

5.1 Inconsistency Detection

The inconsistency detection phase aims at capturing po-

tential faults in policy specifications. When the policy au-

thors specify and combine rules, the policy authors may

often forget to handle corner cases where a user can have

multiple roles. In particular, we are interested in identifying

why decisions are changed when a user take an additional

role. In such a case, we suspect that an additional role con-

tributes to change the evaluated decision. Although each

of rules is correctly specified, requests with multiple roles

likely match with multiple rules and could produce a wrong

decision due to incorrectly specified rule combining or rule

order. Inconsistent decisions could reveal such faults.

Figure 3 shows the three steps in the inconsistency detec-

tion phase: candidate-request identification, multiple-duty-

related request generation, and inconsistency checking. In

candidate-request identification, we start with a request q1

as (s, o, a) and its evaluated decision dec1. To generate a

multiple-duty-related request, we add a role s′ on q1 and

generate q2 as (s ∪ s′, o, a) and its evaluated decision dec2.

In inconsistency checking, we check if the two decisions

dec1 and dec2 are the same. If two decisions are not the

same, these requests may reveal multi-duty-related security

leakage that should be inspected.

We classify inconsistencies with regard to a pair of in-

consistent decisions as dec1 and dec2. In XACML, three

different decisions are useful in practice including Deny,

Permit, and Not applicable decisions. Therefore, all

possible combinations of different decisions pairs lead to

six categories. In the paper, we call each category as a dec1-

dec2 inconsistency. For example, we call a (Deny,Permit)

pair as the deny-permit inconsistency.

Evaluating a single request each time by a PDP is often

tedious if a large number of requests should be evaluated.

For efficiency, we collect a policy behavior report that de-

scribes all requests and their corresponding decisions. The

policy behavior report captures the policy’s behavior infor-

mation and is reusable until any change is introduced to the

policy. Our framework analyzes the policy behavior report

and automatically selects a request-decision pair (where one

request q1 has one additional role over another request q2)

and checks whether there is inconsistency between the de-

cisions of q1 and q2.

There are dynamic or static ways to collect policy be-

havior. In a dynamic way, we can generate and evaluate all

possible requests to find the corresponding decisions. For

an XACML policy, the number of possible requests is pro-

portional to the number of attribute values in the policy. If

the number of attribute values is large, the cost to evaluate

these requests is also high.

Instead of using a dynamic way, we collect a policy be-

havior report statically. As dynamic features are outside

the scope of existing XACML PDP implementations [5],

the static way is sufficient to detect every case for poten-

tial multiple-duty-related security leakage. Moreover, the

static way effectively reduces the number of the cases to be

inspected using a summarized format in describing all pos-

sible request/decision pairs. For example, Fisler et al. [10]

developed a tool called Margrave that analyzes and repre-

sents XACML policies. Margrave can output all request

sets with their corresponding decisions in a summarized for-

mat. In this paper, our framework detects inconsistencies

using the policy behavior report that is generated statically

by Margrave.

5.2 Policy Fixing

In the policy fixing phase, the policy authors can inspect

the reported inconsistencies and fix the policy by modifying

the policy in appropriate ways. Given a faculty policy, the

1 If role = (Faculty and Student) then Deny

2 If role = Faculty

3 and resource = (ExternalGrades or InternalGrades)

4 and action = (View or Write) then Permit

5 If role = Student

6 and resource = ExternalGrades

7 and action = View then Permit

8 If role = Student

9 and resource = ExternalGrades

10 and action = Write then Deny

11 Deny

Figure 4. The example policy fixed by static

separation of duty

1 If role = Faculty

2 and resource = (ExternalGrades or InternalGrades)

3 and action = (View or Write)

4 and role != Student then Permit

5 If role = Student

6 and resource = ExternalGrades

7 and action = View then Permit

8 If role = Student

9 and resource = ExternalGrades

10 and action = Write then Deny

11 Deny

Figure 5. The example policy fixed by adding
constraint on the first rule

1 If role = Student

2 and resource = ExternalGrades

3 and action = Write then Deny

4 If role = Faculty

5 and resource = (ExternalGrades or InternalGrades)

6 and action = (View or Write) then Permit

7 If role = Student

8 and resource = ExternalGrades

9 and action = View then Permit

10 Deny

Figure 6. The example policy fixed by moving

the originally last rule to the top

policy authors identify security leakage and find the corre-

sponding rule. The policy authors can add constraints to the

rule to deny a request with certain multiple duties. The pol-

icy authors can also change the policy structure to fix the

policy. However, this task is not easy to achieve our goal

since one small change can impact other policy behavior,

calling for the change-impact analysis phase described in

Section 5.3.

We illustrate the ways of policy fixing through the exam-

ple policy shown in Figure 2. Recall requests Req1, Req2,

and Req3 in Section 3 and the case of security leakage,

where a student has permissions to write her own grades in

Figure 2. After the policy authors confirmed reported cases

to be security leakage, they can fix the XACML policy to

meet the authors’ expected policy behavior by preventing a

student from writing her own grades.

First, the policy authors can enforce static Separation of

Duty (SoD) constraints on an XACML policy. An SoD-

constrained policy declares mutually exclusive set of roles;

a member cannot be assigned to the SoD-declared set of

roles simultaneously. Figure 4 shows the fixed example pol-

icy where a Faculty role and a Student role are speci-

fied as mutually exclusive. To achieve the goal, the policy

authors can add the IF-condition “If role = (Faculty

and Student) then Deny” on top of other conditions

(in XACML specifications, one additional rule is added on

top of other rules). This IF-condition ensures that every re-

quest that holds both a Faculty role and a Student role is

denied.

Second, the policy authors can fix rules in XACML

policies by adding appropriate predicates, which are

〈Condition〉 tags in an XACML policy. In 〈Condition〉
tags, the policy authors can apply various standard func-

tions and custom functions to subtly handle a rule behav-

ior. To prevent the detected security leakage, the policy

authors can add the predicate “role != Student” in the

〈Condition〉 tag (Line 4) in the first condition of Figure 5.

This predicate prevents an access request that includes a

Student role from being evaluated in the corresponding

condition. Therefore, with this additional predicate, the first

condition cannot permit a request that holds both roles.

Third, the policy authors can modify a policy structure

including policy combining algorithms, rule combining al-

gorithms, policy order, and rule order such as moving the

condition (Lines 7-9) in Figure 2 on top of all other con-

ditions. Figure 6 shows that the moved condition is to be

evaluated with a higher priority and returns a deny decision

on Req3.

5.3 Change-Impact Analysis

The purpose of change-impact analysis is to analyze

what would be affected by a change to a given original

policy. In the change-impact analysis phase, we have two

versions of policy p1 (an original policy) and p2 (a revised

policy produced in the policy fixing phase). Although p1

is carefully modified to produce p2, the modifications may

incur unintended changes. Therefore, we conduct change-

impact analysis to check if p1 is correctly modified to pro-

duce p2. If there is any unexpected change, the policy fixing

phase and the change-impact analysis phase are iterated un-

til the policy behavior is expected.

A change-impact analysis tool analyzes and traces dif-

ferences between two policies. More specifically, given

two versions of a policy, a change-impact analysis tool out-

puts counterexamples that illustrate semantic differences

between the two policies. Indeed, each counterexample rep-

resents a request that evaluates to a different response when

applied to the two policy versions. For example, a particu-

lar request r evaluates to permit for policy p but the same

request evaluates to deny for policy p′. In our framework,

change-impact analysis is performed on policies that are un-

dergoing maintenance or updates (e.g., fixing) to avoid ac-

cidental injection of faults.

6 Implementation

The implementation of our framework leverages an ex-

isting access control policy verification tool called Mar-

grave [10]. Margrave is a tool suite written in PLT

Scheme [9] for analyzing access control policies written

in XACML. Our implementation uses the generic APIs to

efficiently print out all the requests with their correspond-

ing decisions in a summarized format, called print-out.

print-out consists of a sequence of rules to represent

each request set (which is represented as a bit string of 1
and 0) and its decision. Each bit represents a certain at-

tribute value. In a request set, a value of 1 denotes that a

certain attribute value is used and a value of 0 denotes that

a certain attribute value is not used.

To detect inconsistencies induced by multiple roles,

our framework parses the given policy behavior (i.e.,

print-out) and collects candidate request sets, each of

which has a single attribute value. As a request set con-

tains a single subject attribute value, our framework flips a

“0” bit to a “1” bit in subject attribute values in the bit string

to generate multiple-duty-related requests. Our framework

next checks whether inconsistency responses are produced

for an original (indicating a single-duty-related request) and

flipped request representation (indicating a multiple-duty-

related request). This inconsistency checking refers to the

policy behavior report to find the corresponding decision

for the request indicated by a flipped request representation.

Our framework reports inconsistent responses for the policy

authors to inspect.

7 Evaluation

We next present the evaluation conducted to assess our

framework.

7.1 Objectives and Measures

In the evaluation, we investigate that our framework can

detect various types of inconsistencies, which can cause

multiple-duty-related security leakage in the policy under

test. We collect the following metric for various types of

inconsistencies for each policy under test.

• deci-dec3 inconsistency count (i being 1 or 2). The

deci-dec3 inconsistency count is the count of a request-

decision pair (r3, dec3) where dec3 is inconsistent with

deci.

dec1 and dec2 (i.e., deci) denote the decisions of two

single-valued requests r1 and r2 that share the same ob-

ject values and action values but have different subject val-

ues. dec3 denotes the decision of a multi-valued request r3
formed by combining the subject values from r1 and r2, and

reusing the object values and action values from r1 or r2.

For example, permit-deny inconsistency specifies that a

request r1 is evaluated to be permitted and r1 with an addi-

tional subject attribute value s is evaluated to be denied.

7.2 Subjects

We collected XACML policies from various sources to

check if a policy contains inconsistencies related to multiple

duties. We describe three types of policy structures closely

related to inconsistencies caused by multiple duties.

• Permit policy. A permit policy consists of permit rules

(i.e., rules with permit as their decisions) and one deny

fall-through rule (if any) at last. A deny fall-through

rule is to deny requests that are not applicable (satis-

fied) by the preceding permit rules.

• Deny policy. A deny policy consists of deny rules (i.e.,

rules with deny as their decisions) and one permit fall-

through rule (if any) at last. A permit fall-through rule

is to permit requests that are not applicable (satisfied)

by the preceding deny rules.

• Hybrid policy. A hybrid policy consists of permit rules

and deny rules. In a hybrid policy, deny rules and per-

mit rules are mixed and given priorities based on fac-

tors such as its location in a policy structure and the

used combining algorithms.

In many cases, the policy authors design an access con-

trol policy as either a permit policy or a deny policy. In

permit or deny policies, as one type of rules dominates, the

PDP often resolves conflicting decisions to only one type

(Deny or Permit) of decisions decided based on the com-

bining algorithms; the policies may reveal either permit-

deny inconsistencies or deny-permit inconsistencies but not

both. In contrast, a hybrid policy may show both permit-

deny inconsistencies and deny-permit inconsistencies based

on its complex policy structure and combining algorithms.

In our evaluation, we used 11 XACML policy subjects.

Figure 7 summarizes the characteristics of each policy.

Columns 1-9 show the subject names, the policy types, the

number of policy sets, policies, permit rules, deny rules, and

distinct attribute id-value pairs in the subject, resource, and

action attributes in the policy, respectively.

The demo-5 policy is modified from the XACML poli-

cies in Fedora1 by preserving its original behavior. Fedora

1http://www.fedora.info

������ ������ ���� 	
�� 	 ��� 	 ������ ���
 	 ���� ���
 	
� 	 ��
 	 ��������� ���� � � � � � � ������ ������ � � � � � � ������ ������ � � � � � � ������ ������ � � � � � � ������ ������ �� � � � � � ���������� ������ �� � � � � � ����� ������ � � �� � � � �!����" ���� � � � � � � �#����"���� ������ � � �� � �� �� �$����% ������ � � � � � � ������������ ������ � � �� � � �� �
Figure 7. Subject policies used in the evaluation&'()*+ ,-./ 01 &-2340 &-2340 01 ,-./ .5 01 ,-./ .5 01 &-2340 ,-./ 01 .5 &678)9 9' .5:68';< = = = = = =>':65 = = = < = =>':6? = = = @ = =>':6> = = = A = =*':6, = = = B = =8':;*':6, C C C D = =E(F9' GHB = = = = =I766>J = < = = = =K7L:6JM669 CH = = = = =N6)7:O = P = = = =M6L(9M;*L76 P= C = = = =

Figure 8. Evaluation results

is open source software that gives organizations a flexible

service-oriented architecture for managing and delivering

digital content. Four of the policies, namely CodeA, CodeB,

CodeC, CodeD, are examples2 used by Fisler et al. [10].

The mod-CodeD policy are modified versions of the

CodeD policy by inverting decisions in some rules or adding

rules. In particular, we set all combining algorithms of the

mod-CodeD policy as the first-applicable algorithm. The

pluto policy is used for the ARCHON3 system. ARCHON

is a digital library that federates physics collections with

varying degrees of meta data richness. Three of the poli-

cies, namely freeCS, gradeSheet, weirdX, are policies

used by Birgisson et al. [6]. The health-care policy is

an RBAC policy used by Stoller et al. [16]. As its original

policy is not written in XACML, we specified its policy be-

haviors in XACML. We used the first-applicable algorithm

as its rule combining algorithm.

7.3 Results

We next present the evaluation results of our frame-

work. The second to the last columns of Figure 8 show

the number of inconsistencies of deny-permit, permit-

deny, nonapplicable-deny, nonapplicable-permit, deny-

nonapplicable, and permit-nonapplicable detected in each

policy.

2http://www.cs.brown.edu/research/plt/software/

margrave/versions/01-01/examples/college
3http://archon.cs.odu.edu/

As shown in Figure 7, six of our subjects (CodeA,

CodeB, CodeC, CodeD, pluto, and gradeSheet) are

permit policies. The first four policies, namely CodeA,

CodeB, CodeC, and CodeD, describe only permit rules.

These policies do not include any deny rules. In such a

case, if multiple permit rules can be applicable, an ex-

pected decision is consistent as “permit” and no deny-

permit inconsistencies or permit-deny inconsistencies are

found. In contrast, the pluto and gradeSheet policies

use the permit-overrides combining algorithm and in-

clude permit rules and one fall-through deny rule at the end

of the policy. This deny rule is given lower priority than

other (earlier-placed) permit rules. Therefore, these poli-

cies may contain deny-permit inconsistencies, where a re-

quest (with a single role) to be applicable on only the deny

rule and would be evaluated by other (earlier-placed) permit

rules with an additional role on the request. From Figure 8,

we observe that our framework detected 348 and 24 deny-

permit inconsistencies for the pluto and gradeSheet

policies, respectively.

In the gradeSheet policy, we observe that one of its

deny-permit inconsistencies indicates a potential fault: a

student cannot write grades; however, a student (holding a

TA) can write grades. If a student works as a TA in the same

course that the student is enrolled in, the student may write

her own grades.

For deny policies, demo-5 and freeCS include deny

rules that override permit rules and can contain permit-

deny inconsistencies. In our subject policies, demo-5 and

freeCS are categorized as deny policies. We observed that

freeCS contains 5 permit-deny inconsistencies for policy

authors to inspect.

The mod-codeD, weirdX, and health-care policies

can contain both deny-permit inconsistencies and permit-

deny inconsistencies. The mod-codeD policy is a hybrid

policy modified from permit policies and this modification

causes inconsistencies to be observed. The mod-codeD pol-

icy contains 2 deny-permit inconsistencies and 2 permit-

deny inconsistencies. Hybrid policies are complex in their

policy structure (in comparison with permit or deny poli-

cies) where permit and deny rules are entangled in various

ways; specifying rules for multiple-duty related requests is

not trivial and various inconsistencies are to be inspected

for correctness. The weirdX policy does not have any re-

ported inconsistencies. We observe that the policy uses only

two duties (in subject attributes) and these two duties do not

cause any conflicting decisions for the same resource and

action.

The health-care policy includes permit rules and

deny rules and uses the first-applicable algorithm.

We next illustrate one permit-deny inconsistency in the

health-care policy. Two roles, Manager and Doctor,

have conflicting decisions on viewing private notes of

patients: Manager cannot view private notes; however,

Doctor can view private notes. If a person takes the two

roles at the same time, the policy evaluates such a request

to be denied considering Manager is given higher priority

than Doctor. However, we often do not want to restrict

doctor’s privilege when a doctor can be a manager. There-

fore, we observe that the permit-deny inconsistency indi-

cates a likely fault and we can fix this fault by specifying

rules related to Doctor before rules related to Manager.

We observed that five of our subjects (CodeA, CodeB,

CodeC, CodeD, and mode-CodeD) contain nonapplicable-

deny or nonapplicable-permit inconsistencies in Figure 8.

Each of these policies does not include a fall-through deny

(permit) rule at the end of the policy. Due to lack of such

a fall-through rule, it is likely that some requests (including

a single role) do not match any rules and the PDP produces

a nonapplicable decision. With an addition of a role, such

requests can include multiple roles and may find matching

rules to cause the PDP to produce a permit or deny deci-

sion. A nonapplicable decision is often regarded as a deny

decision and policy authors carefully inspect such incon-

sistencies to detect multiple-duty-related security leakage.

However, as the rest of policies in our evaluation include

one fall-through deny (permit) rule, the policies do not con-

tain nonapplicable-deny or nonapplicable-permit inconsis-

tencies.

In summary, the results indicate that a policy type is

closely correlated to the detection of multiple-duty-related

security leakage. Because only one type of decision is given

higher priority in a permit (deny) policy, permit-deny and

deny-permit inconsistencies cannot be found together in the

same policy. In a hybrid policy, we can inspect each permit-

deny and deny-permit inconsistency to determine if these

inconsistencies are caused by multiple-duty-related security

leakage.

8 Related Work

To help ensure the correctness of policy specifications,

researchers and practitioners have developed formal verifi-

cation tools for policies. Several policy verification tools

are developed specifically for firewall policies. Al-Shaer

and Hamed [4] developed the Firewall Policy Advisor to

classify and detect policy anomalies. Yuan et al. [17] de-

veloped the FIREMAN tool to detect misconfiguration of

firewall policies. The multiple-duty-related security leak-

age generally does not exist in these firewall policies.

There are several verification tools available for XACML

policies. Hughes and Bultan [11] translated XACML poli-

cies to the Alloy language [12], and checked their proper-

ties using the Alloy Analyzer. Zhang et al. [19] developed a

model-checking algorithm and tool support to evaluate ac-

cess control policies written in RW languages, which can

be converted to XACML [18]. Fisler et al. [10] devel-

oped Margrave, which can verify XACML policies against

the given properties and perform change-impact analysis on

two versions of policies. Schaad and Moffett [15] leverage

Alloy [12] to check that role-based access-control policies

do not allow roles to be assigned to users in ways that vi-

olate SoD constraints. These XACML policy verification

tools can be used when policies such as SoD properties are

explicitly specified by the policy authors.

Different from these preveous tools, which require prop-

erties or SoD constraints to be specified, our framework can

be seen as a type of anomaly detection by detecting sus-

picious cases for the policy authors to inspect; our frame-

work does not require the policy authors to explicitly spec-

ify properties. Instead, our framework detects suspicious

cases for inspection.

9 Conclusions

Access control policies such as those written in XACML

could be amenable to multiple-duty-related security leak-

age, which grants unauthorized access to a user when the

user takes multiple duties (e.g., multiple roles in role-based

access control policies). We have developed a novel frame-

work that detects cases where a user taking multiple roles

(e.g., r1 and r2) is given a different access decision than the

user taking an individual role (e.g., r1 and r2, respectively).

We have implemented the framework and conducted exper-

iments on XACML policies collected from various sources.

Our empirical results show that our framework can effec-

tively pinpoint potential multiple-duty-related security leak-

age for policy authors to inspect.

XACML is designed to be flexible by allowing a request

with multiple roles (duties). Potential multiple-duty-related

security leakage can be awkwardly addressed by restricting

only a single role per request without this flexibility. How-

ever, it is still not trivial to select only a single role when a

subject can be assigned with multiple roles. Such selection

requires resolving the most probable role among all the pos-

sible ones. Therefore, allowing a request with multiple roles

is necessary in practice and our framework can help detect

multiple-duty-related security leakage in XACML policies.

Acknowledgment

This work is supported in part by NSF grant CNS-

0716579 and its NIST supplement.

References

[1] OASIS eXtensible Access Control Markup Language

(XACML). http://www.oasis-open.org/

committees/xacml/, 2005.

[2] Sun’s XACML implementation. http://sunxacml.

sourceforge.net/, 2005.

[3] XACML.NET. http://mvpos.sourceforge.net/,

2005.

[4] E. Al-Shaer and H. Hamed. Discovery of policy anomalies

in distributed firewalls. In Proc. 23rd Conf. IEEE Commu-

nications Soc. (INFOCOM 2004), pages 2605–2616, 2004.

[5] A. Anderson. XACML profile for role based access control

(RBAC). OASIS Committee Draft 01, 2004.

[6] A. Birgisson, M. Dhawan, Úlfar Erlingsson, V. Ganapathy,

and L. Iftode. Enforcing authorization policies using trans-

actional memory introspection. In Proc. 15th ACM Con-

ference on Computer and Communications Security (CCS

2008), pages 223–234, 2008.

[7] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The

Ponder policy specification language. In Proc. International

Workshop on Policies for Distributed Systems and Networks

(POLICY 2001), pages 18–38, 2001.

[8] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and

R. Chandramouli. Proposed NIST standard for role-based

access control. ACM Trans. Inf. Syst. Secur., 4(3):224–274,

2001.

[9] R. B. Findler, J. Clements, M. F. Cormac Flanagan, S. Kr-

ishnamurthi, P. Steckler, and M. Felleisen. DrScheme: A

Progamming Environment for Scheme. Journal of Func-

tional Programming, 12:159–182, 2002.

[10] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C.

Tschantz. Verification and change-impact analysis of

access-control policies. In Proc. 27th International Confer-

ence on Software Engineering (ICSE 2005), pages 196–205,

2005.

[11] G. Hughes and T. Bultan. Automated verification of access

control policies. Technical Report 2004-22, Department of

Computer Science, University of California, Santa Barbara,

2004.

[12] D. Jackson, I. Shlyakhter, and M. Sridharan. A micro-

modularity mechanism. In Proc. joint meeting of the Euro-

pean Software Engineering Conference and the ACM SIG-

SOFT Symposium on the Foundations of Software Engineer-

ing (ESEC/FSE 2001), pages 62–73, 2001.

[13] M. Lorch, D. Kafura, and S. Shah. An XACML-based policy

management and authorization service for Globus resources.

In Proc. International Workshop on Grid Computing (GRID

2003), pages 208–212, 2003.

[14] T. Moses, A. Anderson, S. Proctor, and S. Godik. XACML

Profile for Web-Services (WSPL). OASIS Working Draft,

2003.

[15] A. Schaad and J. D. Moffett. A lightweight approach to

specification and analysis of role-based access control exten-

sions. In Proc. 7th ACM Symposium on Access Control Mod-

els and Technologies (SACMAT 2002), pages 13–22, 2002.

[16] S. D. Stoller, P. Yang, C. Ramakrishnan, and M. I. Gof-

man. Efficient policy analysis for administrative role based

access control. In Proc. 14th ACM Conference on Computer

and Communications Security (CCS 2007), pages 445–455,

2007.

[17] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and P. Mo-

hapatra. FIREMAN: A toolkit for FIREwall Modeling and

ANalysis. In Proc. 2006 IEEE Symposium on Security and

Privacy (S&P 2006), pages 199–213, 2006.

[18] N. Zhang, M. Ryan, and D. P. Guelev. Synthesising ver-

ified access control systems in XACML. In Proc. 2004

ACM Workshop on Formal Methods in Security Engineer-

ing (FMSE 2004), pages 56–65, 2004.

[19] N. Zhang, M. Ryan, and D. P. Guelev. Evaluating access

control policies through model checking. In Proc. 8th In-

formation Security Conference (ISC 2005), pages 446–460,

2005.

