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Abstract -- Monitoring and diagnosing performance issues of 
an online service system are critical to assure satisfactory per-
formance of the system. Given a detected performance issue 
and collected system metrics for an online service system, en-
gineers usually need to make great efforts to conduct diagno-
sis by first identifying performance issue beacons, which are 
metrics that pinpoint to the root causes. In order to reduce the 
manual efforts, in this paper, we propose a new approach to 
effectively detecting performance issue beacons to help with 
performance issue diagnosis. Our approach includes tech-
niques for mining system metric data to address limitations 
when applying previous classification-based approaches. Our 
evaluations on both a controlled environment and a real pro-
duction environment show that our approach can more effec-
tively identify performance issue beacons from system metric 
data than previous approaches.  

Keywords-performance issue diagnosis; class association 
rule; monitoring data analysis 

I.INTRODUCTION 
In online service systems, performance issue diagnosis 

typically starts with hunting for a small subset of monitor-
ing data that are symptoms to represent the cause(s) of the 
performance issues. We name such kind of metrics perfor-
mance issue beacons. Performance issue beacons could be 
the same as the root causes or could be intermediate useful 
information that pinpoints to the root causes. For example, 
the cause of a performance issue is a blocking SQL query, 
whose execution blocks the execution of other queries ac-
cessing the same table. The corresponding observable 
symptoms on monitoring data can be considered as the is-
sue beacons: the metric on SQL-inducing intensive I/O 
bytes and the metric of service critical events “SQL query 
timeout failure”. Among a large number of system metrics 
(e.g., more than 1200 metrics in real production systems 
under our investigation), identifying these performance 
issue beacons forms a critical step towards identifying the 
cause of the performance issues illustrated by the SQL que-
ry example. Because the propagation path from root causes 
to the final performance issue may involve multiple com-
ponents, there may be multiple performance issue beacons 
corresponding to different intermediate factors. All of them 
can provide rich contextual information for diagnosing the 
root cause. 

However, identifying performance issue beacons still 
remains as a time-consuming and challenging task. System 

performance issues may be caused by various causes. The 
huge investigation scope brings a lot of uncertainties and 
makes the diagnosis time consuming. Systems usually rec-
ord a large amount of monitoring data. In practice, however, 
quite often only a small subset of monitoring data is actual-
ly related to a given performance issue [1, 2, 3]. The over-
whelming amount of irrelevant monitoring data brings 
challenges for identifying performance issue beacons. 
Therefore, it is important to create automated tools to im-
prove the effectiveness and efficiency of the identification.  

In this paper, we propose a novel approach that effec-
tively and efficiently identifies performance issue beacons 
for helping engineers diagnose performance issues. This 
paper makes the following main contributions: 
• In order to mine performance issue beacons out of sys-

tem metrics, we propose a novel approach that consists 
of metric-outlier detection, class-association-rule (CAR) 
mining, and log-likelihood ranking.  

• We have implemented the proposed approach and ap-
plied it to a real production environment in a large soft-
ware company. The results show that the proposed ap-
proach can outperform previous related approaches, and 
provide useful performance issue beacons to help engi-
neers with their daily tasks of performance diagnosis.  
The rest of the paper is organized as follows. Section 2 

discusses related work. Section 3 presents a problem state-
ment and preliminaries. Section 4 presents the approach of 
mining system metrics to identify performance issue bea-
cons. Section 5 presents the evaluation results, and Section 
6 concludes the paper. 

II.RELATED WORK 
Previous approaches [1-5][8, 9] apply statistical analysis 

to tackle the challenges of scale and complexity in perfor-
mance monitoring and diagnosis. These approaches statisti-
cally analyze traces, console logs, or system metrics. Given 
the data of system Service-Level-Objective (SLO) states 
(violation or compliance) and system metrics, Cohen et al. 
[2, 3] propose an approach to deduce a classification model 
based on Tree-Augmented-Network (TAN), which uses a 
few system metrics to predict system SLO states. Their 
approach identifies the metrics used by the deduced TAN 
classification model as performance issue signatures for 
clustering, indexing, and retrieving performance issues. 



Bodik et al. [1] adapted their approach by adopting a dif-
ferent model, called L1-Logistic Regression, for identifying 
highly correlated metrics more accurately.   

A straightforward idea of identifying performance issue 
beacons is to treat the performance issue signatures (con-
structed by previous classification-based approaches) as 
performance issue beacons. However, the primary focus of 
those approaches is discriminating different types of issues 
instead of providing comprehensive diagnosis information. 
In addition, such classification-based approaches have three 
main limitations in practice. First, since they usually learn a 
model for each individual performance issue, they would 
suffer from the over-fitting problem when learning a classi-
fier for a performance issue occurring in a short interval. 
Second, since they use only one model representing per-
formance issues, they tend to identify only general symp-
toms as performance issue signatures and miss those minor 
symptoms, which are usually more helpful for deeper diag-
nosis. Third, they do not fully leverage the contextual in-
formation (e.g., adjacent violations are usually caused by 
the same cause), which can improve the diagnosis accuracy.  

III. PRELIMINARIES 

A. Metric Preprocessing 
For monitoring and diagnosing performance issues, a 

huge amount of performance data is collected during sys-
tem executions. The monitoring data is aggregated and 
measured once per time epoch (e.g., 5 minutes in the online 
service systems investigated by us) for calculating the val-
ues of Key Performance Indicators (KPIs) and system met-
rics. The most common KPIs include latency and availabil-
ity. During system operation, if a KPI’s value (e.g., average 
latency) violates the SLO, a KPI violation is detected, and 
the system is said to be in the SLO-violation state. Other-
wise, the system is in the SLO-compliance state. System 
metrics include system-resource usage information (e.g., 
the CPU utilization, disk-queue lengths, and I/O-operation 
rate) and the counts of each kind of critical events (e.g., 
Windows-kernel events and important service events). 

B. Basic Concepts 
We next formally define some concepts that we use in 

the problem statement.  
Definition 1. System state Si for the ith time epoch is a bina-
ry flag to indicate whether any system KPI value violates 
an SLO on the ith time epoch.  
Si =1 indicates that the system is in the SLO-violation state 
on the ith time epoch, and Si=0 indicates that the system is 
in the SLO-compliance state on the ith time epoch. 
Definition 2. System metrics M are a vector of metrics’ 
names < 𝑀1, … 𝑀𝑘 > . An example is M = <“Processor 
Usage”, “Inactive Sessions”,…> , where the first two met-
rics M1 and M2 are “Processor Usage” and “Inactive Ses-
sions”, respectively. 

Definition 3. System metric record MRi for the ith time 
epoch is a vector of metric values < 𝑚𝑖,1, … 𝑚𝑖,𝑘 > meas-
ured on the ith time epoch.  

The inputs to our approach are (1) the system metrics M, 
(2) the sequence of system states S: <S1, S2, …, Sn> for n 
time epochs, and (3) the sequence of system metric records 
MR: <MR1, MR2, …, MRn> for the same n time epochs. 
The objective of our approach is to find the performance 
issue beacons (a subset of metrics ⊂ 𝑀) for each perfor-
mance issue.  

IV. APPROACH 
Before going into the detail of our approach, we first in-

troduce engineers’ experience on manually identifying per-
formance issue beacons. In fact, the basic ideas of our ap-
proach come from these experiences in practice, including 
three key points: (1) performance issue beacons often have 
extraordinarily high or low values (or significantly differ-
ent from their normal value range) during the period when 
the investigated issue occurs; (2) performance issue bea-
cons usually remain in the normal value range when the 
system is in the SLO-compliance state; (3) the adjacent 
violations within one performance issue may usually be 
caused by the same cause and would have the same metric 
values as those of performance issue beacons.  

As the scale of a system increases, manual analysis 
based on rough qualitative experience becomes inefficient 
or even infeasible. In this section, we present our approach 
that applies machine learning to turn such qualitative expe-
rience into a quantitative model. Our approach consists of 
two stages: the training stage and diagnosis stage. During 
the training stage, we first use an outlier-detection algo-
rithm to detect abnormal values of each system metric 
(Section 4.1). Then, with the discretized values (indicating 
normal or abnormal values) of system metrics and the SLO 
states (violation states or compliance states) of a KPI, we 
mine Class Association Rules (CARs) [4] from historical 
data to discover all possible associations between metrics’ 
anomalies and SLO-violation states. These mined CARs 
are stored as beacon candidates for later processing (Sec-
tion 4.2). In the diagnosis stage, given a newly detected 
performance issue, we use log likelihood to calculate a 
matching score for each stored CAR candidate. We return 
the CARs with the highest match score as results to engi-
neers (Section 4.3).  

A. Metric Discretization 
Detecting whether the value of a metric is lower or 

higher than its normal value range is quite useful for per-
formance diagnosis (we call this detection process as metric 
discretization). In this subsection, we use outlier detection 
to discretize system metric values. Such technique reflects 
the above-mentioned experience in practice, and the tech-
nique’ effectiveness has also been demonstrated in previous 
work [1]. Similar to the previous work, we determine the 



discretization threshold for a metric by the p-percentage of 
past values of the metric during normal system operation. 
In our approach, the default value of p is selected as 2, 
which is similar to that of previous work [1]. 

After discretization, each value of the metric has been 
discretized as one of High, Low, or Normal. For each epoch, 
we have a KPI state and a set of discretized metric values. 
In this paper, we call the KPI state and discretized metric 
values in an epoch as a sample. Based on all historical 
samples, we perform the CAR-mining algorithm to discov-
er associations between metric outliers and performance 
issues, as described in the next subsection. 

B. Discovery of Associations Between Metric Outliers and 
Performance Issues 

Performance diagnosis aims to find out the causation be-
tween metric outliers and performance issues. For example, 
its output can be that “the CPU resource contention causes 
this performance issue”. Such an expression can be ex-
pressed by an association rule such as “{metric A is Low, 
metric B is High} => SLO violation”. Here, the left part 
“{metric A is Low, metric B is High}” is an antecedent (in-
cluding multiple metric names and their values, abbreviated 
as MC), and the right part “SLO violation” is a conse-
quence (denoted as S). We aim to mine a set of CARs 
whose antecedents are “combination of metric anomalies 
(High or Low)” and the consequence is “SLO violation”. 

We apply the algorithm from previous work [4] to iden-
tify rules whose support (sup), confidence (conf), and lift 
values are above a set of given thresholds, respectively. 
Then, we further prune every rule 𝑀𝐶 → 𝑆  that satisfies 
one of the following conditions: 
• There exists a rule 𝑀𝐶𝑥 → 𝑆 in R that satisfies 𝑀𝐶𝑥 ⊂

𝑀𝐶 and 𝑐𝑜𝑛𝑓(𝑀𝐶𝑥 → 𝑆) > 𝑐𝑜𝑛𝑓(𝑀𝐶 → 𝑆). 
• There exists a rule 𝑀𝐶𝑦 → 𝑆 in R that satisfies 𝑀𝐶𝑦 ⊃

𝑀𝐶 and 𝑠𝑢𝑝�𝑀𝐶𝑦� = 𝑠𝑢𝑝(𝑀𝐶). 
The intuition behind the first condition is that if a metric is 
related to a cause of performance issues, adding it to the 
conditions of a rule should increase the rule’s confidence. 
Otherwise, the metric may not be related to the issues. The 
intuition behind the second condition is that if 𝑀𝐶 is highly 
correlated to the performance issues, and all the metrics in 
the set (𝑀𝐶𝑦 −𝑀𝐶) always occur together with 𝑀𝐶, then 
these co-occurring metrics are also potentially related to the 
performance issues. Using the rule-pruning strategy, we 
can reduce redundancies in the mined CARs. 

C. Ranking of Relevant Metric Sets 
After the training stage (Sections 4.1-4.2), we obtain a 

set of candidate CARs from historical monitoring data. 
Each candidate CAR is a combination of metrics and their 
values that may cause performance degradation. This sec-
tion illustrates the diagnosis stage where we select the 
CARs that can best fit the newly encountered performance 
issue. Intuitively, if a CAR represents the real cause of the 

issue under investigation, the metrics of its antecedent 
should be abnormal (High or Low) in the SLO-violation 
epochs of the issue. On the contrary, the metrics of its ante-
cedent should be normal in the SLO-compliance epochs 
around the issue. We use log likelihood as the evaluation 
algorithm for realizing the preceding intuitions.  

First, for a given performance issue under investigation, 
we expand (usually double) the investigation period to in-
clude the nearby SLO-compliance epochs. By including the 
nearby SLO-compliance epochs, we can fully leverage the 
contrast information to reduce false positives (i.e., non-
helpful metrics detected as performance beacons).   

Next, for a candidate rule 𝑀𝐶 → 𝑆 (e.g., {metric CPU is 
High} => SLO violation), we calculate the following statis-
tics (i.e., conditional probabilities) from all historical moni-
toring data. These statistics are used in the log-likelihood 
computation. Among these statistics, 𝑠𝑢𝑝 (¬𝑀𝐶)  is the 
number of samples that do not satisfy the antecedent 
𝑀𝐶 (i.e., metric CPU is High), ¬𝑆  denotes the SLO-
compliance state.  

• 𝑃(𝑆|𝑀𝐶) = 𝑠𝑢𝑝 (𝑀𝐶 → 𝑆) 𝑠𝑢𝑝 (𝑀𝐶)⁄   
• 𝑃(¬𝑆|𝑀𝐶) = 1 − 𝑃(𝑆|𝑀𝐶) 
• 𝑃(𝑆|¬𝑀𝐶) = 𝑠𝑢𝑝 ((¬𝑀𝐶) → 𝑆) 𝑠𝑢𝑝 (¬𝑀𝐶)⁄  
• 𝑃(¬𝑆|¬𝑀𝐶) = 1 − 𝑃(𝑆|¬𝑀𝐶) 
After that, for evaluating the rule 𝑀𝐶 → 𝑆, the likeli-

hood probability 𝑃𝑖 of the ith epoch in the investigated peri-
od can be one of the preceding probability values according 
to the values of metric vector MRi and system state Si of the 
sample. For example, if MRi satisfies the antecedent MC 
(i.e., CPU value in MRi is higher than 𝑇ℎ𝐶𝑃𝑈2 ), and Si is 1 
(i.e., the SLO-violation state), then the likelihood of epoch i 
is 𝑃(𝑆|𝑀𝐶). If MRi does not satisfy the antecedent MC, and 
Si is 1, the epoch’s likelihood is 𝑃(𝑆|¬𝑀𝐶). Based on the 
likelihood values of the epochs within the investigated pe-
riod, we calculate the log likelihood L of the CAR 𝑀𝐶 → 𝑆 
by the equation 𝐿 = ∑ log (𝑃𝑖). 

With the log-likelihood values for all CAR candidates, 
we then rank these candidates, and return the top candidates 
as our analysis results to engineers.  

D. Algorithm Discussion 
Previous classification-based approaches learn a model 

from each individual performance issue. These approaches 
suffer from the over-fitting problem when they deal with 
short-period performance issues due to insufficient data. If 
we compose the data of multiple performance issues to-
gether to enlarge the data to avoid the over-fitting problem, 
doing so also introduces two other problems that the previ-
ous classification-based approaches fail to address. First, 
since multiple performance issues may be caused by differ-
ent causes that correspond to very different system-metric 
symptoms, learning one classifier from the data caused by 
mixed causes may degrade the diagnosis accuracy. Second, 
there exists the coupling-effect phenomenon among system 
metrics. For example, many different causes (e.g., a block-
ing SQL query or a database server with high CPU usage) 



may lead to frequent occurrences of the service critical 
event “SQL query timeout”. Therefore, the metric value of 
“number of blocking query” and the metric value of “num-
ber of SQL query timeout event” usually increase together. 
Similarly, the metric value of “CPU usage” and “number of 
SQL query timeout event” may also increase together. 
However, the previous classification-based approaches tend 
to select only the dominant metric of “number of SQL que-
ry timeout event” because it has the best prediction accura-
cy on SLO violations caused by both of the two causes. 
These approaches fail to detect the metrics of “CPU usage” 
and “blocking query”, which contain diagnosis information 
in fine granularity.  

Our approach addresses the over-fitting problem by min-
ing candidate models from the whole historical data first, 
and then selects the best one from the candidate models by 
matching them with the performance issue under investiga-
tion. In addition, CAR mining can discover all rules that 
satisfy some basic requirements including above the sup-
port and confidence thresholds. It can mine not only domi-
nant metrics but also other metrics of interest as rules. For 
the preceding example, we select all of the three metrics. 
For the metric of “CPU usage”, we can select it out because 
it can associate some of SLO violations (caused by high 
CPU usage) well enough even when it does not associate 
with SLO violations caused by blocking queries. Similarly, 
we can also select out the metric of “blocking query”.  

E. Adaptation in Practice 
We have applied our approach to a real-world web-

based multi-tier online system that consists of IIS servers, 
application servers, and SQL servers. Each tier contains 
several hosts that share similar hardware and software con-
figurations. For example, the web front end is served by a 
web server farm where a set of IIS servers serve the incom-
ing user requests behind a load balancer. 

Service-layer-based analysis. We identify performance 
issue beacons for each service layer of the system because 
each tier often has the same types of metrics. In particular, 
we first discretize the monitored metrics host by host; then 
we merge the resulting data from different hosts of the 
same service tier to form the historical training set. In the 
next step, we run the CAR miner to obtain a set of perfor-
mance issue beacons. Note that the historical training set 
allows the CAR miner to aggregate the support of CARs 
from similar hosts, thus yielding more accurate estimates.  

Given a newly detected performance issue, we discretize 
the metrics for each host of the first tier (i.e., IIS servers) 
on each epoch during the time period of the issue, and then 
select the hosts that have abnormal (i.e., high/low) metric 
values. For each of these selected hosts, we use the step in 
Section 4.3 to calculate the score of each mined CAR. Sim-
ilar procedures are also conducted on the hosts of the se-
cond tier and the third tier to evaluate CARs, respectively. 
At last, the k CARs with the highest scores are produced as 
our final results. 

Incremental mining. The real-world system under in-
vestigation continuously generates a large amount of moni-
tored metric data. In general, a CAR algorithm needs to 
scan all historical data to produce CARs. However, due to 
the storage and computational constraints, we may not be 
able to archive all historical data. In addition, running the 
CAR miner over a huge data set is computationally expen-
sive. We propose two strategies to address these practical 
challenges. First, we reduce the number of samples by ex-
ploiting a property of the performance data. In a real-world 
scenario, the performance of the service system is in the 
SLA-compliance state most of the time, and the corre-
sponding metric patterns are of no interest. In contrast, the 
metric patterns from the time intervals where the service is 
in the SLA-violation state are of interest. Therefore, we can 
largely reduce the number of archived training samples by 
removing redundant samples with the SLA-compliance 
state, and assign each compliance epoch a weight to count 
the number of removed epochs. For example, we randomly 
keep a moderate-size set of samples with the SLA-
compliance state (e.g., 1000 samples).  Second, we also 
apply an incremental miner [6, 7] to further reduce the 
computational cost of CAR mining. 

V. EVALUATIONS 
To evaluate our approach, we conducted evaluations 

with two environments (TPC-W and a production system 
called SystemX), respectively. TPC-W is to serve synthetic 
workloads in a controlled laboratory environment, and 
SystemX is a real production environment that serves real 
users. We aggregate monitoring data in every time epoch 
(i.e., 5 minutes) to calculate the values of KPIs and system 
metrics. The calculated values of KPIs and metrics on each 
time epoch form a value vector as a data sample. In order to 
compare the effectiveness of different approaches, we also 
implemented the TAN classifier [2, 3] and the L1-Logistic 
Regression [1]. We measure different approaches’ identifi-
cation results by the accuracy and the coverage. The accu-
racy is the ratio between the number of identified real issue 
beacons and the total number of identified issue beacons. 
The coverage is the ratio between the number of identified 
real issue beacons and the total number of real issue bea-
cons. For both accuracy and coverage, the higher the better. 

A. Evaluations on TPC-W 
Cause injection. Many performance issues are caused 

by exhaustion of specific system resources. To synthesize 
performance causes, we use a standalone program to ex-
haust specific system resources, including CPU exhaustion, 
disk IO exhaustion, or their combinations, according to our 
specified configuration. By running such resource-eating 
program, we inject root causes to produce system KPI vio-
lations.  

Transaction workload. In the evaluations, we use two 
workload patterns: (1) we use a periodical workload by 



changing the number of concurrent clients from 50 to 150 
for each hour, and (2) each client sends a request to trigger 
a system-processing transaction, waits for 10 milliseconds 
thinking time, and then sends a request again, and so on.  

Transaction types. In the evaluations, we intend to con-
struct different types of transactions in terms of their differ-
ent extents of consuming specific resources.  
• CPU-intensive transactions: transactions that execute a 

CPU-intensive servlet “A” that executes one loop with 
a randomly chosen number of iterations (from the 
range of 1000 to 2000), each of which prints a number 
to the screen. 

• Disk-IO-intensive transactions: transactions that exe-
cute a disk-IO-intensive servlet “B” that opens and 
reads the content of a randomly selected file from 1000 
files (with the file size randomly chosen from the range 
of 2MB to 4MB and the file content as constant char-
acters). 

• Mixed-intensive transactions (i.e., both CPU-intensive 
and disk-IO-intensive ones): transactions that execute a 
servlet “C” that (1) executes loops; (2) opens and reads 
the content of randomly selected files. 

System metrics. During the time period of executing the 
transactions, we collect about 90 system metric data related 
to Cache, LogicalDisk, Memory, Network Interface, 
PhysicalDisk, Process, Processor, and so on. 

Latency KPI. By parsing the server logs, we obtain 
each request’s latency. We calculate the requests’ 50 per-
centile latency in each epoch (5 minutes) as the latency KPI. 

In the evaluations, we use three different patterns of 
mixing different root causes with different proportions. In 
Time Pattern A, the lengths of the periods with the effect of 
CPU exhaustion, disk-IO exhaustion, and both CPU and 
disk-IO exhaustion are 24 hours, 3 hour, and 3 hour, re-
spectively. In Time Pattern B, they are 24 hour, 24 hour, 
and 24 hour, respectively. In Time Pattern C, they are 24 
hours, 12 hours, and 6 hours, respectively. Table 1 shows 
the comparison results. 

TABLE 1. THE ACCURACIES OF DIFFERENT APPROACHES 

Approach Accuracy on beacon identification 
Pattern A Pattern B Pattern C Avg. 

TAN 0% 0% 0% 0% 
L1-LR 0% 14% 0% 5% 
Ours 30% 50% 30% 36% 

TAN identifies only one metric “Committed Memory 
Bytes In Use” as issue beacons. We investigate the detailed 
results to figure out why TAN does not work. In our evalu-
ations, the values of “Committed Memory Bytes In Use” 
remain as a stable range of 20%~25% when we do not run 
the resource-eating program. However, the values increase 
to the range of 30%~55% when we run the resource-eating 
program to produce SLA violations. TAN automatically 
constructs the prediction model as follows: if the value of 
“Committed Memory Bytes In Use” is larger than 30%, 
then the system is in the SLA-violation state; otherwise, the 

system is in the SLA-compliance state. Because such a 
prediction model can achieve 100% accuracy, TAN identi-
fies only this metric; such identification is in fact resulted 
from a coupling effect. However, such identified metric 
may not be able to provide explicit and direct help for 
quick diagnosis. 

For our approach and L1-Logistic Regression, we ob-
serve that our approach can outperform L1-Logistic regres-
sion under such complex situations (i.e., multiple root 
causes taking effect within the period). Specifically, for 
Pattern A, L1-Logistic Regression identifies only two met-
rics “Server\Sessions Timed Out” and “Terminal Ser-
vices\Active Sessions” as issue beacons; for Pattern C, it 
identifies seven metrics as issue beacons: “Memory\Cache 
Bytes”, “Memory\% Committed Bytes In Use”, “Sys-
tem\System Calls/sec”, “Terminal Services\Active Ses-
sions”, “Server\Sessions Timed Out”, “Terminal Ser-
vices\Total Sessions”, and “System\Threads”. All of these 
seven identified issue beacons are false positives. L1-
Logistic Regression can detect only a real issue beacon as 
“PhysicalDisk(_Total)\Avg. Disk sec/Transfer” among the 
identified seven metrics for Pattern B. In contrast, our ap-
proach can detect real issue beacons for all of the three 
Time Patterns. For example, for Time Pattern A, our identi-
fied issue beacons are listed in Table 2.  

TABLE 2. OUR IDENTIFIED ISSUE BEACONS FOR TIME PATTERN A 

Metric index Metrics identified by our approach 
1 Memory\% Committed Bytes In Use 
2 Terminal Services\Inactive Sessions 
3 System\Processor Queue Length 
4 Processor(_Total)\% Processor Time 
5 Cache\Data Flush Pages/sec 
6 System\File Write Bytes/sec 
7 Cache\Data Flushes/sec 
8 Memory\Pages/sec 
9 Cache\Read Aheads/sec 
10 Cache\Pin Read Hits % 

B. Empirical Study on a Real Production System 
We have deployed our tools (implementation of our ap-

proach) in a real production service system to help engi-
neers on their daily tasks of performance diagnosis. In this 
subsection, due to company-confidentiality policies, we 
show only the empirical results based on data of recent two 
months from the internal environments where there are 13 
deployed web front-end servers. The environments collect 
more than 1129 system metrics, which include 549 perfor-
mance counters and 580 service critical events. The KPI 
used in the evaluations is Percentile-95 Latency. The KPI-
violation threshold is 1500ms. These settings are defined 
by the product team for managing the service system.  

We use 36 performance issues occurring within two 
months to conduct the evaluations. Because the evaluations 
need to involve great manual efforts of engineers in the 
product team, and the approach of L1-Logistic Regression 
is the most recent related work and has been shown to per-



form better than a TAN-based approach [2], we evaluate 
only the results of our approach and L1-Logistic Regres-
sion. We ask production engineers’ help for labeling out 
real issue beacons among only the union set of identified 
issue beacons by our approach and by L1-Logistic Regres-
sion. The labeled results are used to calculate the accuracy 
and the coverage of each approach. A metric is labeled as 
an issue beacon if it provides explicit helpful information 
for identifying the cause of performance issues in diagnosis 
practice of engineers. 

Figures 1 and 2 show the coverage and accuracy results, 
respectively, as we change the threshold of the number of 
selected metrics from 1 to 10. We can observe that our ap-
proach can achieve better coverage and accuracy in all cas-
es than the approach of L1-Logistic Regression. 

We next illustrate one detailed case. Because plans of 
SQL stored procedures are not all cached, the SQL server 
needs to recompile execution plans frequently. The fre-
quent recompilation occupies the SQL server’s processor 
intensively and causes compilation locks. Such factor can 
cause SQL queries’ waiting time to be much longer than 
their normal values. It can finally lead to long latency for 
serving user requests. At the same time, the count of critical 
service events of “Slow Query Duration” becomes large. 

 
Figure 1. The coverage of our approach and L1-Logsictic Regression 

 

 
Figure 2. The accuracy of our approach and L1-Logsictic Regression 

 
Our identified top 10 metrics contain 7 correct metrics 

that identify the following performance issue beacons: Ser-
vice critical event “Slow query duration”, Performance 
counter “SQL CPU usage”, and Performance counter 
“SQL Re-Compilations”. We consider these metrics as 
helpful, and thus as real issue beacons because they can 
quickly guide engineers to move their focus to problems 

related to CPU/Re-compilation of a SQL server. In a com-
plex multi-tier system, such hints are very helpful to reduce 
the problem-investigation effort and to speed up the diag-
nosis process. In contrast, the approach of L1-Logistic Re-
gression identifies only two metrics as issue beacons with 
one being a real issue beacon “SQL query duration” and 
the other being a false positive. 

VI.CONCLUSION 
We have proposed an approach of performance issue di-

agnosis for online service systems. In our approach, we 
analyze system metrics to identify comprehensive perfor-
mance issue beacons for engineers to diagnose performance 
issues. In particular, from system metric data, our approach 
includes three steps based on class-association-rule mining 
to identify performance issue beacons. Compared with a 
previous classification-based approaches [1, 2, 3], our ap-
proach achieves better results. The evaluation results on 
both a controlled environment and a real production envi-
ronment show the benefits of our approach: our approach 
can sift through a large amount of system metric data and 
identify helpful performance issue beacons for engineer to 
conduct performance issue diagnosis. 
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