
Performance Issue Diagnosis for Online Service Systems
Qiang Fu1, Jian-Guang Lou1, Qing-Wei Lin1, Rui Ding1, Dongmei Zhang1

Zihao Ye2, Tao Xie3

1Microsoft Research Asia
Beijing, China

{qifu, jlou, qlin, juding,
dongmeiz}@microsoft.com

2Beihang University
Beijing, China

yzhvictor@gmail.com

3North Carolina State University
Raleigh, NC, USA
xie@csc.ncsu.edu

Abstract -- Monitoring and diagnosing performance issues of
an online service system are critical to assure satisfactory per-
formance of the system. Given a detected performance issue
and collected system metrics for an online service system, en-
gineers usually need to make great efforts to conduct diagno-
sis by first identifying performance issue beacons, which are
metrics that pinpoint to the root causes. In order to reduce the
manual efforts, in this paper, we propose a new approach to
effectively detecting performance issue beacons to help with
performance issue diagnosis. Our approach includes tech-
niques for mining system metric data to address limitations
when applying previous classification-based approaches. Our
evaluations on both a controlled environment and a real pro-
duction environment show that our approach can more effec-
tively identify performance issue beacons from system metric
data than previous approaches.

Keywords-performance issue diagnosis; class association
rule; monitoring data analysis

I.INTRODUCTION
In online service systems, performance issue diagnosis

typically starts with hunting for a small subset of monitor-
ing data that are symptoms to represent the cause(s) of the
performance issues. We name such kind of metrics perfor-
mance issue beacons. Performance issue beacons could be
the same as the root causes or could be intermediate useful
information that pinpoints to the root causes. For example,
the cause of a performance issue is a blocking SQL query,
whose execution blocks the execution of other queries ac-
cessing the same table. The corresponding observable
symptoms on monitoring data can be considered as the is-
sue beacons: the metric on SQL-inducing intensive I/O
bytes and the metric of service critical events “SQL query
timeout failure”. Among a large number of system metrics
(e.g., more than 1200 metrics in real production systems
under our investigation), identifying these performance
issue beacons forms a critical step towards identifying the
cause of the performance issues illustrated by the SQL que-
ry example. Because the propagation path from root causes
to the final performance issue may involve multiple com-
ponents, there may be multiple performance issue beacons
corresponding to different intermediate factors. All of them
can provide rich contextual information for diagnosing the
root cause.

However, identifying performance issue beacons still
remains as a time-consuming and challenging task. System

performance issues may be caused by various causes. The
huge investigation scope brings a lot of uncertainties and
makes the diagnosis time consuming. Systems usually rec-
ord a large amount of monitoring data. In practice, however,
quite often only a small subset of monitoring data is actual-
ly related to a given performance issue [1, 2, 3]. The over-
whelming amount of irrelevant monitoring data brings
challenges for identifying performance issue beacons.
Therefore, it is important to create automated tools to im-
prove the effectiveness and efficiency of the identification.

In this paper, we propose a novel approach that effec-
tively and efficiently identifies performance issue beacons
for helping engineers diagnose performance issues. This
paper makes the following main contributions:
• In order to mine performance issue beacons out of sys-

tem metrics, we propose a novel approach that consists
of metric-outlier detection, class-association-rule (CAR)
mining, and log-likelihood ranking.

• We have implemented the proposed approach and ap-
plied it to a real production environment in a large soft-
ware company. The results show that the proposed ap-
proach can outperform previous related approaches, and
provide useful performance issue beacons to help engi-
neers with their daily tasks of performance diagnosis.
The rest of the paper is organized as follows. Section 2

discusses related work. Section 3 presents a problem state-
ment and preliminaries. Section 4 presents the approach of
mining system metrics to identify performance issue bea-
cons. Section 5 presents the evaluation results, and Section
6 concludes the paper.

II.RELATED WORK
Previous approaches [1-5][8, 9] apply statistical analysis

to tackle the challenges of scale and complexity in perfor-
mance monitoring and diagnosis. These approaches statisti-
cally analyze traces, console logs, or system metrics. Given
the data of system Service-Level-Objective (SLO) states
(violation or compliance) and system metrics, Cohen et al.
[2, 3] propose an approach to deduce a classification model
based on Tree-Augmented-Network (TAN), which uses a
few system metrics to predict system SLO states. Their
approach identifies the metrics used by the deduced TAN
classification model as performance issue signatures for
clustering, indexing, and retrieving performance issues.

Bodik et al. [1] adapted their approach by adopting a dif-
ferent model, called L1-Logistic Regression, for identifying
highly correlated metrics more accurately.

A straightforward idea of identifying performance issue
beacons is to treat the performance issue signatures (con-
structed by previous classification-based approaches) as
performance issue beacons. However, the primary focus of
those approaches is discriminating different types of issues
instead of providing comprehensive diagnosis information.
In addition, such classification-based approaches have three
main limitations in practice. First, since they usually learn a
model for each individual performance issue, they would
suffer from the over-fitting problem when learning a classi-
fier for a performance issue occurring in a short interval.
Second, since they use only one model representing per-
formance issues, they tend to identify only general symp-
toms as performance issue signatures and miss those minor
symptoms, which are usually more helpful for deeper diag-
nosis. Third, they do not fully leverage the contextual in-
formation (e.g., adjacent violations are usually caused by
the same cause), which can improve the diagnosis accuracy.

III. PRELIMINARIES

A. Metric Preprocessing
For monitoring and diagnosing performance issues, a

huge amount of performance data is collected during sys-
tem executions. The monitoring data is aggregated and
measured once per time epoch (e.g., 5 minutes in the online
service systems investigated by us) for calculating the val-
ues of Key Performance Indicators (KPIs) and system met-
rics. The most common KPIs include latency and availabil-
ity. During system operation, if a KPI’s value (e.g., average
latency) violates the SLO, a KPI violation is detected, and
the system is said to be in the SLO-violation state. Other-
wise, the system is in the SLO-compliance state. System
metrics include system-resource usage information (e.g.,
the CPU utilization, disk-queue lengths, and I/O-operation
rate) and the counts of each kind of critical events (e.g.,
Windows-kernel events and important service events).

B. Basic Concepts
We next formally define some concepts that we use in

the problem statement.
Definition 1. System state Si for the ith time epoch is a bina-
ry flag to indicate whether any system KPI value violates
an SLO on the ith time epoch.
Si =1 indicates that the system is in the SLO-violation state
on the ith time epoch, and Si=0 indicates that the system is
in the SLO-compliance state on the ith time epoch.
Definition 2. System metrics M are a vector of metrics’
names < 𝑀1, … 𝑀𝑘 > . An example is M = <“Processor
Usage”, “Inactive Sessions”,…> , where the first two met-
rics M1 and M2 are “Processor Usage” and “Inactive Ses-
sions”, respectively.

Definition 3. System metric record MRi for the ith time
epoch is a vector of metric values < 𝑚𝑖,1, … 𝑚𝑖,𝑘 > meas-
ured on the ith time epoch.

The inputs to our approach are (1) the system metrics M,
(2) the sequence of system states S: <S1, S2, …, Sn> for n
time epochs, and (3) the sequence of system metric records
MR: <MR1, MR2, …, MRn> for the same n time epochs.
The objective of our approach is to find the performance
issue beacons (a subset of metrics ⊂ 𝑀) for each perfor-
mance issue.

IV. APPROACH
Before going into the detail of our approach, we first in-

troduce engineers’ experience on manually identifying per-
formance issue beacons. In fact, the basic ideas of our ap-
proach come from these experiences in practice, including
three key points: (1) performance issue beacons often have
extraordinarily high or low values (or significantly differ-
ent from their normal value range) during the period when
the investigated issue occurs; (2) performance issue bea-
cons usually remain in the normal value range when the
system is in the SLO-compliance state; (3) the adjacent
violations within one performance issue may usually be
caused by the same cause and would have the same metric
values as those of performance issue beacons.

As the scale of a system increases, manual analysis
based on rough qualitative experience becomes inefficient
or even infeasible. In this section, we present our approach
that applies machine learning to turn such qualitative expe-
rience into a quantitative model. Our approach consists of
two stages: the training stage and diagnosis stage. During
the training stage, we first use an outlier-detection algo-
rithm to detect abnormal values of each system metric
(Section 4.1). Then, with the discretized values (indicating
normal or abnormal values) of system metrics and the SLO
states (violation states or compliance states) of a KPI, we
mine Class Association Rules (CARs) [4] from historical
data to discover all possible associations between metrics’
anomalies and SLO-violation states. These mined CARs
are stored as beacon candidates for later processing (Sec-
tion 4.2). In the diagnosis stage, given a newly detected
performance issue, we use log likelihood to calculate a
matching score for each stored CAR candidate. We return
the CARs with the highest match score as results to engi-
neers (Section 4.3).

A. Metric Discretization
Detecting whether the value of a metric is lower or

higher than its normal value range is quite useful for per-
formance diagnosis (we call this detection process as metric
discretization). In this subsection, we use outlier detection
to discretize system metric values. Such technique reflects
the above-mentioned experience in practice, and the tech-
nique’ effectiveness has also been demonstrated in previous
work [1]. Similar to the previous work, we determine the

discretization threshold for a metric by the p-percentage of
past values of the metric during normal system operation.
In our approach, the default value of p is selected as 2,
which is similar to that of previous work [1].

After discretization, each value of the metric has been
discretized as one of High, Low, or Normal. For each epoch,
we have a KPI state and a set of discretized metric values.
In this paper, we call the KPI state and discretized metric
values in an epoch as a sample. Based on all historical
samples, we perform the CAR-mining algorithm to discov-
er associations between metric outliers and performance
issues, as described in the next subsection.

B. Discovery of Associations Between Metric Outliers and
Performance Issues

Performance diagnosis aims to find out the causation be-
tween metric outliers and performance issues. For example,
its output can be that “the CPU resource contention causes
this performance issue”. Such an expression can be ex-
pressed by an association rule such as “{metric A is Low,
metric B is High} => SLO violation”. Here, the left part
“{metric A is Low, metric B is High}” is an antecedent (in-
cluding multiple metric names and their values, abbreviated
as MC), and the right part “SLO violation” is a conse-
quence (denoted as S). We aim to mine a set of CARs
whose antecedents are “combination of metric anomalies
(High or Low)” and the consequence is “SLO violation”.

We apply the algorithm from previous work [4] to iden-
tify rules whose support (sup), confidence (conf), and lift
values are above a set of given thresholds, respectively.
Then, we further prune every rule 𝑀𝐶 → 𝑆 that satisfies
one of the following conditions:
• There exists a rule 𝑀𝐶𝑥 → 𝑆 in R that satisfies 𝑀𝐶𝑥 ⊂

𝑀𝐶 and 𝑐𝑜𝑛𝑓(𝑀𝐶𝑥 → 𝑆) > 𝑐𝑜𝑛𝑓(𝑀𝐶 → 𝑆).
• There exists a rule 𝑀𝐶𝑦 → 𝑆 in R that satisfies 𝑀𝐶𝑦 ⊃

𝑀𝐶 and 𝑠𝑢𝑝�𝑀𝐶𝑦� = 𝑠𝑢𝑝(𝑀𝐶).
The intuition behind the first condition is that if a metric is
related to a cause of performance issues, adding it to the
conditions of a rule should increase the rule’s confidence.
Otherwise, the metric may not be related to the issues. The
intuition behind the second condition is that if 𝑀𝐶 is highly
correlated to the performance issues, and all the metrics in
the set (𝑀𝐶𝑦 −𝑀𝐶) always occur together with 𝑀𝐶, then
these co-occurring metrics are also potentially related to the
performance issues. Using the rule-pruning strategy, we
can reduce redundancies in the mined CARs.

C. Ranking of Relevant Metric Sets
After the training stage (Sections 4.1-4.2), we obtain a

set of candidate CARs from historical monitoring data.
Each candidate CAR is a combination of metrics and their
values that may cause performance degradation. This sec-
tion illustrates the diagnosis stage where we select the
CARs that can best fit the newly encountered performance
issue. Intuitively, if a CAR represents the real cause of the

issue under investigation, the metrics of its antecedent
should be abnormal (High or Low) in the SLO-violation
epochs of the issue. On the contrary, the metrics of its ante-
cedent should be normal in the SLO-compliance epochs
around the issue. We use log likelihood as the evaluation
algorithm for realizing the preceding intuitions.

First, for a given performance issue under investigation,
we expand (usually double) the investigation period to in-
clude the nearby SLO-compliance epochs. By including the
nearby SLO-compliance epochs, we can fully leverage the
contrast information to reduce false positives (i.e., non-
helpful metrics detected as performance beacons).

Next, for a candidate rule 𝑀𝐶 → 𝑆 (e.g., {metric CPU is
High} => SLO violation), we calculate the following statis-
tics (i.e., conditional probabilities) from all historical moni-
toring data. These statistics are used in the log-likelihood
computation. Among these statistics, 𝑠𝑢𝑝 (¬𝑀𝐶) is the
number of samples that do not satisfy the antecedent
𝑀𝐶 (i.e., metric CPU is High), ¬𝑆 denotes the SLO-
compliance state.

• 𝑃(𝑆|𝑀𝐶) = 𝑠𝑢𝑝 (𝑀𝐶 → 𝑆) 𝑠𝑢𝑝 (𝑀𝐶)⁄
• 𝑃(¬𝑆|𝑀𝐶) = 1 − 𝑃(𝑆|𝑀𝐶)
• 𝑃(𝑆|¬𝑀𝐶) = 𝑠𝑢𝑝 ((¬𝑀𝐶) → 𝑆) 𝑠𝑢𝑝 (¬𝑀𝐶)⁄
• 𝑃(¬𝑆|¬𝑀𝐶) = 1 − 𝑃(𝑆|¬𝑀𝐶)
After that, for evaluating the rule 𝑀𝐶 → 𝑆, the likeli-

hood probability 𝑃𝑖 of the ith epoch in the investigated peri-
od can be one of the preceding probability values according
to the values of metric vector MRi and system state Si of the
sample. For example, if MRi satisfies the antecedent MC
(i.e., CPU value in MRi is higher than 𝑇ℎ𝐶𝑃𝑈2), and Si is 1
(i.e., the SLO-violation state), then the likelihood of epoch i
is 𝑃(𝑆|𝑀𝐶). If MRi does not satisfy the antecedent MC, and
Si is 1, the epoch’s likelihood is 𝑃(𝑆|¬𝑀𝐶). Based on the
likelihood values of the epochs within the investigated pe-
riod, we calculate the log likelihood L of the CAR 𝑀𝐶 → 𝑆
by the equation 𝐿 = ∑ log (𝑃𝑖).

With the log-likelihood values for all CAR candidates,
we then rank these candidates, and return the top candidates
as our analysis results to engineers.

D. Algorithm Discussion
Previous classification-based approaches learn a model

from each individual performance issue. These approaches
suffer from the over-fitting problem when they deal with
short-period performance issues due to insufficient data. If
we compose the data of multiple performance issues to-
gether to enlarge the data to avoid the over-fitting problem,
doing so also introduces two other problems that the previ-
ous classification-based approaches fail to address. First,
since multiple performance issues may be caused by differ-
ent causes that correspond to very different system-metric
symptoms, learning one classifier from the data caused by
mixed causes may degrade the diagnosis accuracy. Second,
there exists the coupling-effect phenomenon among system
metrics. For example, many different causes (e.g., a block-
ing SQL query or a database server with high CPU usage)

may lead to frequent occurrences of the service critical
event “SQL query timeout”. Therefore, the metric value of
“number of blocking query” and the metric value of “num-
ber of SQL query timeout event” usually increase together.
Similarly, the metric value of “CPU usage” and “number of
SQL query timeout event” may also increase together.
However, the previous classification-based approaches tend
to select only the dominant metric of “number of SQL que-
ry timeout event” because it has the best prediction accura-
cy on SLO violations caused by both of the two causes.
These approaches fail to detect the metrics of “CPU usage”
and “blocking query”, which contain diagnosis information
in fine granularity.

Our approach addresses the over-fitting problem by min-
ing candidate models from the whole historical data first,
and then selects the best one from the candidate models by
matching them with the performance issue under investiga-
tion. In addition, CAR mining can discover all rules that
satisfy some basic requirements including above the sup-
port and confidence thresholds. It can mine not only domi-
nant metrics but also other metrics of interest as rules. For
the preceding example, we select all of the three metrics.
For the metric of “CPU usage”, we can select it out because
it can associate some of SLO violations (caused by high
CPU usage) well enough even when it does not associate
with SLO violations caused by blocking queries. Similarly,
we can also select out the metric of “blocking query”.

E. Adaptation in Practice
We have applied our approach to a real-world web-

based multi-tier online system that consists of IIS servers,
application servers, and SQL servers. Each tier contains
several hosts that share similar hardware and software con-
figurations. For example, the web front end is served by a
web server farm where a set of IIS servers serve the incom-
ing user requests behind a load balancer.

Service-layer-based analysis. We identify performance
issue beacons for each service layer of the system because
each tier often has the same types of metrics. In particular,
we first discretize the monitored metrics host by host; then
we merge the resulting data from different hosts of the
same service tier to form the historical training set. In the
next step, we run the CAR miner to obtain a set of perfor-
mance issue beacons. Note that the historical training set
allows the CAR miner to aggregate the support of CARs
from similar hosts, thus yielding more accurate estimates.

Given a newly detected performance issue, we discretize
the metrics for each host of the first tier (i.e., IIS servers)
on each epoch during the time period of the issue, and then
select the hosts that have abnormal (i.e., high/low) metric
values. For each of these selected hosts, we use the step in
Section 4.3 to calculate the score of each mined CAR. Sim-
ilar procedures are also conducted on the hosts of the se-
cond tier and the third tier to evaluate CARs, respectively.
At last, the k CARs with the highest scores are produced as
our final results.

Incremental mining. The real-world system under in-
vestigation continuously generates a large amount of moni-
tored metric data. In general, a CAR algorithm needs to
scan all historical data to produce CARs. However, due to
the storage and computational constraints, we may not be
able to archive all historical data. In addition, running the
CAR miner over a huge data set is computationally expen-
sive. We propose two strategies to address these practical
challenges. First, we reduce the number of samples by ex-
ploiting a property of the performance data. In a real-world
scenario, the performance of the service system is in the
SLA-compliance state most of the time, and the corre-
sponding metric patterns are of no interest. In contrast, the
metric patterns from the time intervals where the service is
in the SLA-violation state are of interest. Therefore, we can
largely reduce the number of archived training samples by
removing redundant samples with the SLA-compliance
state, and assign each compliance epoch a weight to count
the number of removed epochs. For example, we randomly
keep a moderate-size set of samples with the SLA-
compliance state (e.g., 1000 samples). Second, we also
apply an incremental miner [6, 7] to further reduce the
computational cost of CAR mining.

V. EVALUATIONS
To evaluate our approach, we conducted evaluations

with two environments (TPC-W and a production system
called SystemX), respectively. TPC-W is to serve synthetic
workloads in a controlled laboratory environment, and
SystemX is a real production environment that serves real
users. We aggregate monitoring data in every time epoch
(i.e., 5 minutes) to calculate the values of KPIs and system
metrics. The calculated values of KPIs and metrics on each
time epoch form a value vector as a data sample. In order to
compare the effectiveness of different approaches, we also
implemented the TAN classifier [2, 3] and the L1-Logistic
Regression [1]. We measure different approaches’ identifi-
cation results by the accuracy and the coverage. The accu-
racy is the ratio between the number of identified real issue
beacons and the total number of identified issue beacons.
The coverage is the ratio between the number of identified
real issue beacons and the total number of real issue bea-
cons. For both accuracy and coverage, the higher the better.

A. Evaluations on TPC-W
Cause injection. Many performance issues are caused

by exhaustion of specific system resources. To synthesize
performance causes, we use a standalone program to ex-
haust specific system resources, including CPU exhaustion,
disk IO exhaustion, or their combinations, according to our
specified configuration. By running such resource-eating
program, we inject root causes to produce system KPI vio-
lations.

Transaction workload. In the evaluations, we use two
workload patterns: (1) we use a periodical workload by

changing the number of concurrent clients from 50 to 150
for each hour, and (2) each client sends a request to trigger
a system-processing transaction, waits for 10 milliseconds
thinking time, and then sends a request again, and so on.

Transaction types. In the evaluations, we intend to con-
struct different types of transactions in terms of their differ-
ent extents of consuming specific resources.
• CPU-intensive transactions: transactions that execute a

CPU-intensive servlet “A” that executes one loop with
a randomly chosen number of iterations (from the
range of 1000 to 2000), each of which prints a number
to the screen.

• Disk-IO-intensive transactions: transactions that exe-
cute a disk-IO-intensive servlet “B” that opens and
reads the content of a randomly selected file from 1000
files (with the file size randomly chosen from the range
of 2MB to 4MB and the file content as constant char-
acters).

• Mixed-intensive transactions (i.e., both CPU-intensive
and disk-IO-intensive ones): transactions that execute a
servlet “C” that (1) executes loops; (2) opens and reads
the content of randomly selected files.

System metrics. During the time period of executing the
transactions, we collect about 90 system metric data related
to Cache, LogicalDisk, Memory, Network Interface,
PhysicalDisk, Process, Processor, and so on.

Latency KPI. By parsing the server logs, we obtain
each request’s latency. We calculate the requests’ 50 per-
centile latency in each epoch (5 minutes) as the latency KPI.

In the evaluations, we use three different patterns of
mixing different root causes with different proportions. In
Time Pattern A, the lengths of the periods with the effect of
CPU exhaustion, disk-IO exhaustion, and both CPU and
disk-IO exhaustion are 24 hours, 3 hour, and 3 hour, re-
spectively. In Time Pattern B, they are 24 hour, 24 hour,
and 24 hour, respectively. In Time Pattern C, they are 24
hours, 12 hours, and 6 hours, respectively. Table 1 shows
the comparison results.

TABLE 1. THE ACCURACIES OF DIFFERENT APPROACHES

Approach Accuracy on beacon identification
Pattern A Pattern B Pattern C Avg.

TAN 0% 0% 0% 0%
L1-LR 0% 14% 0% 5%
Ours 30% 50% 30% 36%

TAN identifies only one metric “Committed Memory
Bytes In Use” as issue beacons. We investigate the detailed
results to figure out why TAN does not work. In our evalu-
ations, the values of “Committed Memory Bytes In Use”
remain as a stable range of 20%~25% when we do not run
the resource-eating program. However, the values increase
to the range of 30%~55% when we run the resource-eating
program to produce SLA violations. TAN automatically
constructs the prediction model as follows: if the value of
“Committed Memory Bytes In Use” is larger than 30%,
then the system is in the SLA-violation state; otherwise, the

system is in the SLA-compliance state. Because such a
prediction model can achieve 100% accuracy, TAN identi-
fies only this metric; such identification is in fact resulted
from a coupling effect. However, such identified metric
may not be able to provide explicit and direct help for
quick diagnosis.

For our approach and L1-Logistic Regression, we ob-
serve that our approach can outperform L1-Logistic regres-
sion under such complex situations (i.e., multiple root
causes taking effect within the period). Specifically, for
Pattern A, L1-Logistic Regression identifies only two met-
rics “Server\Sessions Timed Out” and “Terminal Ser-
vices\Active Sessions” as issue beacons; for Pattern C, it
identifies seven metrics as issue beacons: “Memory\Cache
Bytes”, “Memory\% Committed Bytes In Use”, “Sys-
tem\System Calls/sec”, “Terminal Services\Active Ses-
sions”, “Server\Sessions Timed Out”, “Terminal Ser-
vices\Total Sessions”, and “System\Threads”. All of these
seven identified issue beacons are false positives. L1-
Logistic Regression can detect only a real issue beacon as
“PhysicalDisk(_Total)\Avg. Disk sec/Transfer” among the
identified seven metrics for Pattern B. In contrast, our ap-
proach can detect real issue beacons for all of the three
Time Patterns. For example, for Time Pattern A, our identi-
fied issue beacons are listed in Table 2.

TABLE 2. OUR IDENTIFIED ISSUE BEACONS FOR TIME PATTERN A

Metric index Metrics identified by our approach
1 Memory\% Committed Bytes In Use
2 Terminal Services\Inactive Sessions
3 System\Processor Queue Length
4 Processor(_Total)\% Processor Time
5 Cache\Data Flush Pages/sec
6 System\File Write Bytes/sec
7 Cache\Data Flushes/sec
8 Memory\Pages/sec
9 Cache\Read Aheads/sec
10 Cache\Pin Read Hits %

B. Empirical Study on a Real Production System
We have deployed our tools (implementation of our ap-

proach) in a real production service system to help engi-
neers on their daily tasks of performance diagnosis. In this
subsection, due to company-confidentiality policies, we
show only the empirical results based on data of recent two
months from the internal environments where there are 13
deployed web front-end servers. The environments collect
more than 1129 system metrics, which include 549 perfor-
mance counters and 580 service critical events. The KPI
used in the evaluations is Percentile-95 Latency. The KPI-
violation threshold is 1500ms. These settings are defined
by the product team for managing the service system.

We use 36 performance issues occurring within two
months to conduct the evaluations. Because the evaluations
need to involve great manual efforts of engineers in the
product team, and the approach of L1-Logistic Regression
is the most recent related work and has been shown to per-

form better than a TAN-based approach [2], we evaluate
only the results of our approach and L1-Logistic Regres-
sion. We ask production engineers’ help for labeling out
real issue beacons among only the union set of identified
issue beacons by our approach and by L1-Logistic Regres-
sion. The labeled results are used to calculate the accuracy
and the coverage of each approach. A metric is labeled as
an issue beacon if it provides explicit helpful information
for identifying the cause of performance issues in diagnosis
practice of engineers.

Figures 1 and 2 show the coverage and accuracy results,
respectively, as we change the threshold of the number of
selected metrics from 1 to 10. We can observe that our ap-
proach can achieve better coverage and accuracy in all cas-
es than the approach of L1-Logistic Regression.

We next illustrate one detailed case. Because plans of
SQL stored procedures are not all cached, the SQL server
needs to recompile execution plans frequently. The fre-
quent recompilation occupies the SQL server’s processor
intensively and causes compilation locks. Such factor can
cause SQL queries’ waiting time to be much longer than
their normal values. It can finally lead to long latency for
serving user requests. At the same time, the count of critical
service events of “Slow Query Duration” becomes large.

Figure 1. The coverage of our approach and L1-Logsictic Regression

Figure 2. The accuracy of our approach and L1-Logsictic Regression

Our identified top 10 metrics contain 7 correct metrics

that identify the following performance issue beacons: Ser-
vice critical event “Slow query duration”, Performance
counter “SQL CPU usage”, and Performance counter
“SQL Re-Compilations”. We consider these metrics as
helpful, and thus as real issue beacons because they can
quickly guide engineers to move their focus to problems

related to CPU/Re-compilation of a SQL server. In a com-
plex multi-tier system, such hints are very helpful to reduce
the problem-investigation effort and to speed up the diag-
nosis process. In contrast, the approach of L1-Logistic Re-
gression identifies only two metrics as issue beacons with
one being a real issue beacon “SQL query duration” and
the other being a false positive.

VI.CONCLUSION
We have proposed an approach of performance issue di-

agnosis for online service systems. In our approach, we
analyze system metrics to identify comprehensive perfor-
mance issue beacons for engineers to diagnose performance
issues. In particular, from system metric data, our approach
includes three steps based on class-association-rule mining
to identify performance issue beacons. Compared with a
previous classification-based approaches [1, 2, 3], our ap-
proach achieves better results. The evaluation results on
both a controlled environment and a real production envi-
ronment show the benefits of our approach: our approach
can sift through a large amount of system metric data and
identify helpful performance issue beacons for engineer to
conduct performance issue diagnosis.

REFERENCES
[1] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Andersen,

“Fingerprinting the datacenter: automated classification of perfor-
mance crises”, In Proc. of EuroSys, pp.111-124, 2010.

[2] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S. Chase,
“Correlating instrumentation data to system states: A building block
for automated diagnosis and control”, In Proc. of OSDI, pp.231-244,
2004.

[3] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A. Fox,
“Capturing, indexing, clustering, and retrieving system history”, In
Proc. of SOSP, pp. 105-118, 2005.

[4] J. Li, H. Shen, and R. W. Topor, "Mining optimal class association
rule set", In Proc. of PAKDD, pp. 364-375, 2001.

[5] J. Lou, Q Fu, S. Yang, Y. Xu, and J. Li, “Mining invariants from
console logs for system problem detection”, In Proc. of USENIX
ATC, pp. 231-244, 2010.

[6] N. Jiang, L. Gruenwald, “Research issues in data stream association
rule mining”, ACM SIGMOD Record, vol.35, issue 1, March 2006.

[7] P. S.M. Tsai, C.-C. Lee, and A. L.P. Chen, “An efficient approach
for incremental association rule mining”, In Proc. of PAKDD, pp.
74-83, 1999.

[8] W. Xu, L. Huang, A. Fox, D. Patterson, and Mi. I. Jordan, “Detect-
ing large-scale system problems by mining console logs”, In Proc. of
SOSP, pp. 117-132, 2009.

[9] C. Yuan, N. Lao, J.R. Wen, J. Li, Z. Zhang, Y.M. Wang, and W. Y.
Ma, “Automated known problem diagnosis with event traces”, In
Proc. of EuroSys, pp. 375-388, 2006.

[10] http://www.tpc.org/tpcw/

Threshold of the number of selected metrics

Threshold of the number of selected metrics

http://www.tpc.org/tpcw/

	I. Introduction
	II. RELATED WORK
	III. Preliminaries
	A. Metric Preprocessing
	B. Basic Concepts

	IV. APPROACH
	A. Metric Discretization
	B. Discovery of Associations Between Metric Outliers and Performance Issues
	C. Ranking of Relevant Metric Sets
	D. Algorithm Discussion
	E. Adaptation in Practice

	V. Evaluations
	A. Evaluations on TPC-W
	B. Empirical Study on a Real Production System

	VI. CONCLUSION
	REFERENCES

