
Teaching and Training

Developer-Testing Techniques and Tool Support

Tao Xie1 Jonathan de Halleux2 Nikolai Tillmann2 Wolfram Schulte2

1North Carolina State University, 2Microsoft Research
1xie@csc.ncsu.edu, 2{jhalleux,nikolait,schulte}@microsoft.com

Abstract

Developer testing is a type of testing where developers test

their code as they write it, as opposed to testing done by

a separate quality assurance organization. Developer testing

has been widely recognized as an important and valuable

means of improving software reliability, as it exposes faults

early in the software development life cycle. Effectively con-

ducting developer testing requires both effective tool support

by tools and developer-testing skills by developers. In this

paper, we describe our experiences and lessons learned in

teaching and training developer-testing techniques and tool

support in both university and industrial settings. We high-

light differences in teaching and training in these two set-

tings, and observations from interacting with practitioners in

our process of teaching and training.

Categories and Subject Descriptors D.2.5 [Software En-

gineering]: Testing and Debugging—Symbolic execution,

Testing tools

General Terms Reliability, Verification

Keywords Testing, unit testing, parameterized unit testing,

theories, symbolic execution, mock objects, Pex

1. Introduction

Developer testing, often in the form of unit testing, has been

widely recognized as a valuable means of improving soft-

ware reliability. In developer testing, developers test their

code as they write it, as opposed to testing done by a sep-

arate quality assurance organization. The benefits of devel-

oper testing are two folds: (1) gain high confidence in the

program unit under test (e.g., a class) while developers are

writing it and (2) reduce fault-fixing cost by detecting faults

early when they are freshly introduced in the program unit.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SPLASH’10, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
Copyright c© 2010 ACM 978-1-4503-0240-1/10/10. . . $10.00

The popularity and benefits of developer testing have

been well witnessed in the industry [24]; however, manual

developer testing is known to be labor intensive. In addition,

manual testing is often insufficient in comprehensively exer-

cising behaviors of the program unit under test to expose its

hidden faults. To address the issue, one of the common ways

is to use testing tools to automate activities in developer test-

ing. Developer-testing activities typically include generating

test inputs, creating expected outputs, running test inputs,

and verifying actual outputs. Developers can use existing

testing frameworks such as NUnit [4] for .NET and JUnit [1]

for Java to write unit-test inputs and their expected outputs.

Then these frameworks can automate running test inputs and

verifying actual outputs against the expected outputs.

To reduce the burden of manually creating test inputs, de-

velopers can use test-generation tools to generate test inputs

automatically. Although great research advances have been

made in automatic test generation, it is still a long way to-

wards satisfactorily accomplishing effective test generation

when testing common real-world code bases. Then when us-

ing test-generation tools, developers need to have the skills

to understand the challenges that these tools face and provide

guidance to the tools in attempting to address these chal-

lenges.

After test inputs are generated automatically, expected

outputs for these test inputs are still missing. Develop-

ers could choose to write no explicit expected outputs but

rely on uncaught exceptions or crashes to focus on robust-

ness checking. To check functional correctness, developers

need to write assertions within the test code or the code

under test for asserting the expected program behaviors.

Most modern (testing) frameworks provide some kind of

Debug.Assert(bool) methods for developers to use. How-

ever, in practice, these assertions are usually written in an

ad-hoc way, and less senior or experienced developers have

no clear idea on where and for what purpose to write asser-

tions.

To address the issue, two major approaches have been

proposed. First, developers could write assertions to encode

specifications such as design by contract [18] (a form of ax-

iomatic specifications [13]) with tool support such as Code

Contracts [2] for the code under test to check program be-

haviors. Second, developers write assertions in Parameter-

ized Unit Tests (PUTs) [22], which are unit tests with pa-

rameters; these assertions often encode expected behaviors

in the form of algebraic specifications [12]. In these two ap-

proaches of writing assertions, developers need to have good

skills to write specifications to capture expected behaviors

for the code under test.

As educators, we need to devise effective ways to teach

students or practitioners to equip them with these preceding

skills. In this paper, we describe our experiences in teaching

and training developer-testing techniques and tool support

in both university and industrial settings. We highlight dif-

ferences in teaching and training in these two settings, and

observations from interacting with practitioners in our pro-

cess of teaching and training.

The rest of the paper is organized as follows. Section 2

presents the key developer-testing techniques and tool sup-

port covered in our teaching and training materials. Section 3

describes our teaching and training experiences in university

settings. Section 3 describes our teaching and training ex-

periences in industrial settings, including observations from

interacting with practitioners in our process of teaching and

training. Section 5 compares differences in the university

and industrial settings for teaching and training. Section 6

discusses related issues. Section 7 concludes the paper.

2. Background

Parameterized unit testing [22] is a new methodology ex-

tending the current industry practice based on closed, tradi-

tional unit tests (i.e., test methods without input parameters).

Test methods are generalized by allowing parameters to form

Parameterized Unit Tests (PUTs). Below is an example PUT

for testing one behavior of List’s Add method. In the PUT,

the Assume.IsTrue method specifies an assumption: any test

inputs violating the assumption are filtered out during test

generation or execution; the Assert.AreEqual method spec-

ifies an assertion.

void TestAdd(List list, int item) {
Assume.IsTrue(list != null);

var count = list.Count;

list.Add(item);

Assert.AreEqual(count + 1, list.Count);

}

This generalization to form PUTs serves two main pur-

poses. First, PUTs are specifications of the behaviors of the

methods under test: they not only provide exemplary argu-

ments to the methods under test, but ranges of such argu-

ments. Second, PUTs describe a set of traditional unit tests

that can be obtained by instantiating the parameterized test

methods with given argument values. Instantiations via ar-

gument values should be chosen so that they exercise dif-

ferent code paths of the methods under test. Most unit test-

ing framework have been extended to support parameterized

unit testing, provided that relevant argument values are spec-

ified by the user.

Dynamic Symbolic Execution (DSE) [11] (also called

concolic testing [20]) is a recent technique to automatically

supply such argument values. DSE combines static and dy-

namic analysis to automatically generate test inputs, e.g., ar-

gument values. Given a program that takes inputs, the goal

of DSE is to generate test inputs that, upon execution of

the program, will exercise as many reachable statements as

possible. DSE is based on observing actual executions of

the program under test. By leveraging observed concrete in-

put/output values, DSE can simply concretize those opera-

tions that interact with the environment, or that are difficult

to reason about (e.g., floating-point arithmetic), while pre-

vious approaches based on symbolic execution [15] would

lose precision. Various implementations of DSE exist, rang-

ing from academic open-source projects to industrial tools.

Our teaching and training use the Pex tool [3, 21] from Mi-

crosoft Research, which tests .NET programs such as C#

programs.

Environment isolation is conducted to test individual

software components in isolation when they interact with en-

vironments. It makes testing more robust and scalable. Espe-

cially in the context of unit testing, where the intention is to

test a single unit of functionality, all irrelevant environment

dependencies should be mocked [17, 23], or simulated, so

that the unit tests run quickly and give deterministic results.

In contrast, the goal of integration testing is to test an inte-

grated (sub)system, including all environment dependencies,

at the same time.

Ideally, the code under unit testing should be written in

a way that allows to substitute its constituent components

at testing time, in order to isolate a feature under test. In

other words, it should be possible to treat all components

as test parameters, so that mocked implementations or sim-

ulations can be used to instantiate parameterized tests. One

solution to the problem is to refactor the code [10], introduc-

ing explicit interface boundaries and allowing different in-

terface implementations. When refactoring is not an option,

e.g., when dealing with legacy code, other approaches can

be used to detour environment-facing calls at testing time.

Various tools exist to enable automatic code isolation, rang-

ing from academic open-source projects to industrial tools.

One such tool is Moles [8] from Microsoft Research.

3. Teaching and Training in University

Settings

We next present an overview of our teaching and training ex-

periences in university settings and then discuss our lessons

learned from our experiences.

3.1 Overview

The teaching and training of developer-testing techniques

and tool support were conducted by the first author in a grad-

uate software testing course (CSC 712) at North Carolina

State University for the 2008 Fall semester (20 students) and

the 2009 Fall semester (18 students). The course schedule,

homework and project assignments, lecture slides, and read-

ing materials for these two semesters can be found here1. We

next describe key teaching materials covered during the 2009

Fall semester (which are mostly similar to the ones covered

during the 2008 Fall semester).

Lectures. There were two 75-minute lectures (Mondays

and Wednesdays) each week for the 16-week semester. The

lectures were given in a lab where every two students shared

the same desktop with two monitors. We designed the lec-

tures on Mondays to be mostly on testing foundations, par-

ticularly coverage criteria, based on selected materials and

slides from the textbook “Introduction to Software Testing”

by Ammann and Offutt [6]. We designed the lectures on

Wednesdays to be mostly on testing techniques and tools in-

cluding Pex for 10 weeks, Code Contracts [2] for 2 weeks,

and (only briefly) NModel [14] (a model-based testing tool

for C#) for 1 week. The instructor (the first author) gave both

slide presentation (being more heavily used in Monday lec-

tures) and live tool demonstration (being more heavily used

in Wednesday lectures) during lecturing.

Quizzes and homework assignments. We designed four

quizzes taken by students throughout the semester to as-

sess students’ mastery of lecture topics on testing founda-

tions. To assess students’ mastery of lecture topics on testing

techniques and tools as well as testing foundations, we de-

signed four homework assignments. Homework 1 included

student surveys and their personal homepages. Homework

2 included exercises for familiarizing students with code

development and testing in C#. Homework 3 included stu-

dents’ submission of candidate open source code to be tested

in the term project. Homework 4 included exercises on ap-

plying the instructed test generalization techniques [16].

Term project. Based on the list of preferred teammate

candidates that each student submitted together with their

Homework 2, the teaching staff (i.e., the instructor and the

teaching assistant) assigned students into teams, each of

which included two students. As described earlier, in Home-

work 3, each formed team was asked to submit candidate

open source code to be tested in the term project. In mid-

semester, each team was asked to submit a midterm project

report describing the team’s experience following the guide-

lines described in the sample paper skeleton2 distributed to

the students. Basically, each team was asked to write PUTs

by performing test generalization on existing traditional unit

tests for the chosen open source code under test and docu-

ment their experiences. In the second half of the semester,

each team was asked to write additional new PUTs to aug-

1 http://research.csc.ncsu.edu/ase/courses/csc712/
2 http://research.csc.ncsu.edu/ase/courses/csc712/

2009fall/wrap/project/generalization/testgeneralization.

pdf

ment the PUTs written for the midterm report to achieve

higher block coverage and possibly higher fault-detection

capability, and document their additional experiences by ex-

panding their midterm report to produce their final report.

3.2 Lessons Learned

We next describe some observations and lessons learned

during our teaching and training in the university settings.

Integration of teaching testing foundations and test-

ing techniques/tools was desirable for a testing course but

could be challenging. In the design of our lecture topics,

we arranged Mondays’ lecture topics to be on coverage cri-

teria and Wednesdays’ lecture topics on testing techniques

and tools. One potential risk of such design was that these

two types of lecture topics might be difficult to be well inte-

grated and students could have perception that the two types

of lecture topics were too separated and isolated. We in-

tended to alleviate the issue by demonstrating how achieving

specific logic coverage criteria could be formulated as prob-

lems of achieving branch or path coverage with Pex [19].

However, such ways of using practical tools to demonstrate

tool-assisted satisfaction of coverage criteria are limited to

only logic coverage so far. More recently, we extended Pex

to support mutant killing for mutation testing [26] and we

plan to incorporate this new extension in our future offer-

ings of the course to demonstrate tool-assisted satisfaction

of mutation killing.

Another direction for the integration of teaching coverage

criteria and practical tools could be to use and demonstrate

coverage measurement tools when lecturing topics of cover-

age criteria. There exist a number of industrial-strength tools

for measuring and reporting statement/block or branch cov-

erage; however, they generally lack measurement tools for

other more advanced types of coverage criteria such as data-

flow coverage.

In addition, more thoughts and work would be needed to

investigate how to weave in coverage criteria or more gen-

erally testing foundations when lecturing topics of testing

techniques and tools. We already briefly introduced some

basic background on constraint solving and theorem proving

when lecturing the Pex tool and its techniques. Some tech-

nique and tool topics such as writing PUTs fed to Pex and

writing code contracts fed to Pex and Code Contracts have

strong formal foundations of algebraic specifications [12]

and axiomatic specifications [13], respectively. The lecture

topics of writing specifications were not explicitly listed

in the testing textbook or its accompanying slides that we

used [6] and thus not included in Mondays’ lecture topics.

However, we plan to collect teaching materials on writing

algebraic specifications and axiomatic specifications, and in-

clude them in Mondays’ lecture topics in our future offerings

of the course.

A term project on testing realistic open source code

could give students opportunities to gain testing experiences

close to the real world but such a term project also had lim-

itations on training real developer testing, where developers

test their code as they write it. Open source code is abundant

for students to choose and test. However, few open source

projects are well documented or equipped with sufficient in-

formation for students to understand the full scale and de-

tails of expected behaviors of the code under test. Therefore,

students could face significant challenges in writing down

high-quality assertions for their newly written PUTs for the

open source code under test. To alleviate the issue, we de-

signed the term project to heavily focus on test generaliza-

tion [16], where students tried to understand and recover the

intended behaviors tested by traditional unit tests written by

the open source code developers, and generalize these tra-

ditional unit tests to be PUTs. Such a procedure allowed

students to gain not only program/test understanding skills

but also generalization/abstraction skills. The last part of the

term project was on writing new PUTs to achieve higher

code coverage and likely higher fault-detection capability,

requiring students to write new PUTs, without relying on or

referring to existing traditional unit tests.

Our design of the term project allowed the students to

heavily invest their course efforts on testing instead of writ-

ing production code (which they supposedly already learned

from past programming and software engineering courses).

The term project in fact simulated situations where third-

party developers tested code not written by themselves,

strictly speaking, not falling into the activities of developer

testing. An alternative type of term projects could be to ask

students to develop some new features of a software project

while testing their newly implemented features (where stu-

dents could possibly be requested to practice test driven de-

velopment [7]). However, in this way, students would spend

significant time on feature implementation (and thus less

time on feature testing). In addition, it could be difficult

to find an appropriate open source code base (e.g., not too

complicated but realistic enough) to use in the term project.

We allowed students to search and choose open source

code (to be tested in their term project) that satisfied the

specified characteristics (e.g., equipped with traditional unit

tests), rather than designating the same open source code

across all the student teams in the class. Advantages of do-

ing so included that different student teams could encounter

different interesting observations and lessons learned by test-

ing different open source code bases, and later sharing their

different experiences with the whole class via final project

presentations could be more beneficial for other students

outside of their team. Disadvantages of doing so included

that some student teams might choose open source code that

might be inherently not amenable to applying Pex. For ex-

ample, during the course offering of the 2008 Fall semester,

a student team chose Math.NET3, a mathematical library for

symbolic algebraic and numerical/scientific computations,

and in later phases of the term project, the team found out

3 http://www.mathdotnet.com/

that Pex could not be effectively applied on it because the li-

brary implementation involves intensive floating-point com-

putation, which is currently not well supported by Pex’s un-

derlying constraint solver [9]. To alleviate the issue, we did

request student teams to conduct an early try-out of Pex on

part of the open source code under consideration to reduce

the risk. In addition, we allowed a student team to change

their open source code under test over the duration of the

semester without imposing penalty grade points. Further-

more, the term project was designed to have multiple mile-

stones and the submission of a later milestone was built upon

the submissions from previous milestones so that students

could incorporate feedback from the teaching staff on previ-

ous submissions to improve their later submissions.

Using industrial-strength tools and technologies not

only reduced the “debugging” overhead imposed on both

the students and teaching staff, but also gave students ex-

periences that they could immediately benefit from when

they took on their industrial jobs. In the homework and

project assignments, we deliberately used industrial-strength

tools, rather than academic research prototypes. Academic

research prototypes often lack support for dealing with vari-

ous types of code features frequently included in real-world

code bases. Furthermore, these prototypes might often in-

clude faults and the prototype developers might be often too

busy to provide timely technical support or fixing of reported

faults. For our students asking questions via the Pex MSDN

forums4, the Pex developers (the second and third authors of

this paper) provided timely technical support in using Pex,

substantially reducing the support effort from the teaching

staff.

Incorporating the training of research skills in the

term project benefited students in their future research ca-

reer as well as software development career. The major de-

liverables of the term project used for grading included the

midterm project report and the final project report. To train

students in technical writing, we gave a lecture on common

technical writing issues5. To reduce barriers for students who

were new to writing technical papers, we provided a detailed

paper template, which describes the desired structure of the

paper including what sections should be included and what

contents should go to each section. In the second half of the

2008 Fall semester, we also distributed a sample midterm

report that was the best among the student submissions and

whose distribution permission was given by the authoring

team. In the 2009 Fall semester, both a sample midterm re-

port and final report were distributed to the class at the begin-

ning of the semester. These mechanisms allowed students to

learn from good example writing, reducing barriers for them

to prepare their own reports. Such a term project including

the research-oriented empirical study and its technical writ-

4 http://social.msdn.microsoft.com/Forums/en-US/pex/

threads/
5 http://people.engr.ncsu.edu/txie/advice/

ing also gave students first-hand experience on conducting

empirical studies or empirical evaluations.

4. Teaching and Training in Industrial

Settings

We next present an overview of our teaching and training

experiences in industrial settings and then discuss our obser-

vations from interacting with practitioners and our lessons

learned from the process of teaching and training.

4.1 Overview

The teaching and training of developer-testing techniques

and tool support were conducted by the second and third au-

thors in the form of one-day or half-day tutorials both within

Microsoft (such as internal training of Microsoft develop-

ers) and outside Microsoft (such as invited tutorials at .NET

user groups). The attendees of a tutorial could range approx-

imately from 10 to 25 practitioners. For a tutorial outside

Microsoft (normally with half-day duration), sometimes at-

tendees might not have already installed Pex on their lap-

tops while attending the tutorial, and therefore, the tutorial

presentation was primarily the combination of slide presen-

tation and live demonstration of Pex and Moles. However,

for a tutorial within Microsoft (normally with full-day du-

ration), the tutorial was given in a training lab at Microsoft,

where each attendee was able to use a lab desktop computer

installed with Pex and Moles. In this setting, the tutorial in-

volved frequent hands-on exercises conducted by attendees,

besides slide presentation and live demonstration of Pex and

Moles. The tutorial slides on Pex and Moles can be found at

the slide deck section of the Pex documentation web6.

4.2 Observations

We next describe some observations while interacting with

practitioners during our teaching and training, and other gen-

eral occasions in promoting technology and tool adoption.

These observations provide insights not only for teaching

and training but also for design or improvement of testing

techniques and tools. We illustrate our findings with con-

versations between developers and trainers; while these con-

versations are anecdotal in nature, they show quite typical

developer mind sets that have been observed by the trainers

frequently7.

Assertion deficit syndrome conversations occurred be-

tween a developer and a trainer (i.e., one of the second and

third authors) as below:

• Developer: “Your tool only finds null references.”
• Trainer: “Do you have any assertions?”
• Developer: “Assertion???”

6 http://research.microsoft.com/pex/documentation.aspx
7 While there are a non-trivial number of practitioners in industry that would

match the profiles described in this section, there are far more practitioners

with great interest and passion in learning techniques that could improve

the effectiveness and quality of their work.

When a developer is equipped with a test-generation tool

such as Pex, the developer is often attempted to click a but-

ton provided by the tool to run the tool to generate a large

number of test inputs to test the code under test, and then

wait for the testing results, which include the test failures

reported by the tool. Without assertions written by the de-

veloper, either in the test code of PUTs or in the code under

test as contracts, the test failures would be limited to un-

caught exceptions or crashes. Developers need to be aware

of what a test-generation tool could offer if no assertions are

written to capture intended behaviors of the code under test.

As a consequence, we suggest that training should empha-

size the importance of assertions, including quizzes to study

beneficial assertion patterns.

Hidden complexity of the code under test is often not

realized by developers. Code similar to the following was

actually brought to the attention of the trainers:

void Sum(int[] numbers) {
string sum = "0";

foreach(int number in numbers) {
sum = (int.Parse(sum) + number).ToString()

}
if (sum == "123")

throw new BugException();

}

The API method invocations of int.Parse and int.ToString

could incur challenges for a test-generation tool that ana-

lyzes and explores code, since these API implementations

could be very complicated, incurring hidden complexity for

the tool. More and more convenient framework and library

APIs (whose implementations hidden from API-client-code

developers could be quite complicated though) are available

and popularly used by developers. The hidden complexity

of these invoked framework or library APIs causes a test-

generation tool to take long to explore; even worse, when

these framework or library API implementations are in na-

tive code (other than managed code in .NET or Java), a tool

that analyzes and explores only managed code could not

explore these API implementations. As a consequence, a

portion of training should be devoted to the issue of hidden

complexity, teaching how to interpret the tool feedback to

identify such cases.

Unit testing utopia and Test Driven Development

(TDD) [7] dogma was deeply established among some de-

velopers. A developer, being a unit testing enthusiast, stated

that “I do not need test generation; I already practice unit

testing (and/or TDD)”. A developer, being a TDD convert,

stated that “Test generation does not fit into the TDD pro-

cess”. It is not easy to change the philosophy of these devel-

opers. It should be emphasized during teaching and training

that using a test-generation tool can complement manually

writing traditional unit tests (without parameters) since man-

ual generation of test inputs could be limited, missing impor-

tant corner or extreme inputs, due to the inherent limitation

of human-brain power. A longer-term ideal situation could

be that developers write PUTs instead of traditional unit

tests; if needed, developers could manually write test inputs

to the written PUTs besides those automatically generated

test inputs for the PUTs.

Writing PUTs and applying a test-generation tool could

also be integrated into the TDD process. Developers could

go through the iterations of (1) writing PUTs before writ-

ing the code implementation under test, (2) applying a test-

generation tool to generate test inputs for the PUTs and in-

specting the reported test failures, and (3) writing the code

implementation under test to a just-enough extent to make

the test failures disappear. One key difference between this

new TDD process and the traditional TDD process is that,

in contrast to written traditional unit tests, written PUTs of

higher quality would often be much more difficult to “fool”

with a naive code implementation under test. As a result,

developers could spend more effort in writing code imple-

mentation under test and spend less effort in incrementally

improving the quality of the test code. It remains an open

question for future empirical studies whether such “bigger-

jump” iterations of improving code implementation under

test would compromise the originally acclaimed benefits of

“more modularized, flexible, and extensible code” [7]. These

benefits are supposedly provided through “taking small steps

when required”, but the new TDD process would incur larger

steps than the traditional TDD process.

Interacting with generated tests triggered quite some

questions from developers. First of all, a developer might not

know what to do after tests are automatically generated. For

example, a developer in front of 100 generated tests asked

“What do we do with the generated tests?” It is important

to teach developers on how to interact with the generated

tests, e.g., inspecting the reported test failures, inspecting

the coverage reports to understand the insufficiency of the

generated test inputs (and/or PUTs if written), diagnosing

causes for the insufficiency, and providing guidance to the

tool to address the insufficiency.

Below are conversations between a developer and a

trainer on desired naming of generated tests by a tool:

• Developer: “Your tool generated a test called Foo001. I

don’t like it.”
• Trainer: “What did you expect?”
• Developer: “Foo Should Fail When The Bar Is Negative.”

When developers write traditional test methods manually,

they use meaningful naming conventions to these test meth-

ods. It is natural for developers to expect to see meaningful

naming for generated test methods. Note that if developers

write PUTs, they have control on the naming of the PUTs

and the developers would need to pay less attention to the

naming of the generated traditional unit tests that invoke the

PUTs. But if developers write no PUTs but rely on a tool to

generate test inputs for robustness checking, e.g., throwing

uncaught exceptions, the developers would pay attention to

the naming of the traditional unit tests generated by the tool.

In such cases, tool builders could improve the naming of the

generated traditional unit tests.

Below are conversations between a developer and a

trainer on desired representative values for generated test

inputs by a tool:

• Developer: “Your tool generated “\0””
• Trainer: “What did you expect?”
• Developer: “Marc.”

It is important to explain to developers why and how

“\0” is generated by a tool instead of a normal string like

“Marc”. Basically, a tool such as Pex relies on an underlying

constraint solver such as the SMT solver Z3 [9] to solve

the constraints of a path in the code under test. Constraint

solvers are often designed to provide the simplest solution to

satisfy the constraints. Developers could provide guidance to

the tool by supplying some default values for the tool to use

as starting points.

Isolate first development is crucial to make test genera-

tion work in real-world code bases in practice. In real-world

code bases, a component under test (such as a method or a

class) could have non-trivial dependencies on external en-

vironments such as file systems. The environment API im-

plementations could be very complex or be written in native

code rather than managed code being amenable to code ex-

ploration. Developers need to isolate the environment depen-

dencies, e.g., with the assistance of a tool such as Moles [8].

Solving the dependency-isolation problem is orthogonal to

and facilitates solving the test-generation problem: develop-

ers could use Moles without using Pex while manually writ-

ing test inputs, but could face challenges when using Pex

without using Moles on environment-dependent code.

4.3 Lessons Learned

We next describe lessons learned while interacting with

practitioners during our teaching and training in industrial

settings.

Setting realistic expectations right away is very impor-

tant. While it is important in an industrial setting to show-

case the potential benefits of a new technology, automated

tools will always have limitations, and these limitations must

be clearly communicated. The developers have to be taught

what the limitations are, how the developers can detect them

when they hit such limitations, and how they can act on

them. With regards to the fault-detection capabilities, it is

important to emphasize the concept of assertions as specifi-

cations to specify the intended functionality of the code – in

order to find violations of such specifications. With regards

to the abilities of any code analysis tool, it is important to

define the scope of their applicability. When they do not ap-

ply, the developers must be prepared to act on them, e.g., by

manually writing traditional unit tests instead of PUTs, or by

using code isolation frameworks in order to ensure that unit

tests can run without environment dependencies. Training on

these skills should be included in training sessions.

Trying to change deeply ingrained beliefs all at once

is futile. Especially in an industrial setting, developers

have usually become accustomed to particular development

styles. Convincing them to change is difficult. It is impor-

tant to highlight how a new advanced technology relates to

earlier approaches, emphasizing on complementary aspects

instead of differences or total replacement. For example, if

a developer has adopted an approach of TDD, it should be

emphasized how parameterized unit testing is a natural gen-

eralization of this approach, and not a radically new one or

replacement.

5. Comparison of Teaching and Training at

University and Industrial Settings

We observed three main differences on teaching and training

developer-testing techniques and tool support at university

and industrial settings.

First, students at university settings often do not have sub-

stantial experiences of industrial software development (es-

pecially C# software development given that Java has so

far remained a popular teaching language at various uni-

versities), whereas practitioners at industrial settings often

have substantial experiences (including C# software devel-

opment). In our teaching and training, we used Pex for test-

ing C# code. However, a non-trivial portion of the graduate

students in our graduate course did not have C# program-

ming experiences (with primarily Java programming experi-

ences). To alleviate the issue, we designed a homework ex-

ercise in the beginning of the course on asking students to

convert JUnit test code in Java to C# test code, getting them

a quick start in getting familiar with C# coding.

Second, students at university settings have the incentives

of studying well the teaching materials to earn good course

grades besides learning various valuable skills, whereas

practitioners at industrial settings often “come and watch”,

learning what is going on. At the university settings, adop-

tion of tools or technologies being taught (after the course

finishes) may not be heavily emphasized as a teaching ob-

jective; instead, emphasis is put on learning a wide range

of skills ranging from abstract thinking, rigorous thinking,

to understanding of testing techniques, writing of specifi-

cations in the form of PUTs, and effective usage of tools.

At the industrial settings, adoption of tools or technologies

being taught (after the tutorial finishes) could be an impor-

tant training objective. Therefore, in training materials, it is

desirable to incorporate more realistic and complex enough

illustrative examples for applying the presented techniques

and tool support in the industrial settings so that practitioners

could be more easily convinced the utility of the techniques

and tool support. On the other hand, in the university set-

tings, illustrative examples used in the beginning of a course

should have sufficiently low levels of complexity for stu-

dents to understand and digest.

Third, teaching duration at university settings (being one

semester long such as 16 weeks) is much longer than train-

ing duration at industrial settings (about half-day or full-

day duration). At the university settings, substantial after-

lecture exercises and projects as well as in-class discussion

could be possible for students to digest and master the pre-

sented materials besides the slide presentation and live tool

demonstration during lectures. In contrast, at the industrial

settings, limited duration allowed presentation of only im-

portant knowledge points and brief summaries of important

tool features.

6. Discussion

It is desirable that developers do not need to master sophis-

ticated theories or technical details underlying tools when

using the tools. For example, rather than demanding devel-

opers to write algebraic specifications [12] in a formal way,

Pex allows developers to write intended behavior of the code

under test in the form of PUTs (simply test methods with pa-

rameters), which in fact encode algebraic specifications. The

internal details of dynamic symbolic execution as well as its

underlying constraint solving and theorem proving of Z3 [9]

exploited by the Pex tool are also not exposed via the tool

interface to developers who are using Pex.

However, no state-of-the-art tool including Pex can deal

with all complicated situations in real-world code bases au-

tomatically without human intervention or guidance. For ex-

ample, sometimes a tool could fail to generate test inputs for

covering a branch for one or more reasons. Understanding

these reasons by the developers is required before the devel-

opers could provide guidance to the tool such as carrying out

environment isolation, instrumenting some framework or li-

brary code that the code under test invokes, and writing fac-

tory methods that encode method sequences for generating

desirable objects. While we are actively researching how to

automatically provide better explanations when encounter-

ing problems [25], exposing some internal technical details

of the tool to developers would be still needed (at least in

the near future) to allow developers and a tool to cooperate

for effectively carrying out testing tasks. Therefore, training

developers with such skills remains important future work.

In our teaching at the university settings, coverage criteria

were major lecture topics for testing foundations. It still re-

mains an open question on how understanding these various

coverage criteria could directly assist developers in carrying

out developer testing, especially in the context of applying

a powerful tool such as Pex. For example, given that a tool

could be enhanced or pre-configured (by tool authors or ven-

dors) to automatically achieve specific advanced coverage

criteria [19], we hypothesize that the awareness and deep

understanding of advanced coverage criteria could be less

necessary in developer-testing practice. With the adoption of

tools and methodologies such as Pex and PUTs, we hypoth-

esize that much more emphasis should be placed on training

developers on how to write high-quality specifications (e.g.,

in the form of PUTs) than manually understanding and ap-

plying various coverage criteria, which were originally the

basis for test generation and selection (currently automated

with a tool). However, there still remains an open question

on how to effectively train such specification-writing skills.

7. Conclusion

Effectively conducting developer testing requires both ef-

fective tool support by tools and developer-testing skills by

developers. As educators, we need to devise effective ways

to teach students or practitioners to equip them with these

skills. In this paper, we have described our experiences in

teaching and training developer-testing techniques and tool

support in both university and industrial settings. We high-

light differences in teaching and training in these two set-

tings, and observations from interacting with practitioners in

our process of teaching and training.

In future work, we plan to conduct quantitative studies

such as comparing measurable data before and after a course

offering or training session. We plan to conduct comparison

of teaching skills of developer testing with teaching skills

of other testing types, or with teaching other software de-

velopment skills. In addition, we plan to develop a set of

educational tools for developers to learn developer testing.

We have already released a website called “Pex for Fun” [5].

It currently provides different types of programming puzzles

such as coding-duel puzzles. For a coding-duel puzzle, the

user is requested to write and iteratively improve an imple-

mentation that matches a hidden implementation based on

feedback provided by Pex in showing the behavioral differ-

ences (i.e., different program outputs) of the two implemen-

tations. Coding-duel puzzles can be used to train developers’

programming skills and problem solving skills. We plan to

extend “Pex for Fun” to include puzzles for training testing

skills.

Acknowledgments. Tao Xie’s work is supported in part by

NSF grants CNS-0716579, CCF-0725190, CCF-0845272,

CCF-0915400, and CNS-0958235, and Army Research Of-

fice grant W911NF-08-1-0443.

References

[1] JUnit. http://www.junit.org.

[2] Microsoft Research Code Contracts. http://research.

microsoft.com/en-us/projects/contracts.

[3] Microsoft Research Pex. http://research.microsoft.

com/Pex.

[4] NUnit. http://www.nunit.org/.

[5] Pex for fun. http://www.pexforfun.com/.

[6] P. Ammann and J. Offutt. Introduction to Software Test-

ing. Cambridge University Press, 2008. http://www.

introsoftwaretesting.com/.

[7] K. Beck. Test Driven Development: By Example. Addison-

Wesley, 2003.

[8] J. de Halleux and N. Tillmann. Moles: tool-assisted environ-

ment isolation with closures. In Proc. TOOLS, pages 253–270,

2010.

[9] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver.

In Proc. TACAS, pages 337–340, 2008.

[10] M. Fowler. Refactoring: Improving the Design of Existing

Code. Addison Wesley, 1999.

[11] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed

automated random testing. In Proc. PLDI, pages 213–223,

2005.

[12] J. V. Guttag and J. J. Horning. The algebraic specification of

abstract data types. Acta Informatica, 10:27–52, 1978.

[13] C. A. R. Hoare. An axiomatic basis for computer program-

ming. Commun. ACM, 12(10):576–580, 1969.

[14] J. Jacky, M. Veanes, C. Campbell, and W. Schulte. Model-

based Software Testing and Analysis with C#. Cambridge

University Press, 2008.

[15] J. C. King. Symbolic execution and program testing. Com-

mun. ACM, 19(7):385–394, 1976.

[16] M. R. Marri, S. Thummalapenta, T. Xie, N. Tillmann, and

J. de Halleux. Retrofitting unit tests for parameterized unit

testing. Technical Report TR-2010-9, North Carolina State

University Department of Computer Science, Raleigh, NC,

March 2010.

[17] M. R. Marri, T. Xie, N. Tillmann, J. de Halleux, and

W. Schulte. An empirical study of testing file-system-

dependent software with mock objects. In Proc. AST, Business

and Industry Case Studies, pages 149–153, 2009.

[18] B. Meyer. Object-Oriented Software Construction. Prentice

Hall, 1988.

[19] R. Pandita, T. Xie, N. Tillmann, and J. de Halleux. Guided

test generation for coverage criteria. In Proc. ICSM, 2010.

[20] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit

testing engine for C. In Proc. ESEC/FSE, pages 263–272,

2005.

[21] N. Tillmann and J. de Halleux. Pex – white box test generation

for .NET. In Proc. TAP, pages 134–153, 2008.

[22] N. Tillmann and W. Schulte. Parameterized unit tests. In Proc.

ESEC/FSE, pages 253–262, 2005.

[23] N. Tillmann and W. Schulte. Mock-object generation with

behavior. In Proc. ASE, pages 365–368, 2006.

[24] G. Venolia, R. DeLine, and T. LaToza. Software development

at microsoft observed. Technical Report MSR-TR-2005-140,

Microsoft Research, Redmond, WA, October 2005.

[25] X. Xiao, T. Xie, N. Tillmann, and J. de Halleux. Issue analysis

for residual structural coverage in dynamic symbolic execu-

tion. Technical Report TR-2010-7, North Carolina State Uni-

versity Department of Computer Science, Raleigh, NC, March

2010.

[26] L. Zhang, T. Xie, L. Zhang, , N. Tillmann, J. de Halleux, and

H. Mei. Test generation via dynamic symbolic execution for

mutation testing. In Proc. ICSM, 2010.

