
XEngine: A Fast and Scalable
XACML Policy Evaluation Engine

Alex X. Liu Fei Chen
Dept. of Computer Science and Engineering

Michigan State University
East Lansing, MI 48824-1266, U.S.A.

{alexliu, feichen}@cse.msu.edu

JeeHyun Hwang Tao Xie
Dept. of Computer Science

North Carolina State University
Raleigh, NC 27695, U.S.A.

{jhwang4, xie}@csc.ncsu.edu

ABSTRACT

XACML has become the de facto standard for specifying ac-
cess control policies for various applications, especially web
services. With the explosive growth of web applications de-
ployed on the Internet, XACML policies grow rapidly in
size and complexity, which leads to longer request process-
ing time. This paper concerns the performance of request
processing, which is a critical issue and so far has been over-
looked by the research community. In this paper, we propose
XEngine, a scheme for efficient XACML policy evaluation.
XEngine first converts a textual XACML policy to a nu-
merical policy. Second, it converts a numerical policy with
complex structures to a numerical policy with a normalized
structure. Third, it converts the normalized numerical pol-
icy to tree data structures for efficient processing of requests.
To evaluate the performance of XEngine, we conducted ex-
tensive experiments on both real-life and synthetic XACML
policies. The experimental results show that XEngine is or-
ders of magnitude more efficient than Sun PDP, and the per-
formance difference between XEngine and Sun PDP grows
almost linearly with the number of rules in XACML policies.
For XACML policies of small sizes (with hundreds of rules),
XEngine is one to two orders of magnitude faster than the
widely deployed Sun PDP. For XACML policies of large sizes
(with thousands of rules), XEngine is three to four orders of
magnitude faster than Sun PDP.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Access controls

General Terms

Algorithm, Performance, Security

Keywords

XACML, access control, policy evaluation, web server, pol-
icy decision point (PDP), policy enforcement point (PEP)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’08, June 2–6, 2008, Annapolis, Maryland, USA.
Copyright 2008 ACM 978-1-60558-005-0/08/06 ...$5.00.

1. INTRODUCTION
Access control mechanisms use user specified policies to

determine which principal can access which resources in what
manner. The eXtensible Access Control Markup Language
(XACML) [9] is an XML-based language standardized by
the Organization for the Advancement of Structured Infor-
mation Standards (OASIS). XACML was designed to re-
place application-specific and proprietary access-control pol-
icy languages. Prior to XACML, every application vendor
had to create its own proprietary method for specifying ac-
cess control policies, and these applications could not un-
derstand each other’s language. Currently, XACML has be-
come the de facto standard for specifying access control poli-
cies. It has been widely supported by all the main platform
vendors and extensively used in a variety of applications.

Typical XACML based access control works as follows.
A subject (e.g., a professor) wants to perform an action
(e.g., modify) on a protected resource (e.g., student grade).
The subject submits this request to the Policy Enforcement
Point (PEP) that manages the protected resource. The
PEP formulates such a request using the XACML request
language. Then, the PEP sends the XACML request down
to the Policy Decision Point (PDP), which stores a user
specified access control policy written in the XACML policy
language. The PDP checks the request with its XACML
policy and determines whether the XACML request should
be permitted or denied. Finally, the PDP formulates the
decision in XACML response language and sends it to the
PEP, which enforces the decision.

This paper concerns the process of checking whether a
request satisfies a policy, which we call policy evaluation.
We refer to a PDP as a policy evaluation engine. Specifi-
cally, this paper concerns the performance of XACML pol-
icy evaluation engines. With the wide adoption of XACML,
especially in online applications running on web servers, the
performance of XACML policy evaluation engines becomes
a critical issue. When a web server needs to enforce an
XACML policy with a large number of rules, its XACML
policy evaluation engine may easily become the performance
bottleneck for the server. As the number of resources and
users managed by web servers grows rapidly, XACML poli-
cies grow correspondingly in size and complexity. To enable
an XACML policy evaluation engine to process simultane-
ous requests of large quantities in real time, especially in
face of a burst volume of requests, an efficient XACML pol-
icy evaluation engine is necessary.

However, commercial implementations of XACML policy
evaluation engines such as Sun XACML PDP [1], which per-

forms brute force searching by comparing a request with all
the rules in an XACML policy, still represent the state-of-
the-art. To our best knowledge, there is no prior research
work on improving the performance of XACML policy eval-
uation engines. This paper represents the first step in ex-
ploring this unknown space. By this paper, we hope to at-
tract some attention from the research community on this
important, yet challenging, problem.

Making XACML policy evaluation more efficient is diffi-
cult from many aspects. First, XACML policies have com-
plex structures. For example, XACML policies can be spec-
ified recursively. An XACML policy consists of a policy set
and a policy set consists of a sequence of policies or policy
sets. Second, an XACML policy often has conflicting policies
or rules, and they are resolved by four possible mechanisms:
First-Applicable, Only-One-Applicable, Permit-Overrides, a-
nd Deny-Overrides. It is natural for an XACML policy eval-
uation engine to examine all the rules in an XACML policy
before making the correct decision for a request. Third,
in XACML policies, the predicates that a request needs to
be checked upon are scattered. Every policy set, policy, or
rule has its own predicate. Fourth, in XACML, a request
could be multi-valued. For example, the subject of a re-
quest could be a principal who is both a professor and a
student. Last but not least, in XACML policies, a rule may
be multi-valued. For example, a rule in an XACML policy
may specify that the subject must be both a professor and
a student. In retrospect, the high complexity of XACML
policies makes brute force searching appear to be the natu-
ral way of processing requests.

In this paper, we present XEngine, a fast and scalable
XACML policy evaluation engine. XEngine has three key
ideas. First, XEngine converts all string values in an XACML
policy to numerical values. In processing requests, XEngine
also converts the string values in a request to their corre-
sponding numerical values. We call this technique XACML
policy numericalization. Second, XEngine converts a nu-
mericalized XACML policy with a hierarchical structure and
multiple complex conflict resolution mechanisms into an equ-
ivalent XACML policy with a flat structure and only one
conflict resolution mechanism, which is First-Applicable. We
call this technique XACML policy normalization. Third,
XEngine further converts a numericalized and normalized
policy to a tree structure, and uses it to efficiently process
numericalized requests.

Intuitively, XEngine outperforms the standard XACML
policy evaluation engines (such as Sun PDP) for three ma-
jor reasons. First, in checking whether a request satisfies
a predicate, XEngine uses efficient numerical comparison
thanks to the XACML policy numericalization technique.
Second, when it receives a request, XEngine can find the
correct decision without comparing the request with every
rule in the policy due to the XACML policy normalization
technique. Third, XACML numericalization and normal-
ization open many new opportunities for building efficient
data structures for fast request processing. In this paper,
we present two approaches to fast processing of requests:
the decision diagram approach and the forwarding table ap-
proach.

To evaluate the performance of XEngine, we compare it
with the standard Sun PDP implementation. We choose
Sun PDP in our experiments for two main reasons. First,
Sun PDP is the first and the most widely deployed imple-

mentation of XACML evaluation engines. It has become
the industrial standard. Second, Sun PDP is open source.
To eliminate the performance factor of implementation lan-
guages, we implemented XEngine in Java because Sun PDP
is written in Java. We conducted extensive experiments on
real-life XACML policies collected from various sources as
well as synthetic policies of large sizes. The experimental
results show that XEngine is orders of magnitude more effi-
cient than Sun PDP, and the performance difference between
XEngine and Sun PDP grows almost linearly with the num-
ber of rules in XACML policies. For real-life XACML poli-
cies (of small sizes with hundreds of rules), the experimental
results show that XEngine is two orders of magnitude faster
than Sun PDP for single-valued requests and one order of
magnitude faster than Sun PDP for multi-valued requests.
For synthetic XACML policies (of large sizes with thou-
sands of rules), the experimental results show that XEngine
is three to four orders of magnitude faster than Sun PDP
for both single-valued and multi-valued requests.

As the core of access control systems, the correctness of
XEngine is critical. Thus, we not only formally prove that
XEngine makes the correct decision for every request based
on the XACML 2.0 specification [9], but also empirically
validate the correctness of XEngine in our experiments. The
correctness proof of XEngine is not included in this version
due to the space issue, but it is included in our technical
report [2], which is available online. In our experiments, we
first randomly generate 100,000 single-valued requests and
100,000 multi-valued requests; we then feed each request to
XEngine and Sun PDP and compare their decisions. The
experimental results confirmed that XEngine and Sun PDP
are functionally equivalent.

The rest of the paper is organized as follows. We first
review related work in Section 2. In Section 3, we briefly
introduce XACML. In Section 4, we describe the policy nu-
mericalization and normalization techniques. We present
the core algorithms for processing requests in Section 5. In
Section 6, we present our experimental results. Finally, we
give concluding remarks in Section 7.

2. RELATED WORK
We are not aware of prior work on optimizing XACML

policy evaluation. Since XACML 1.0 was standardized by
OASIS in February 2003, a significant amount of research
work has been done on XACML. However, most of the re-
search focus on modeling, verification, analysis, and testing
of XACML policies (e.g., [4, 6–8, 11]). In other words, the
focus of prior work on XACML is the correctness of XACML
policies while the focus of this paper is on the performance
of XACML policies. The only XACML analysis work that
can be used to improve the performance of XACML evalu-
ation is the recent work on detecting and removing redun-
dant XACML rules [6]. In [6], Kolovski formalizes XACML
policies with description logics (DL), which are a decidable
fragment of the first-order logic, and exploit existing DL ver-
ifiers to conduct policy verification. Their policy verification
framework can detect redundant XACML rules. Kolovski et

al. also point out that the XACML change impact frame-
work developed by Fisler et al. [4] could be exploited to
detect redundant rules as well because a rule is redundant
if and only if removing the rule does not change the seman-
tics of the policy, although it may not be an efficient way
to remove redundant rules. Removing redundant rules from

XACML policies may potentially improve the performance
of XACML policy evaluation. However, this hypothesis is
yet to be validated.

One area related to XACML policy evaluation is packet
classification (e.g., [3, 10]), which encompasses a large body
of research. Packet classification concerns the performance
of checking a packet against a packet classifier, which con-
sists of a sequence of rules. Although similar in spirit, packet
classification and XACML policy evaluation have several
major differences. First, packet classification rules are speci-
fied using ranges and prefixes, while XACML rules are spec-
ified using application specific string values. Second, the
structure of packet classifiers is flat and there is only one rule
combining algorithm (i.e., First-Applicable); in contrast, the
structure of XACML policies is hierarchical and there are
four rule/policy combination algorithms. Third, the num-
ber of possible values that a packet field can be is big (e.g.,
232), while the number of possible values that a request at-
tribute can be is much smaller. These differences render
directly applying prior packet classification algorithms to
XACML policy evaluation impossible. Our procedures of
XACML policy numericalization and normalization seem to
be a necessary step in bridging the two fields. Although
packet classification and XACML policy evaluation concern
access control in different domains (one in the network level
and one in the application level), they share essential char-
acteristics. We hope this paper will inspire more research
on XACML policy evaluation from the systems community.

3. BACKGROUND
An XACML policy consists of a policy set and a policy

combining algorithm. A policy set consists of a sequence of
policies or policy sets, and a target. A policy consists of a
target, a rule set, and a rule combining algorithm. A target
is a predicate over the subject (e.g., professor), the resource
(e.g., grades), and the action (e.g., assign) of access requests,
specifying the type of requests to which the policy or policy
set can be applied. If a request satisfies the target of a
policy, then the request is further checked against the rule
set of the policy; otherwise, the policy is skipped without
further examining its rules. The target of a policy set works
similarly. A rule set is a sequence of rules. A rule consists
of a target, a condition, and an effect. Similar to the target
of a policy, the target of a rule specifies whether the rule is
applicable to a request by setting constraints on the subject,
the resource, and the action of requests. The condition in a
rule is a boolean expression that refines the applicability of
the rule beyond the predicates specified by its target, and is
optional. Given a request, if it matches both the target and
condition of a rule, the rule’s effect (i.e., permit or deny) is
returned as a decision; otherwise, NotApplicable is returned.

XACML supports four rule (or policy) combining algo-
rithms: First-Applicable, Only-One-Applicable, Deny-Overr-
ides, and Permit-Overrides. For a First-Applicable policy
(or policy set), the decision of the first applicable rule (or
policy) is returned. For an Only-One-Applicable policy (or
policy set), the decision of the only applicable rule (or pol-
icy) is returned; indeterminate (which indicates an error)
is returned if there are more than one applicable rule (or
policy). For a Deny-Overrides policy (or policy set), deny
is returned if any rule (or policy) evaluation returns deny ;
permit is returned if all rule (or policy) evaluations return
permit. For a Permit-Overrides policy (or policy set), permit

is returned if any rule (or policy) evaluation returns permit ;
deny is returned if all rule (or policy) evaluations return
deny. For all of these combining algorithms, NotApplicable
is returned if no rule (or policy) is applicable.

1<PolicySet PolicySetId="n" PolicyCombiningAlgId="Permit-Overrides">

2 <Target/>

3 <Policy PolicyId="n1" RuleCombinationAlgId="Deny-Overrides">

4 <Target/>

5 <Rule RuleId=“1" Effect="Deny">

6 <Target>

7 <Subjects><Subject> Student </Subject>

8 <Subject> Secretary </Subject></Subjects>

9 <Resources><Resource> Grades </Resource></Resources>

10 <Actions><Action> Change </Action></Actions>

11 </Target>

12 </Rule>

13 <Rule RuleId=“2" Effect="Permit">

14 <Target>

15 <Subjects><Subject> Professor </Subject>

16 <Subject> Lecturer </Subject>

17 <Subject> Secretary </Subject></Subjects>

18 <Resources><Resource> Grades </Resource>

19 <Resource> Records </Resource></Resources>

20 <Actions><Action> Change </Action>

21 <Action> Read </Action></Actions>

22 </Target>

23 </Rule>

24 </Policy>

25 <Policy PolicyId="n2" RuleCombinationAlgId="First-Applicable">

26 <Target/>

27 <Rule RuleId=“3" Effect="Permit">

28 <Target>

29 <Subjects><Subject> Student </Subject></Subjects>

30 <Resources><Resource> Records </Resource></Resources>

31 <Actions><Action> Change </Action>

32 <Action> Read </Action></Actions>

33 </Target>

34 </Rule>

35 </Policy>

36</PolicySet>

Figure 1: An example XACML policy

Figure 1 shows an example XACML policy set whose pol-
icy combining algorithm is Permit-Overrides. This policy
set includes two policies. The first policy has two rules and
its rule combining algorithm is Deny-Overrides. The sec-
ond policy has one rule and its rule combining algorithm
is First-Applicable. In the first policy, lines 5-12 define the
first (deny) rule, whose meaning is that a student or sec-
retary cannot change grades; lines 13-23 define the second
(permit) rule, whose meaning is that a professor, lecturer, or
secretary can change or read grades or records. In the second
policy, lines 27-34 define its (permit) rule, whose meaning is
that a student can change or read records.

4. XACML POLICY NUMERICALIZATION

AND NORMALIZATION
The process of XACML policy numericalization is to con-

vert the string values in an XACML policy into integer val-
ues. This numericalization technique enables our XACML
policy evaluation engine to use the efficient integer compar-
ison, instead of the inefficient string matching, in process-
ing XACML requests. The process of XACML policy nor-
malization is to convert an XACML policy with a hierar-
chical structure into an equivalent policy with a flat struc-
ture and at the same time to convert an XACML policy
with four rule/policy combining algorithms into an equiva-
lent policy with only one rule combining algorithm, which is

First-Applicable. This normalization technique enables our
XACML policy evaluation engine to process an XACML re-
quest without comparing the request against all the rules in
an XACML policy.

After XACML policy numericalization and normalization,
an XACML policy becomes a sequence of range rules. Such
representation is called the sequential range rule representa-
tion. The format of a range rule is 〈predicate〉 → 〈decision〉.
A request has d attributes F1, · · · , Fd, where the domain of
each attribute Fi, denoted D(Fi), is a range of integers. The
〈predicate〉 defines a set of requests over the attributes F1

through Fd. The 〈decision〉 defines the action (permit or
deny) to take upon the requests that satisfy the predicate.
The predicate of a rule is specified as F1 ∈ S1∧· · ·∧Fd ∈ Sd

where each Si is a range of integers and Si is a subset of the
domain of Fi. The semantics of a sequence of rules follows
First-Applicable (i.e., first-match), that is, the decision for
a request is the decision of the first rule that the request
matches. To serve as a security policy, a sequence of range
rules must be complete, which means that for any request,
whose Fi value is in D(Fi), there is at least one matching
rule.

There are many technical challenges in XACML policy nu-
mericalization and normalization: non-integer values, recur-
sive specification, scattered predicates, multi-valued rules,
multi-valued requests, all-match to first-match conversion,
unifying rule/policy combining algorithms, and complex XA-
CML functions. Next, for each challenge, we formulate the
problem, present our solution, and give an illustrating ex-
ample.

4.1 XACML Policy Numericalization
Problem: In sequential range rules, the constraints on each

attribute are specified using integers. However, in XACML
rules, the constraints on each attribute are specified using
ASCII strings.

Solution: For each attribute (typically subject, resource,
or action), we first map each distinct value of the attribute
that appears in an XACML policy to a distinct integer,
and all the mapped integers of that attribute should form a
range. Then, we add rule R−1 : true → NotApplicable as the
last rule to make the sequence of range rules complete. We
denote this last rule as R−1 for the purpose of distinguishing
it from the original XACML rules.

Example: Taking the XACML policy in Figure 1 as an
example, we map each distinct attribute value to a distinct
integer as shown in Figure 2(a). The converted rules after
mapping are shown in Figure 2(b).

Subject Resource Action
Student: 0

Secretary: 1
Professor: 2
Lecturer: 3

Grades: 0
Records: 1

Change: 0
Read: 1

(a)

R1 : S ∈ [0, 1] ∧ R ∈ [0, 0] ∧ A ∈ [0, 0] → d
R2 : S ∈ [1, 3] ∧ R ∈ [0, 1] ∧ A ∈ [0, 1] → p
R3 : S ∈ [0, 0] ∧ R ∈ [1, 1] ∧ A ∈ [0, 1] → p

R−1 : S ∈ [0, 3] ∧ R ∈ [0, 1] ∧ A ∈ [0, 1] → na

(b)

Figure 2: Numericalization table for the XACML
policy in Figure 1 and the numericalized rules

4.2 Recursive Specification
Problem: A policy of the sequential range rule represen-

tation has a flat structure as a sequence of rules. However,
an XACML policy is specified recursively and therefore has
a hierarchical structure. In XACML, a policy set contains a
sequence of policies or policy sets, which may further contain
policies or policy sets.

Solution: We parse and model an XACML policy as a tree,
where each terminal node represents an individual rule, each
nonterminal node whose children are all terminal nodes rep-
resents a policy, and each nonterminal node whose children
are all nonterminal nodes represents a policy set. Because
this tree represents the structure of the XACML policy, we
call it the structure tree of the policy. At each nonterminal
node of a structure tree, we store the range of the sequence
numbers of the rules that are included in the policy or the
policy set corresponding to the nonterminal node. We also
store the combining algorithm and the target of the corre-
sponding policy or policy set.

Example: Figure 3 shows an XACML policy with a hi-
erarchical structure (with details elided), which has three
layers. The first layer contains a policy and a policy set,
and the policy combining algorithm of this layer is First-
Applicable. In the second layer, the aforementioned pol-
icy contains two rules R1 and R2, and the rule combin-
ing algorithm is Deny-Overrides. The policy set contains
two policies, and the policy combining algorithm is Permit-
Overrides. The third layer contains two policies. One con-
tains two rules R3 and R4 with Deny-Overrides as its com-
bining algorithm; the other contains two rules R5 and R6

with Only-One-Applicable as its combining algorithm.

First-Applicable

Deny-Overrides

Permit-Overrides

Deny-Overrides

Only-One-Applicable

1
permitR

2
denyR

3
denyR

4
permitR

5
permitR

6
denyR

Figure 3: An example XACML policy

Figure 4 shows the structure tree of the three-layered
XACML policy in Figure 3. In the root, range [1,6] indi-
cates that the XACML policy consists of rules R1 to R6,
First-Applicable is the combining algorithm of the XACML
policy, and t1 is the target of the policy set.

4.3 Scattered Predicates
Problem: In the sequential range rule representation, whet-

her a request matches a rule is determined solely by whether
the request satisfies the predicate of the rule. However, in
XACML policies, checking whether a request matches a rule
requires checking whether the request satisfies a series of
predicates. This is because a rule in an XACML policy may
be encapsulated in a policy, the policy may be further en-
closed in multiple policy sets, and each policy or policy set
has its own applicability constraints (i.e., targets).

[1,6]

First-Applicable

Target t1

[1,2]

Deny-Overrides

Target t2

[3,6]

Permit-Overrides

Target t3

[3,4]

Deny-Overrides

Target t4

[5,6]

Only-One-Applicable

Target t5

R1 R2

R3 R4 R5 R6

Figure 4: Structure tree of the policy in Figure 3

Solution: In the structure tree of an XACML policy, each
node may have a target that specifies some constraints on the
subject, resource, and action of requests. A request matches
a rule if and only if the request satisfies all the targets along
the path from the root to the terminal node that corresponds
to the rule. For each rule Ri, let t1, · · · , tk denote all the
targets along the path from the root to the terminal node
that corresponds to Ri and c denote the condition of Ri, we
replace the target of Ri by t1 ∧ · · · ∧ tk ∧ c. Note that c is
true if rule Ri does not have a condition.

Example: In normalizing the XACML policy in Figure 4,
we replace the target of R6 by t1 ∧ t3 ∧ t5 ∧ tR6

∧ cR6
, where

tR6
is the target of R6 and cR6

is the condition of R6.

4.4 Multi-valued Rules
Problem: In the sequential range rule representation, rules

are specified under the assumption that each attribute in a
request has a singular value. However, in XACML policies, a
rule may specify that some attributes must be multi-valued.
For example, the constraints on the subject attribute may
be “a person who is both a professor and a student”.

Solution: We solve this problem by modelling the combi-
nations of distinct values that appear in multi-valued rules
in an XACML policy as a new distinct value.

Example: Suppose a rule requires the subject to be“a per-
son who is both a professor and a student”. We add one more
distinct value for the subject, that is, “professor&student”.

4.5 Multi-valued Requests
Problem: In the sequential range rule representation, each

attribute in a request has a singular value. However, an
attribute in an XACML request may have multiple values.
For example, the subject in an XACML request may be “a
person who is both a professor and a student”.

Solution: We solve this problem by breaking a multi-
valued request into multiple single-valued requests. For ex-
ample, if a request is “a person who is both a professor and a
student wants to assign grades”, we break it into two single-
valued requests: “a professor wants to assign grades” and “a
student wants to assign grades”. Note that if we have a dis-
tinct value “professor&student” due to some multi-valued
rules, we add one more single-valued request: “a profes-
sor&student wants to assign grades”.

To compute the final decision for the original multi-valued
request, for each decomposed singled-valued request, our ba-
sic idea is to find all the original XACML rules that this

singled-valued request matches. Let Q be a multi-valued re-
quest and Q1, · · · , Qk be the resulting single-valued requests
decomposed from Q. For each Qi, we use O(Qi) to denote
the set of all the original XACML rules that Qi matches.
Thus, ∪k

i=1O(Qi) is the set of all the original XACML rules
that the multi-valued request Q matches. The algorithm for
finding all the original XACML rules that a single-valued re-
quest matches is discussed in Section 4.6. After we compute
∪k

i=1O(Qi), we use the structure tree of the given XACML
policy to resolve the final decision for the multi-valued re-
quest Q in a bottom-up fashion. The pseudocode of the
resolution algorithm is in Algorithm 1.

Algorithm 1: ResolveByStructureTree(O,V)

Input: (1) A set O of original XACML rules
O = {Ra1

, · · · , Rah
}, where a1 < · · · < ah (h ≥ 1).

(2) A resolution tree rooted at node V and V has m

children V1, · · · , Vm.
Output: An original XACML rule R whose decision is the

resolved decision.

S = ∅;1

for i := 1 to m do2

Oi := {Rx|Vi.left ≤ x ≤ Vi.right};3

if Oi 6= ∅ then4

S := S∪ ResolveByStructureTree(Oi, Vi);5

/*Suppose S = {Rb1
, · · · , Rbg }, where b1 < · · · < bg (g ≥ 1)*/6

if V.algorithm = First-Applicable then7

return Rb1
;8

else if V.algorithm = Only-One-Applicable then9

if |S| > 1 then return error;10

else return Rb1
;11

else if V.algorithm = Permit-Overrides then12

if ∃i, 1 ≤ i ≤ g, Rbi
’s decision is permit then13

return Rbi
;14

else return Rb1
;15

else if V.algorithm = Deny-Overrides then16

if ∃i, 1 ≤ i ≤ g, Rbi
’s decision is deny then17

return Rbi
;18

else return Rb1
;19

More precisely, in processing an XACML policy whose
combining algorithm is First-Applicable, for a single-valued
request decomposed from a multi-valued request, we do not
need to compute all the original XACML rules that the
single-valued request matches; instead, we only need to com-
pute the first original XACML rule that the single-valued re-
quest matches. The reason is as follows. Let X = 〈X1, · · · ,
Xn〉 be a policy (or policy set) whose combining algorithm
is First-Applicable. Let Q be a multi-valued request, and
Q1, · · · , Qk be the resulting single-valued requests decom-
posed from Q. For each i, let O(Qi) be the set of all
the original XACML rules that Qi matches, and F(Qi)
be the first original XACML rules that Qi matches. Be-
cause the XACML rule with the smallest sequence num-
ber in ∪k

i=1O(Qi) is the same as the XACML rule with the
smallest sequence number in {F(Q1), · · · ,F(Qk)}, this rule
is essentially the XACML rule that determines the decision
for Q. Therefore, for each Qi, we only need to compute the
first original XACML rule that Qi matches.

Example: Suppose a multi-valued (one-dimensional) re-
quest Q is “a person who is both a professor and a stu-
dent wants to access a system”, and the structure tree of the
XACML policy to be evaluated upon is in Figure 5. We first
decompose this multi-valued request into two single-valued

requests, Q1: “a professor wants to access the system”, and
Q2: “a student wants to access the system”. Second, we
compute the set of all the original XACML rules that Q1

or Q2 matches. This set is O = {R1, R2, R3, R4}. Next,
we use this set and the structure tree in Figure 5 to find
the final decision for request Q. First, R1 and R2 are re-
solved at node V2 and the “winning” decision at this level is
R1’s decision; R3 and R4 are resolved at node V3 and the
“winning” decision at this level is R3’s decision. Second, R1

and R3 are resolved at node V1; because the decisions of
R1 and R3 are all deny and the combining algorithm at V1

is Permit-Overrides, the final “winning” decision is R1’s (or
R3’s) decision, which is deny. Thus, Q’s decision is deny.

R1: Professor deny R2: Student permit R4: Professor permitR3: Student deny

[1,4]

Permit-Overrides

[1,2]

First-Applicable

V1

V3
V2

[3,4]

First-Applicable

Figure 5: An example structure tree

4.6 All-match to First-match Conversion
Problem: For each single-valued request decomposed from

a multi-valued request, we may need to compute all the orig-
inal XACML rules that the single-valued request matches.
To avoid scanning the entire rule list, our idea is to con-
vert a rule sequence following the all-match semantics to
an equivalent sequence of rules following the first-match se-
mantics. More formally, given a policy (or policy set) X =
〈X1, · · · , Xn〉 where each Xi has been normalized to X ′

i ,
and X’s combining algorithm A is either Permit-Overrides
or Deny-Overrides, we want to convert 〈X ′

1| · · · |X
′

n〉, which
is denoted as 〈R1, · · · , Rg〉 following the all-match seman-
tics, to a sequence of range rules Y = 〈y1, · · · , ym〉 fol-
lowing the first-match semantics such that for each single-
valued request Q, the decision of the first matching rule in
Y should contain two components. First, it should contain
the decisions of all the rules that Q matches in 〈R1, · · · , Rg〉.
Such information is needed when we process multi-valued re-
quests. Second, it should contain the decision that X makes
for Q. Such information is needed when we process single-
valued requests. This problem is particularly challenging
because of the multi-dimensionality of XACML rules. That
is, each rule has multiple attributes.

Solution: We design the decision of each first-match rule
using a new data structure called an origin block. The ori-
gin block ϕdec of a rule consists of two components ϕ and
dec, where ϕ consists of either one original XACML rule
or a set of origin blocks, and dec is the winning decision of
ϕ. The winning decision of a rule’s origin block is the deci-
sion that the rule makes for any single-valued request that
matches the rule. Thus, for a single-valued request (that is
not decomposed from a multi-valued request), the winning
decision is used to compute the final decision for the request;
for a single-valued request decomposed from a multi-valued
request, the original XACML rules are used to compute the
final decision for the multi-valued request. An example ori-
gin block is [[R3]

d, [[R5]
p, [R8]

d]p]p, where d denotes deny
and p denotes permit.

To convert all-match rules to first-match rules, we use pol-

icy decision diagrams (similar to firewall decision diagrams
in [5]) as the core data structure. A Policy Decision Di-
agram (PDD) with a decision set DS and over attributes
F1, · · · , Fd is an acyclic and directed graph that has the fol-
lowing five properties: (1) There is exactly one node that has
no incoming edges. This node is called the root. The nodes
that have no outgoing edges are called terminal nodes. (2)
Each node v has a label, denoted F (v). If v is a nonterminal
node, then F (v) ∈ {F1, · · · , Fd}. If v is a terminal node,
then F (v) ∈ DS. (3) Each edge e:u → v is labeled with a
nonempty set of integers, denoted I(e), where I(e) is a sub-
set of the domain of u’s label (i.e., I(e) ⊆ D(F (u))). (4) A
directed path from the root to a terminal node is called a de-
cision path. No two nodes on a decision path have the same
label. (5) The set of all outgoing edges of a node v, denoted
E(v), satisfies the following two conditions: (a) consistency :
I(e)∩ I(e′) = ∅ for any two distinct edges e and e′ in E(v);
(b) completeness:

⋃
e∈E(v) I(e) = D(F (v)).

Let 〈X1, · · · , Xn〉 be a policy (or policy set). For each i, let
X ′

i be the normalization result of Xi. Let 〈R1, · · · , Rg〉 de-
note 〈X ′

1| · · · |X
′

n〉, where each Ri ∈ Xhi
1 ≤ i ≤ g. We first

convert the all-match rule set 〈R1, · · · , Rg〉 to an equivalent
partial PDD. A partial PDD has all the properties of a PDD
except the completeness property. An all-match rule set
〈R1, · · · , Rg〉 and a partial PDD are equivalent if and only
if the following two conditions hold. First, for each Ri de-
noted as (F1 ∈ S1)∧· · ·∧(Fd ∈ Sd) → OB and each decision
path P denoted as (F1 ∈ S′

1)∧· · ·∧(Fd ∈ S′

d) → OB ′, either
Ri and P are non-overlapping (i.e., ∃1 ≤ j ≤ d, Sj∩Sj

′ = ∅)
or P is a subset of Ri (i.e., ∀1 ≤ j ≤ d, Sj

′ ⊆ Sj); in the
second case, Ri’s origin block is included in P ’s terminal
node. In P ’s terminal node, we define the source of Ri’s
origin block to be hi (to indicate that Ri ∈ Xhi

). Second,
using P (or Ri) to denote the set of requests that match P
(or Ri), the union of all the rules in 〈R1, · · · , Rg〉 is equal
to the union of all the paths in the partial PDD.

After a partial PDD is constructed, we generate a rule
from each decision path. As the generated rules are non-
overlapping, the order of the generated rules is immaterial.
For each generated rule, let OB denote its origin block, we
first classify the origin blocks in OB based on their sources;
second, we combine all the origin blocks in the same group
into one origin block whose winning decision is the decision
of the block with the smallest source because the rules in
each X ′

i follow the first-match semantics; third, we com-
pute the winning decision for OB based on the combining
algorithm of 〈X1, · · · , Xn〉. Finally, the resulting sequence
of generated rules is the sequence of first-match rules. The
pseudocode of the all-match to first-match conversion algo-
rithm is in Algorithm 2. Note that in this paper we use e.t
to denote the node that e points to.

Example: Figure 6 shows the partial PDD converted from
the all-match rule sequence 〈R1, R2〉 in Figure 2(b), and
Figure 7 shows the corresponding first-match rules generated
from Figure 6.

4.7 Unifying Rule/Policy Combining Algorithms
Problem: In the sequential range rule representation, there

is only one rule combining algorithm, which is First-Applicable.
However, XACML supports four rule (or policy) combining
algorithms: First-Applicable, Only-One-Applicable, Deny-
Overrides, and Permit-Overrides. The key challenging is-
sue in XACML policy normalization is how to unify these

Algorithm 2: AllMatch2FirstMatch(〈X ′

1, · · · , X ′

n〉,
A)

Input: (1) 〈X′

1, · · · , X′

n〉 where X′

i is the normalization result
of Xi where 〈X1, · · · , Xn〉 is a policy (or policy set)

(2) A, which is the combining algorithm of 〈X1, · · · ,

Xn〉, A ∈ {Permit-Overrides, Deny-Overrides}.
Output: An equivalent sequence of first-match range rules.

Let 〈R1, · · · , Rg〉 denote 〈X′

1| · · · |X
′

n〉, where each Ri ∈ X′

hi
1

1 ≤ i ≤ g;
build a decision path with root v from rule R1, and add the2

origin block of R1 to the terminal node of this path;
for i := 2 to g do Append(v, i, Ri);3

for each path in the partial PDD do generate a range rule;4

Let 〈y1, · · · , ym〉 be the generated range rules;5

for i := 1 to m do6

OB := yi’s origin block;7

classify OB’s origin blocks into groups based on their8

sources, and then combine all the origin blocks in the same
group into one block whose winning decision is the decision
of the block with the smallest source; Let [OB1,

· · · , OBk]dec be yi’s resulting origin block after grouping;
if A = Permit-Overrides then9

if ∃j ∈ [1, k] such that OBj ’s winning decision is10

permit then dec := permit;
else dec := deny;11

else if A = Deny-Overrides then12

if ∃j ∈ [1, k] such that OBj ’s winning decision is deny13

then dec := deny ;
else dec := permit;14

return 〈y1, · · · , ym〉;15

Append(v, i, Fm ∈ Sm ∧ · · · ∧ Fd ∈ Sd → OB)16

/*F (v) = Fm and E(v) = {e1, · · · , ek}*/17

if (Sm − (I(e1) ∪ · · · ∪ I(ek))) 6= ∅ then18

add to v an outgoing edge ek+1 with label19

Sm − (I(e1) ∪ · · · ∪ I(ek));
build a decision path P from rule Fm+1 ∈ Sm+1 ∧ · · · ∧ Fd20

∈ Sd → OB, and make ek+1 point to the first node of P;
OB’s source := hi;21

add OB to the terminal node of P;22

if m < d then23

for j := 1 to k do24

if I(ej) ⊆ Sm then25

Append(ej .t, i,26

Fm+1 ∈ Sm+1 ∧ · · · ∧ Fd ∈ Sd → OB);

else if I(ej) ∩ Sm 6= ∅ then27

add to v an outgoing edge e with label I(ej) ∩ Sm;28

make a copy of the subgraph rooted at ej .t, and29

make e points to the root of the copy;
replace the label of ej by I(ej) − Sm;30

Append(e.t, i,31

Fm+1 ∈ Sm+1 ∧ · · · ∧ Fd ∈ Sd → OB);

else if m = d then32

for j := 1 to k do33

if I(ej) ⊆ Sm then34

OB’s source := hi;35

add OB to the terminal node ej .t;36

else if I(ej) ∩ Sm 6= ∅ then37

add to v an outgoing edge with label I(ej) ∩ Sm;38

make a copy of the subgraph rooted at ej .t, and39

make e points to the root of the copy;
replace the label of ej by I(ej) − Sm;40

OB’s source := hi;41

add OB to the terminal node e.t;42

combining algorithms.
Solution: We design the algorithm for normalizing XACML

policies to be recursive because of the recursive nature of
XACML policies (i.e., a policy set may contain other poli-
cies or policy sets). Let X = 〈X1, · · · , Xn〉 be a policy set
with a policy combining algorithm A, where each Xi is a

[0, 0] [2, 3]S

[R1]
d

R R
[0, 0] [0, 0]

[0, 1]

[0, 1]

R

A

[0, 0]

A

[0, 0]

A A

[1, 1]

[1, 1]

[1, 1] [0, 1]

[R1]
d, [R2]

p [R2]
p [R2]

p [R2]
p

Figure 6: The partial PDD converted from 〈R1, R2〉
in Figure 2(b)

S ∈ [0, 0] ∧ R ∈ [0, 0] ∧ A ∈ [0, 0] → [R1]d

S ∈ [1, 1] ∧ R ∈ [0, 0] ∧ A ∈ [0, 0] → [[R1]d, [R2]p]d

S ∈ [1, 1] ∧ R ∈ [0, 0] ∧ A ∈ [1, 1] → [R2]p

S ∈ [1, 1] ∧ R ∈ [1, 1] ∧ A ∈ [0, 1] → [R2]p

S ∈ [2, 3] ∧ R ∈ [0, 1] ∧ A ∈ [0, 1] → [R2]p

Figure 7: The first-match rule sequence generated
from the PDD in Figure 6

policy or a policy set. For each i, let X ′

i be the normaliza-
tion result of Xi. We present our normalization algorithm
based on the following four cases of A.

1. A=First-Applicable: In this case, the output is the
concatenation of the n sequences X ′

1, · · · , X ′

n in the
order from 1 to n. Formally, using “|” to denote con-
catenation, we have X ′ = 〈X ′

1| · · · |X
′

n〉.

2. A=Only-One-Applicable: This case is similar to the
First-Applicable case, except that we first need to make
sure that for any two sequences X ′

i and X ′

j (1 ≤ i 6=
j ≤ n), no rule in X ′

i overlaps with any rule in X ′

j .
Otherwise, there exists at least a request that more
than one policy or policy set in 〈X1, · · · , Xn〉 are appli-
cable to the request, which indicates a potential error
in the original policy.

3. A=Permit-Overrides: In this case, we need to treat
〈X ′

1| · · · |X
′

n〉 as all-match rules and convert them to
first-match rules using the AllMatch2FirstMatch algo-
rithm.

4. A=Deny-Overrides: This case is handled similar to
the Permit-Overrides case.

The pseudocode of the XACML normalization algorithm
is shown in Algorithm 3. Recall that we add rule R−1 :
true → NotApplicable as the last rule to make the sequence
of range rules complete.

Example: Considering the XACML policy in Figure 1,
which is a policy set that consists of two policies 〈R1, R2〉
and 〈R3〉, the normalization result 〈R1, R2〉

′ consists of the
sequence of rules listed in Figure 7 and the normalization
result 〈R3〉

′ is S ∈ [0, 0] ∧ R ∈ [1, 1] ∧ A ∈ [0, 1] → [R3]
p.

Because the policy combining algorithm of the policy set is
Permit-Overrides, we need to convert all the rules in Figure
7 and 〈R3〉

′ to a rule sequence following the first-match se-
mantics. After we add the last rule true → NotApplicable
denoted as R−1, the final sequence of range rules, which is
equivalent to the example XACML policy in Figure 1, is
shown in Figure 8. We use na to denote NotApplicable .

4.8 Complex XACML Functions
Problem: In the sequential range rule representation, the

predicate of each rule is uniformly specified as the con-
junction of member of a finite set predicates. However, in

Algorithm 3: XACML Policy Normalization

Input: An XACML policy X.
Output: A sequence of range rules that is equivalent to X.

rewrite each XACML rule’s decision as an origin block;1

R−1 := true → First-Applicable;2

return 〈 Normalize(X, X’s combining algorithm) |R−1〉;3

Normalize(〈X1, · · · , Xn〉,A)4

if A = First-Applicable then5

output = 〈〉;6

for i := 1 to n do7

if Xi is a rule then8

X′

i := range rule converted from Xi;9

else if Xi is a policy or policy set then10

X′

i :=Normalize(Xi, Xi’s combining algorithm);11

output := output|X′

i ;12

return output;13

else if A = Only-One-Applicable then14

output = 〈〉;15

for i := 1 to n do16

if Xi is a rule then17

X′

i := range rule converted from Xi;18

else if Xi is a policy or policy set then19

X′

i :=Normalize(Xi, Xi’s combining algorithm);20

output := output|X′

i ;21

for every pair 1 ≤ i 6= j ≤ n do22

for every rule r in Xi
′ do23

for every rule r′ in Xj
′ do24

if r and r′ overlap then report error;25

return output;26

else if A = Permit-Overrides or Deny-Overrides then27

for i := 1 to n do28

if Xi is a rule then29

X′

i :=range rule converted from Xi;30

else if Xi is a policy or policy set then31

X′

i :=Normalize(Xi, Xi’s combining algorithm);32

return AllMatch2FirstMatch(〈X′

1, · · · , X′

n〉,A);33

r1 : S ∈ [0, 0] ∧ R ∈ [0, 0] ∧ A ∈ [0, 0] → [R1]d

r2 : S ∈ [1, 1] ∧ R ∈ [0, 0] ∧ A ∈ [0, 0] → [[R1]d, [R2]p]d

r3 : S ∈ [1, 1] ∧ R ∈ [0, 0] ∧ A ∈ [1, 1] → [R2]p

r4 : S ∈ [1, 1] ∧ R ∈ [1, 1] ∧ A ∈ [0, 1] → [R2]p

r5 : S ∈ [2, 3] ∧ R ∈ [0, 1] ∧ A ∈ [0, 1] → [R2]p

r6 : S ∈ [0, 0] ∧ R ∈ [1, 1] ∧ A ∈ [0, 1] → [R3]p

r7 : S ∈ [0, 3] ∧ R ∈ [0, 1] ∧ A ∈ [0, 1] → [R−1]na

Figure 8: The final sequence of range rules con-
verted from the XACML policy in Figure 1

XACML policies, the condition of a rule could be a com-
plex boolean function that operates on the results of other
functions, literal values, and attributes from requests. There
are no side effects to function calls and the final result is a
boolean value indicating whether or not the rule applies to
the request. An example condition of a rule in an XACML
policy could be “salary > 5000 or date > January 1, 1900”.
How to model complex functions of XACML policies in the
sequential range rule representation is a challenging issue.

Solution: For a rule that has a condition specified using
XACML functions, we treat such a condition as part of the
decision of the rule. More formally, for a rule P ∧ f() →
permit, we convert it to rule P → (if f() then permit). In
dealing with rules, we treat the decision (if f() then permit)
as a distinct decision. In dealing with rule/policy combining
algorithms, we treat the decision (if f() then permit) as a
special type of a permit decision. Our idea applies similarly
to deny rules.

Example: Suppose R1 in Figure 2(b) has a function f(),
that is, the predicate of R1 is S ∈ [0, 1] ∧ R ∈ [0, 0] ∧ A ∈
[0, 0] ∧ f() → d. If so, we treat R1 as S ∈ [0, 1] ∧ R ∈
[0, 0] ∧ A ∈ [0, 0] → (if f() then deny).

4.9 Correctness of XACML Normalization
The correctness of XACML policy numericalization is ob-

vious. The correctness of XACML policy normalization fol-
lows from Lemma 4.1, Lemma 4.2, Theorem 4.1, and The-
orem 4.2. The proofs of these lemmas and theorems are
elided in this paper due to space limitations, but they are
available in [2].

Lemma 4.1. Given an XACML policy (or policy set) X
with combining algorithm A, where A ∈ {Permit-Overrides,
Deny-Overrides}, for any request Q, the origin block of the
first rule that Q matches in AllMatch2FirstMatch(X, A)
consists of all the rules that Q matches in X.

Lemma 4.2. Given an XACML policy (or policy set) X
with combining algorithm A, where A ∈ {Permit-Overrides,
Deny-Overrides}, for any request Q, using OB(Q) to de-
note the origin block of the first rule that Q matches in
AllMatch2FirstMatch(X,A), the winning decision of OB(Q)
is the same decision that X makes for Q.

Theorem 4.1. Given an XACML policy X and its nor-
malized version Y , for any single-valued request Q, X and
Y have the same decision for Q.

Theorem 4.2. Given an XACML policy X and its nor-
malized version Y , for any multi-valued request Q, X and
Y have the same decision for Q.

5. THE POLICY EVALUATION ENGINE
After converting an XACML policy to a semantically equiv-

alent sequence of range rules, we need an efficient approach
to search the decision for a given request using the sequence
of range rules. In this section, we describe two approaches to
efficiently processing single-valued requests, namely the de-
cision diagram approach, and the forwarding table approach.
We further discuss methods for choosing the appropriate ap-
proach in real applications.

5.1 The Decision Diagram Approach
The decision diagram approach uses the policy decision

diagram converted from a sequence of range rules to improve
the efficiency of decision searching operation. Constructing
a PDD from a sequence of first-match rules is similar to the
algorithm for constructing a PDD from a sequence of all-
match rules. Figure 9 shows the PDD constructed from the
sequence 〈r1, r2, r3, r4, r5, r6, r7〉 in Figure 8.

[0, 0] [2, 3]
S

R R
[1, 1] [0, 0]

[0, 1]

[0, 1]
R

A A

[0, 0]

A A

[1, 1]

[1, 1]

[1, 1] [0, 1][0, 1]

A

[0, 0] [1, 1]

[0, 0]

[R1]
d [R-1]

na [R3]
p [[R1]

d, [R2]
p] d [R2]

p [R2]
p [R2]

p

Figure 9: The PDD constructed from the sequence
of range rules in Figure 8

The algorithm for processing a single-valued request con-
sists of two steps. First, we numericalize the request using
the same numericalization table in converting the XACML
policy to range rules. For example, a request (Professor,
Grade, Change) will be numericalized as a tuple of three
integers (2, 0, 0). Second, we search the decision for the
numericalized request on the constructed PDD. Note that
every terminal node in a PDD is labeled with an origin
block and the winning decision of the block is the decision
of the single-valued requests that match the decision path
that contains the terminal node.

To speed up the decision searching, for each nonterminal
node v with k outgoing edges e1, · · · , ek, we sort the ranges
in I(e1) ∪ · · · ∪ I(eg), i.e., all the ranges that appear on the
outgoing edges of v, in an increasing (or decreasing) order.
In the sorted list, for each range I , assuming I ∈ I(ej), is
associated with a pointer that points to the target node that
ej points to. Such sorting allows us to perform binary search
on each nonterminal node.

5.2 The Forwarding Table Approach
The forwarding table approach is based on the PDD that

constructed in the decision diagram approach. The basic
idea of the forwarding table approach is to convert a PDD
to d tables, which we call forwarding tables, such that we can
search the decision for each single-valued request by travers-
ing the forwarding tables in d steps.

5.2.1 Constructing Forwarding Tables

For ease of presentation, we assume that each decision
path in the constructed PDD contains d nodes that are la-
beled in the order of F1, · · · , Fd from the root to the ter-
minal node. Given a PDD, we construct forwarding tables
as follows. First, for each nonterminal node v, suppose v is
labeled Fi and v has k outgoing edges e1, · · · , ek, we create
a one-dimensional array T of size |D(Fi)|. Considering an
arbitrary value m in D(Fi), suppose m ∈ I(ej). If the tar-
get node pointed by ej is a nonterminal node, say v′, then
T [m] is the pointer of the table corresponding to v′. If the
target node pointed by ej is a terminal node, then T [m]
is the label of the terminal node, which includes the origin
block of the path containing the terminal node. Second, for
each attribute Fi, we compose all the tables of the nodes
with label Fi into one two-dimensional array named Ti. If
we use Mi to denote the total number of Fi nodes in the
PDD, then the array Ti is a |D(Fi)| × Mi two dimensional
array. Note that every element in Ti is a value in the range
[0, Mi+1 − 1], which is the pointer to a column in the next
forwarding table Ti+1. The pseudocode of the algorithm for
constructing forwarding tables from a PDD is in Algorithm
4. The forwarding tables T1, T2, T3 constructed from the ex-
ample PDD in Figure 9 are all shown in Figure 10. Note
that eg.t denotes the target node that edge eg points to,
and F (eg.t) denotes the label of eg.t.

5.2.2 Processing Single-valued Requests

Given a single-valued request (m1, · · · , md), we can find
the correct decision for this request in d steps. First, we use
m1 to find the value T1[m1]. Second, we use m2 to find the
value T2[m2, T1[m1]]. Third, we use m3 to find the value
T3[m3, T2[m2, T1[m1]]]. This process continues until we find
the value in Td, which contains the origin block for the given
request. Similar to the PDD approach, we use the winning
decision of the origin block as the final decision for that

Algorithm 4: Construct Forwarding Tables

Input: A PDD.
Output: Forwarding tables T1, · · · , Td.

put the root into queue Q;1

while Q 6= ∅ do2

sum := 0;3

for j := 0 to sizeof(Q) − 1 do4

remove node v from Q;5

/*Suppose F (v) is Fh and v has k outgoing edges6

e0, e1, · · · , ek−1.*/
if Fh 6= Fd then7

for i := 0 to |D(Fi)| − 1 do8

if i ∈ I(eg) then Th[i, j] := sum + g;9

sum := sum + k;10

for g := 0 to k − 1 do11

put eg.t in Q;12

else13

for i := 0 to |D(Fi)| − 1 do14

for g := 0 to k − 1 do15

if i ∈ I(eg) then16

Td[i, j] := F (eg.t);17

return T1, · · · , Td;18

single-valued request. The pseudocode of the algorithm for
processing single-valued requests is in Algorithm 5.

Taking the example forwarding tables in Figure 10, sup-
pose we have a request (1, 1, 0). We first use 1 to find the
value T1[1] = 1. Second, we use 1 to find the value T2[1, 1] =
3. Third, we use 0 to find the decision T3[0, 3] = [R2]

p for
the request, which means the decision is permit , the corre-
sponding origin is R2 and the winning decision is permit .
The searching operation for request (1, 1, 0) is in Figure 10.

Algorithm 5: Process Requests With Forwarding
Tables
Input: (1) A single-valued request (m1, · · · , md).

(2) Forwarding tables T1, · · · , Td.
Output: The origin block for the single-valued request.

j := 0;1

for i := 1 to d do2

if i = d then return Td[md, j];3

else if i = 1 then j := T1[m1];4

else j := Ti[mi, j];5

0 0

1 1

2 2

3 2

T1

T2

0 1 2

0 0 2 4

1 1 3 4

0 1 2 3 4

0 [R1]
d [R3]

p [[R1]
d, [R2]

p] d [R2]
p [R2]

p

1 [R-1]
na [R3]

p [R2]
p [R2]

p [R2]
p

T3

A request(

1

1

0)

Figure 10: Forwarding tables for PDD in Figure 9

5.3 Comparing the Two Approaches
Comparing the two approaches in terms of memory space

and request processing time, the decision diagram approach
requires a smaller amount of memory and a larger amount
of processing time; the forwarding table approach requires a

Policy
of

Rules

Preprocessing Time (ms)
Processing Time (ms)

Single-valued Requests Multi-valued Requests

PDD Table PDD Table Sun PDP PDD Table Sun PDP

1 (codeA) 2 14 16 59 44 2677 296 255 2579

2 (codeB) 3 14 16 65 44 3152 287 249 3302

3 (codeC) 4 21 23 58 46 3267 306 236 3267

4 (codeD) 5 18 20 62 40 3405 274 236 3441

5 (continue-a) 298 282 293 107 55 5875 553 353 7586

6 (continue-b) 306 210 216 101 54 6001 619 357 7522

7 (pluto) 21 48 51 76 55 14969 304 238 19457

average 87 91 75 48 5620 377 274 6736

Figure 11: Experimental results on real-life XACML policies

400 800 1200 1600 2000 2400 2800 3200 3600 4000
0

1

2

3

4

5

6

7

Number of Rules

P
re

−
p

ro
c
e

s
s
in

g
 T

im
e

(s
)

PDD

Table

Figure 12: The preprocessing time
on synthetic XACML policies

1 2 3 4 5 6 7
10

0

10
1

10
2

10
3

10
4

10
5

Policy

T
o

ta
l
P

ro
c
e

s
s
in

g
 T

im
e

(m
s
)

PDD

Table

Sun PDP

Figure 13: Total processing time
for 100,000 single-valued requests
on real-life XACML policies

1 2 3 4 5 6 7
10

0

10
1

10
2

10
3

10
4

10
5

Policy

T
o

ta
l
P

ro
c
e

s
s
in

g
 T

im
e

(m
s
)

PDD

Table

Sun PDP

Figure 14: Total processing time
for 100,000 multi-valued requests
on real-life XACML policies

400 800 1200 1600 2000 2400 2800 3200 3600 4000
0

5

10

15
x 10

5

Number of Rules

P
ro

c
e
s
s
in

g
 t
im

e
 d

if
fe

re
n
c
e
(m

s
)

Sun PDP − PDD

Sun PDP − Table

Figure 15: The processing time
difference between Sun PDP and
XEngine

larger amount of memory and a smaller amount of processing
time.

Choosing which approach to use depends on the proper
tradeoff between memory space and processing time. In
a real application, we can pre-compute the exact memory
space required by each approach, and then choose the more
efficient approach that satisfies the memory requirement of
the application.

6. EXPERIMENTAL RESULTS
We implemented XEngine using Java 1.6.3. Our experi-

ments were carried out on a desktop PC running Windows
XP SP2 with 3G memory and dual 3.4GHz Intel Pentium
processors. We evaluated the efficiency and effectiveness of
XEngine on both real-life and synthetic XACML policies.

In terms of efficiency, we measured the request processing
time of XEngine in comparison with that of Sun PDP [1].
For XEngine, the processing time for a request includes the
time for numericalizing the request and the time for finding
the decision for the numericalized request. For Sun PDP, the
processing time for a request is the time for finding the deci-
sion. The experimental results show that XEngine is orders
of magnitude more efficient than Sun PDP, and the per-
formance difference between XEngine and Sun PDP grows
almost linearly with the number of rules in XACML policies.
For real-life XACML policies (of small sizes with hundreds
of rules), the experimental results show that XEngine is two
orders of magnitude faster than Sun PDP for single-valued
requests and one order of magnitude faster than Sun PDP
for multi-valued requests. For synthetic XACML policies

(of large sizes with thousands of rules), the experimental re-
sults show that XEngine is three to four orders of magnitude
faster than Sun PDP for both single-valued and multi-valued
requests.

We also measured the preprocessing time of XACML poli-
cies for XEngine. The preprocessing time of an XACML
policy includes the time for numericalizing the policy, the
time for normalizing the policy, and the time for building
the internal data structure (of a PDD or forwarding table).
For a real-life XACML policy (of small sizes with hundreds
of rules), the preprocessing takes less than a second. For
synthetic XACML policies (of large sizes with thousands of
rules), the preprocessing takes a few seconds. For example,
numericalizing and normalizing an XACML policy of 4000
rules takes about 6 seconds on average.

In terms of effectiveness, we compared the decisions made
by XEngine and Sun PDP for each request. In our experi-
ments, we first generated 100,000 random single-valued re-
quests and 100,000 random multi-valued requests; and then
fed each request to both XEngine and Sun PDP and com-
pared their decisions. The experimental results show that
XEngine and Sun PDP have the same decision for every
request.

6.1 Performance on Real-life policies
In our experiments, we used seven real-life XACML poli-

cies collected from three different sources. Among these
policies, codeA, codeB, codeC, codeD, continue-a, and conti-
nue-b are XACML policies used by Fisler et al. [4]; continue-
a and continue-b are designed for a real-world web applica-
tion that supports Conf. management; pluto is used in the

400 800 1200 1600 2000 2400 2800 3200 3600 4000
10

1

10
2

10
3

10
4

10
5

10
6

10
7

Number of Rules

T
o
ta

l
P

ro
c
e
s
s
in

g
 T

im
e
(m

s
)

Sun PDP

PDD

Table

Figure 16: Effect of number of
rules for single-valued requests

1 2 3 4 5 6 7 8 9 10
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Number of Layers

T
o

ta
l
P

ro
c
e

s
s
in

g
 T

im
e

(m
s
)

Sun PDP

PDD

Table

Figure 17: Effect of number of lay-
ers for single-valued requests un-
der 1000 rules

1 2 3 4 5 6 7 8 9 10
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Number of Layers

T
o

ta
l
P

ro
c
e

s
s
in

g
 T

im
e

(m
s
)

Sun PDP

PDD

Table

Figure 18: Effect of number of lay-
ers for multi-valued requests un-
der 1000 rules

400 800 1200 1600 2000 2400 2800 3200 3600 4000
10

1

10
2

10
3

10
4

10
5

10
6

10
7

Number of Rules

T
o
ta

l
P

ro
c
e
s
s
in

g
 T

im
e
(m

s
)

Sun PDP

PDD

Table

Figure 19: Effect of number of
rules for multi-valued requests

1 2 3 4 5 6 7 8 9 10
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Number of Layers

T
o

ta
l
P

ro
c
e

s
s
in

g
 T

im
e

(m
s
)

Sun PDP

PDD

Table

Figure 20: Effect of number of lay-
ers for single-valued requests un-
der 3000 rules

1 2 3 4 5 6 7 8 9 10
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Number of Layers

T
o

ta
l
P

ro
c
e

s
s
in

g
 T

im
e

(m
s
)

Sun PDP

PDD

Table

Figure 21: Effect of number of lay-
ers for multi-valued requests un-
der 3000 rules

ARCHON system (http://archon.cs.odu.edu/). We used
the request-generation technique in [7] to generate random
requests. For each policy, we conducted two experiments to
evaluate the processing time of single-valued requests and
that of multi-valued requests respectively. In each experi-
ment, we generated 100,000 random single-valued or multi-
valued requests to simulate a large volume of requests. For
each multi-valued request, we assign two distinct values to
the subject, two distinct values to the object, and one value
to the action.

For each of the seven XACML policies, Figure 11 shows
the preprocessing time of the policy, and the total processing
time for the 100,000 single-valued or multi-valued requests.
Note that here we use “PDD”to denote the XEngine scheme
using the PDD approach, and“Table”to denote the XEngine
scheme using the forwarding table approach. Figures 13 and
14 show the total processing time of 100,000 single-valued
requests and that of multi-valued requests respectively for
both XEngine and Sun PDP. Note that the vertical axes of
Figures 13 and 14 are in logarithmic scales in terms of mil-
liseconds. These experimental results show that for XACML
policies of small sizes (with hundreds of rules), XEngine is
one or two orders of magnitude faster than Sun PDP. For
single-valued requests, on average, the forwarding table ap-
proach and the PDD approach are 117 and 75 times faster
than Sun PDP. For multi-valued requests, on average, the
forwarding table approach and the PDD approach are 24
and 18 times faster than Sun PDP.

From the above figures, we observe that the forwarding
table approach is faster than the PDD approach, which is

consistent with our analysis in Section 5. On average, the
forwarding table approach is 35% faster than the PDD ap-
proach for single-valued requests; and the forwarding table
approach is 27% faster than the PDD approach for multi-
valued requests. We also observe that XEngine’s processing
time for multi-valued requests is approximately four times
more than that for single-valued requests. The reason is that
for a multi-valued request, XEngine evaluates each decom-
posed single-valued request individually, and resolving de-
cisions for the single-valued requests costs additional time.
Recall that in our experiments, each multi-valued request
corresponds to four single-valued requests according to our
methods for generating multi-valued requests. Therefore, in
XEngine, there is an almost linear correlation between the
processing time of a multi-valued request and the number of
single-valued requests decomposed from the multi-valued re-
quest. Furthermore, we observe that the performance of Sun
PDP for multi-valued requests is not highly dependent on
the number of single-valued requests decomposed from the
multi-valued requests. This is not surprising, because Sun
PDP compare each request with all the rules in the policy.

6.2 Performance on Synthetic policies
It is difficult to get a large number of real-life XACML

policies, as access control policies are often deemed confi-
dential. To further evaluate the performance and scalability
of XEngine, we generated random synthetic XACML poli-
cies of large sizes. We generate multi-layered policies in a
hierarchical fashion. A multi-layered policy has a root pol-
icy set that includes multiple layers of sub-policy sets and

sub-policies. Each policy has a sequence of rules. Each pol-
icy element has a randomly selected combining algorithm.
Each rule holds randomly selected attribute id-value pairs
from our predefined domain that linearly increases with the
number of rules. Single-valued requests and multi-valued re-
quests are generated randomly in the same way as for real-
life XACML policies. In our experiments, we evaluated the
impact of the policy size in terms of the number of rules and
the impact of the policy structure in terms of the number of
layers.

Figure 12 shows the preprocessing time of XEngine versus
the number of rules in a three-layered policy for XEngine.
We observe that there is an almost linear correlation be-
tween the preprocessing time of XEngine and the number
of rules, which demonstrates that XEngine is scalable in the
preprocessing phrase.

Figure 15 shows the difference between Sun PDP and
XEngine for the total processing time of the 100,000 ran-
domly generated single-valued requests. This figure shows
that XEngine is orders of magnitude more efficient than Sun
PDP, and the performance difference grows almost linearly
with the number of rules in XACML policies.

Figures 16 and 19 show the experimental results as a func-
tion of the number of rules in a three-layered policy for pro-
cessing single-valued requests and multi-valued requests, re-
spectively. Figures 17 and 20 show the experimental results
as a function of the number of layers for processing single-
valued requests in two three-layered policies, which consist
of 1000 rules and 3000 rules respectively. Figures 18 and
21 show the evaluation results as a function of the number
of layers for processing multi-valued requests in two three-
layered policies, which consist of 1000 rules and 3000 rules
respectively. Note that the vertical axes of these six figures
are in logarithmic scales.

These figures demonstrate that XEngine is highly scalable
and efficient in comparison with Sun PDP. For single-valued
requests, under different numbers of rules, say 400, 2000,
and 4000 rules in a three-layered policy, the forwarding table
approach is 3594, 18639, 34408 times faster than Sun PDP
respectively, and the PDD approach is 1405, 6210, 10873
times faster than Sun PDP respectively. For multi-valued
requests, under different numbers of rules, say 400, 2000,
and 4000 rules in a three-layered policy, the forwarding ta-
ble approach is 634, 3325, 6057 times faster than Sun PDP
respectively, and the PDD approach is 447, 2087, 3699 times
faster than Sun PDP respectively. Our experimental results
also show that the impact of the structure of XACML poli-
cies in terms of the number of layers on the performance of
XACML policy evaluation is not remarkable. For XACML
policies with 1000 rules but with various number of layers,
for single-valued requests, the forwarding table approach is
constantly about 9000 times faster than Sun PDP, and the
PDD approach is constantly about 4000 times faster than
Sun PDP. For XACML policies with 1000 rules but with var-
ious number of layers, for multi-valued requests, the forward-
ing table approach is constantly about 2000 times faster than
Sun PDP, and the PDD approach is constantly about 1500
times faster than Sun PDP. For XACML policies with 3000
rules but with various number of layers, for single-valued
requests, the forwarding table approach is constantly about
26000 times faster than Sun PDP, and the PDD approach
is constantly about 12000 times faster than Sun PDP. For
XACML policies with 3000 rules but with various number

of layers, for multi-valued requests, the forwarding table ap-
proach is constantly about 5000 times faster than Sun PDP,
and the PDD approach is constantly about 3000 times faster
than Sun PDP.

7. CONCLUSIONS
This paper represents the first effort on improving XACML

policy evaluation engines. We make two key contributions in
this paper. First, we present a procedure for numericalizing
and normalizing XACML policies. This procedure is useful
beyond this paper. Second, we present two algorithms for
processing requests using the normalized numerical policy.
We empirically demonstrated XEngine’s efficiency and effec-
tiveness on real-life XACML policies collected from various
sources as well as large synthetic XACML policies. The ex-
perimental results show that XEngine is orders of magnitude
faster than the widely deployed Sun PDP.

8. REFERENCES
[1] Sun’s XACML implementation.

http://sunxacml.sourceforge.net/, 2005.

[2] XEngine: A Fast and Scalable XACML Policy
Evaluation Engine. Technical Report MSU-CSE-08-2,
Department of Computer Sciences and Engineering,
Michigan State University, East Lansing, Michigan,
March 2008. http://www.cse.msu.edu/~alexliu/
publications/xengine/xengtech.pdf

[3] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and
A. Shukla. Packet classifiers in ternary CAMs can be
smaller. In Proc. of SIGMETRICS, pages 311–322,
2006.

[4] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and
M. C. Tschantz. Verification and change-impact
analysis of access-control policies. In Proc. of the 27th
Int. Conf. on Software(ICSE-05), pages 196–205, 2005.

[5] M. G. Gouda and A. X. Liu. Firewall design:
consistency, completeness and compactness. In Proc.
of the IEEE Int. Conf. on Distributed Computing
Systems (ICDCS), pages 320–327, March 2004.

[6] V. Kolovski, J. Hendler, and B. Parsia. Analyzing web
access control policies. In Proc. of the Int. Conf. on
World Wide Web (WWW), pages 677–686, 2007.

[7] E. Martin, T. Xie, and T. Yu. Defining and measuring
policy coverage in testing access control policies. In
Proc. of the 8th Int. Conf. on Information and
Communications Security (ICICS-06), pages 139–158,
2006.

[8] P. Mazzoleni, E. Bertino, and B. Crispo. Xacml policy
integration algorithms: not to be confused with xacml
policy combination algorithms. In ACM Symposium
on Access Control Models and Technologies
(SACMAT), 2006.

[9] OASIS eXtensible Access Control Markup Language
(XACML) V2.0 Specification Set
http://www.oasis-open.org/committees/xacml/. 2007.

[10] L. Qiu, G. Varghese, and S. Suri. Fast firewall
implementations for software-based and
hardware-based routers. In Proc. the 9th Int. Conf. on
Network Protocols (ICNP), 2001.

[11] M. C. Tschantz and S. Krishnamurthi. Towards
reasonability properties for access-control policy
languages. In ACM Symposium on Access Control
Models and Technologies (SACMAT), 2006.

