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Abstract. As an example of exploiting the synergy between AI and soft-
ware engineering, the field of intelligent software engineering has emerged
with various advances in recent years. Such field broadly addresses issues
on intelligent [software engineering] and [intelligence software] engineer-
ing. The former, intelligent [software engineering], focuses on instilling
intelligence in approaches developed to address various software engi-
neering tasks to accomplish high effectiveness and efficiency. The latter,
[intelligence software] engineering, focuses on addressing various soft-
ware engineering tasks for intelligence software, e.g., AI software. In this
paper, we discuss recent research and future directions in the field of
intelligent software engineering.
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1 Introduction

As an example of exploiting the synergy between AI and software engineer-
ing, the field of intelligent software engineering [31] has emerged with various
advances in recent years. Such field broadly addresses issues on intelligent [soft-
ware engineering] and [intelligence software] engineering. The former, intelligent
[software engineering], focuses on instilling intelligence in approaches developed
to address various software engineering tasks to accomplish high effectiveness
and efficiency. The latter, [intelligence software] engineering, focuses on address-
ing various software engineering tasks for intelligence software, e.g., AI software.
Indeed, the preceding two aspects can overlap when instilling intelligence in ap-
proaches developed to address various software engineering tasks for intelligence
software. By nature, the field of intelligent software engineering is a research
field spanning at least the research communities of software engineering and AI.

2 Instilling Intelligence in Software Engineering

Applying or adapting AI technologies to address various software engineering
tasks [13] has been actively pursued by researchers from the software engineering
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research community, e.g., machine learning for software engineering [18, 1, 38]
and natural language processing for software engineering [29, 39, 20, 21, 30, 40],
and also by researchers from the AI research community in recent years [2] partly
due to the increasing popularity of deep learning [24]. Much of such previous
work has been on automating as much as possible to address a specific software
engineering task such as programming and testing. But as pointed out by various
AI researchers [17, 14], AI technologies typically enhance or augment human,
instead of replacing human.

In future work, we envision that intelligence can be instilled into approaches
for software engineering tasks in the following two example ways as starting
points.

Natural language interfacing. Natural language conversations between
a human and a machine can be traced back to the Turing test [28], proposed
by Alan Turing in 1950, as a test for a machine to exhibit intelligent behaviors
indistinguishable from a human’s. Natural-language-based chatbots have been
increasingly developed and deployed for various domains: virtual assistants (such
as Apple Siri, Google Assistant, Amazon Alexa, Microsoft Cortana, Samsung
Bixby), customer services, social media (such as Facebook Messenger chatbots).
Very recently, exploring the use of chatbots in software engineering has been
started [26, 15, 5, 6, 12, 3]. Beyond chatbots or conversational natural language
interfacing, natural language interfacing will play an increasingly important and
popular role in software development environments [9], due to its benefits of
improving developer productivity.

Continuous learning. Machine learning has been increasingly applied or
adapted for various software engineering tasks since at least early 2000 [32, 2];
in the past several years, deep learning [24] has been applied on software en-
gineering problems (e.g., [10, 11, 35]). Such direction’s increasing popularity is
partly thanks to the availability of rich data (being either explicitly or implic-
itly labeled in one way or another) in software repositories [32] along with the
advances in machine learning especially deep learning [24] in recent years. Be-
yond applying machine learning only once or occasionally, software engineering
tools are in need of gaining the continuous-learning capability: when the tools
are applied in software engineering practices, the tools continuously learn to get
more and more intelligent and capable.

3 Software Engineering for Intelligence Software

In recent decades, Artificial Intelligence (AI) has emerged as a technical pillar
underlying modern-day solutions to increasingly important tasks in daily life and
work. The impacted settings range from smartphones carried in one’s pocket to
transportation vehicles. Artificial Intelligence (AI) solutions are typically in the
form of software. Thus, intelligence software is naturally amenable to software
engineering issues such as dependability [8] including reliability [22, 27] and se-
curity [33, 34], etc. Assuring dependability of intelligence software is critical but
largely unexplored compared to traditional software.
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For example, intelligence software that interacts with users by communicat-
ing content (e.g., chatbots, image-tagging) does so within social environments
constrained by social norms [7]. For such intelligence software to meet the users’
expectation, it must comply with accepted social norms. However, determining
what are accepted social norms can vary greatly by culture and environment [7].
Recent AI-based solutions, such as Microsoft’s intelligent chatbot Tay [16] and
Google Photos app’s imagine-tagging feature [4], received negative feedback be-
cause their behavior lied outside accepted social norms. In addition, formulating
failure conditions and monitoring such conditions at runtime may not be accept-
able for intelligence software such as robotic software because it would be too late
to conduct failure avoidance or recovery actions when such failure conditions are
detected [23]. Generally formulating proper requirements for intelligence soft-
ware remains a challenge for the research community.

In addition, intelligence software is known to often suffer from the “no oracle
problem” [19, 36, 25, 37]. For example, in supervised learning, a future application-
data entry can be labeled (manually or automatically); however, using such labels
as the test oracle is not feasible. The reason is that there exists some inaccuracy
(i.e., predicting a wrong label) in the learned classification model. This inaccu-
racy is inherent and sometimes desirable to avoid the overfitting problem (i.e.,
the classification model performs perfectly on the training data but undesirably
in future application data).
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