
Intelligent Software Engineering: Synergy
between AI and Software Engineering?

Tao Xie

University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
taoxie@illinois.edu

Abstract. As an example of exploiting the synergy between AI and soft-
ware engineering, the field of intelligent software engineering has emerged
with various advances in recent years. Such field broadly addresses issues
on intelligent [software engineering] and [intelligence software] engineer-
ing. The former, intelligent [software engineering], focuses on instilling
intelligence in approaches developed to address various software engi-
neering tasks to accomplish high effectiveness and efficiency. The latter,
[intelligence software] engineering, focuses on addressing various soft-
ware engineering tasks for intelligence software, e.g., AI software. In this
paper, we discuss recent research and future directions in the field of
intelligent software engineering.

Keywords: Intelligent software engineering.

1 Introduction

As an example of exploiting the synergy between AI and software engineer-
ing, the field of intelligent software engineering [31] has emerged with various
advances in recent years. Such field broadly addresses issues on intelligent [soft-
ware engineering] and [intelligence software] engineering. The former, intelligent
[software engineering], focuses on instilling intelligence in approaches developed
to address various software engineering tasks to accomplish high effectiveness
and efficiency. The latter, [intelligence software] engineering, focuses on address-
ing various software engineering tasks for intelligence software, e.g., AI software.
Indeed, the preceding two aspects can overlap when instilling intelligence in ap-
proaches developed to address various software engineering tasks for intelligence
software. By nature, the field of intelligent software engineering is a research
field spanning at least the research communities of software engineering and AI.

2 Instilling Intelligence in Software Engineering

Applying or adapting AI technologies to address various software engineering
tasks [13] has been actively pursued by researchers from the software engineering

? This work was supported in part by National Science Foundation under grants no.
CNS-1513939 and CNS1564274, and a grant from the ZJUI Research Program.



2 T. Xie

research community, e.g., machine learning for software engineering [18, 1, 38]
and natural language processing for software engineering [29, 39, 20, 21, 30, 40],
and also by researchers from the AI research community in recent years [2] partly
due to the increasing popularity of deep learning [24]. Much of such previous
work has been on automating as much as possible to address a specific software
engineering task such as programming and testing. But as pointed out by various
AI researchers [17, 14], AI technologies typically enhance or augment human,
instead of replacing human.

In future work, we envision that intelligence can be instilled into approaches
for software engineering tasks in the following two example ways as starting
points.

Natural language interfacing. Natural language conversations between
a human and a machine can be traced back to the Turing test [28], proposed
by Alan Turing in 1950, as a test for a machine to exhibit intelligent behaviors
indistinguishable from a human’s. Natural-language-based chatbots have been
increasingly developed and deployed for various domains: virtual assistants (such
as Apple Siri, Google Assistant, Amazon Alexa, Microsoft Cortana, Samsung
Bixby), customer services, social media (such as Facebook Messenger chatbots).
Very recently, exploring the use of chatbots in software engineering has been
started [26, 15, 5, 6, 12, 3]. Beyond chatbots or conversational natural language
interfacing, natural language interfacing will play an increasingly important and
popular role in software development environments [9], due to its benefits of
improving developer productivity.

Continuous learning. Machine learning has been increasingly applied or
adapted for various software engineering tasks since at least early 2000 [32, 2];
in the past several years, deep learning [24] has been applied on software en-
gineering problems (e.g., [10, 11, 35]). Such direction’s increasing popularity is
partly thanks to the availability of rich data (being either explicitly or implic-
itly labeled in one way or another) in software repositories [32] along with the
advances in machine learning especially deep learning [24] in recent years. Be-
yond applying machine learning only once or occasionally, software engineering
tools are in need of gaining the continuous-learning capability: when the tools
are applied in software engineering practices, the tools continuously learn to get
more and more intelligent and capable.

3 Software Engineering for Intelligence Software

In recent decades, Artificial Intelligence (AI) has emerged as a technical pillar
underlying modern-day solutions to increasingly important tasks in daily life and
work. The impacted settings range from smartphones carried in one’s pocket to
transportation vehicles. Artificial Intelligence (AI) solutions are typically in the
form of software. Thus, intelligence software is naturally amenable to software
engineering issues such as dependability [8] including reliability [22, 27] and se-
curity [33, 34], etc. Assuring dependability of intelligence software is critical but
largely unexplored compared to traditional software.



Title Suppressed Due to Excessive Length 3

For example, intelligence software that interacts with users by communicat-
ing content (e.g., chatbots, image-tagging) does so within social environments
constrained by social norms [7]. For such intelligence software to meet the users’
expectation, it must comply with accepted social norms. However, determining
what are accepted social norms can vary greatly by culture and environment [7].
Recent AI-based solutions, such as Microsoft’s intelligent chatbot Tay [16] and
Google Photos app’s imagine-tagging feature [4], received negative feedback be-
cause their behavior lied outside accepted social norms. In addition, formulating
failure conditions and monitoring such conditions at runtime may not be accept-
able for intelligence software such as robotic software because it would be too late
to conduct failure avoidance or recovery actions when such failure conditions are
detected [23]. Generally formulating proper requirements for intelligence soft-
ware remains a challenge for the research community.

In addition, intelligence software is known to often suffer from the “no oracle
problem” [19, 36, 25, 37]. For example, in supervised learning, a future application-
data entry can be labeled (manually or automatically); however, using such labels
as the test oracle is not feasible. The reason is that there exists some inaccuracy
(i.e., predicting a wrong label) in the learned classification model. This inaccu-
racy is inherent and sometimes desirable to avoid the overfitting problem (i.e.,
the classification model performs perfectly on the training data but undesirably
in future application data).

References

1. Acharya, M., Xie, T., Pei, J., Xu, J.: Mining API patterns as partial orders from
source code: From usage scenarios to specifications. In: Proc. Meeting of the Eu-
ropean Software Engineering Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineering (ESEC-FSE). pp. 25–34 (2007)

2. Allamanis, M., Barr, E.T., Devanbu, P., Sutton, C.: A survey of machine learning
for big code and naturalness. In: eprint arXiv:1709.06182 (September 2017)

3. Balog, M., Gaunt, A.L., Brockschmidt, M., Nowozin, S., Tarlow, D.: DeepCoder:
Learning to write programs. In: Proc. International Conference on Learning Rep-
resentations (ICLR) (2017)

4. Barr, A.: Google mistakenly tags black people as gorillas, show-
ing limits of algorithms. The Wall Street Journal (2015),
http://blogs.wsj.com/digits/2015/07/01/google-mistakenly-tags-black-people-
as-gorillas-showing-limits-of-algorithms/

5. Beschastnikh, I., Lungu, M.F., Zhuang, Y.: Accelerating software engineering re-
search adoption with analysis bots. In: Proc. International Conference on Software
Engineering (ICSE), New Ideas and Emerging Results Track. pp. 35–38 (2017)

6. Bieliauskas, S., Schreiber, A.: A conversational user interface for software visualiza-
tion. In: Proc. IEEE Working Conference on Software Visualization (VISSOFT).
pp. 139–143 (2017)

7. Coleman, J.: Foundations of Social Theory. Belknap Press Series, Belknap Press
of Harvard University Press (1990)

8. Committee on Technology National Science and Technology Council and Penny
Hill Press: Preparing for the Future of Artificial Intelligence. CreateSpace Inde-
pendent Publishing Platform, USA (2016)



4 T. Xie

9. Ernst, M.D.: Natural language is a programming language: Applying natural lan-
guage processing to software development. In: Proc. the 2nd Summit oN Advances
in Programming Languages (SNAPL). pp. 4:1–4:14 (2017)

10. Gu, X., Zhang, H., Zhang, D., Kim, S.: Deep API learning. In: Proc. ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE).
pp. 631–642 (2016)

11. Gu, X., Zhang, H., Zhang, D., Kim, S.: DeepAM: Migrate APIs with multi-modal
sequence to sequence learning. In: Proc. International Joint Conference on Artificial
Intelligence (IJCAI). pp. 3675–3681 (2017)

12. Gupta, R., Pal, S., Kanade, A., Shevade, S.: DeepFix: Fixing common C language
errors by deep learning. In: Proc. National Conference on Artificial Intelligence
(AAAI) (2017)

13. Harman, M.: The role of artificial intelligence in software engineering. In: Proc. In-
ternational Workshop on Realizing AI Synergies in Software Engineering (RAISE).
pp. 1–6 (2012)

14. Jordan, M.: Artificial intelligence -the revolution hasn’t happened yet (April
2018), https://medium.com/@mijordan3/artificial-intelligence-the-revolution-
hasnt-happened-yet-5e1d5812e1e7

15. Lebeuf, C., Storey, M.D., Zagalsky, A.: How software developers miti-
gate collaboration friction with chatbots. CoRR abs/1702.07011 (2017),
http://arxiv.org/abs/1702.07011

16. Leetaru, K.: How Twitter corrupted Microsoft’s Tay: A crash
course in the dangers of AI in the real world. Forbes (2016),
https://www.forbes.com/sites/kalevleetaru/2016/03/24/how-twitter-corrupted-
microsofts-tay-a-crash-course-in-the-dangers-of-ai-in-the-real-world/

17. Li, F.F.: How to make A.I. that’s good for people (March 2018),
https://www.nytimes.com/2018/03/07/opinion/artificial-intelligence-human.html

18. Michail, A., Xie, T.: Helping users avoid bugs in GUI applications. In: Proc. In-
ternational Conference on Software Engineering (ICSE). pp. 107–116 (2005)

19. Murphy, C., Kaiser, G.E.: Improving the dependability of machine learning ap-
plications. Tech. Rep. CUCS-049-, Department of Computer Science, Columbia
University (2008)

20. Pandita, R., Xiao, X., Yang, W., Enck, W., Xie, T.: WHYPER: Towards automat-
ing risk assessment of mobile applications. In: Proc. USENIX Conference on Secu-
rity (SEC). pp. 527–542 (2013)

21. Pandita, R., Xiao, X., Zhong, H., Xie, T., Oney, S., Paradkar, A.: Inferring method
specifications from natural language API descriptions. In: Proc. International Con-
ference on Software Engineering (ICSE). pp. 815–825 (2012)

22. Pei, K., Cao, Y., Yang, J., Jana, S.: DeepXplore: Automated whitebox testing
of deep learning systems. In: Proc. Symposium on Operating Systems Principles
(SOSP). pp. 1–18 (2017)

23. Qin, Y., Xie, T., Xu, C., Astorga, A., Lu, J.: CoMID: Context-based multi-invariant
detection for monitoring cyber-physical software. CoRR abs/1807.02282 (2018),
https://arxiv.org/abs/1807.02282

24. Schmidhuber, J.: Deep learning in neural networks. Neural Netw. 61(C), 85–117
(Jan 2015)

25. Srisakaokul, S., Wu, Z., Astorga, A., Alebiosu, O., Xie, T.: Multiple-
implementation testing of supervised learning software. In: Proc. AAAI-18
Workshop on Engineering Dependable and Secure Machine Learning Systems
(EDSMLS) (2018)



Title Suppressed Due to Excessive Length 5

26. Storey, M.D., Zagalsky, A.: Disrupting developer productivity one bot at a time.
In: Proc. ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE). pp. 928–931 (2016)

27. Tian, Y., Pei, K., Jana, S., Ray, B.: DeepTest: Automated testing of deep-neural-
network-driven autonomous cars. In: Proc. International Conference on Software
Engineering (ICSE). pp. 303–314 (2018)

28. Turing, A.M.: Computing machinery and intelligence (1950), one of
the most influential papers in the history of the cognitive sciences:
http://cogsci.umn.edu/millennium/final.html

29. Wang, X., Zhang, L., Xie, T., Anvik, J., Sun, J.: An approach to detecting du-
plicate bug reports using natural language and execution information. In: Proc.
International Conference on Software Engineering (ICSE). pp. 461–470 (2008)

30. Xiao, X., Paradkar, A., Thummalapenta, S., Xie, T.: Automated extraction of secu-
rity policies from natural-language software documents. In: Proc. ACM SIGSOFT
International Symposium on the Foundations of Software Engineering (FSE). pp.
12:1–12:11 (2012)

31. Xie, T.: Intelligent software engineering: Synergy between AI and software engi-
neering. In: Proc. Innovations in Software Engineering Conference (ISEC). p. 1:1
(2018)

32. Xie, T., Thummalapenta, S., Lo, D., Liu, C.: Data mining for software engineering.
Computer 42(8), 55–62 (Aug 2009)

33. Yang, W., Kong, D., Xie, T., Gunter, C.A.: Malware detection in adversarial set-
tings: Exploiting feature evolutions and confusions in Android apps. In: Proc. An-
nual Computer Security Applications Conference (ACSAC). pp. 288–302 (2017)

34. Yang, W., Xie, T.: Telemade: A testing framework for learning-based malware
detection systems. In: Proc. AAAI-18 Workshop on Engineering Dependable and
Secure Machine Learning Systems (EDSMLS) (2018)

35. Yin, P., Neubig, G.: A syntactic neural model for general-purpose code generation.
In: Proc. Annual Meeting of the Association for Computational Linguistics (ACL)
(2017)

36. Zheng, W., Ma, H., Lyu, M.R., Xie, T., King, I.: Mining test oracles of web search
engines. In: Proc. IEEE/ACM International Conference on Automated Software
Engineering (ASE). pp. 408–411 (2011)

37. Zheng, W., Wang, W., Liu, D., Zhang, C., Zeng, Q., Deng, Y., Yang, W., Xie,
T.: Oracle-free detection of translation issue for neural machine translation. CoRR
abs/1807.02340 (2018), https://arxiv.org/abs/1807.02340

38. Zhong, H., Xie, T., Zhang, L., Pei, J., Mei, H.: MAPO: Mining and recommending
api usage patterns. In: Proc. European Conference on Object-Oriented Program-
ming (ECOOP). pp. 318–343 (2009)

39. Zhong, H., Zhang, L., Xie, T., Mei, H.: Inferring resource specifications from natu-
ral language API documentation. In: Proc. IEEE/ACM International Conference
on Automated Software Engineering (ASE). pp. 307–318 (2009)

40. Zhong, Z., Guo, J., Yang, W., Xie, T., Lou, J.G., Liu, T., Zhang, D.: Generating
regular expressions from natural language specifications: Are we there yet? In:
Proc. Workshop on NLP for Software Engineering (NL4SE) (2018)


