
SCIENCE CHINA
Information Sciences

April 2023, Vol. 66 142103:1–142103:19

https://doi.org/10.1007/s11432-021-3528-7

c© Science China Press 2023 info.scichina.com link.springer.com

. RESEARCH PAPER .

LegoDroid: flexible Android app decomposition and
instant installation

Yi LIU1,2, Yun MA3, Xusheng XIAO4, Tao XIE1,2 & Xuanzhe LIU1,2*

1School of Computer Science, Peking University, Beijing 100871, China;
2Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education,

Beijing 100871, China;
3Institute for Artificial Intelligence, Peking University, Beijing 100871, China;

4Department of Computer and Data Sciences, Case Western Reserve University, Cleveland OH 44106, USA

Received 8 March 2021/Revised 18 November 2021/Accepted 14 January 2022/Published online 27 March 2023

Abstract Current mobile applications (apps) have become increasingly complicated with increasing fea-

tures that are represented on the graphical user interface associated with application programming interfaces

(APIs) to access backend functionality and data. Meanwhile, apps suffer from the “software bloat” in vol-

ume. Some app features may be redundant, with respect to those features (from other apps) that the users

already desirably and frequently use. However, the current app release model forces users to download and

install a full-size installation package rather than optionally choosing only their desired features. Large-size

apps can not only increase the local resource consumption, such as CPU, memory, and energy, but also

inevitably compromise the user experience, such as the slow load time in the app. In this article, we first

conduct an empirical study to characterize the app feature usage when users interact with Android apps,

and surprisingly find that users access only a very small subset of app features. Based on these findings,

we design a new approach named LegoDroid, which automatically decomposes an Android app for flexible

loading and installation, while preserving the expected functionality with a fast and instant app load. With

such a method, a slimmer bundle will be downloaded and host the target APIs inside the original app to

satisfy users’ requirements. We implement a system for LegoDroid and evaluate it with 1000 real-world

Android apps. Compared to the original full-size apps, apps optimized by LegoDroid can substantially im-

prove the load time by reducing the base bundle and feature bundles by 13.06% and 10.93%, respectively,

along with the app-package installation size by 44.17%. In addition, we also demonstrate that LegoDroid is

quite practical with evolving versions, as it can produce substantial reusable code to alleviate the developers’

efforts when releasing new app versions.

Keywords performance, software bloat, instant installation, mobile applications, program analysis

Citation Liu Y, Ma Y, Xiao X S, et al. LegoDroid: flexible Android app decomposition and instant installation.

Sci China Inf Sci, 2023, 66(4): 142103, https://doi.org/10.1007/s11432-021-3528-7

1 Introduction

The burst and great success of mobile applications (a.k.a., apps) has significantly changed our work and
life. The current app-release model requires users to download apps’ installation packages from app stores,
e.g., IPA-format files of iOS apps from the Apple App Store, and APK-format files of Android apps from
Google Play, and install them on users’ devices. Not surprisingly, with more and more features included,
the volume of installation package keeps increasing as well, known as the “software bloat” problem [1]1).
Although users typically access only certain parts of the features of the downloaded app, the current
app-release model enforces the users to download a full-size app.

However, the app-release model can inevitably increase resource consumption and slow down the load
time. Therefore, it can potentially compromise user experiences and even reduce the users’ enthusiasm to
try out new apps or new versions. A recent survey over Google Play2) reports that the average APK size

*Corresponding author (email: xzl@pku.edu.cn)

1) Wikipedia. Software Bloat. 2022. https://en.wikipedia.org/wiki/Software bloat.

2) https://medium.com/googleplaydev/shrinking-apks-growing-installs-5d3fcba23ce2.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-021-3528-7&domain=pdf&date_stamp=2023-3-27
https://doi.org/10.1007/s11432-021-3528-7
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-021-3528-7
https://doi.org/10.1007/s11432-021-3528-7
https://en.wikipedia.org/wiki/Software_bloat
https://medium.com/googleplaydev/shrinking-apks-growing-installs-5d3fcba23ce2

Liu Y, et al. Sci China Inf Sci April 2023 Vol. 66 142103:2

has quintupled, and a negative correlation exists between the APK size and installation conversion rate
for apps: every 6 MB increase of an APK’s size can result in a 1% decrease in the installation conversion
rate. In particular, it is worth mentioning that the “actual” storage space for installing an app is much
larger than the size of its APK file, as the APK file needs to be unzipped and installed on the device.
Indeed, there can be various reasons that users tend to dislike and even uninstall an app [2]. However,
the side effects of increasing the package size, such as the additional consumption of local resources (e.g.,
storage, RAM, or battery), the UI complexity, and the resulting compromised user experiences cannot
be simply neglected. Especially, a substantial number of resource-constrained devices, such as low-end
smartphones (e.g., in some developing countries) and IoT devices, are still more sensitive to the size of
the installation packages.

Although numerous apps are probably “abandoned” due to the increasing size and complexity, whether
these apps are “totally” useless to users should be arguable. Some features of these apps can still be
useful with respect to some “opportunistic” [3] or “situational” [4] requirements. For example, a tourist
may want to search in various e-car-rental apps for renting the same car model and compare the prices.
In such a case, she only needs the search feature in these apps, but the current app-release model enforces
her to download and install these apps’ complete installation packages. Therefore, she is likely to give up
downloading these apps, and the developers’ opportunity of winning this user is compromised.

In practice, unsurprising, most of the users require only a set of features rather than regularly access-
ing every single feature of popular apps, especially given that current apps contain increasingly many
features [5], which results in the large size of installation packages. For example, one of the most popular
apps in China, WeChat, now contains more than 1000 “pages”, which are technically “activities”3) along
with thousands of features. Moreover, the size of its installation package is more than 160 MB. The
size of an app’s installation package is proportional to the amount of the required runtime resource for
executing the app [6]. Subsequently, increased runtime overhead can potentially prevent the adoption of
the app.

To mitigate the problem, one possible option is that the app can be designed in a way where the users
can access the app at the page level rather than downloading the whole package, just like browsing web
pages. Some attempts [7]4)5)6) have been made. For example, Google Instant apps provide a “lightweight”
installation style that allows Android users to click on an in-app hyperlink to access the desired page
of an app, rather than downloading the whole app. The WeChat app has been equipped with its mini
program platform, which works in a similar way. The mini programs are essentially implemented as Web
apps with some customized features that are thus accessed via hyperlinks from the app. Recently, Google
provided a new app-serving model with the Android app bundle that allows users to install an app with
features that the majority of target users use and install dynamic features on demand.

However, existing limitations prevent the wide adoption of these solutions. For example, Instant apps
and Android app bundles need substantial development efforts7) for every single feature and can be
accessed only on devices that have installed Google Play Services. WeChat’s mini programs suffer from
worse user experience than native apps. Meanwhile, refactoring existing apps to support these solutions
requires tremendous efforts given the large number of existing apps and their iterative and incremental
style in updating the code base from their previous versions.

Addressing the user experience compromised by app bloating is urgent and requires rethinking the
current app release and deployment model. In this article, we propose a novel approach, named Lego-
Droid, to facilitate developers to “debloat” an app by decomposing, re-deploying, and releasing an app.
Intuitively, LegoDroid does not deem to replace the current app release model, but it equips an app with
the flexible installability so as to help developers gain more potential app usage. We design LegoDroid
to meet the following three requirements. (1) Robust decomposition. LegoDroid decomposes an Android
app into a core “launch bundle” that assures the correct launch of an app with basic functionalities and
a set of “feature bundles” that can be correctly loaded on-demand to access the corresponding services
and APIs. (2) User-friendly. LegoDroid should not compromise user experiences in terms of both per-

3) An activity is the basic program unit on the Android OS. Supposing that an app can be analogous to a website, we can

consider an activity to be similar to a Web page of this site. If not particularly specified, we use the term “page” and “activity”

interchangeably in the rest of this article.

4) Google. Google Instant App. 2022. https://developer.android.com/topic/instant-apps/index.html.

5) WeChat. The mini programs provided by WeChat. 2016. http://tencent.com/en-us/articles/15000551479986174.pdf.

6) Android App Bundle. 2022. https://developer.android.com/platform/technology/app-bundle/.

7) Blog V. Creating an Instant app. 2017. https://medium.com/ vimeo-engineering-blog/vimeo-android-instant-apps-

2f8b1e94760c.

https://developer.android.com/topic/instant-apps/index.html
http://tencent.com/en-us/articles/15000551479986174.pdf
https://developer.android.com/platform/technology/app-bundle/

Liu Y, et al. Sci China Inf Sci April 2023 Vol. 66 142103:3

formance and interactions. The dynamic loading of features should be agnostic to the users, as if they
are interacting with a full-size app. (3) Developer-friendly. LegoDroid should provide an automated way
that can correctly detect boundaries of independent features without incurring re-development efforts
from the developers.

This article makes the following main contributions.

• We conduct an extensive empirical study and demonstrate that page-level flexible app installation
is strongly required.

• We design an approach to properly decomposing an Android app to achieve on-demand and flexible
installability while preserving the expected functionality and satisfactory user experiences.

• We evaluate our approach by decomposing 1000 real-world Android apps and testing the performance
of the decomposed apps along with on-demand installation. The evaluation results show that our approach
can save 44.17% of initial download size, reduce 13.06% and 10.93% of loading time, and reduce 8.83% and
9.14% of memory usage on launching launch bundles and feature bundles in the median case, respectively.
In addition, over 80% of the LegoDroid-generated code and resources can be reused when an app evolves.
These results indicate that our approach can help improve user experiences compared to the full-size app
under the same context, and is also practical in the current app ecosystem.

The rest of the article is organized as follows. Section 2 describes the motivation and Section 3 makes
an in-depth analysis of design principles along with challenges. Section 4 presents the approach overview.
Section 5 introduces the implementation of our LegoDroid approach. Section 6 details the evaluations of
LegoDroid. Section 7 presents discussion about our approach. Section 8 reviews and compares LegoDroid
with related work. Section 9 concludes this article.

2 A motivating study

To understand how the functionalities in an app are used at a fine granularity, i.e., at the app page level
rather than at the app level, we first conduct an empirical study to explore the evolving complexity of
app functionalities and app usage patterns in Android apps. The empirical study aims to answer the
following three research questions.

• RQ1: How does the functionality complexity evolve as apps upgrade? Due to the highly compet-
itive app store ecosystem, developers tend to upgrade and release new app versions quite frequently.
Consequently, apps tend to become increasingly complex with more functionalities to attract users. By
answering this question, we can understand the evolving trend of apps’ complexities in the Android
ecosystem.

• RQ2: How many features in an app are used by different users? Although mobile apps tend to
provide more features to retain their users, usually only certain features of an app rather than all of them
are used, which conforms to the Pareto distribution8). By answering this question, we can understand
whether all provided features of an app are really necessary for users.

• RQ3: Do different users focus on using different features in an app? Developers satisfy the require-
ments of different users by providing more features in a single app, but different users may have their
own preferences. By answering this question, we can understand the diversity of app usage patterns.

2.1 Increasing app complexity

To answer RQ1, i.e., how does the functionality complexity evolve as apps upgrade, we choose the top-50
most downloaded apps in a leading Android app store in China, namely Wandoujia9). For simplicity, we
download each app’s APK file for the first version that can be publicly found and the latest version. We
use the size of the APK files and the number of activities as two metrics to measure an app’s complexity
for the following reasons. (1) Larger APK sizes usually imply more features. (2) More activities, also
referred to as pages, indicate more unique interactive functionalities.

Figure 1 shows the distribution of the APK size (a.k.a the download size) and the number of activities
for these 50 apps (including the first and the latest versions). Comparing the first and the latest versions,
the APK size and the number of activities have dramatically increased. With the evolution of versions,
apps have increased by 3.96X to 70.85X in APK sizes and 2.53X to 156X in the number of activities.

8) Pareto V. Pareto Principle. 1896. https://en.wikipedia.org/wiki/Pareto principle.

9) As of Feb. 2022, Wandoujia has more than 500 million users and 3.2 million apps.

https://en.wikipedia.org/wiki/Pareto_principle

Liu Y, et al. Sci China Inf Sci April 2023 Vol. 66 142103:4

First Latest

0

200

400

600

800

1000

A
ct

iv
it

y
 n

u
m

b
er

First Latest

0

20

40

60

80

100

120

140

160
A

P
K

 s
iz

e
(M

B
)

(a) (b)

Figure 1 (Color online) Change in (a) the APK size and (b) #activities of the first version and the latest version from top 50

apps in the Wandoujia market.

0 10 20 30 40
0

2

4

6

8

10

Applications

E
n
tr

o
p
y

Lower bound

Real entropy

Upper bound

0 10 20 30 40 50 60

0.2

0.4

0.6

0.8

1.0

Used activity rate (%)

C
D

F

(a) (b)

Figure 2 (Color online) Empirical results of how users interact with apps. (a) Users visit only a part of features in mobile app;

(b) the entropy of visited pages for each app.

The median values for the increase of APK sizes and the number of activities are 15.45X and 16.24X,
respectively.

Although the median package size of these top apps is only 69.3 MB, the actual storage space required
for installing such top app (known as “install size”10)) is several times larger. In the median case,
187 MB of local storage can be occupied after installing an app for the top apps. Thus, we also measure
the increased rates of the installation size and APK size for the top apps. The increases in the installation
size range from 1.09X to 7.10X than the APK size, and the installation size is 3.22X larger than the APK
size in the median case. A recent survey indicates that users averagely install 80 apps per device11),
occupying a non-negligible part of available local storage. These results indicate apps should include
more and more features to meet users’ increasing needs in later versions, resulting in the significant
increases of apps’ complexities.

2.2 Sparse page access inside apps

To answer RQ2, i.e., how many features in an app are used by different users, we analyze a dataset of
activity-level user behaviors released by a recent study [8]. The dataset contains 894542 visit-activity
records collected from 64 college students for three months, covering 3527 activities from 389 apps. We
filter out the records related to system apps and self-developed apps that cannot be downloaded from
Android markets, and finally acquire a dataset consisting of 240 apps.

For each app in the dataset, we count the number of all activities visited by the users, and divide the
number by the total number of activities, to compute the feature-usage ratio of the app. Figure 2(a)
shows the distribution of the feature-usage ratio among all these 240 apps. The results show that users
visit only less than 20% of activities for most apps (approximately 87%). This result indicates that users

10) App’s download size and install size. https://support.google.com/googleplay/android-developer/answer/9302563?hl=en.

11) App Annie. https://www.appannie.com/en/insights/market-data/apps-used-2017/.

https://support.google.com/googleplay/android-developer/answer/9302563?hl=en
https://www.appannie.com/en/insights/market-data/apps-used-2017/

Liu Y, et al. Sci China Inf Sci April 2023 Vol. 66 142103:5

use only a small subset of features in mobile apps but they have to download the full-size APK files.
From the users’ perspective, installing unnecessary features on their devices is annoying, resulting in high
consumption of the local storage, memory, and other resources. Thus, an infrequently used app of a huge
size is very likely to be removed by the users in a short time.

2.3 Diverse usage among users

We answer RQ3, i.e., do different users focus on using different features in an app by using the same
dataset as the one used for RQ2. We choose apps that have more than 5 users, and obtain 43 apps
in total. We use the entropy12) to measure the diversity of activity usage among users. We count the
number of users and calculate the probability of being visited for each visited activity in the dataset. For
every single app, we compute the entropy as shown in the following equation:

E = −

n
∑

i=1

pi ln pi,

where n is the number of activities that have been visited by users, and pi is the probability of being
visited for the activity i.

The entropy is an unpredictability metric of which activity is visited. If all activities are visited equally,
then all pi values are equal to 1/n, and the entropy hence takes the value ln(n) (upper bound). If the
users’ visits focus on one activity, and other activities are rarely visited, the entropy gets close to zero
(lower bound). Figure 2(b) shows the distribution of the entropy among these 43 apps. Each app has an
entropy between its upper bound and lower bound, indicating that its activities have diverse probabilities
of being visited. This result indicates that different users not only focus on using the same subset of
activities, but also may occasionally visit other activities.

2.4 Findings and implications

The preceding study results indicate that Android apps indeed become increasingly complex, containing
more activities and resulting in larger sizes. However, only a limited subset of activities are frequently
accessed, and some activities may even never be visited. This finding motivates us to equip apps with
the capability to flexibly customize and remove those infrequently visited activities to reduce the APK
size.

Furthermore, different users focus on different features in an app. This observation implies that these
users need to use an infrequently accessed activity quite occasionally and opportunistically. Therefore,
we cannot simply abandon those infrequently visited activities, as doing so can cause not to allow users’
later visitations to them unless the users download the full-size app.

We need to devise a mechanism that allows the users to not only keep the basic and frequently
used features when the apps are downloaded, but also can visit the infrequently used features whenever
necessary (i.e., on demand).

3 Requirements and key challenges

Motivated by the findings of the empirical study, we propose an approach, named LegoDroid, that aims
to enable the on-demand installability of apps without compromising user experiences. It is advocated
that Android-app development adopts the component-based development paradigm13), and developers
tend to design their apps to be modularized. Such modularity of Android apps brings opportunities for
decomposing an app into a set of loosely-coupled bundles, each of which contains parts of the app’s code
and resources for realizing a specific set of features.

For each app, users just need to download and install a launch bundle that can correctly launch the
main page of the app. In this way, the users keep only those code and resources in the launch bundle
on their device, so that the device’s storage can be saved and the required runtime resources can also
be reduced. When the users need to access the features not included in the launch bundle, the related

12) Wikipedia. Shannon Entropy (Diversity Index). 2022. https://en.wikipedia.org/wiki/Diversity index.

13) Google. Android Developer. 2022. https://developer.android.com.

https://en.wikipedia.org/wiki/Diversity_index
https://developer.android.com

Liu Y, et al. Sci China Inf Sci April 2023 Vol. 66 142103:6

API2

API1

API3

API4

APK

Decomposition

Launch bundle

1

2 3

4

Feature bundles

On-demand

installation

API1
API2

API3

API4API2

API1
4

2

3

2

User A

User B

LegoDroid

Figure 3 (Color online) Overview of our LegoDroid approach.

feature bundles are allowed to be dynamically downloaded and installed on the fly, achieving on-demand
installation of bundles.

Considering the current Android ecosystem, our proposed LegoDroid approach should satisfy the fol-
lowing requirements.

Decomposable. In order to enable the on-demand visitations of apps, the LegoDroid approach should
decompose an app into multiple bundles and support dynamic loading of them. Thus, users can access
necessary features with a few of bundles instead of a full-size app.

User-friendly. The users can easily and regularly download and install the decomposed apps on
their devices with our LegoDroid-enabled system compared to the current app-delivery mechanism. Our
approach should be agnostic to users, and should not compromise user experiences or change the way of
user interactions with apps.

Developer-friendly. The LegoDroid approach should work for legacy and on-the-shelf apps so that
developers do not have to manually re-develop their apps to adopt our approach.

To achieve the preceding requirements, we still need to address two key challenges.

First, there exist complex dependencies among code and resources in an app, and it is difficult to obtain
the complete and accurate dependencies using only static analysis [9]. If required classes or resources are
not included in the bundles, the decomposed app can suffer from crashes.

Second, we need to identify the exact call sites to launch those activities in feature bundles as well as
dynamically loading code and resources in advance. Only those activities started by explicit intent14)

can be precisely determined through static analysis. Without deterministically resolving these activities’
names at runtime, it is hardly possible to dynamically load feature bundles beforehand.

4 The LegoDroid approach

This section presents the overview of LegoDroid and describes the detailed design of LegoDroid’s com-
ponents.

4.1 Approach overview

Figure 3 shows the overview of LegoDroid. Given an Android app, LegoDroid automatically decomposes
the app into decoupled bundles, and enables the users to visit these bundles on demand.

In an Android app, an activity represents a single user interface for users to interact with, and de-
velopers tend to use activities to separate different sets of features. Naturally, LegoDroid performs the
decomposition at the activity level; i.e., each activity is regarded as an atomic feature that may be desired
by the users. Considering the robustness and reliability, we apply the class-level decomposition rather
than the method-level decomposition. For example, we cannot directly remove those non-executed meth-
ods since later dynamically loaded bundles may use them. After decomposition, LegoDroid generates two
types of bundles.

14) Google. Intents and Intent Filters. 2022. https://developer.android.com/guide/components/intents-filters.html.

https://developer.android.com/guide/components/intents-filters.html

Liu Y, et al. Sci China Inf Sci April 2023 Vol. 66 142103:7

APK

Dex
bytecode

Resources

A1

A2 A3

C0

C1

m m

m

m

m

R1 R2

R3 R4

Step 1

Launch bundle

Feature bundle

Step 2 Step 3 Step 4

A1 A2 C0

C2

R3R2R1

A3 C1 R4

Running application to collect
missing classes and resources

Whitelist

Launch bundle

Feature bundles

Figure 4 (Corlor online) The workflow of app decomposition.

Table 1 Summary of notations

Notation Description Notation Description

Σ Class dependency C/R/A The set of classes/resources/activities

Γ Resource dependency C The activity-related classes

Ω Class-resource dependency R The class-related resources

DG The dependency graph κ̂/κ̃ The code of launch/feature bundle

Π/Π̃ A launch/feature bundle γ̂/γ̃ Resources of launch/feature bundle

• A launch bundle, which contains the code and resources related to the app launching process. It is
the entry of the decomposed app. In addition, a launch bundle also includes other resources that cannot
be decomposed and should be mandatorily included in the APK file such as native libraries, manifest
file, and assets, which are vital to make the app work correctly.

• A set of feature bundles, each of which contains the code and resources related to a specific activity
(named feature activity) that is not in the launch bundle. A feature bundle is requested and dynamically
loaded when the users navigate to a new activity that is not included in the launch bundle. By default,
none of feature bundles are installed on the device.

In order to support on-demand installation of bundles, LegoDroid places hooks into the related system
services to detect which activity users want to visit and downloads the target feature bundle if it has
not been visited before. Afterwards, LegoDroid dynamically loads the target feature bundle, and then
launches the target activity. In Subsections 4.2 and 4.3, we describe the details of app decomposition
and on-demand installation, respectively.

4.2 App decomposition

For each Android app, the decomposition process focuses on the code and resources that can be decoupled
and loaded dynamically. Other files, such as native libraries and configure files (e.g., AndroidManifest.xml
and resources.arsc), are required for launching and executing the app correctly, and thus are packed into
the final package of the launch bundle directly. Figure 4 illustrates the workflow of app decomposition
in LegoDroid. We describe the details of each step as follows. Table 1 shows the all notations we used in
the following formalization.

4.2.1 Dependency analysis

To identify the boundaries of launch bundles and other bundles for decomposition, LegoDroid first an-
alyzes the dependencies among the classes in the code, the dependencies among the resources, as well
as the dependencies between the code and the resources. We next formally define the three types of
dependencies.

Definition 1 (Class dependency). The class dependency Σ is a relation between classes C: Σ ⊂ C×C.
Given two classes c1 and c2, 〈c1, c2〉 ∈ Σ ⇔ ∃ methods m1 ∈ c1,m2 ∈ c2, and m1 invokes m2.

Since Android apps are developed in Java, which is an object-oriented language, LegoDroid decomposes
the code at the class level. Give an Android app, we construct its call graph CG = (V,E) as follows. Each
vertex vm ∈ V represents a method m. If method m1 invokes method m2, then CG contains an edge
vm1

→ vm2
∈ E. However, Android developers can use intent (i.e., inter-component communication,

ICC) to interact with a component. The intent provides a core set of callback methods that can be

Liu Y, et al. Sci China Inf Sci April 2023 Vol. 66 142103:8

invoked by the Android system to enter a new state. For example, an activity may start another activity
through an intent, which is similar to a method invocation of the target activity’s callback method. There
is no direct invocation between the caller and callback method.

To address this problem, we conduct the ICC analysis [10], which can infer the implicit invocations to
the callback methods of a component. Then, we build an extended call graph ECG, which is an expansion
of CG, produced as follows. For each method m, if it initiates a request to start a component p, then
ECG = (V,E) contains an ICC edge vm vb ∈ E, for each callback method b in component p.

Definition 2 (Resource dependency). The resource dependency Γ is a relation between resources R:
Γ ⊂ R×R. Given two resources r1 and r2, 〈r1, r2〉 ∈ Γ ⇔ ∃r1, r2 ∈ R, r1 includes r2.

Besides class dependencies, we also need to consider the resource dependencies of an app. There are
two kinds of resources in an Android app. Some reside in the res folder, and can be referenced with
identifiers such as R.type.resName in the code and @type/resName in the resource files. Others reside
in the assets folder, and can be referenced with the AssetManager object and the loadUrl method. The
former reference can be detected explicitly, while the latter reference cannot be detected explicitly. For
example, developers may load a local Web page in the assets folder with the loadUrl method in a WebView
component. However, the loading of other resources such as CSS files, JS files, and images in the assets
folder is not explicitly specified.

In this article, we just focus on the decomposition of resources in the res folder. In future work, we plan
to conduct the resource decomposition on all resources. For resources in the res folder, one resource could
include others with specific attributes and resource identifiers. For example, a layout file r1 can include
another layout file r2 with the “include” tag whose attribute specifies the name of r2. After parsing all
resources files and traversing relevant attributes, we can get the dependencies among different resources.

Definition 3 (Class-resource dependency). The class-resource dependency Ω is a relation between
classes C and resources R: Ω ⊂ C × R ∪ R × C. Given a class c and a resource r, 〈c, r〉 ∈ Ω ⇔
c references r in the code, 〈r, c〉 ∈ Ω ⇔ r references c in the resource file.

Additionally, we deal with the dependencies between the code and the resources. In Android, one class
could reference other resources to construct user interface based on a hexadecimal ID or the resource
name and resource type. Meanwhile, developers can also include customized UI components (i.e., classes
inherit from system-provided UI components) in a resource file.

Definition 4 (Dependency graph). A dependency graph DG is a five-tuple DG = 〈C,R,Σ,Γ,Ω〉, where
C is the set of classes, R is the set of resources, Σ ⊂ C × C is the dependency relation between classes,
Γ ⊂ R × R is the dependency relation between resources, and Ω ⊂ C × R is the dependency relation
between classes and resources.

To better capture the relationships among these dependencies, we define a dependency graph to rep-
resent the code and resource dependencies in Android apps.

Figure 4 shows an example dependency graph. There are five classes, where A1 depends on A2 and
C0, A2 depends on A3, and A3 depends on C0 and C1. There are three resources, where R1 includes R2
and R3. For class and resource dependencies, A2 references R1, A3 references R2, and C1 references R4.

4.2.2 Constructing launch bundle and feature bundles

In the second step, LegoDroid constructs a launch bundle and a set of feature bundles. The launch
bundle consists of the classes and resources related to launching-related activities, and each feature
bundle consists of the classes and resources related to each remaining activity. Therefore, we should
analyze the classes and resources related to each activity to determine the boundaries of each bundle for
decomposition.

Definition 5 (Activity-related classes). We consider that a class c is required by an activity a if there
exists a dependency path from a to c in the dependency graph DG. Formally, given an activity a ∈ A
where A is whole set of activities, the activity-related classes of a is

Ca = {c ∈ C \A | 〈a, c〉 ∈ Σ or ∃c0, c1, . . . , ck, 〈a, c0〉, 〈c0, c1〉, . . . , 〈ck, c〉 ∈ Σ}.

Definition 6 (Class-related resources). We consider that a resource r is required by a class c if c
references r, or if there exists a resource r′, c references r′ and there exists a dependency path from r′

Liu Y, et al. Sci China Inf Sci April 2023 Vol. 66 142103:9

and r. Formally, given a class c, the class-related resource of c is

Rc = {r ∈ R | 〈c, r〉 ∈ Ω} ∪ {r ∈ R | ∃r0, r1, r2, . . . , rk, 〈c, r0〉 ∈ Ω, 〈r0, r1〉, 〈r1, r2〉, . . . , 〈rk, r〉 ∈ Γ}.

Based on the preceding definitions, we give the formal definitions of the launch bundle and the feature
bundle.

Definition 7 (Launch bundle and feature bundle). Given a set of activities Λ = {a1, a2, . . . , an}, the
launch bundle is

Π = 〈κ̂, γ̂〉,

where

κ̂ = Λ ∪

(

n
⋃

i=1

Cai

)

, γ̂ =
⋃

ci∈κ̂

Rci .

For each launching-related activity u, the corresponding feature bundle is

Π̃u = 〈κ̃u, γ̃u〉,

where
κ̃u = (Cu ∪ u) \ κ̂,

γ̃u =

(

⋃

ci∈κ̃u

Rci

)

\ γ̂.

A launch bundle contains activities Λ that are required in successfully launching the original app. For
each activity a, we compute its set of activity-related classes Ca. The classes κ̂ added to the launch
bundle are defined as the union of the launching-related activities Λ and the corresponding activity-
related classes Ca for each activity a in Λ. The resources γ̂ added to the launch bundle are defined as
the union of class-related resources Rci for each ci in κ̂.

For each activity u that is not included in the launch bundle, we pack its classes κ̃ and resources γ̃ as a
feature bundle Π̃. κ̃ denotes the set of related classes in Cu except those classes in κ̂. γ̃ denotes the set of
referenced resources that are in the union of Rci for each class ci in κ̃ but not in the referenced resources γ̂.
In order to guarantee the runtime correctness, we need to keep all dependent classes and resources of each
transition path to the target activity. Meanwhile, we need to keep all dependent classes and resources
when interacting with the target activity excluding new activities and their successive dependencies. We
then use the activity transition graph (ATG) [11] to further reduce redundancies between different feature
bundles, in which a successor activity can reuse the code and resources of its predecessor activity. In such
way, the feature bundle will only contain its exclusive classes and resources. For an activity supporting
deep linking [12], developers can even generate a “slim” app with only a base bundle and a feature bundle
that contains the target activity.

For example, as shown in Figure 4, let us assume that A1 and A2 are launching-related activities to
pack into the launch bundle. Then, the activity-related classes (CA1 and CA2) and their related resources
(RA1 and RA2) are computed based on their dependencies. Based on these results, class C0 and resources
R1, R2, R3 are found to be required by activities A1 and A2, and are packed into the launch bundle.
Since C0 and R2 have been packed into the launch bundle, we do not pack them into the feature bundle
that contains activity A3. Hence, A3’s feature bundle consists of C1 and R4.

4.2.3 Iterative and back-complementary recovery

To capture all the dependencies, LegoDroid requires a precise and complete call graph, which is very
challenging to produce due to the event-driven nature and reflection calls in Android apps [13]. To
alleviate these issues, we devise an iterative and back-complementary recovery mechanism to supplement
missing code and resources for decomposed bundles.

When the decomposed app without certain required classes and resources is run, a system exception
(indicating that the required classes or resources cannot be found) is thrown. We collect and analyze
such exception logs to infer the missing classes and resources that cannot be detected by static analysis.

LegoDroid provides a back-complementary recovery tool to automatically supplement the missing code
and related resources, repack bundles, and launch the target bundle in an iterative fashion. The back-
complementary recovery tool iteratively launches the target bundle, runs dynamic tests on the target

Liu Y, et al. Sci China Inf Sci April 2023 Vol. 66 142103:10

Launch bundle

Activities Code

...

Resources

(Dos)
resources.arsc resources.arsc

AndroidManifest.xml

Resource

merger
Code

ClassLoader

Feature bundle

Resources

(Dos)

Code

Feature activity

Activity manager Package manager

Service hook

IPC Binder

PackageManager

service

Android framework services

ActivityManager

service

Figure 5 (Color online) System architecture of LegoDroid.

bundle (e.g., clicking a button), and adds the detected missing classes and resources back to the target
bundle until no exceptions are detected.

The back-complementary recovery tool applies the dynamic analysis to test the functionalities in the
target bundle and collects logs involved with missing classes and resources. For example, we can employ
the record-and-replay technique [14] to record the actions performed during launching and visiting a
target activity in the original app, and then iteratively replay these actions to test the corresponding
bundle after decomposition. In practice, developers always need to conduct comprehensive testing before
releasing apps. Our approach can reuse these existing test scripts and tools to perform the dynamic
analysis, and perform the back-complementary recovery for decomposed bundles, effectively improving
the accuracy and efficiency.

Moreover, there can be many common third-party libraries that are used by different apps. Hence, we
can reuse the analysis results of these third-party libraries to speed up the back-complementary recovery
tool, especially when LegoDroid fails to compute the accurate dependencies of such libraries. To this
end, we maintain a cache of third-party libraries and their classes along with resources that have been
successfully analyzed by the back-complementary recovery tool. Based on the existing efforts [15], given
an app to be analyzed, if any third-party library used by the app is found in the cache, we can directly
add the corresponding classes and resources into the target bundle without re-analyzing this library.

4.3 On-demand instant installation

In order to support on-demand instant installation, we need to modify the runtime environment of
Android apps. On one hand, our system should be aware of the activity to be launched when users
trigger activity transition, and then detect whether the target activity has already resided in the local
device. On the other hand, after the feature bundle is downloaded, the system should on demand load
the code and resources in the feature bundle at runtime. Figure 5 shows the system architecture of our
approach. We design three key components to satisfy the requirements.

Service hook. In order to support on-demand installation, LegoDroid places hooks into the system
services to detect which activity the users want to visit and download the corresponding feature bundle
if the activity has not been visited before. The Android system manages and runs apps with system
services via the Binder15), which is an Android-specific inter-process communication (IPC) mechanism.
It adopts a client-server model, where each client has a proxy object to communicate with the server.
For example, ActivityManagerService (AMS) is responsible for managing the lifecycles of activities, and
PackageManagerService (PMS) is responsible for package installation and information management. For
a running app, its process holds clients of system services (e.g., the activity manager, abbreviated as

15) Google. Binder: the inter-process communication mechanism in Android system. 2022. https://developer.android.com/

reference/android/os/Binder.html/.

https://developer.android.com/reference/android/os/Binder.html/
https://developer.android.com/reference/android/os/Binder.html/

Liu Y, et al. Sci China Inf Sci April 2023 Vol. 66 142103:11

AM, is the client of AMS). We place hooks into these clients, which intercept the invocation of the target
activity and detect whether the activity has been installed in the local device. If not, these hooks initiate
a request to download the corresponding feature bundle.

Code ClassLoader. The code ClassLoader is responsible for dynamically loading the code in a feature
bundle. It extracts and moves the code to the private source-code folder of the app so that the app can
dynamically load such piece of code with dynamic code loading (DCL) based on DexClassLoader. The
usage of dynamic code loading may introduce some vulnerabilities (e.g., remote code injection) [16], which
are out of the scope in this article. We plan to check the integrity of each bundle before dynamically
loading the code in the bundle [17].

Resource merger. The Android system uses the hexadecimal ID to reference a resource in the res
folder, and these IDs are stored into the code in a hard-coded way during compilation. When running
an app, the system queries the exact resource path and content from a resource table16) according to the
hard-coded ID. By default, each app accesses only resources according to a resource path that directs to
its APK file. The resource merger extends the single resource path to a resource list, adds the path of
the feature bundles’ resources to the resource list, intercepts resource requests, and retrieves resources
along with the resource list until finding required resources.

We implement all three components running within the app’s process so that they do not affect other
apps. With both code and resources dynamically loaded, the decomposed app can run as the original app
does. Meanwhile, we do not change any functionality of the original app. As such, the decomposed app
can still work even if the original app has applied other dynamic loading technologies17). The memory
occupied by a dynamically loaded feature bundle will be automatically taken over by the Android system,
and we do not need to manually manage the unloading process of the feature bundle. Each requested
feature bundle is downloaded and loaded into the memory only once, and subsequent access to the same
activity can load code from the memory or the local device directly, reducing delays and improving user
experiences.

5 Implementation

According to the design in Section 4, we implement a system for LegoDroid.
Dependency graph. We build a static analysis tool based on FlowDroid [18] and Soot18) to generate

the call graph. Then, we apply the IC3 tool [10] to infer the indirect invocations of callbacks of Android
components and combine them with the call graph to generate the extended call graph. We use string
matching to obtain dependent resources referenced by hexadecimal IDs, and extract exact parameters
(e.g., resource type and resource name) to obtain dependent resources referenced by method invoca-
tions (e.g., getIdentifier). We also parse XML-format resource files to resolve the resource dependencies
according to the official document.

Bundle generation. We extract classes from the complete bytecode to generate new dex-format files,
and extract resources that are referenced by these classes for each bundle. With other files in the original
package (e.g., AndroidManifest.xml, native libraries), we generate the launch bundle as a normal APK-
format package. In order to support the dynamic resource loading, we extract IDs of these extracted
resources from the resources.arsc file, and generate a simplified resources.arsc file. Finally, we pack all
these needed files to generate a feature bundle as a zip-format file according to users’ access paths. In
order to better discover and identify the resources, we apply the digital object architecture (DOA) [19]
to manage all the resources on the remote cloud, and each resource is wrapped as a unique digital object
(DO).

Iterative and back-complementary recovery tool. We implement our iterative and back-
complementary recovery tool upon the Android debug bridge (ADB) tool and the popular MonkeyRun-
ner19). Our tool leverages the ADB tool to search apps’ logs for entries that contain ClassNotFoundEx-
ception and Resources$NotFoundException, so that our approach can detect the missing classes and
resources. We implement a record-and-replay module based on the MonkeyRunner, and the developers

16) The Android system resolves the resources.arsc file to get the resource table that maintains the mappings between resources

and IDs when running an app.

17) Tencent. A hot-fix solution library for Android, it supports Dex, library and resources update without reinstall apk. 2022.

https://github.com/Tencent/tinker.

18) Soot. A framework for analyzing and transforming Java and Android applications. 2022. https://sable.github.io/soot/.

19) Google. MonkeyRunner. 2022. https://developer.android.com/studio/test/monkeyrunner/index.html.

https://github.com/Tencent/tinker
https://sable.github.io/soot/
https://developer.android.com/studio/test/monkeyrunner/index.html

Liu Y, et al. Sci China Inf Sci April 2023 Vol. 66 142103:12

1.0

0.8

0.6

0.4

0.2

0.0

C
D

F

1.0

0.8

0.6

0.4

0.2

0.0

C
D

F

0 20 40 60 80 100

Size (MB) Size (kB)

0 500 1000 1500 2000

(a) (b)

Original APK
Launch bundle

Figure 6 (Color online) Distribution of the size of decomposed bundles. (a) Launch bundle; (b) feature bundle.

can record a sequence of actions that can be used to launch the target bundle and do random testing
with Monkey20) to test functionalities included in the target bundle.

System integration. Although there exist various kinds of techniques to place hooks into system
services, such as Xposed21), VirtualApp22), and Reptor [20], these techniques introduce extra overhead
and may affect the apps’ performance. There exists a trade-off between desirable performance and
deployability. Actually, we can also implement LegoDroid based on VirtualApp to apply an app-level
solution. We choose to directly modify the source code of the Android Open Source Project (AOSP)
to build LegoDroid. We implement LegoDroid on every single version from Android 4.0 to Android 8.0
with only a few lines of modification on the Android framework, and apps generated by our approach can
correctly run on these modified systems. Due to the space limit, we report only the evaluation results on
a modified system based on AOSP version 7.1.1.

6 Evaluations

To evaluate the effectiveness of LegoDroid, we conduct comprehensive evaluations from four aspects.
First, we apply LegoDroid on an extensive set of apps to demonstrate its effectiveness in saving the initial
download size. Second, we evaluate the efficiency and robustness of the iterative back-complementary
recovery tool on a set of open-source apps. Third, we evaluate the runtime performance of the decomposed
apps on the LegoDroid-enabled system. Finally, we select a set of popular apps that have stable updates,
and demonstrate how LegoDroid can work with version upgrades by preserving a substantial percentage
of reusable code. We need to address that we use the cumulative distribution function (CDF) to show
the distribution of each metric when evaluating LegoDroid.

6.1 Instant installation over real-world apps

In order to evaluate the practicality of our approach on real-world apps, we first analyze the top-1000
most downloaded apps without repackage protection from Google Play, as the subjects that we can apply
our static analysis to measure the size distribution of launch bundles and feature bundles. These apps
involve most app categories of Google Play.

The size of launch bundles. Figure 6(a) shows the size distribution of launch bundles and their
original apps. The results show that the median value for the saving of the initial download size is 44.17%,
resulting in a substantially less download time and local storage consumption. In the median case, the
size of launch bundle is 4.6 MB, which is close to the 4 MB size limit for Instant apps.

For some apps, the launch bundle does not save much storage compared to the original apps. The
reason is that developers may place most functionalities in the launching-related activities of their apps,
and thus most code and resources have been packed into the launch bundle. Meanwhile, our current
approach just decomposes resources that reside in the res folder, and other resources are packed into the

20) Google. UI/Application exerciser monkey. 2022. https://developer.android.com/studio/test/monkey.html.

21) Xposed. A framework to hook Android platform APIs. 2022. http://repo.xposed.info/.

22) Lody. An open source implementation of MultiAccount. 2022. https://github.com/asLody/VirtualApp/.

https://developer.android.com/studio/test/monkey.html
http://repo.xposed.info/
https://github.com/asLody/VirtualApp/

Liu Y, et al. Sci China Inf Sci April 2023 Vol. 66 142103:13

launch bundle directly. Some apps place almost all of resources in the assets folder (e.g., apps of the
mobile game category), so the savings of storage for these apps can be quite marginal.

The size of feature bundles. As shown in Figure 6(b), users need to download only a feature
bundle whose size is less than 500 kB for 84.23% of cases. To make a comparison, a recent study of
httparchive.org23) reports that the average web page size in 2021 was 2225 kB. In other words, a feature
bundle is much smaller than a common Web page, and thus users do not need to wait for a long time to
download the feature bundle. The reason is that some feature bundles may just contain a small set of
classes, and their dependent resources have been packed into the launch bundle. Therefore, their sizes
are relatively small.

These results indicate that LegoDroid can lower the barrier for accessing a new app due to the reduced
sizes of the decomposed apps. In addition, to visit a new activity that has not been installed in the
devices, users just need to download a small-size feature bundle. Most of the delays are even shorter
than visiting a new web page in an app. On average, the overall size of all generated bundles of an app
increases by 12.68% due to allowable redundancy to assure runtime correctness. Fortunately, users often
visit a small part of bundles as shown in our empirical study, and the overall size of visited bundles can
be reduced as well.

6.2 Robustness of decomposed apps

To evaluate the robustness of the mechanism of iterative and back-complementary recovery, we conduct
an evaluation on a set of open-source apps. Although we can decompose legacy apps directly, developers
may have used some tools to protect their apps from being reverse-engineered. Therefore, we could fail
to run the decomposed apps. To avoid such issues, we verify the correctness of our decomposition process
using 100 open-source apps with high downloads and ratings from F-Droid24) and GitHub.

It is impossible to exhaustively explore all activities of all tested apps, so we just evaluate those
important activities with small depth on the activity transition graph (ATG) [21]. For each app, we
choose the home activity and those splash activities involved in the launching process to generate the
launch bundle, and choose activities that are successor nodes of the home activity on the ATG to generate
feature bundles. At runtime, LegoDroid simply ignores transitions of activities that are not included in
either the launch bundle or feature bundles.

Efficiency of supplementing missing code and resources. We use the iterative back-complemen-
tary recovery mechanism to supplement the missing code and resources so that decomposed apps can run
correctly. We count the required number of iterations to supplement the launch bundle and the feature
bundles for these 100 apps. Figure 7 shows that we can successfully supplement the missing code and
resources after 8 iterations in the median case, and no more than 10 iterations for 80% of the apps. Notice
that every iteration needs to add only one class. Compared to the number of classes (ranging from 1160
to 6327, with 3647 in the median case) in an app, the additional cost of iterations is quite marginal.

Robustness verification. We further verify the decomposition robustness of LegoDroid on the 100
open-source apps. We first use the Monkey tool to generate random streams of user events, such as
clicks, touches, and gestures to run the original app for one minute. Indeed, a longer time of executions
may reach higher coverage. However, as reported by Li et al. [9], running automated UI testing for only
30 s can produce enough informative logs. During the executions, we use the MonkeyRunner to record
these actions. The recorded actions are then used to be replayed on the decomposed apps running in
the LegoDroid-enabled system for a fair comparison. For each app, we run both the original app and
the decomposed app for 10 times to collect the logs. We successfully run our decomposed apps in the
LegoDroid-enabled system without crashes and any extra exception. Within affordable efforts, we also
randomly select 10 apps and perform manual inspection to mitigate the issues that random testing may
not expose behaviors to cause crashes. According to collected logs, our decomposed apps do not throw
unexpected exceptions or cause errors during the executions, demonstrating the robustness of LegoDroid.

6.3 User-perceived load time and memory consumption

We evaluate the runtime performance of decomposed apps using the 100 apps as described in Subsec-
tion 6.2. We use a Nexus 6 (3 GB RAM, 32 GB ROM, Quad-core 2.7 GHz) running Android 7.1.1 as

23) Archive H. The HTTP archive tracks how the web is built. 2022. http://httparchive.org/.

24) F-Droid is an installable catalog of Free and Open Source Software (FOSS) apps for the Android platform (https://www.

f-droid.org/).

http://httparchive.org/
https://www.f-droid.org/
https://www.f-droid.org/

Liu Y, et al. Sci China Inf Sci April 2023 Vol. 66 142103:14

0 5 10 15 20 25

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Launch bundle

Feature bundle

1.0

0.8

0.6

0.4

0.2

0
0 50 100 150 200 250

Time (ms)

C
D

F
Figure 7 (Color online) Distribution of #iterations for bun-

dles.

Figure 8 (Color online) Distribution of the time spent on

merging feature bundles.

our test device. We measure the overhead when loading the launch bundles with the LegoDroid-enabled
system. For each app, we also choose activities that are successor nodes of the home activity on the ATG
as feature activities for testing, and load them in the LegoDroid-enabled system. For fair comparisons,
we then launch the same activity in the original app on a clean system. We compare the loading time
and memory consumption, respectively.

6.3.1 Loading time comparison

Figure 8 shows the distribution of time cost on merging resources in feature bundles. We do not include
the download time of feature bundles since it depends on the network condition. In the median case, the
merging process costs only 135.85 ms. Figure 9(a) shows that loading the launch bundle performs even
better than directly loading the original app. The launch bundle contains only a part of code extracted
from the original app, and thus the launching process is more efficient. Launching a decomposed app
in the LegoDroid-enabled system can save 13.06% of the loading time than loading the original app on
the clean system in the median case. We can achieve maximum 32.26% reduction in loading time in
our dataset. Figure 9(b) shows that loading a feature activity in the LegoDroid-enabled system costs
less time for the warm start compared to launching the same activity in the original app on the clean
system. In the median case, we can save 10.93% of the loading time. Meanwhile, we can achieve 26.93%
improvement at best.

6.3.2 Memory consumption

We also measure the memory usage of our approach as shown in Figure 9(c). We find that loading the
launch bundle requires less memory compared to loading the original app directly. In the median case,
loading a decomposed app with LegoDroid can save 8.83% of the memory usage. We can save 28.9% of
the memory usage at best. Figure 9(d) shows the distribution of the memory usage when loading the
same activity in both the decomposed app and the original app, respectively. In the median case, loading
a feature activity in the decomposed app can save 9.14% of the memory usage. We can save 16.30% of the
memory usage at best. With our approach, we effectively reduce the code size of an Android app, and it
costs less memory to load the dex file (bytecode of Android apps) and reduce the time spent on looking
for classes that are randomly distributed in the dex file. Most of the irreducible memory consumption is
from mandatory functionalities, e.g., loading images and initiating network requests, which may mitigate
our overall efficiency. Fortunately, our approach can save the memory usage and reduce the launching
time without changing any app logic.

Liu Y, et al. Sci China Inf Sci April 2023 Vol. 66 142103:15

80 180 280 380 480 580 680
0.0

0.2

0.4

0.6

0.8

1.0

40 60 80 100 120 140 160

Memory (MB) Memory (MB)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
C

D
F

C
D

F
C

D
F

200 600 1000 1400

Time (ms) Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

Original

LegoDroid
Original

LegoDroid

Original

LegoDroid

Original

LegoDroid

(a) (b)

(c) (d)

Figure 9 (Color online) Runtime performance comparison. (a) Loading time of launch bundles; (b) loading time of feature

bundles in the warm start; (c) memory usage of loading launch bundles; (d) memory usage of loading feature bundles.

6.3.3 Comparison with Google Instant apps

To further demonstrate the effectiveness of our approach, we choose to compare the performance of
LegoDroid-enabled apps and Google Instant apps25) when requesting the same functionality. The results
show that instant apps perform worse than their original apps in terms of both loading time and memory
usage. Instant apps run based on app-level virtualization environment with the Google Play service,
which introduces non-negligible overhead.

6.4 Reusability with version evolution

Usually, an app is frequently updated, e.g., weekly or even every two or three days. Intuitively, the
developers can apply LegoDroid to a new version and release the newly generated launch bundle. However,
it was reported that when updating mobile apps, users’ major concerns are the storage and network
traffic [22]. Hence, it is important to deliver newly generated bundles as small as possible. We then
explore how LegoDroid can help reuse the code and resources from an older version to the latest one.

Since LegoDroid needs to support on-demand loading, only classes and resources with consistent name
and content across different versions can be directly reused. However, the developers may use obfuscation
tools to produce anonymized class names and resource names, which can affect the reusability. Therefore,
we manually select those open-source apps that have released versions on Google Play without obfuscation
and have stable update frequencies.

As shown in Table 2, we select 12 apps that have at least three released versions (except for the
Piebald, which has only two released versions) to analyze the reusability of LegoDroid. For the two
adjacent versions Vt−1 and Vt of an app, we decompose both of them to obtain the launch bundles Πt−1

and Πt. We define the coverage of Vt−1 to Vt as Πt−1∩Πt

Πt

. We observe that some launch bundles of

25) We get Instant apps from Google Play. https://play.google.com/store/apps/collection/promotion 3002d0f instantapps

featuredapps. We do not show detailed results here due to space limit.

https://play.google.com/store/apps/collection/promotion_3002d0f_instantapps_featuredapps

Liu Y, et al. Sci China Inf Sci April 2023 Vol. 66 142103:16

Table 2 The effect of version update on apps

App name Description Coverage

Douban Movie Movie info client 82.31%, 86.04%, 95.44%

Drinks Help make cocktails 81.56%, 100%, 99.78%

Easy xkcd Comics client 99.34%, 100%, 99.87%

Iven News Reader Light feed reader 93.28%, 99.39%, 93.54%

K9 mail Mobile e-mail client 100%, 92.38%, 100%

Phonograph Music Player Music player client 100%, 100%, 100%

Piebald Photo client 50%, 50%

PocketHub Client for github 100%, 66.07%, 100%

RedReader Client for reddit 100%, 100%, 99.51%

Gallery Photo client 99.40%, 100%, 99.72%

Timber Music Player Music player client 99.56%, 97.86%, 73.71%

Yahnac for Hacker News Client for hacker news 84.04%, 94.25%, 100%

older versions even can be applied directly to the newer version. Meanwhile, the newer version may add
new features or introduce new third-party libraries, which can result in low reusability. Fortunately, we
find that the coverage of most apps can reach above 80%. For those apps published with obfuscation
technologies, developers can apply incremental obfuscation26) to keep the consistent names of code and
resources with a mapping file. Hence, apps with obfuscation can also benefit from the incremental update
of LegoDroid.

7 Discussion

In this section, we describe some issues that may potentially affect the generalization and effectiveness
of LegoDroid, and discuss how to alleviate them.

Missing code and resources. To alleviate the limitations of state-of-the-art static analysis tech-
niques [9], LegoDroid employs the record-and-replay technique to collect missing code and resources.
However, it is difficult to exhaustively explore all the behaviors in an activity. As a result, some missing
code and resources may exist when unexplored behaviors are triggered. To address this issue, a run-
time complementary mechanism could be introduced with LegoDroid to retrieve the missing code and
resources.

Unreliable network connection. LegoDroid dynamically requests and downloads feature bundles.
Therefore, under some poor or even unavailable network conditions, users may fail to access a feature
bundle that has not been downloaded before. In such a case, LegoDroid could display an “unavailable”
page. However, given the increasingly pervasive deployment of Wi-Fi and stations, especially under the
recently emerging “edge” environment, the network access is expected to become highly stable to avoid
this issue. In addition, we need to address that once a feature bundle is downloaded by LegoDroid,
subsequent visits will directly load bundles from the local device. Moreover, alternative solutions can
consider sending a reduced feature bundle (e.g., low-quality images), or prefetching feature bundles by
predicting users’ behaviors.

Flexible app removal. Once users want to uninstall a decomposed app, they just need to uninstall
the launch bundle as a normal app. LegoDroid will monitor the uninstall requests, and automatically
remove the downloaded feature bundles and other temporary files. In addition, LegoDroid can enable
fine-grained app management that allows users to remove only those infrequently visited feature bundles
to release the local storage instead of uninstalling a whole package [23].

Additional cost. We have demonstrated that LegoDroid can save local storage, launching time,
and memory usage. Intuitively, we can assume that the energy drain can also be reduced. LegoDroid
may introduce other additional costs. Requesting feature bundles requires the data transfer, and the
cost can vary according to the network connection and bandwidth. Hence, we cannot simply guarantee
that LegoDroid can always gain benefits for all apps. However, given that feature bundles are usually
non-frequently visited pages, LegoDroid still provides its values in practice.

Impacts of software analysis. Indeed, the LegoDroid’s effectiveness relies on software analysis. Our
current implementation uses some existing software analysis techniques/tools such as MonkeyRunner and

26) Proguard. The open source optimizer for Java bytecode. 2022. https://www.guardsquare.com/en/proguard.

https://www.guardsquare.com/en/proguard

Liu Y, et al. Sci China Inf Sci April 2023 Vol. 66 142103:17

Monkey to generate bundles. Moreover, evaluations indicate that our prototype system can work correctly
and efficiently. For further improvement, we can reuse existing test scripts to test a generated bundle
more effectively.

Security. LegoDroid loads feature bundles through dynamic code loading based on the DexClass-
Loader method provided by the Android system. However, Poeplau et al. [16] identified some vulnera-
bilities (e.g., remote code injection) related to the incorrect usage of dynamic code loading. To address
this issue, we plan to check the integrity of each bundle before being dynamically loaded [17].

Generalizability. Currently we focus only on the open Android platform. Hence, the approach over
close platforms, such as iOS, cannot be directly evaluated. However, we believe that the ideas of our
approach are still generalizable, with the adaptation efforts according to the characteristics of the system
and the software analysis for generating bundles.

8 Related work

On-demand visitation. Google Instant apps and Tencent mini programs provide on-demand visita-
tion, but they also require extra developer efforts. Bhardwaj et al. [24] proposed ephemeral apps that
dynamically load code and resources from a remote server. They further proposed AppSlicer [6], which
creates app slices based on classes and resources loaded at runtime when launching an activity. How-
ever, AppSlicer requires a constant network connection and downloads required classes and resources in
real time. Our LegoDroid approach downloads only feature bundles at the first visitation, but no more
downloads are required for subsequent usages.

Decomposition. Gui et al. [25] and Liu et al. [26] statically analyzed apps to find the usage of ad
libraries and rewrite bytecode for privilege de-escalation or better user experiences. Rubinov et al. [27]
and Zhang et al. [28] focused on extracting and offloading code to remote servers or trusted environments.
Chandrashekhara et al. [29] proposed the BlueMountain to decompose an app’s data management logic
and assign users more controls to load different data-management code portions on demand. LegoDroid
decomposes an app at the granularity of the activity to support dynamic visitation without affecting user
experiences.

Software debloating and refactoring. Jiang et al. [30] and Xie et al. [31] automated code and
resource trimming for Android apps by static analysis. Huang et al. [32] proposed a static analysis
technique to remove code elements that are relevant to user-specified unwanted UI elements in Android
apps. Qian et al. [33] proposed a framework that leverages multiple control-flow heuristics to customize
the app binary based on users’ specifications. Our LegoDroid approach combines static and dynamic
analyses to detect the boundaries of activities and their dependent resources, and can support on-demand
visitation as well as eliminating the app bloat. Mahouachi [34] and Bavota et al. [35] applied software
remodularization technologies to improve the maintainability by dividing the software into independent
and loosely-coupled modules. Mourad et al. [36] explored the code clone of software and can significantly
reduce the code size through clone refactoring. In contrast, LegoDroid analyzes the dependencies among
both classes and resources, and divides an installation package into multiple bundles, without modifying
the logical structure of the app. LegoDroid can benefit from the remodularization and other refactoring
techniques to further reduce the coupling and size of code, and make it easier to distinguish the boundaries
of activities.

9 Conclusion

In this article, we present LegoDroid to decompose Android apps and support flexible installability.
LegoDroid allows developers to decompose an app into various bundles, and allows users to download
and access infrequently used features on the fly. Our evaluations show that LegoDroid can save 44.17%
of the initial download size in the median case, and achieve better runtime performance. In the median
case, LegoDroid can reduce 13.06% and 10.94% of the launching time for launch bundles and feature
bundles, respectively. Meanwhile, LegoDroid can efficiently reduce the network traffic for app updating
by reusing code and resources. In future work, we plan to extend our decomposition to other code and
resources and improve the accuracy of static analysis.

Acknowledgements This work was supported by National Key Research and Development Program of China (Grant No.

2020YFB2104100), National Natural Science Foundation of China (Grant Nos. 61725201, 62161146003), Beijing Outstanding

Liu Y, et al. Sci China Inf Sci April 2023 Vol. 66 142103:18

Young Scientist Program (Grant No. BJJWZYJH01201910001004), Beijing Nova Program (Grant No. Z211100002121159), and

PKU-Baidu Fund Project (Grant No. 2020BD007).

References

1 Quach A, Erinfolami R, Demicco D, et al. A multi-OS cross-layer study of bloating in user programs, kernel and managed

execution environments. In: Proceedings of the 2017 Workshop on Forming an Ecosystem Around Software Transformation,

Dallas, 2017. 65–70

2 Li H, Ai W, Liu X, et al. Voting with their feet: inferring user preferences from app management activities. In: Proceedings

of the 25th International Conference on World Wide Web, Montreal, 2016. 1351–1362

3 Ncube C, Oberndorf P, Kark A W. Opportunistic software systems development: making systems from what’s available. IEEE

Softw, 2008, 25: 38–41

4 Balasubramaniam S, Lewis G A, Simanta S, et al. Situated software: concepts, motivation, technology, and the future. IEEE

Softw, 2008, 25: 50–55

5 Guo Y, Li Y, Yang Z, et al. What’s inside my app?: understanding feature redundancy in mobile apps. In: Proceedings of

the 26th Conference on Program Comprehension, Gothenburg, 2018. 266–276

6 Bhardwaj K, Saunders M, Juneja N, et al. Serving mobile apps: a slice at a time. In: Proceedings of the 14th European

Conference on Computer Systems, Dresden, 2019. 1–15

7 Liu Y, Xu E, Ma Y, et al. A first look at instant service consumption with quick apps on mobile devices. In: Proceedings of

the 26th International Conference on Web Services, Milan, 2019. 328–335

8 Ma Y, Hu Z, Gu D, et al. Roaming through the castle tunnels: an empirical analysis of inter-app navigation of Android apps.

ACM Trans Web, 2020, 14: 1–24

9 Li L, Bissyandé T F, Papadakis M, et al. Static analysis of Android apps: a systematic literature review. Inf Software Tech,

2017, 88: 67–95

10 Octeau D, Luchaup D, Dering M, et al. Composite constant propagation: application to Android inter-component communi-

cation analysis. In: Proceedings of the 37th International Conference on Software Engineering, Florence, 2015. 77–88

11 Zhang Y, Sui Y, Xue J. Launch-mode-aware context-sensitive activity transition analysis. In: Proceedings of the 40th Inter-

national Conference on Software Engineering, Gothenburg, 2018. 598–608

12 Ma Y, Hu Z, Liu Y, et al. Aladdin: automating release of deep-link APIs on Android. In: Proceedings of the 27th World

Wide Web Conference, Lyon, 2018. 1469–1478

13 Wang Y, Zhang H, Rountev A. On the unsoundness of static analysis for Android GUIs. In: Proceedings of the 5th SIGPLAN

International Workshop on State Of the Art in Program Analysis, 2016. 18–23

14 Gomez L, Neamtiu I, Azim T, et al. RERAN: timing- and touch-sensitive record and replay for Android. In: Proceedings of

the 35th International Conference on Software Engineering, San Francisco, 2013. 72–81

15 Ma Z, Wang H, Guo Y, et al. LibRadar: fast and accurate detection of third-party libraries in Android apps. In: Proceedings

of the 38th International Conference on Software Engineering, Austin, 2016. 653–656

16 Poeplau S, Fratantonio Y, Bianchi A, et al. Execute this! Analyzing unsafe and malicious dynamic code loading in Android

applications. In: Proceedings of the 21st Annual Network and Distributed System Security Symposium, San Diego, 2014

17 Falsina L, Fratantonio Y, Zanero S, et al. Grab’n run: secure and practical dynamic code loading for Android applications.

In: Proceedings of the 31st Annual Computer Security Applications Conference, Los Angeles, 2015. 201–210

18 Arzt S, Rasthofer S, Fritz C, et al. FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint analysis

for Android apps. In: Proceedings of the 35th SIGPLAN Conference on Programming Language Design and Implementation,

Edinburgh, 2014. 259–269

19 Kahn R, Wilensky R. A framework for distributed digital object services. Int J Digit Libr, 2006, 6: 115–123

20 Ki T, Simeonov A, Jain B P, et al. Reptor: enabling API virtualization on Android for platform openness. In: Proceedings

of the 15th Annual International Conference on Mobile Systems, Applications, and Services, Niagara Falls, 2017. 399–412

21 Azim T, Neamtiu I. Targeted and depth-first exploration for systematic testing of Android apps. In: Proceedings of the 2013

SIGPLAN International Conference on Object Oriented Programming Systems Languages & Applications, Indianapolis, 2013.

641–660

22 Nayebi M, Adams B, Ruhe G. Release practices for mobile apps—what do users and developers think? In: Proceedings of the

23rd International Conference on Software Analysis, Evolution, and Reengineering, Suita, 2016. 552–562

23 Singh I, Krishnamurthy S V, Madhyastha H V, et al. ZapDroid: managing infrequently used applications on smartphones.

IEEE Trans Mobile Comput, 2017, 16: 1475–1489

24 Bhardwaj K, Gavrilovska A, Schwan K. Ephemeral apps. In: Proceedings of the 17th International Workshop on Mobile

Computing Systems and Applications, St. Augustine, 2016. 81–86

25 Gui J, Mcilroy S, Nagappan M, et al. Truth in advertising: the hidden cost of mobile ads for software developers.

In: Proceedings of the 37th International Conference on Software Engineering, Florence, 2015. 100–110

26 Liu B, Liu B, Jin H, et al. Efficient privilege de-escalation for ad libraries in mobile apps. In: Proceedings of the 13th Annual

International Conference on Mobile Systems, Applications, and Services, Florence, 2015. 89–103

https://doi.org/10.1109/MS.2008.153
https://doi.org/10.1109/MS.2008.159
https://doi.org/10.1145/3395050
https://doi.org/10.1016/j.infsof.2017.04.001
https://doi.org/10.1007/s00799-005-0128-x
https://doi.org/10.1109/TMC.2016.2591546

Liu Y, et al. Sci China Inf Sci April 2023 Vol. 66 142103:19

27 Rubinov K, Rosculete L, Mitra T, et al. Automated partitioning of Android applications for trusted execution environments.

In: Proceedings of the 38th International Conference on Software Engineering, Austin, 2016. 923–934

28 Zhang Y, Huang G, Liu X, et al. Refactoring Android Java code for on-demand computation offloading. In: Proceedings

of the 27th Annual SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, Tucson,

2012. 233–248

29 Chandrashekhara S, Ki T, Jeon K, et al. BlueMountain: an architecture for customized data management on mobile systems.

In: Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking, Snowbird, 2017. 396–408

30 Jiang Y, Bao Q, Wang S, et al. RedDroid: Android application redundancy customization based on static analysis.

In: Proceedings of the 29th International Symposium on Software Reliability Engineering, Memphis, 2018. 189–199

31 Xie Q, Gong Q, He X, et al. Trimming mobile applications for bandwidth-challenged networks in developing regions. 2019.

ArXiv:1912.01328

32 Huang J, Aafer Y, Perry D M, et al. UI driven Android application reduction. In: Proceedings of the 32nd International

Conference on Automated Software Engineering, Urbana, 2017. 286–296

33 Qian C, Hu H, Alharthi M, et al. RAZOR: a framework for post-deployment software debloating. In: Proceedings of the 28th

USENIX Security Symposium, USENIX Security 2019, Santa Clara, 2019. 1733–1750

34 Mahouachi R. Search-based cost-effective software remodularization. J Comput Sci Technol, 2018, 33: 1320–1336

35 Bavota G, Lucia A D, Marcus A, et al. Software re-modularization based on structural and semantic metrics. In: Proceedings

of the 17th Working Conference on Reverse Engineering, Beverly, 2010. 195–204

36 Mourad B, Badri L, Hachemane O, et al. Exploring the impact of clone refactoring on test code size in object-oriented software.

In: Proceedings of the 16th International Conference on Machine Learning and Applications, Cancun, 2017. 586–592

https://arxiv.org/abs/1912.01328
https://doi.org/10.1007/s11390-018-1892-6

	Introduction
	A motivating study
	Increasing app complexity
	Sparse page access inside apps
	Diverse usage among users
	Findings and implications

	Requirements and key challenges
	The LegoDroid approach
	Approach overview
	App decomposition
	Dependency analysis
	Constructing launch bundle and feature bundles
	Iterative and back-complementary recovery

	On-demand instant installation

	Implementation
	Evaluations
	Instant installation over real-world apps
	Robustness of decomposed apps
	User-perceived load time and memory consumption
	Loading time comparison
	Memory consumption
	Comparison with Google Instant apps

	Reusability with version evolution

	Discussion
	Related work
	Conclusion

