
Cooperative Testing and Analysis: Human-Tool, Tool-Tool, and Human-Human

Cooperations to Get Work Done

(Keynote Paper)

Tao Xie

Department of Computer Science

North Carolina State University

Raleigh, NC, USA

xie@csc.ncsu.edu

Abstract—Tool automation to reduce manual effort has
been an active research area in various subfields of software
engineering such as software testing and analysis. To maximize
the value of software testing and analysis, effective support
for cooperation between engineers and tools is greatly needed
and yet lacking in state-of-the-art research and practice. In
particular, testing and analysis are in a great need of (1)
effective ways for engineers to communicate their testing or
analysis goals and guidance to tools and (2) tools with strong
enough capabilities to accomplish the given testing or analysis
goals and with effective ways to communicate challenges faced
by them to engineers — enabling a feedback loop between
engineers and tools to refine and accomplish the testing or
analysis goals. In addition, different tools have their respective
strengths and weaknesses, and there is also a great need of
allowing these tools to cooperate with each other. Similarly,
there is a great need of allowing engineers (or even users) to
cooperate to help tools such as in the form of crowdsourcing.
A new research frontier on synergistic cooperations between
humans and tools, tools and tools, and humans and humans
is yet to be explored. This paper presents recent example
advances on cooperative testing and analysis.

Keywords-cooperative testing and analysis; human-assisted
computing; human-centric computing; tool integration; crowd-
sourcing

I. INTRODUCTION

Manual software testing and analysis are known to be

labor intensive and insufficient. To reduce manual effort in

software testing and analysis, testing and analysis tools can

be applied to automate activities in software testing and

analysis (such as test-input generation), enabling economical

use of resources. To maximize the value of testing and anal-

ysis, effective and efficient support for cooperation between

engineers and tools is greatly needed. In particular, both

research and practice are in a great need of (1) effective

ways for engineers to communicate their testing or analysis

goals and guidance to tools and (2) tools with strong enough

capabilities to accomplish the given testing or analysis

goals. To meet this need, recent research starts to explore

a new research frontier on synergistic cooperation between

engineers and tools; such human-tool cooperation is a type

of cooperative testing and analysis [15].

Generally there are various types of cooperative testing

and analysis. This paper summarizes three types: human-

tool cooperation, tool-tool cooperation, and human-human

cooperation. Human-tool cooperation further consists of two

sub-types, depending on who are on the “driver” seat to

conduct major work: human-assisted computing and human-

centric computing. In human-assisted computing, tools are

on the “driver” seat and engineers provide guidance to the

tools so that the tools could better carry out the work. In

contrast, in human-centric computing, engineers are on the

“driver” seat and tools provide guidance to the engineers so

that the engineers could better carry out the work. Tool-tool

cooperation is often in the form of tool integration. Human-

human cooperation is often in the form of crowdsourcing.

The rest of the paper illustrates examples of these five

types of cooperative testing and analysis: human-assisted

computing (human-tool cooperation) (Section II), human-

centric computing (human-tool cooperation) (Section III),

tool integration (tool-tool cooperation) (Section IV), and

crowdsourcing (human-human cooperation) (Section V).

II. HUMAN-ASSISTED COMPUTING: HUMAN-TOOL

COOPERATION

Human-assisted computing in the context of software

testing and analysis consists of three phases: (1) Setup phase:

engineers set up and apply tools to conduct initial testing and

analysis; (2) Feedback phase: the tools provide feedback

to the engineers; (3) Action phase: the engineers provide

guidance to the tools based on the feedback. The feedback

phase and the action phase form a feedback-action loop that

enables engineers and tools to refine and accomplish specific

goals of testing and analysis.

For example, producing high-covering test inputs is an

important goal of software testing, since high code cover-

age can help identify the insufficiency of test inputs, e.g.,

showing which parts of the program under test are not tested

by the test inputs. To reduce the manual burden of manually

producing test inputs, engineers can apply tools built based

on automated test-generation approaches to generate test

inputs automatically, such as Dynamic Symbolic Execution

(DSE) [6]. DSE executes the program under test symboli-

cally with arbitrary or default inputs. Along the execution



path, DSE collects the constraints in the branch statements to

form a path condition and negates part of the path condition

to obtain a new path condition that leads to a new path. The

new path condition is then fed to a constraint solver, which

computes new test inputs for exploring new paths.

Although these automated test-generation tools can easily

achieve high code coverage on simple programs, they face

different kinds of challenges to achieve high code coverage

on complex programs in practice. Based on recent stud-

ies [15], the top two major problems that prevent these

tools from achieving high code coverage of object-oriented

programs are (1) the object-creation problem (OCP), where

tools fail to generate sequences of method calls to construct

desired object states for covering certain branches; (2) the

external-method-call problem (EMCP), where tools cannot

deal with method calls to external libraries, such as native

system libraries or pre-compiled third-party libraries. The

main reason for OCPs is that certain branches of the pro-

gram under test require desired object states that cannot be

generated by the tools. The main reason for EMCPs is that

external-method calls cannot be precisely analyzed by the

tools or can throw exceptions to hinder the test generation.

Since tools are imperfect in dealing with various chal-

lenges in achieving high code coverage, cooperative testing

identifies problems faced by tools during test generation

(with the focus on OCPs and EMCPs), enabling engineers

and tools to generate test inputs cooperatively as follows.

The engineers first apply the tools to automatically generate

test inputs until the tools cannot achieve higher code cover-

age or run out of pre-defined resources. Then the tools report

the achieved coverage and problems that prevent them from

achieving higher coverage. By looking into the problems, the

engineers provide guidance to the tools, helping the tools ad-

dress these problems. As an example of providing guidance

to the tools, the engineers can write factory methods that

encode sequences of method calls to produce desired object

states to deal with OCPs [11]. To deal with EMCPs, the

engineers can instruct tools to instrument and explore the

external libraries or write mock objects [13] to simulate the

dependency. After providing guidance to the tools based on

the reported problems, the engineers can reapply the tools

to generate test inputs for achieving better coverage. Such

iterations of applying the tools and providing the guidance

can continue until satisfied coverage is achieved.

To achieve this cooperation between engineers and tools,

the tools need to precisely report problems for reducing ef-

fort from the engineers. Straightforward approaches such as

locating all non-primitive object types and external method

calls produce too many irrelevant problem candidates that

do not prevent tools from achieving higher code coverage.

To address the needs of precisely identifying problems, our

previous Covana approach [15] prunes the irrelevant problem

candidates using the data dependencies of partially-covered

branch statements on problem candidates.

III. HUMAN-CENTRIC COMPUTING: HUMAN-TOOL

COOPERATION

In collaboration with Microsoft Research, our previous

work [12] has proposed the game type of coding duels for

a web-based serious gaming platform, called Pex for Fun

(in short as Pex4Fun) (http://www.pexforfun.com/). Any one

around the world could create coding duels for others to

play besides playing existing coding duels themselves. In a

coding duel, the player is given a working implementation,

being an empty or faulty implementation of a method (with

optional comments to give the player hints on reducing the

difficulty level of gaming). Then the player is asked to

modify the working implementation to make its behavior

(in terms of the method inputs and return) to be the same

as the secret (golden) implementation (which is supplied

by the game creator but is not visible to the player). Over

the game-playing process, the player has the opportunity

to request the gaming platform to provide the following

feedback to the player (by clicking the “Ask Pex!” button

on the user interface): (1) under what method input(s) the

working implementation and the secret implementation have

different method returns; (2) under what method input(s) the

working implementation and the secret implementation have

the same method return. The gaming platform leverages a

DSE engine called Pex [11] to provide such feedback.

Pex4Fun has been increasingly gaining popularity in the

community. Since it was released to the public in 2010

summer, the number of clicks of the “Ask Pex!” button

(indicating the attempts made by players to solve games at

Pex4Fun) has reached more than 938,000 as of early July

2012. In May 2011, Microsoft Research hosted a contest on

solving coding duels at the 2011 International Conference on

Software Engineering (ICSE 2011). The ICSE 2011 contest

received 7,000 Pex4Fun attempts, 450 duels completed, and

28 participants (though likely more, since some did not

actually enter the official contest portal to play the coding

duels designed for the contest).

IV. TOOL INTEGRATION: TOOL-TOOL COOPERATION

Integration of analyses or tools has been pursued by

various researchers [3]. Our previous work has integrated

static analysis and dynamic analysis [4], integrated dynamic

analysis and dynamic analysis [16], integrating dynamic

analysis and static analysis [14], integrated dynamic anal-

ysis, static analysis, and dynamic analysis [2], [10].

When integrating stand-alone tools to be used in combi-

nation instead of choosing only one of them to be used,

assessing these tools needs to take into account of the

complementary effect of multiple tools. For example, for

test-generation tools that aim to achieve high code coverage

such as branch coverage, comparing just the percentages

of branch coverage achieved by each tool is an existing

common way of assessing and comparing the effectiveness

of the tools. Such assessment and comparison would be



desirable when only one of the tools under comparison is

selected to be used but undesirable when multiple tools

are selected to be used in combination. To address this

issue, our previous work [8] has proposed branch ranking to

characterize which branches are more difficult to be covered

by n tools under consideration for being selected to be used

in combination. In particular, we rank all the branches in the

code under test based on the number of tools that can cover

them. A rank-1 branch is covered by only one of the n tools

while a rank-2 branch is covered by only two of the n tools,

and so on. If a tool can cover more top-ranked (e.g., rank 1

or 2) branches, this tool demonstrates better effectiveness in

covering branches that are difficult to be covered by other

tools. Then such tool is more desirable to be selected when

multiple tools are selected to be used in combination.

V. CROWDSOURCING: HUMAN-HUMAN COOPERATION

Crowdsourcing could be leveraged for software testing

and analysis. For example, crowdsourcing has been used

to engage human crowds to solve manageable subproblems

decomposed from the task of writing verifiable specifica-

tions [9]. Crowdsourcing has been used to engage human

crowds to solve puzzles decomposed from object-creation

problems and complex constraint-solving problems that are

encountered by test-generation tools [1].

Pex4Fun [12] presented in Section III can also be viewed

as a form of crowdsourcing. A coding-duel creator can

construct a secret implementation in order to collect its

alternative implementations for various purposes. For exam-

ple, the coding-duel creator may seek a better alternative

implementation in terms of design quality, performance,

energy, etc. Indeed, when a coding duel is created by

using a real-world method implementation as the secret

implementation, it is very challenging for human crowds

to win such coding duel.

In recent years, debugging in the large [5], [7] has

been realized with industrial solutions from companies such

as Microsoft. Such industrial solutions are deployed for

collecting and leveraging a high volume of deployment-site

usage data from human crowds to improve debugging with

postmortem analysis. For example, the Microsoft Windows

Error Reporting (WER) system [5] focuses on crash/hang

debugging and the Microsoft PerfTrack and StackMine

systems focus on performance debugging. Using a long-

time period in the post-release stage and a huge number of

information sources from real-world users, such debugging-

in-the-large systems allow engineers to obtain distribution

information of crashing/hanging/performance bugs to guide

their debugging prioritization.

Acknowledgment. This work is supported in part by NSF

grants CCF-0845272, CCF-0915400, CNS-0958235, ARO

grant W911NF-08-1-0443, an NSA Science of Security

Lablet grant, a NIST grant, and a 2011 Microsoft Research

Software Engineering Innovation Foundation Award. The

author would like to thank his collaborating students at North

Carolina State University and collaborators from Microsoft

Research and other universities.

REFERENCES

[1] N. Chen and S. Kim. Puzzle-based automatic testing: bringing
humans into the loop by solving puzzles. In Proc. ASE, 2012.

[2] C. Csallner, Y. Smaragdakis, and T. Xie. DSD-Crasher: A
hybrid analysis tool for bug finding. ACM Transactions
on Software Engineering and Methodology, 17(2):345–371,
April 2008.

[3] M. B. Dwyer and S. G. Elbaum. Unifying verification
and validation techniques: relating behavior and properties
through partial evidence. In Proc. FoSER, pages 93–98, 2010.

[4] X. Ge, K. Taneja, T. Xie, and N. Tillmann. DyTa: Dynamic
symbolic execution guided with static verification results. In
Proc. ICSE, Demonstration, pages 992–994, 2011.

[5] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Or-
govan, G. Nichols, D. Grant, G. Loihle, and G. Hunt. De-
bugging in the (very) large: ten years of implementation and
experience. In Proc. SOSP, pages 103–116, 2009.

[6] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. In Proc. PLDI, pages 213–223,
2005.

[7] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie. Performance
debugging in the large via mining millions of stack traces. In
Proc. ICSE, pages 145–155, 2012.

[8] K. Inkumsah and T. Xie. Improving structural testing of
object-oriented programs via integrating evolutionary testing
and symbolic execution. In Proc. ASE, pages 297–306, 2008.

[9] T. W. Schiller and M. D. Ernst. Reducing the barriers to
formal methods. In Proc. OOPSLA, 2012.

[10] S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and
Z. Su. Synthesizing method sequences for high-coverage
testing. In Proc. OOPSLA, pages 189–206, 2011.

[11] N. Tillmann and J. de Halleux. Pex-white box test generation
for .NET. In Proc. TAP, pages 134–153, 2008.

[12] N. Tillmann, J. de Halleux, and T. Xie. Pex4Fun: Teaching
and learning computer science via social gaming. In Proc.
CSEET, Practice and Methods Presentations, & Tutorials
(PMP&T), pages 546–548, 2011.

[13] N. Tillmann and W. Schulte. Mock-object generation with
behavior. In Proc. ASE, pages 365–368, 2006.

[14] X. Wang, L. Zhang, T. Xie, Y. Xiong, and H. Mei. Au-
tomating presentation changes in dynamic web applications
via collaborative hybrid analysis. In Proc. FSE, 2012.

[15] X. Xiao, T. Xie, N. Tillmann, and J. de Halleux. Precise
identification of problems for structural test generation. In
Proc. ICSE, pages 611–620, 2011.

[16] T. Xie and D. Notkin. Tool-assisted unit-test generation
and selection based on operational abstractions. Automated
Software Engineering Journal, 13(3):345–371, July 2006.


