
Inferring Access-Control Policy Properties via Machine Learning

Evan Martin
Computer Science Department
North Carolina State University

Raleigh, NC 27695
eemartin@ncsu.edu

Tao Xie
Computer Science Department
North Carolina State University

Raleigh, NC 27695
xie@csc.ncsu.edu

Abstract

To ease the burden of implementing and maintaining
access-control aspects in a system, a growing trend among
developers is to write access-control policies in a specifi-
cation language such as XACML and integrate the policies
with applications through the use of a Policy Decision Point
(PDP). To assure that the specified polices reflect the ex-
pected ones, recent research has developed policy verifica-
tion tools; however, their applications in practice are still
limited, being constrained by the limited set of supported
policy language features and the unavailability of policy
properties. This paper presents a data-mining approach
to the problem of verifying that expressed access-control
policies reflect the true desires of the policy author. We
developed a tool to investigate this approach by automat-
ically generating requests, evaluating those requests to get
responses, and applying machine learning on the request-
response pairs to infer policy properties. These inferred
properties facilitate the inspection of the policy behavior.
We applied our tool on an access-control policy of a central
grades repository system for a university. Our results show
that machine learning algorithms can provide valuable in-
sight into basic policy properties and help identify specific
bug-exposing requests.

1. Introduction

Access-control policies are used to govern the various
types of access that different entities may have to informa-
tion. As a result of the complexity introduced by hard cod-
ing policies into programs [3], an increasing trend is to de-
fine policies in a standardized specification language such
as XACML [6] and integrate the policies with applications
through the use of a Policy Decision Point (PDP). A PDP is
a software component that receives an access request from
a Policy Enforcement Point (PEP) and returns a response
instructing the PEP as to whether access should be permit-

ted or denied. This approach allows policies to be reasoned
about independently from the software that enforces them.

As the number and complexity of access-control poli-
cies grow, the effort required for their implementation and
maintenance is also growing. Implementing and maintain-
ing policies are issues that must be addressed. Specifying
policies in standardized languages as opposed to hard cod-
ing them into applications is a step in the right direction.
But unfortunately a new question arises: is there a discrep-
ancy between the policy specification and its intended func-
tion? Standardized policy specifications are more formal
than their natural language equivalents and may be error-
prone without sufficient tool support. Furthermore, correct
implementation of policies by using applications such as a
PDP is based on the premise that the policy specification
is correct. As a result, policy specifications must undergo
rigorous verification and validation to ensure the expressed
policy truly encapsulates the desires of the policy authors.

Our primary objective is to efficiently identify discrepan-
cies between the policy specification and its intended func-
tion. We propose a data-mining approach to help users
identify specific requests that may illustrate these discrep-
ancies. By probing a policy with requests and observing
its behavior, we can use machine learning algorithms to in-
fer properties of the policy. Any request that violates the
inferred properties represents a special case in which the
PDP receiving the request produces a response that devi-
ates from the policy’s normal behavior. We developed a
tool that implements this approach through automatic re-
quest generation and the use of machine learning algorithms
to infer properties of policies from request-response pairs.
We applied our tool on an access-control policy of a central
grades repository system for a university based on an exam-
ple used by Fisler et al. [3]. Our preliminary results show
that machine learning algorithms can provide valuable in-
sight into basic policy properties and help identify specific
bug-exposing requests.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 presents the use



of machine learning to infer statistically true propertiesof
a policy and describes the tool we developed. Section 4
discusses the results of applying our tool and Section 5 con-
cludes with future work.

2. Related Work

Policy verification is used to formally check general
properties of access control policies. The verification prob-
lem can become intractable as policies become more com-
plex. Recently several tools have been developed to verify
specific properties of a given XACML policy [6]. For ex-
ample, Hughes and Bultan [4] translated XACML policies
to the Alloy language [5] and checked their properties us-
ing the Alloy Analyzer. Fisler et al. [3] developed a tool
called Margrave that verifies user-specified properties and
performs change-impact analysis. Zhang et al. [10] devel-
oped a model-checking algorithm and tool support to evalu-
ate access control policies written in RW languages, which
can be converted to XACML [9]. These approaches sup-
port only a subset of the XACML policy specification lan-
guage because it is challenging to generalize these verifica-
tion approaches to support full-featured XACML policies
with complex conditions. Some of these approaches also
require the user to specify a set of properties in some for-
mal language to be verified; however, these formally speci-
fied properties often do not exist in practice. The approach
to policy property inference proposed in this paper oper-
ates solely on request-response pairs and thus may be ap-
plied to any type of access control policy. Furthermore, the
limitations are determined by the PDP used to evaluate the
requests against the policy. The PDP used by our tool sup-
ports all the mandatory features of XACML, all of the stan-
dard attribute types, functions, and combining algorithms
as well as a number of optional features. Policy property
inference is complementary to the preceding property veri-
fication tools [3, 4, 10] by supplying their inputs previously
manually supplied by the user.

Burgess [1] presents an approach to anomaly detection
that combines policies and machine learning implemented
in a suite of tools known as cfengine1. Cfengine is a policy-
based monitoring and configuration management system
used to configure the files and processes running on net-
worked computers. A policy in cfengine summarizes the
expected behavior of the system but the exact behavior is
not enforceable. Data mining is just one technique used in
concert with several others to derive a statistical model of
the exact observed behavior of the system. Anomalies are
detected when this model violates the policy. Conversely,
in our approach, the expected behavior resides only in the
mind of the policy author while the exact behavior is dic-
tated by the policy. We also model exact behavior using a

1http://www.cfengine.org/

statistical model and use this model to detect anomalies. In
our case, anomalies are potential bugs and they occur when
the statistical model deviates from the exact behavior.

3. Approach

Our primary objective is to efficiently identify discrepan-
cies between the policy specification and the true desires of
the policy authors. We help a user identify these discrepan-
cies or bugs by finding specific requests that are likely bug-
exposing. We first observe the policy’s behavior by probing
it with several automatically generated requests. These ob-
servations are used as input, in the form of request-response
pairs, to a particular class of machine learning algorithms
called classification learning. The output of the machine
learning algorithms is essentially a summary of the policy
in the form of inferred properties that maynot be true for
all requests but are true formostrequests. We do not wish
to recreate the policy in its entirety through these inferred
properties but merely capture the general policy behavior in
order to help identify special cases. The rationale is that
the policy specification is mostly correct and that the bug-
exposing requests represent a small percentage. Under this
rationale, any request that violates the inferred properties
are special cases or requests that result in responses that
deviate from the policy’s normal behavior. These special
cases are identified as being likely bug-exposing and war-
rant manual inspection. We have integrated Sun’s XACML
implementation [7] and a collection of machine learning
algorithms for data mining tasks [8] into a tool that im-
plements our approach through request generation, request
evaluation, and policy property inference.

3.1. Request Generation

Our tool supports two different techniques of sup-
plying requests to the system. The first technique is
simply identifying existing XACML request documents
via a standard file choosing dialog. The second tech-
nique inspects the specified policy and constructs a re-
quest factory that generates requests on demand. There
are various algorithms that can be devised to generate re-
quests. In our current tool, we have implemented two
simple factories called theAllComboReqFactory and the
UnifRandomReqFactory. The former attempts to gener-
ate requests for all possible combinations of subjects, re-
sources, and actions while the latter randomly selects ele-
ments from the subject, resource, and action set following
a uniform distribution. TheAllComboReqFactory is only
possible if the set of subjects, resources, and actions are fi-
nite and can be enumerated. The example policy used in
Section 4 is a simple role based access control policy used
for a central grades repository at a university. The policy



has three subjects (Student, Faculty, TA); two resources (In-
ternalGrades, ExternalGrades); and two actions (Receive,
Assign). We generate all possible combinations by incre-
menting an integeri from 0 to 2s+r+a wheres, r, anda

are the number of possible subjects, resources, and actions,
respectively. To construct a request from the integeri, we
first converti to binary and use thes + r + a least signifi-
cant bits as a set of boolean flags to indicate the presence or
absence of the possible attributes for subject, resource, and
action. This approach guarantees that all possible combi-
nations of the available attributes are generated. However,
this approach is a simplistic one and it is not realistic for
larger policies or policies in which the set of subjects, re-
sources, and actions are not all finite. Furthermore, gener-
ating all possible combinations of subjects, resources, and
actions does not necessarily result in a valid request. As a
result, we find that many of the generated requests evalu-
ate toIndeterminate or NotApplicable. We plan to
develop sophisticated approaches for request generation in
future work (Section 5).

3.2. Request Evaluation

Request evaluation or response generation is simply the
evaluation of a request against the specified policy. Sun’s
XACML implementation [7] provides an API to implement
a PDP, which receives an access request and returns an ac-
cess decision. As requests are generated by a request fac-
tory, the PDP is used to evaluate the request to produce a
response.

3.3. Property Inference

We infer policy properties by applying machine learn-
ing on request-response pairs. Our current tool leverages
Weka [8], a collection of machine learning algorithms for
data mining tasks. Weka contains tools for pre-processing,
classification, regression, clustering, association rules, and
visualization. In general, data mining is defined as the
process of discovering patterns in data such as explicit
knowledge structures (i.e., structural descriptions) [8].

In our research context, we are mostly interested in the
knowledge structures acquired as a mechanism to infer gen-
eral and not necessarily universally true properties of the
policy. Machine learning techniques are frequently used
to gain insight into the structure of their data rather than
to make predictions for new cases [8]. We use knowledge
structures generated from a genre of machine learning al-
gorithms calledclassification learningto summarize the re-
sults of request-response pairs thereby expressing the policy
in a different and often more concise way.

As requests are evaluated against the policy, our tool ap-
pends relevant information about the request-response pairs

1.1 If Faculty = 1
and (Receive = 1 or Assign = 1)
and (ExternalGrades = 1 or InternalGrades = 1)
then Permit

1.2 If Student = 1
and Receive = 1
and ExternalGrades = 1 then Permit

1.3 If Student = 1
and Assign = 1
and ExternalGrades = 1 then Deny

1.4 If True then Deny

Figure 1. Rules in the actual XACML policy.

2.1 If Faculty = 1 then Permit
2.2 If Student = 1

and InternalGrades = 0
and Receive = 1 then Permit

2.3 If TA = 1 then Deny
2.4 If Student = 1

and InternalGrades = 1 then Deny
2.5 If Student = 1

and Receive = 0 then Deny

Figure 2. Rules generated by the Prism clas-
sification algorithm on the partial data set.

to a data file in a particular format being used as train-
ing data for Weka [8]. Weka mines the request-response
pairs to find and describe structural patterns. These struc-
tural patterns are described in the form of rules or properties
that are simple conditional expressions or properties that
classify requests into four response types:Permit, Deny,
NotApplicable, andIndeterminate. These rules are
useful for manual inspection and for identifying corner
cases. Because the rules produced by the classification
learning algorithms are statistically true, it is likely ofin-
terest to the user to inspect the requests that violate those
rules. If violating requests exist in the training data, then
they are identified by Weka as misclassified instances. If no
violating request has been generated by the request factory,
then it is possible to translate the rule into a property and use
an existing property verification tool [3, 4,10] to generatea
request or set of requests that violate the inferred property.

4. Preliminary Results

We applied our tool on an access control policy of a
central grades repository system for a university, which
was earlier used by Fisler et al. [3] to illustrate pol-
icy verification. Because the policy defines small, fi-
nite sets of subjects, resources, and actions, we use the
AllComboReqFactory to generate the entire set of pos-
sible requests. With3 subjects,2 resources, and2 actions,
the request factory generated27 = 128 different requests.
Unfortunately56 of the combinations produced invalid re-
quests that resulted inIndeterminate responses,54 eval-
uated toNotApplicable responses,10 evaluated toDeny
responses, and8 evaluated toPermit responses.

We used the Prism classification algorithm [2] to gen-
erate rule sets using two different sets of training data.



The first set used the output from all128 requests. In the
second set we removed all instances with the response of
Indeterminate or NotApplicable. Although the per-
formance of the partial data set appears similar to that of the
full data set, the number of rules is smaller and more rele-
vant for the partial data set. The full data set produces30

rules whereas the partial data set produces the5 rules shown
in Figure 2.

For comparison purposes, we have translated the rules in
the actual XACML policy to the form shown in Figure 1.
By comparing Figure 1 and Figure 2, we see that the in-
ferred properties do indeed summarize the policy. How-
ever, because there are misclassified instances, we know
that the inferred properties arenot universally true. Note
that Rules 1.1 and 1.2 are equivalent to Rules 2.1 and 2.2,
respectively. Rules 2.4 and 2.5 are intuitively correct be-
cause a student should not have access to internal grades or
have assign permissions for any resource.

An error in the policy specification was discovered af-
ter we investigated the misclassified requests. Recall that
those misclassified requests represent instances in which the
policy produces responses that are inconsistent with the re-
sponses of similar requests. The rationale is that these spe-
cial cases are likely bug-exposing requests. The request in
question is one in which aStudentwishes toReceive and
Assign the resource ofExternalGrades. The classifica-
tion modelcorrectlyclassifies the response asDeny but the
policy evaluates the request toPermit. The policy authors
did not intend for a student to have permissions to assign
their own grade as shown by Rule 1.3. This error is the
same discrepancy found by Fisler et al. [3], which is a re-
sult of a subtlety of the XACML language. The root cause
of the problem is that XACML allows an arbitrary number
of values for a given attribute. This example illustrates that
the investigation of misclassified requests can lead to the
discovery of errors in policy specifications.

This simple example has shown that even with a small
number of request-response pairs, machine learning can be
a valuable tool for discovering and summarizing the basic
properties of a policy. We suspect that its value and power
will increase as the complexity and size of the policy grows
because the inferred properties can summarize and aggre-
gate the complex rules specified in the expressed policy.
Further experimentation with a broader range of classifica-
tion algorithms on large, complex policies is still required
in future work to further assess the approach.

5. Conclusion

We have developed a tool that helps users identify re-
quests that may reveal errors in policy specifications by in-
tegrating several components including request generation,
request evaluation, and machine learning algorithms to infer

policy properties from request-response pairs. We have ap-
plied our tool on an access control policy of a central grades
repository system for a university. Our results show that
applying machine learning algorithms can provide valuable
insight into basic policy properties and help identify specific
fault-revealing requests.

In future work we plan to perform experiments on much
larger and more complex policies to further evaluate the
usefulness of our request generation and machine learn-
ing techniques to identify discrepancies between a pol-
icy’s specification and its intended function. We have only
scratched the surface of what Weka is capable of and we
need to further explore its data processing, classification,
and visualization capabilities as well as many parameters
and statistical measures used to tune and evaluate various
machine learning algorithms. We also plan to investigate
alternative techniques of request generation, for example,
by using property verification tools such as Margrave. We
also plan to use Margrave’s counter-example generation
feature to provide requests that do not follow the general
policy properties inferred by the classification learning al-
gorithms.

References

[1] M. Burgess. Probabilistic anomaly detection in distributed
computer networks. Science of Computer Programming,
60(1):1–26, 2006.

[2] J. Cendrowska. Prism: An algorithm for inducing modu-
lar rules. International Journal of Man-Machine Studies,
27(4):349–370, 1987.

[3] K. Fisler, S. Krishnamurthi, L. Meyerovich, and
M. Tschantz. Verification of change-impact analysis
of access-control policies. InInternational Conference on
Software Engineering, pages 196–205, 2005.

[4] G. Hughes and T. Bultan. Automated verification of access
control policies. Technical Report 2004-22, Department of
Computer Science, University of California, Santa Barbara,
2004.

[5] D. Jackson, I. Shlyakhter, and M. Sridharan. A micromod-
ularity mechanism. InProc. 8th ESEC/FSE, pages 62–73,
2001.

[6] OASIS. OASIS eXtensible Access Markup Language
(XACML). Published Standard, 2005.

[7] Sun Microsystems. Sun’s XACML Implementation. Source-
forge, 2005.

[8] I. H. Witten and E. Frank.Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, 2005.

[9] N. Zhang, M. Ryan, and D. P. Guelev. Synthesising ver-
ified access control systems in XACML. InProc. 2004
ACM workshop on Formal Methods in Security Engineer-
ing, pages 56–65, 2004.

[10] N. Zhang, M. Ryan, and D. P. Guelev. Evaluating access
control policies through model checking. InProc. 8th In-
ternational Conference on Information Security, pages 446–
460, September 2005.


