
Preliminary Analysis of Contestant Performance for
a Code Hunt Contest

Adrian Clark
Jonathan Wells
Angello Astorga

University of Illinois at
Urbana-Champaign

{ajclark3,jjwells2,aastorg2}@illinois.
edu

Andrew Xie
Independent

xie.yandi@gmail.com

Jalen Coleman-Lands
Tao Xie

University of Illinois at
Urbana-Champaign

{clmnlnd2,taoxie}@illinois.edu

Abstract
Platforms of programming contests are increasingly adopted
to incentivize students’ interests in programming and train
their programming and problem-solving skills. Code Hunt
(https://www.codehunt.com/) is one such popular platform
from Microsoft Research, being adopted in various contests
worldwide. For a contest, Code Hunt hosts a sequence of
programming puzzles provided by the contest organizers
and provides interactive feedback to the contestants to assist
them in solving the puzzles. Analyzing platform-collected
data for a Code Hunt contest can provide valuable insights
on understanding both the contestants and the puzzles in
the contest, in order to improve the design of future contests
and training of the contestants. In this paper, we present
preliminary analysis of contestant performance among all
contestants along with comparing contestant performance
between contestants using mostly Java and contestants using
mostly C#. Such analysis is conducted on a Code Hunt data
set (released to the public) that contains the programs writ-
ten by students worldwide during a contest over 48 hours.
The contest was attended by 259 contestants to attempt to
solve 24 puzzles. The contest finally included about 13,000
programs submitted by these contestants. The analysis re-
sults expose a number of interesting and useful observations
for future research.

CCS Concepts • Social and professional topics→ Soft-
ware engineering education;

Keywords Code Hunt, Educational Software Engineering

1 Introduction
Platforms of programming contests are increasingly adopted
to incentivize students’ interests in programming and train
their programming and problem-solving skills. Among vari-
ous such platforms, CodeHunt [1] (https://www.codehunt.com/),
released by Microsoft Research, is a web-based platform for
online programming education through gaming. Solving a

PLATEAU’17 Workshop on Evaluation and Usability of Programming Lan-
guages and Tools, October 23, 2017, Vancouver, CA

puzzle in Code Hunt can teach a student algorithms and
give the student a coding mindset in a mystery format: the
functional requirements for the coding task, in the form of
the secret solution, are not known to the student. Instead,
the student gets clues from a table (produced by Code Hunt)
containing sample test inputs (generated by the underlying
automatic test generation engine named Pex [3, 5]) and their
outputs for the secret solution and the student’s working
solution (named as the student solution), respectively. Based
on the clues, the student iteratively tries to improve the stu-
dent solution to match the functional requirements (i.e., the
functional behaviors of the secret solution). There is no limit
on the number of iterations/attempts that the student can
make to solve a puzzle. The student successfully solves the
puzzle with the student solution if it matches the functional
behaviors of the secret solution. A student can solve puzzles
in either Java or C#, as their programming language of choice.
For a contest, Code Hunt hosts a sequence of programming
puzzles provided by the contest organizers. Code Hunt can
be also leveraged for teaching or training purposes [4, 6–9].
In 2015, Microsoft Research has released to the public a

data set collected from a student-only worldwide contest
that took place over 48 hours, called the Imagine Cup 2014.
There were 259 contestants, who attempted to solve 24 puz-
zles (i.e., levels) organized in 4 sectors (6 puzzles per sector)
based on a learning topic and increasing level of difficulty.
Approximately 13,000 programs (i.e., student solutions) were
submitted by these contestants during the contest. After a
contestant successfully solves a puzzle, the Code Hunt game
engine assigns a score (1, 2, or 3) to the contestant’s solution
code. The score reflects how elegant the student solution is,
measured by how succinct the solution is in terms of the
number of instructions in the compiled .NET intermediate
language. In particular, score 1 indicates that the solution
is much longer than all other so far submitted student solu-
tions, while 2 is about average, and 3 is significantly shorter.
Each puzzle requires a different algorithm of a certain type,
and puzzles with the same type are organized into the same
sector. Sectors and puzzles are organized by difficulty. Code
Hunt imposes a rule that a contestant can access a puzzle in
a sector only if the contestant has won at least all but one

PLATEAU’17, October 23, 2017, Vancouver, CA Clark et al.

Figure 1. Percentage of contestants who complete a puzzle (i.e., level) (among all contestants).

puzzle of the previous sector, and therefore contest/puzzle
creators tend to arrange puzzles in order of increasing diffi-
culty.
Analyzing the data set released for the Code Hunt con-

test can provide valuable insights on understanding both
the contestants and the puzzles in the contest, in order to
improve the design of future contests and training of the
contestants. In this paper, we present preliminary analysis
of contestant performance among all contestants along with
comparing contestant performance between contestants us-
ing mostly Java (named as Java contestants) and contestants
using mostly C# (named as C# contestants). The analysis re-
sults expose a number of interesting and useful observations
for future research.
The analysis in this paper complements an analysis con-

ducted in previous work [2] on the same data set in two main
ways. First, the analysis in this paper investigates the scores
(1, 2, or 3) obtained by contestants besides puzzle completion
as focused by the previous work. Second, besides studying
the performance of all contestants as focused by the previous
work, the analysis in this paper additionally compares the
performance between Java contestants and C# contestants.
The rest of the paper is organized as follows. Section 2

presents the contest performance for all the 259 contestants.
Then Section 3 presents the performance comparison of Java
contestants and C# contestants. Finally, Section 4 concludes
the paper.

2 Performance Analysis of All Contestants
The difficulty levels of puzzle solving should be incrementally
increased such that later puzzles in the sequence are more
challenging to solve than earlier ones in the contest. For our
analysis, we measure the difficulty encountered by the con-
testants for a puzzle, i.e., level, (along with the contestants’
performance), based on (1) the percentage of contestants
who complete (i.e., successfully solve) the puzzle among all
the contestants, and (2) the percentage of contestants who
obtain a specific score (1, 2, or 3) for the puzzle among all
the contestants (if a contestant could not complete a puzzle,
the contestant obtains score 0). Note that there can be cases
where some contestants may give up attempting a puzzle
because the puzzle’s being too easy causes these contestants
to lose interest, or they get bored and move on to other activ-
ities. However, such cases might not be very common among
the contestants within such serious worldwide contest over
48 hours.

To help understand the general trend of difficulty in the
contest, Figure 1 shows the percentage of contestants who
complete a particular puzzle among all the contestants. Fig-
ure 2 shows the percentage of contestants who receive scores
of 1, 2, and 3 for a particular puzzle, denoted by three bars,
respectively. For both figures, the x axis shows the 24 puzzles
(i.e., levels).

Figure 1 shows that a trend of increasing difficulty can
be observed across sectors and puzzles, indeed with some
fluctuations (e.g., at Puzzles 3, 4, 7, 8, 17, 24). The percentage
of contestants who complete puzzles from increasing sectors

Preliminary Analysis of Contestant Performance for a Code Hunt Contest PLATEAU’17, October 23, 2017, Vancouver, CA

(1-4) gradually decreases. In particular, for Sector 1 (i.e., Puz-
zles 1-6), the percentage of contestants who complete puzzles
range from 98% to 41%. For Sector 2 (i.e., Puzzles 7-12), the
percentage of contestants who complete puzzles ranges from
27% to 11%. For Sector 3 (Puzzles 13-18) and Sector 4 (Puzzles
19-24), the percentage of contestants who complete puzzles
ranges from 14% to 6%, and 8% to 3%, respectively.
However, compared to their nearby puzzles, Puzzles 3,

7, and 17 are relatively more difficult, as also discussed in
previous work [2].

Puzzle 3’s secret solution is shown below:
Puzzle 3’s secret solution
public static bool Puzzle(bool x, bool y, bool z) {

return x | y & z;
}

Puzzle 3 is more difficult to solve than nearby puzzles primar-
ily because its solution is based on using bit-wise operations,
whose functional behaviors tend to be a bit challenging for
contestants to infer based on the table of test inputs and
outputs.
Puzzle 7’s simplified secret solution (with the same func-

tional behaviors as the original secret solution) is shown
below:

Puzzle 7’s simplified secret solution
public static int Puzzle(int[] a) {
int sum = 0;
foreach (var n in a) {

sum += n;
}

int len = a.Length;
return (sum + len/2) / len;
}

Only about 10% of the contestants could complete this puz-
zle. The main reason is that computing the proper rounded
average from the list tends to be challenging for contestants
to infer based on table of test inputs and outputs.
The secret solution in Puzzle 17 is to emulate the move-

ment of a knight piece in a chess game, as shown below:
Puzzle 17’s secret solution

public static class Program {
static int[] deltaX = {-2, -2, -1, -1, 1, 1, 2, 2};
static int[] deltaY = {-1, 1, -2, 2, -2, 2, -1, 1};

public static int[][] Puzzle(int x, int y) {
PexAssume.IsTrue(1<=x & x<=8 & 1<=y & y<=8);
if (x==5&y==1 | x==3&y==8); // Hint to user
int[] moves = new int[8];
int moveIndex = 0;
for(int i=0; i<8; i++) {

int xx = x+deltaX[i];
if (xx < 1 | xx > 8) continue;
int yy = y+deltaY[i];
if (yy < 1 | yy > 8) continue;
moves[moveIndex++] = (xx << 8) | yy;

}
int[][] result = new int[moveIndex][];
for(int i=0; i<moveIndex; i++) {

int val = moves[i];
result[i] = new int[] val>>8, val&0xFF ;

}
return result;

}
}

Only about 5% of the contestants could complete this puzzle.
The difficulty primarily comes from the relatively complex
logic in the secret solution.
Figure 2 shows a similar trend of increasing difficulty. In

general, contestants who complete a puzzle tend to obtain
score 3. Note that after a contestant completes a puzzle, the
contestant has a chance to optimize his/her student solution
by reducing its length while preserving the functional be-
haviors (e.g., removing those extra conditional statements
removing which would not change the functional behaviors
of the student solution). However, we have two additional
interesting observations. For Puzzles 19-24 (the most diffi-
cult group of puzzles) along with Puzzle 13, the contestants
who complete these puzzles overwhelmingly obtain score 3.
For Puzzles 1-3 and 5 (among the easiest puzzles), similarly,
the contestants who complete these puzzles overwhelmingly
obtain score 3.
Among the 24 puzzles, for Puzzles 6, 8, and 17, the per-

centage of contestants obtaining score 1 is similar to the
percentage of contestants obtaining score 3. Such situation
is in big contrast to the other puzzles, for which the percent-
age of contestants obtaining score 3 is dominating.
The secret solution in Puzzle 6 is about counting words

in the given string s with the following two lines as its key
statements:

Puzzle 6’s partial secret solution
string[] list = s.Split((char[])null,

StringSplitOptions.RemoveEmptyEntries);
return list.Length;

Therefore, about half of the contestants who complete the
puzzle implement such functionality in many lines of code
without realizing that they could leverage the string API
method Split.
The secret solution in Puzzle 8 is to count the depth of

nesting parentheses in the given string s. Interestingly the
percentage of contestants obtaining score 2 is higher than
the percentage of contestants obtaining score 1 or 3. This
puzzle is the only onewith such situation. The secret solution
includes the following lines as its key statements:

Puzzle 8’s partial secret solution
int openClose = 0;
int maxDepth = 0;
foreach (char c in s) {
if (c == '(') {

openClose++;
if (openClose > maxDepth)

maxDepth = openClose;
}
else
if (c == ')') {

openClose--;
if (openClose < 0) return 0;

}
}
return (openClose == 0) ? maxDepth : 0;

A non-trivial percentage of contestants who complete the
puzzle fail to write the last return statement in a succinct way
as adopted in the secret solution, leading to the observation
for Puzzle 8.

PLATEAU’17, October 23, 2017, Vancouver, CA Clark et al.

Figure 2. Percentage of scores 1, 2, and 3 achieved by all contestants

About half of the contestants who complete Puzzle 17
implement such functionality of emulating the movement of
a knight piece in many lines of code, without being able to
leverage the use of bit-wise operations to solve the puzzle,
as used in the secret solution shown earlier.

3 Performance Analysis of Java
Contestants vs. C# Contestants

In this section, we compare the performance of those contes-
tants who attempt more than half of the attempted puzzles
using Java (named as Java contestants) and those contestants
who attempt more than half of the puzzles using C# (named
as C# contestants).
By analyzing the data set, we find out that among the

259 contestants, there are 143 C# contestants, 113 Java
contestants, and 3 contestants who use both Java and C#
to attempt the same number of puzzles, respectively. In fact,
the 3 contestants are not the only ones to switch languages
while attempting the puzzles; 21 contestants switch the used
language at some point during the contest including 11 Java
contestants and 7 C# contestants. In the analysis presented
in the rest of this section, we focus on comparing the perfor-
mance of the 143 C# contestants and 113 Java contestants.
In other words, the numbers of Java contestants and C# con-
testants are at a similar scale but Java contestants are about
20% more than C# contestants. Such result is not surprising
given that in general Java is more popularly adopted than
C#1.
1http://statisticstimes.com/tech/top-computer-languages.php

Figure 3 shows the percentage of C# contestants who
complete a particular puzzle among all the C# contestants
(indicated by the left purple bar) and the percentage of Java
contestants who complete a particular puzzle among all the
Java contestants (indicated by the right yellow bar). In the
figure, the x axis shows the 24 puzzles (i.e., levels). As is
shown in Figure 3, generally the Java contestants perform
better than the C# contestants across puzzles. The only two
exceptions are Puzzles 3 and 17, for which C# contestants
perform better than Java contestants; the difference is espe-
cially obvious for Puzzle 3. Recall that Puzzles 3 and 17 fall
into the observed fluctuations: those puzzles that are more
difficult to solve than their nearby puzzles. In future work,
we plan to compare the details of the student solutions for
these two puzzles by C# contestants and Java contestants, in
order to dig out primary reasons for such outlier cases.

Figures 4 and 5 show the percentage of C# contestants and
Java contestants, respectively, who receive scores of 1, 2, and
3 for a particular puzzle, denoted by three bars, respectively.
For both figures, the x axis shows the 24 puzzles (i.e., levels).
Generally, the percentage of C# contestants obtaining score
3 is lower than the percentage of Java contestants obtaining
score 3, indicating that C# contestants perform worse than
Java contestants with respect to the scores. Such result is
consistent with that from Figure 3.
In addition, there are some interesting differences across

Figures 4 and 5. For Puzzle 8, the percentage of C# contes-
tants obtaining score 2 is highly dominating whereas the
percentage of Java contestants obtaining score 1 is higher
than both that of Java contestants obtaining score 2 or 3.

http://statisticstimes.com/tech/top-computer-languages.php

Preliminary Analysis of Contestant Performance for a Code Hunt Contest PLATEAU’17, October 23, 2017, Vancouver, CA

Figure 3. Percentage of successful attempts (completions) per puzzle (i.e., level) by C# contestants and Java contestants.

For Puzzle 11, the percentage of Java contestants obtaining
score 1 is higher than that of Java contestants obtaining score
3, and both are much higher than that of Java contestants
obtaining score 2.
One possible reason to explain that Java contestants per-

form better than C# contestants could be that Java, being a
very popular language, is typically taught very early on in
students’ careers, and thus Java contestants may be more
experienced programmers. In future work, we plan to inves-
tigate the correlation between the self-declared experience
levels of contestants and their language of choice in conduct-
ing the contest.

4 Conclusion
In this paper, we have presented preliminary analysis of con-
testant performance among all contestants along with com-
paring contestant performance between Java contestants and
C# contestants. As expected, the puzzles in the contest are
generally having increasing difficulty, with a few exceptional
cases. Generally, the contestants obtain score 3, especially
for the easiest puzzles (the first group in the sequence) and
the most difficult puzzles (the last group in the sequence).
Java contestants tend to outperform C# contestants. These
analysis results expose a number of interesting and useful
observations for future research.

Acknowledgments
This work is supported in part by National Science Foun-
dation under grants no. CCF-1409423, CNS-1434582, CNS-
1513939, CNS-1564274.

References
[1] Judith Bishop, R. Nigel Horspool, Tao Xie, Nikolai Tillmann, and

Jonathan de Halleux. 2015. Code Hunt: Experience with Coding Con-
tests at Scale. In Proc. International Conference on Software Engineering
(ICSE 2015), JSEET. 398–407.

[2] Pierre McCauley, Brandon Nsiah-Ababio, Joshua Reed, Faramola Isiaka,
and Tao Xie. 2016. Preliminary Analysis of Code Hunt Data Set from
a Contest. In Proc. International Code Hunt Workshop on Educational
Software Engineering (CHESE 2016). 7–8.

[3] Nikolai Tillmann and Jonathan de Halleux. 2008. Pex-White Box Test
Generation for .NET. In Proc. International Conference on Tests and Proofs
(TAP 2008). 134–153.

[4] Nikolai Tillmann, Jonathan de Halleux, Judith Bishop, Tao Xie, Nigel
Horspool, and Daniel Perelman. 2014. Code Hunt: Context-Driven In-
teractive Gaming for Learning Programming and Software Engineering.
In Proc. International Workshop on Context in Software Development
(CSD 2014).

[5] Nikolai Tillmann, Jonathan de Halleux, and Tao Xie. 2014. Transferring
an Automated Test Generation Tool to Practice: From Pex to Fakes and
Code Digger. In Proc. ACM/IEEE International Conference on Automated
Software Engineering (ASE 2014). 385–396.

[6] Nikolai Tillmann, Jonathan de Halleux, Tao Xie, and Judith Bishop. 2014.
Code Hunt: Gamifying Teaching and Learning of Computer Science at
Scale. In Proc. ACM Conference on Learning @ Scale Conference (L@S
2014). 221–222.

[7] Nikolai Tillmann, Jonathan De Halleux, Tao Xie, Sumit Gulwani, and
Judith Bishop. 2013. Teaching and Learning Programming and Software
Engineering via Interactive Gaming. In Proc. International Conference
on Software Engineering (ICSE 2013), SEE. 1117–1126.

PLATEAU’17, October 23, 2017, Vancouver, CA Clark et al.

Figure 4. Percentage of scores achieved by C# contestants

Figure 5. Percentage of scores achieved by Java contestants

[8] Tao Xie, Judith Bishop, R. Nigel Horspool, Nikolai Tillmann, and
Jonathan de Halleux. 2015. Crowdsourcing Code and Process via Code
Hunt. In Proc. IEEE/ACM International Workshop on CrowdSourcing in
Software Engineering (CSI-SE 2015). 15–16.

[9] Tao Xie, Judith Bishop, Nikolai Tillmann, and Jonathan de Halleux.
2015. Gamifying Software Security Education and Training via Secure
Coding Duels in Code Hunt. In Proceedings of the 2015 Symposium and
Bootcamp on the Science of Security (HotSoS 2015). 26:1–26:2.

	Abstract
	1 Introduction
	2 Performance Analysis of All Contestants
	3 Performance Analysis of Java Contestants vs. C# Contestants
	4 Conclusion
	Acknowledgments
	References

