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Abstract

A software system interacts with third-party libraries

through various APIs. Insufficient documentation and con-

stant refactorings of third-party libraries make API library

reuse difficult and error prone. Using these library APIs

often needs to follow certain usage patterns. These patterns

aid developers in addressing commonly faced programming

problems such as what checks should precede or follow API

calls, how to use a given set of APIs for a given task, or what

API method sequence should be used to obtain one object

from another. Ordering rules (specifications) also exist be-

tween APIs, and these rules govern the secure and robust

operation of the system using these APIs. These patterns

and rules may not be well documented by the API develop-

ers. Furthermore, usage patterns and specifications might

change with library refactorings, requiring changes in the

software that reuse the library. To address these issues, we

develop novel techniques (and their supporting tools) based

on mining source code, assisting developers in productively

reusing third party libraries to build reliable and secure soft-

ware.1

1 Introduction

The primary goal of software development is to deliver

high-quality software efficiently and in the least amount of

time whenever possible. To achieve the preceding goal,

developers often want to reuse existing frameworks or li-

braries instead of developing similar code artifacts from

scratch. The challenging aspect for developers in reusing

the existing frameworks or libraries is to understand the

usage patterns and ordering rules (specifications) among

Application Programming Interfaces (APIs) exposed by

1This work is supported in part by NSF grant CNS-0720641, CCF-

0725190, and ARO grant W911NF-07-1-0431.

those frameworks or libraries, because many of the existing

frameworks or libraries are not well documented. Incorrect

usage of APIs may lead to violated API specifications, lead-

ing to security and robustness defects in the software. Fur-

thermore, usage patterns and specifications might change

with library refactorings, requiring changes in the software

that reuse the library.

To address these issues, we develop novel techniques

(based on data mining) that automatically mine usage pat-

terns and specifications, and detect refactorings from source

code. Our techniques aid developers in productively reusing

third party libraries to build reliable and secure software.

We present three infrastructures based on mining source

code to address the main issues faced by developers in

reusing API libraries. The tracing infrastructure (Section 2)

automatically mines API usage patterns and specifications

from API client code in local source code repositories. The

searching infrastructure (Section 3) expands the scope of

mining to also include billions of lines of open-source API

client code available on the web. The refactoring-detection

infrastructure (Section 4) automatically detects refactorings

in libraries by analyzing library API implementation code.

We have implemented our techniques in a suite of tools.

Apiartor [3], ExitSafe [2], and IDeaMiner [4] are based on

the tracing infrastructure. NEGWeb [19] and PARSEWeb

[18] are based on the searching infrastructure. Finally,

RefacLib [17] is based on the refactoring-detection infras-

tructure. The high-level details of our infrastructures and

the highlights of the evaluation results of our tools are pro-

vided in the subsequent sections.

2 Tracing Infrastructure

A software system interacts with third-party libraries

through various APIs. Using these library APIs often needs

to follow certain usage patterns (how to use a given set of

APIs for a particular task?). Furthermore, ordering rules
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Figure 1. Tracing Infrastructure

(specifications) exist between APIs, and these rules govern

the secure and robust operation of the system using these

APIs. Unfortunately, API usage patterns and various API

specifications are not well documented by the API-library

developers. API patterns cut across procedural boundaries

and an attempt to infer these patterns by manual inspec-

tion of source code (API client code) is often inefficient

and inaccurate. Several problems exist even when the API

specifications are known. API specifications (when known)

can be formally written for third-party APIs and statically

verified against a software system. But manually writing

a large number of formal API specifications for static ver-

ification is often inaccurate or incomplete, apart from be-

ing cumbersome. Formal specifications are complicated

and lengthy mainly due to the various API details (such

as input/return type, error flags, and return values for APIs

on success/failure) and language syntax considerations re-

quired for the specification to be accurate and complete. To

address these issues, we present the tracing infrastructure

that mines API details, patterns, and specifications by ana-

lyzing the source code (API client code). In this section, we

present our tracing infrastructure and the three tools based

on the infrastructure, namely, Apiartor (Section 2.1), Exit-

Safe (Section 2.2), and IDeaMiner (Section 2.3).

The high-level overview of the tracing infrastructure

[2, 3] is shown in Figure 1. The tracing infrastructure

has four main components: trace generator, scenario ex-

tractor, miners, and pattern extractor. The trace genera-

tor uses compile-time push-down model-checking (PDMC)

[10] to generate inter-procedural static traces, which ap-

proximate run-time API behaviors. The PDMC process ver-

ifies a property specified in the form of Finite State Machine

(FSM) over a given program. Using Triggers [3], a form of

FSM, we adapt the PDMC process to output static traces in

the program involving APIs of interest. A single static trace

from the model checker might involve several API usage

scenarios, being often interspersed. The scenario extrac-

tor separates different usage scenarios from a given trace,

so that each scenario can be fed separately to the miners,

our next component. The miner component employs vari-

ous data mining techniques on these static traces to output

frequent partial orders or frequent sequences (based on the

employed data-mining technique) among APIs. The miner

output is then processed by the pattern extractor to output

API details, patterns, and specifications.

2.1 Apiartor

Apiartor employs the tracing infrastructure to mine us-

age patterns and specifications that involve multiple-API se-

quences from the static traces. Previous approaches [14,22]

mine frequent association rules, itemsets, or subsequences

that capture API call patterns shared by API client code.

However, these frequent API patterns cannot completely

capture some useful orderings shared by APIs, especially

when multiple APIs are involved across different proce-

dures. Apiartor summarizes API usage patterns as partial

orders [16]. Different API usage scenarios are extracted

from the static traces by our scenario extraction algorithm

and fed to a Frequent Closed Partial Order (FCPO) miner

[16]. The miner summarizes different usage patterns as

compact partial orders. The usage patterns can be used as a

recommender, which shows how to use a set of APIs for a

particular task. Our experience of applying the framework

on 72 clients of the X11 library with 200K LOC in total

has shown that the extracted API partial orders are useful in

assisting effective API reuse and checking. We also com-

pare Apiartor against an existing dynamic-trace miner [5].

Our results [3] highlight the advantages of our static-trace

mining.

2.2 ExitSafe

Incorrect handling of errors incurred after API invoca-

tions (in short, API errors) can lead to security and robust-

ness problems, two primary threats to software reliability.

Correct handling of API errors can be specified as formal

specifications, verifiable by static checkers, to ensure de-

pendable computing. But API error specifications are often

unavailable or imprecise, and cannot be inferred easily by

source code inspection. Based on our tracing infrastruc-

ture, we develop a novel technique called ExitSafe, for stat-

ically mining API error specifications automatically from

software package repositories, without requiring any user

input. Similar to Apiartor, ExitSafe employs the tracing

infrastructure to approximate run-time API error behaviors

with static traces. Frequent sequence mining [20] is used

on these static traces to mine specifications that define the

correct handling of errors for relevant APIs used in the soft-



ware packages. The mined specifications are then used to

uncover API error-handling bugs. We have implemented

our technique in a tool called ExitSafe, and validated the ef-

fectiveness of ExitSafe on 82 widely used open-source soft-

ware packages with approximately 300KLOC in total [2].

2.3 IDeaMiner

Manually writing formal specifications (when known)

for static verification can be cumbersome. Based on the

tracing infrastructure, we implement IDeaMiner [4], which

infers API details such as return values on success/failure,

error flags, and return value type from the static traces.

IDeaMiner implements simple data-flow extensions to the

PDMC process to infer API details. Based on these inferred

API details and the language syntax (user-provided, as a

one-time AST database for a given language), our Speci-

fier tool [1] translates user-specified generic API rules to

concrete formal specifications verifiable by static check-

ers. Users can specify generic rules at an abstract level that

needs no knowledge of the source code, system, or API de-

tails. We apply IDeaMiner and Specifier on 10 Redhat-9.0

packages that use the well-known POSIX-API library to ex-

pose around 200 robustness problems [4].

3 Searching Infrastructure

Open source projects available on the web include many

valuable usage scenarios of the APIs of interest; these us-

age scenarios can help understand how to reuse those APIs

and can give hints on API properties that must be satisfied

while reusing those APIs. To gather such usage scenarios,

we develop a searching infrastructure that leverages a code

search engine such as Google code search [11] to gather a

large number of code examples that reuse the APIs of inter-

est. We analyze gathered code examples statically to extract

the patterns of reuse and properties that should be satisfied

for reusing those APIs.

While enjoying the benefits provided by a code search

engine in terms of expanding the analysis scope to billions

of lines of code available on the web, our infrastructure

faces one new challenge: the code samples returned by a

code search engine are often partial and not compilable,

because a code search engine retrieves individual source

files with usages of the given query API, instead of entire

projects. Therefore, we develop several heuristics to tackle

this challenge. We explain a heuristic used in our infrastruc-

ture through the code sample shown below:

public QueueSession test() { ...

return connect.createQueueSession(false,int);}

In this code sample, the method-invocation

createQueueSession is a part of the return state-

ment. The receiver object type of method-invocation

01: VerificationResult vr0, vr1;

02: Verifier verf = VerifierFactory.getVerifier(cName);

03: if(verf != null) {
04: vr0 = verf.doPass1();

05: if(vr0 != VerificationResult.VR OK)

06: return;

07: vr1 = verf.doPass2(); ...

Figure 2. A code example of the BCEL library.

createQueueSession can be inferred by looking up the

declaration of the connect variable. But as our infrastruc-

ture deals with a code sample that is partial, it is difficult

to get the return type of the method-invocation without

being able to access the corresponding method declaration

in the downloaded file. However, the return type can still

be inferred from the return type of the enclosing method

declaration. As the enclosing method declaration has

return type QueueSession, we can infer that the return

type of method-invocation createQueueSession is

QueueSession or one of its subtypes.

We next describe the tools developed based on our

searching infrastructure.

3.1 NEGWeb

Neglected conditions, also referred as missing paths, are

known to be an important class of software defects. In par-

ticular, neglected conditions refer to (1) missing conditions

that check the receiver or arguments of an API call before

the API call or (2) missing conditions that check the return

values or receiver of an API call after the API call. To detect

neglected conditions, we develop a novel tool, called NEG-

Web, that is based on our searching infrastructure. NEG-

Web mines programming rules that must be satisfied for us-

ing an API from the related code examples gathered through

a code search engine and applies mined rules to detect ne-

glected conditions around that API in a given input applica-

tion. As NEGWeb is developed based on our searching in-

frastructure, unlike the existing approaches such as Chang

et al. [7], which focuses on mining one project code base,

NEGWeb mines a much larger scope of code bases. In ad-

dition, NEGWeb’s approach is based on simple statistical

analysis and is more scalable than the approach by Chang

et al., which is based on frequent sub-graph mining that suf-

fers from scalability issues.

We explain our NEGWeb approach using the code sam-

ple related to the BCEL library shown in Figure 2. Initially,

NEGWeb parses the code sample and builds a control flow

graph. NEGWeb uses dominance and data dependency, and

extracts preceding and succeeding conditions around the

nodes that include any of the methods such as doPass1

and doPass2. A rule candidate extracted from the exam-

ple code sample is “direct-const-check on return

after doPass1 with VerificationResult.VR OK”,

which describes that an equality check with constant

VerificationResult.VR OK should be performed on the



return object of the doPass1 method. NEGWeb mines ex-

tracted rule candidates to compute frequent programming

rules and applies mined rules to detect violations in a given

input application.

We evaluated NEGWeb to detect violations in local code

bases or open source code bases. NEGWeb confirms three

real defects in Java code reported in the literature and also

finds three previously unknown defects in a large-scale open

source project called Columba (91,508 lines of Java code)

that reuses 541 API classes and 2225 API methods. We

also report a high percentage of real rules among the top 25

reported rules mined for five popular open source applica-

tions.

3.2 PARSEWeb

A common problem faced by developers while reusing

existing frameworks or libraries is that the developers of-

ten know what type of object that they need, but do not

know how to get that object with a specific method se-

quence. PARSEWeb, a tool developed based on our search-

ing infrastructure, attempts to address the preceding is-

sue by accepting a query of the form “Source → Destina-

tion” and suggests frequent method-invocation sequences

that accept the Source object type as input and produce

the Destination object type as output. We explain our

PARSEWeb tool through an example query “IEditorPart

→ ICompilationUnit” related to the Eclipse IDE pro-

gramming. PARSEWeb uses our searching infrastruc-

ture to gather related code examples with the usages of

IEditorPart and ICompilationUnit. PARSEWeb an-

alyzes gathered code examples statically and constructs a

directed acyclic graph. PARSEWeb identifies nodes that

contain the given Source and Destination object types and

extracts a method-invocation sequence by calculating the

shortest path between those Source and Destination nodes.

A method-invocation sequence suggested by PARSEWeb is

shown below:
IEditorPart iep = ...

IEditorInput editorInp = iep.getEditorInput();

IWorkingCopyManager wcm = JavaUI.getWorkingCopyManager();

ICompilationUnit icu = wcm.getWorkingCopy(editorInp);

Along with several heuristics described in the search-

ing infrastructure, PARSEWeb includes other heuristics for

clustering similar sequences and for ranking the clustered

sequences. PARSEWeb uses an additional heuristic called

query splitting that helps address the problem where code

samples for the given query are split among different source

files. In our evaluation, we show that PARSEWeb sug-

gests solutions for real programming problems posted in

developer forums of existing libraries and PARSEWeb per-

forms better than existing related tools Prospector [15] and

Strathcona [13]. Furthermore, as PARSEWeb is developed

based on our searching infrastructure, unlike related tools,

PARSEWeb is not limited to the queries of any specific set

of libraries or frameworks.

4 Refactoring-Detection Infrastructure

Refactoring is a disciplined technique for improving the

internal structure of a program while preserving its ob-

servable behavior. The problem with refactorings is that

they can change an API and require software that uses

the old API to be updated to use the new API. Conven-

tionally, such updating is done manually, which is error-

prone, tedious, and disruptive to the development process.

Thus, such updating makes maintaining software expen-

sive. This problem is exacerbated when refactorings change

the APIs of reusable software components (e.g., libraries

and frameworks). Previous study [9] of five popular com-

ponents shows that refactorings cause more than 80% of

API changes that were not backwards-compatible. We next

describe the tool we developed based on our refactoring-

detection infrastructure.

4.1 RefacLib

We have developed a novel technique and its support-

ing tool, RefacLib, to automatically infer refactorings

that happened between two versions of a library. One of

the key challenges is the size of real-life libraries (hun-

dreds of KLOC). To reduce the search space, previous ap-

proaches [12, 21] assume that older program entities in one

version are removed and replaced with refactored entities

in the subsequent version. Thus, all these approaches start

by analyzing only pairs of program elements that disappear

from the old version and program elements that appear in

the newer version. While this assumption is true for soft-

ware that is built and used in-house, and does not need to be

backwards-compatible, reusable software libraries follow a

long deprecate-replace-remove cycle.

Moreover, most of the existing approaches [8, 21] rely

on similarity of internal references among program enti-

ties to detect refactorings. However, some of the program

entities might not have an internal reference from within

a library. To overcome the lack of internal references in

the case of libraries, we developed a new suite of analy-

ses. RefacLib uses a fast and innovative syntactic anal-

ysis based on Shingles-encoding [6], a technique used in

Information Retrieval to detect similarity in large bodies of

text. The syntactic analysis produces pairs of program el-

ements (across the two versions) that have similar bodies

(e.g., methods with similar bodies). These pairs are fed into

a suite of heuristic-based analyses that do not depend on

references, and thus are able to analyze libraries.

Our approach consists of three phases. The syntactic

analysis phase takes as input two versions of the com-



ponent, v1 and v2, and produces pairs of syntactically-

matching entities. The classification phase classifies these

pairs as candidates for various kinds of refactorings based

on some syntactic checks. We currently support seven

refactorings: ChangeMethodSignature, RenameClass,

PushDownMethod, RenamePackage, RenameMethod,

PullUpMethod, and MoveMethod (these were among the

most frequently performed refactorings found in a previous

study [9]). Finally, in the heuristic-based analysis phase,

the algorithm computes a composite score for each pair

based on various heuristics. We define a set of heuristics

for each type of refactoring. For each candidate pair, the

algorithm assigns a composite score that is a weighted sum

of scores for all heuristics defined for that refactoring type.

RefacLib reports as refactorings only the pairs with a score

above a threshold. Our syntactic analysis phase returns a set

of pairs of entities that are similar textually. These pairs of

similar entities are classified by the classification phase as

candidates of one of the seven refactoring types that we sup-

port. The classification is done using some syntactic checks.

These pairs of similar entities are suspected candidates

of refactorings, but may contain many pairs that are not ac-

tual refactorings and need to be filtered out. For candidates

of each refactoring type, our new heuristic-based analysis

selects pairs that are real refactorings. In particular, the

analysis gathers facts from the source code and Javadoc

comments, and computes similarity measures to assign an

overall score that reflects the likelihood of a candidate to

be a refactoring. The facts and similarity measures vary for

different types of refactorings. The process of classification

and heuristic-based analysis iterates visiting the set of all

pairs, and taking into account already detected refactorings.

The process continues until a fixed point is reached. This

process ensures that RefacLib detects pairs of entities that

underwent multiple refactorings.

We compared the accuracy of RefacLib with that of

a state-of-the-art tool RefactoringCrawler [8] for three

frameworks, and two libraries. Our experiments show that

RefacLib performs better than RefactoringCrawler

when detecting refactorings in libraries. Moreover,

the accuracy of RefacLib is comparable to that of

RefactoringCrawlerwhile detecting refactorings for the

three framework subjects. Furthermore, the subjects that we

chose were all real-world open-source components with up

to 352K lines of code, and thus RefacLib is scalable to

real-world software components.
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