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Abstract

Recently parameterized unit testing has emerged as a

promising and effective methodology to allow the separa-

tion of (1) specifying external, black-box behavior (e.g., as-

sumptions and assertions) by developers and (2) generat-

ing and selecting internal, white-box test inputs (i.e., high-

code-covering test inputs) by tools. A parameterized unit

test (PUT) is simply a test method that takes parameters,

specifies assumptions on the parameters, calls the code un-

der test, and specifies assertions.

The test effectiveness of PUTs highly depends on the way

that they are written by developers. For example, if stronger

assumptions are specified, only a smaller scope of test in-

puts than intended are generated by tools, leading to false

negatives in terms of fault detection. If weaker assertions

are specified, erroneous states induced by the test execution

do not necessarily cause assertion violations, leading to

false negatives. Detecting these false negatives is challeng-

ing since the insufficiently written PUTs would just pass. In

this paper, we propose a novel mutation analysis approach

for analyzing PUTs written by developers and identifying

likely locations in PUTs for improvement. The proposed

approach is a first step towards helping developers write

better PUTs in practice.

1 Introduction

Unit testing has been widely recognized as an important

and valuable means of improving software reliability, partly

due to its capabilities of exposing faults early in the devel-

opment life cycle. Recently parameterized unit testing [9]

has emerged as a promising and effective methodology of

extending the current industry practice of closed unit tests

(i.e., test methods without parameters). In parameterized

unit testing, test methods are generalized by allowing pa-

rameters. This generalization serves two purposes. First,

parameterized unit tests are specifications of the behavior of

the methods under test: they do not provide only exemplary

arguments to the methods under test, but provide ranges of

such arguments. Second, parameterized unit tests describe a

set of traditional unit tests that can be obtained by instantiat-

ing the parameterized unit tests with given argument-value

sets (generated either automatically or manually). Instanti-

ations should be chosen so that they exercise different code

paths of the methods under test.

In particular, parameterized unit testing allows the sepa-

ration of (1) specifying external, black-box behavior (e.g.,

assumptions and assertions) by developers and (2) generat-

ing and selecting internal, white-box test inputs (i.e., high-

code-covering test inputs) by tools. A parameterized unit

test (PUT) is simply a test method that takes parameters,

specifies assumptions on the parameters, calls the code un-

der test, and specifies assertions. Admittedly, writing open

PUTs is more challenging than writing closed traditional

unit tests.

The test effectiveness of PUTs highly depends on the

way that they are written by developers. (1) If stronger

assumptions (i.e., defining a smaller input domain than in-

tended) are specified, only a smaller scope of test inputs

than intended are generated by tools, leading to false nega-

tives in terms of fault detection. (2) If weaker assumptions

are written, a larger scope of test inputs than intended are

generated by tools, leading to false positives (since correctly

specified assertions are violated by some generated test in-

puts that should have been filtered by intended assump-

tions). (3) If stronger assertions (i.e., defining a smaller

allowable state domain than intended) are specified, violat-

ing these assertions does not necessarily indicate real faults,

leading to false positives. (4) If weaker assertions are spec-

ified, erroneous states induced by test execution do not nec-

essarily cause assertion violations, leading to false nega-

tives. Among the preceding four cases, false positives (and

their corresponding insufficiently specified assumptions or

assertions) could be easily detected based on reported asser-

tion violations. However, detecting false negatives (or their

corresponding insufficiently specified assumptions or asser-

tions) is challenging since the insufficiently written PUTs

would just pass.



To address this issue, we propose a novel mutation anal-

ysis approach for analyzing PUTs written by developers and

identifying likely locations in PUTs for improvement. The

proposed approach is a first step towards helping developers

write better PUTs in practice.

In our mutation analysis approach, we propose a set of

mutation operators for systematically mutating PUTs writ-

ten by developers. Our mutation operators simulate the ef-

fect of making a (likely insufficiently written) PUT (1) more

general in terms of allowing weaker assumptions to be used

to generate more test inputs (while violating no assertions)

or (2) more specialized in terms of allowing stronger asser-

tions to be checked (while still being satisfied by the gener-

ated test inputs).

Applying any of these mutation operators on a PUT pro-

duces one mutant PUT. Then a mutant PUT is determined to

be killed if a test input can be generated by tools to make the

mutant PUT fail (e.g., an assertion in the mutant PUT is vio-

lated). In traditional mutation testing [4], the more mutants

are killed, the higher quality the generated test inputs are of.

Here such a notion still applies. However, the more impor-

tant implication of mutation testing here is as follows: the

more mutant PUTs are killed, the higher quality the origi-

nal PUT is of, and the less improvement space the original

PUT can have. In addition, any live mutant PUT (i.e., one

not being killed) indicates a potential improvement (e.g.,

further generalization on assumptions or specialization on

assertions) of the original PUT by replacing it with the live

mutant PUT. Such live mutant PUTs are recommended to

developers for their consideration of PUT improvement.

2 Example

Throughout the rest of this paper, we illustrate our ap-

proach via a running example. The example is an inte-

ger stack implementation in C# adapted from one used by

Henkel and Diwan [5]. Figure 1 shows the relevant parts

of the code. The array Store contains the elements of the

stack, and Size is the number of the elements and the index

of the first free location in the stack. The method Push/Pop

appropriately increases/decreases the size after/before writ-

ing/reading the element. Additionally, Push allows only

non-negative integer elements to be pushed to the stack, and

Push grows the array when the Size is equal to the whole

array’s length. Pop returns -1 if the stack is empty; oth-

erwise, it returns the element being popped. The method

IsEmpty is an observer that checks if the stack has any el-

ements, and the method Equals compares two stacks for

equality.

A parameterized unit test (PUT) [9] is simply a method

that takes parameters, specifies assumptions on the parame-

ters, calls the code under test, and specifies assertions. For

example, the test methods in Figure 3 are example PUTs for

public class IntStack {
private int[] Store;

private int Size;

private static int INITIAL_CAPACITY = 10;

public IntStack() {
this.Store = new int[INITIAL_CAPACITY];

this.Size = 0;

}
public void Push(int value) {
if (value < 0) return;

if (this.Size == this.Store.Length) {
int[] store = new int[this.Store.Length * 2];

Array.Copy(this.Store, store, this.Size);

this.Store = store;

}
this.Store[this.Size++] = value;

}
public int Pop() {
if (this.Size == 0) return -1;

return this.Store[--this.Size];

}
public bool IsEmpty() {
return (this.Size == 0);

}
public bool Equals(Object other) {
if (!(other is IntStack)) return false;

IntStack s = (IntStack)other;

if (this.Size != s.Size) return false;

for (int i = 0; i < this.Size; i++)

if (this.Store[i] != s.Store[i]) return false;

return true;

}
}

Figure 1. An integer stack implementation

the IntStack class in Figure 1, whereas Figure 2 shows a

traditional unit test. These PUTs are in the format supported

by Pex [8], an automatic unit testing tool from Microsoft

Research. A PUT is annotated with “[PexMethod]”. Note

that some lines in the PUTs are commented out with a pre-

fix of “//” while being kept there for later illustration pur-

poses. Let us consider the last PUT TestPushPopPUT4 in

Figure 3. It has two parameters: an IntStack object and an

integer. The IsTrue method of the PexAssume class spec-

ifies an assumption for the PUT: any test input (i.e., PUT

argument values) that violates the assumption is discarded

without further being checked against specified assertions.

The IsTrue method of the PexAssert class specifies an

assertion for the PUT: a problem is detected when the asser-

tion is violated by a test input that satisfies the specified as-

sumptions. The TestPushPopPUT4 basically specifies that

for any non-null IntStack object and any non-negative in-

teger, after pushing this integer to the stack, popping the

stack would return this integer.

The test effectiveness of PUTs highly depends on the

way that they are written by developers. For example,

if stronger assumptions (i.e., defining a smaller input do-

main than intended) are specified, only a smaller scope of

test inputs than intended are generated by tools, leading to

false negatives in terms of fault detection. For example,

in contrast to TestPushPopPUT4 (the most general PUT

in Figure 3), TestPushPopPUT3 allows the intended push-

ing and popping behavior to be checked on only an empty

IntStack. In fact, such behavior is applicable and should

be checked on an IntStack with any elements.



[PexMethod]

public void TestPushPop() {
1 IntStack s = new IntStack();

2 s.Push(3);

3 s.Push(5);

4 Assert.IsTrue(s.Pop() == 5);

}

Figure 2. Traditional unit test

[PexMethod]

public void TestPushPopPUT1(int j) {
1 PexAssume.IsTrue(j >= 0);

2 IntStack s = new IntStack();

3 s.Push(j);

4 s.Push(5);

5 //PexAssert.IsTrue(s.Pop() > -1);

6 //PexAssert.IsTrue(s.Pop() > 0);

7 PexAssert.IsTrue(s.Pop() == 5);

}

[PexMethod]

public void TestPushPopPUT2(int j, int i) {
8 //PexAssume.IsTrue(i > 0);

9 PexAssume.IsTrue(i >= 0);

10 IntStack s = new IntStack();

11 s.Push(j);

12 s.Push(i);

13 PexAssert.IsTrue(s.Pop() == i);

}

[PexMethod]

public void TestPushPopPUT3(int i) {
14 PexAssume.IsTrue(i >= 0);

15 IntStack s = new IntStack();

16 s.Push(i);

17 PexAssert.IsTrue(s.Pop() == i);

}

[PexMethod]

public void TestPushPopPUT4(IntStack s, int i) {
18 PexAssume.IsTrue(s != null);

19 PexAssume.IsTrue(i >= 0);

20 s.Push(i);

21 PexAssert.IsTrue(s.Pop() == i);

}

Figure 3. Parameterized unit tests

If weaker assertions (i.e., defining a larger allowable

state domain than intended) are specified, erroneous states

induced by test execution do not necessarily cause assertion

violations, leading to false negatives. For example, assume

that instead of Line 7, Line 5 is used for the assertion in the

first PUT TestPushPopPUT1. Comparing to the more de-

sirable assertion in Line 7, the assertion in Line 5 provides

less constrained checking: the execution of a faulty imple-

mentation of IntStack can pass the assertion in Line 5 but

violate the assertion in Line 7.

Detecting false negatives (or their corresponding insuf-

ficiently specified assumptions or assertions) is challenging

since the insufficiently written PUTs would just pass. The

goal of our mutation analysis approach is to identify likely

locations in PUTs for improvement. For example, our ap-

proach helps improve the PUTs closer to the top of the PUT

list in Figure 3 to be ones closer to the bottom.

3 Approach

The input to our mutation analysis approach is the pro-

gram under test and its passing PUT: a PUT where no test

inputs can be generated (by a test generation tool such as

Pex [8]) to violate specified assertions in the PUT while

satisfying the specified assumptions. The output of our ap-

proach is a subset of mutant PUTs (mutated from the orig-

inal passing PUT) being recommended to the developers.

The developers can inspect this subset of mutant PUTs for

likely locations of the original PUT for improvement. We

next present the two key components of the approach: mu-

tation killing (used to select which mutant PUTs to recom-

mend to developers) and mutation operators (used to gener-

ate mutant PUTs).

3.1 Mutation Killing

Given a mutant PUT generated with the mutation oper-

ators described in the next subsection, our approach deter-

mines the mutant PUT to be live if no test inputs can be

generated (by a test generation tool such as Pex) to violate

specified assertions in the mutant PUT while satisfying the

specified assumptions, and to be killed otherwise.

The mutation operators described in the next subsection

are specifically designed to produce mutant PUTs that are

more general on assumptions and more specialized on as-

sertions than the original PUT. In traditional mutation test-

ing [4], the more mutants are killed, the higher quality the

generated test inputs are of. Here such a notion still applies.

However, the more important implication of mutation test-

ing here is as follows: the more mutant PUTs are killed,

the higher quality the original PUT is of. In addition, any

live mutant PUT indicates a potential improvement (e.g.,

further generalization on assumptions or specialization on

assertions) of the original PUT by replacing it with the live

mutant PUT. Such live mutant PUT can be recommended to

developers for their consideration of PUT improvement.

3.2 Mutation Operators

Our mutation operators simulate the effect of making a

PUT (1) more general in terms of allowing weaker assump-

tions to be used to generate more test inputs (while violating

no assertions) or (2) more specialized in terms of allowing

stronger assertions to be checked (while still being satisfied

by the generated test inputs).

We devise four main types of mutation operators in our

approach: (1) weakening constraints specified in assump-

tions of a PUT, (2) strengthening constraints specified in as-

sertions of a PUT, (3) replacing a primitive value in a PUT

with an additional parameter, and (4) deleting a method in-

vocation from a PUT.



Table 1. Example mutation rules for clauses

from PUT assumptions or assertions (const:

positive constant) (extended from [6])
Clause Mutated Clauses

Strengthening Weakening

P == Q — P >= Q, P <= Q

P ! = Q P > Q, P < Q, —

P == (Q + const),

P == (Q − const)

P > Q P > (Q + const), P >= Q, P ! = Q

P == (Q + const)

P < Q P < (Q − const), P <= Q, P ! = Q

P == (Q − const)

P >= Q P > Q, P == Q, P >= (Q − const)
P == (Q + const)

P <= Q P < Q, P == Q, P <= (Q + const)
P == (Q − const)

3.2.1 Assumption Weakening

Assumptions in a PUT are stronger than intended when the

intended input constraints (under which the specified as-

sertions in the PUT should be satisfied) allow more inputs

than the specified assumptions allow. Thus, if assumptions

of a PUT are stronger than intended, a test generation tool

will not generate or keep test inputs whose execution should

have been checked against the specified assertions. Such a

case reduces the fault-detection capability of the PUT. For

this type of insufficiency of PUTs, we provide two mutation

operators: deleting an assumption from the PUT and weak-

ening a clause in an assumption. Example mutation rules

for weakening a clause are shown in Column 3 of Table 1.

For example, based on the mutation operator of “deleting

an assumption from the PUT”, deleting Line 1 in the first

PUT TestPushPopPUT1 leads to a live mutant PUT. This

live mutant PUT indicates that the assumption in Line 1 is

not necessary for preventing the specified assertion from be-

ing violated. As another example, let us assume that the

second PUT TestPushPopPUT2 is using the assumption in

Line 8 instead of the one in Line 9. Based on the mutation

operator of “weakening a clause in an assumption” (more

precisely weakening P > Q to P >= Q), our approach

produces a live mutant PUT. This live mutant PUT indi-

cates that the assumption in Line 8 can be weakened to be

the one in Line 9, allowing more test inputs to be generated

and checked against the specified assertion.

3.2.2 Assertion Strengthening

Assertions in a PUT are weaker than intended when the con-

straints in the specified assertions allow erroneous program

states not to violate the assertions. Thus, if assertions of a

PUT are weaker than intended, generated test inputs may

not cause violations of the assertions even when these test

inputs cause erroneous program states. Such a case reduces

the fault-detection capability of the PUT. For this type of

insufficiency of PUTs, we provide one mutation operator:

strengthening a clause in an assertion. Example mutation

rules for strengthening a clause are shown in Column 2 of

Table 1.

For example, let us assume that the first PUT

TestPushPopPUT1 is using the assertion in Line 5 instead

of the one in Line 6 or 7. Based on the mutation operator of

“strengthening a clause” (more precisely weakening P > Q

to P > (Q + const)), our approach produces a live mutant

PUT that uses the assertion in Line 6. As another example,

based on the mutation operator of “strengthening a clause”

(more precisely weakening P > Q to P == (Q + const)),
our approach produces a live mutant PUT that uses the as-

sertion in Line 7. These live mutant PUTs indicate that the

assertion in Line 5 or 6 can be strengthened to be the one

in Line 7 to allow more error-exposing test inputs to violate

the specified assertion.

3.2.3 Primitive-Value Generalization

Promoting primitive values or objects inside a test method

as its parameters is a way to exploit more benefits of a PUT.

For this purpose, we provide one mutation operator: replac-

ing a constant primitive value with a parameter of the PUT.

For the convenience of illustration, let us consider the tra-

ditional unit test shown in Figure 2 (on which our approach

can also be applied by treating it as a special PUT). Based

on the mutation operator, our approach generalizes 3 in Line

2 of TestPushPop (Figure 2) to be a parameter j in the

generated live mutant PUT (shown as TestPushPopPUT1

in Figure 3 except for being without its first line).

3.2.4 Method-Invocation Deletion

There can be extra method invocations (including construc-

tor invocations) in a PUT that could reduce the generality

of the PUT. First, the developers may hard-code the con-

struction of a particular object (such as the receiver object)

inside the PUT; the intended object (that should have been

used to specify the behavior) could be just any object in-

stead of the specific fixed object. Second, when setting up

an object state (such as a receiver-object state) for invoking

the method under test, the developers may add extra unnec-

essary method invocations that induce a smaller scope of

object states than intended. To address these issues, we pro-

vide one mutation operator: deleting a method invocation

in the PUT. When a constructor invocation is deleted, the

mutant PUT includes an extra parameter of the constructor

class type and an assumption that this parameter is not a null

reference. After a method invocation is deleted, any unused

parameters of the PUT are also deleted.



For example, based on the mutation operator, delet-

ing the method invocation in Line 11 in the second

PUT TestPushPopPUT2 leads to a live mutant PUT

(TestPushPopPUT3). This live mutant PUT indicates

that the method invocation in Line 11 is not necessary

for preventing the specified assertion from being vio-

lated. As another example, based on the mutation op-

erator, deleting the constructor invocation in Line 15 in

the third PUT TestPushPopPUT3 leads to a live mutant

PUT (TestPushPopPUT4). This live mutant PUT indicates

that providing any IntStack object (beyond an empty

IntStack object) before Line 16 can prevent the specified

assertion from being violated.

4 Related Work

Previous work [1–3] mutates a model and then uses the

model mutants to assess the quality of a test suite or gener-

ate new test inputs. In contrast, our approach focuses on as-

sessing the quality of the assumptions or assertions (which

can be seen as properties) being specified in a PUT.

Martin et al. [7] proposed a mutation verification ap-

proach to assess the quality of properties specified for an

access control policy in a declarative specification language.

Their approach mutates a policy and see whether the given

properties can be violated by each mutant policy. Our ap-

proach also targets at identifying insufficiency of properties

specified in a PUT. However, unlike their approach in mu-

tating the software under verification, our approach mutates

properties.

Hou et al. [6] mutate component-interface contracts to

simulate possible faults. They use mutation killing score

to help select and prioritize tests in regression testing. Our

mutation operators on weakening or strengthening a clause

are extended from theirs. However, our mutation analysis

provides a broader scope of mutation operators and targets

at a totally different problem.

5 Conclusion

Parameterized unit testing has emerged as a promising

and effective methodology in developer testing. However,

the test effectiveness of parameterized unit tests (PUTs)

highly depends on the way that they are written by devel-

opers. Providing high generality on assumptions and high

specialization on assertions in a PUT is important for pro-

viding high fault-detection capability. To help the devel-

opers improve their PUTs, we have proposed a mutation

analysis approach for identifying likely locations in a PUT

for developers to improve. In our approach, we propose the

determination of mutation killing and a set of mutation op-

erators for producing mutant PUTs. In future work, we plan

to pursue future directions as listed below.

We plan to automate the generation of mutant PUTs with

the proposed mutation operators, and empirically investi-

gate the effectiveness of the proposed approach in improv-

ing the fault-detection capability of PUTs written by devel-

opers. We also plan to expand the current set of mutation

operators proposed in our approach, and empirically inves-

tigate the effectiveness of different mutation operators.

To improve the effectiveness of our mutation analysis in

terms of producing live mutant PUTs, we plan to use static

and dynamic analysis to help identify the right const val-

ues listed in Table 1 given an assumption or assertion. In

addition, sometimes when we apply the mutation opera-

tors of primitive-value generalization or method-invocation

deletion to produce live mutant PUTs, additional appropri-

ate assumptions may need to be added to the mutant PUTs,

and some assertions may need to be deleted or weakened to

make the mutant PUT live.
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