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Abstract—During software development, a developer often 

needs to discover specific usage patterns of Application 

Programming Interface (API) methods. However, these usage 

patterns are often not well documented. To help developers to 

get such usage patterns, there are approaches proposed to mine 

client code of the API methods. However, they lack metrics to 

measure the quality of the mined usage patterns, and the API 

usage patterns mined by the existing approaches tend to be 

many and redundant, posing significant barriers for being 

practical adoption. To address these issues, in this paper, we 

propose two quality metrics (succinctness and coverage) for 

mined usage patterns, and further propose a novel approach 

called Usage Pattern Miner (UP-Miner) that mines succinct and 

high-coverage usage patterns of API methods from source code. 

We have evaluated our approach on a large-scale Microsoft 

codebase. The results show that our approach is effective and 

outperforms an existing representative approach MAPO. The 

user studies conducted with Microsoft developers confirm the 

usefulness of the proposed approach in practice. 

Index Terms—API usage, usage pattern, sequence mining, 

software reuse, mining software repositories. 

I. INTRODUCTION 

Application Programming Interface (API) is an important 

form of software reuse and it has been widely used. It is 

common for an API method, no matter whether it is public 

(e.g., .NET framework API methods and Java Development 

Kit) or private, to be used in different contexts to complete 

different tasks. An API method combined with other API 

methods that should be invoked before/after is named a usage 

pattern.  

In practice, usage patterns of API methods are often not 

well documented. Thus, it is often challenging for developers 

to effectively and efficiently (re)use an API method in 

different contexts to complete different tasks, especially for 

those developers with relatively little knowledge of an API 

method. In a survey conducted at Microsoft in 2009, 67.6% 

respondents mentioned that there are obstacles caused by 

inadequate or absent resources for learning APIs [12]. 

Another field study found that a major challenge for API 

users is to discover the subset of the APIs that can help 

complete a task [13]. 

Based on our qualitative study with Microsoft developers, 

we confirmed the challenge of (re)using an API method in 

different contexts to complete different tasks, and were 

motivated to develop a tool for mining API usage patterns to 

effectively assist developers in practice. We further found 

three important aspects for developers that would use such a 

tool. First, the tool should be scalable to work with large-

scale codebases with millions of lines of code and thousands 

of (public and private) API methods. Based on this 

consideration, we decided to mine usage patterns of API 

methods from the invocation sequences of API methods in 

source code, instead of mining usage patterns from more 

complicated data representations such as control or data flow 

graphs [4][11] or partial-order graphs [1]. Second, the mined 

patterns should be succinct, i.e., the mined patterns should 

contain few redundant patterns so that developers do not need 

to review similar patterns repeatedly to find the one that they 

are interested in. Third, the mined patterns should achieve 

high coverage of possible usages of an API method so that 

developers may benefit from using the tool even when the 

target usage pattern is less popular in the codebase being 

mined. 

Although approaches ([1][10][14][15][18]) have been 

proposed to mine usage patterns of API methods from a 

codebase, they lack the metrics to measure the quality of 

mined usage patterns from the view point of developers/users. 

Furthermore, our empirical study (Section II) has found that 

the mined API usage patterns from a representative approach 

MAPO [18] tend to be many and redundant, posing 

significant barriers for being adopted in practice.  

In this paper, to address these issues, we first propose two 

quality metrics that measure the quality of mined usage 

patterns of API methods from the view point of 

developers/users, including the succinctness and coverage of 

usage patterns. We further propose a novel approach called 

Usage Pattern Miner of API methods (UP-Miner) that mines 

API usage patterns from source code. UP-Miner aims to 

achieve high coverage and succinctness of the mined patterns. 

It implements the BIDE algorithm [15] to mine frequent 

closed API-method invocation sequences and includes a two-

step clustering strategy before and after BIDE to identify 

usage patterns. Given a user-specified API method, UP-Miner 

can automatically search for all usage patterns of an API 

method and return associated code snippets as reuse 

candidates.  

This paper makes the following contributions: 

 We propose two quality metrics that measure the quality 

of the mined usage patterns of API methods, including 
_______________________ 
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the succinctness and coverage. Our work is the first 

attempt to measure the quality of mined usage patterns of 

API methods from the view point of developers/users. 

 We propose an approach called UP-Miner for mining 

succinct and high-coverage usage patterns of API 

methods from source code. UP-Miner includes a two-step 

clustering strategy before and after mining frequent 

closed API-method sequences from source code to 

effectively reduce redundancy and improve the 

succinctness of the mined API usage patterns.  

 We evaluated UP-Miner on a large-scale Microsoft 

codebase. The evaluation results show that UP-Miner is 

effective in addressing developers’ API queries. UP-

Miner also reduces the average percentage of redundant 

patterns to 11.92% (compared to 51.12% by MAPO 

[18]). 

 We conducted a user study with Microsoft developers. 

The results show that UP-Miner can effectively help 

developers reuse APIs in practice. 

The rest of the paper is organized as follows. Section II 

briefly introduces our motivating studies. Section III provides 

the problem definition. Section IV introduces the proposed 

UP-Miner approach. Section V and VI describe our in-house 

evaluations and user studies, respectively. Section VII 

discusses the results, and Section VIII discusses related 

research. Section IX concludes this paper. 

II. MOTIVATING STUDIES 

To understand the challenges posed by API usage pattern 

mining and to understand whether existing methods can 

address the practical requirements, we conducted two 

empirical studies. The first one attempts to understand the 

characteristics of API usage patterns in a large-scale 

commercial codebase at Microsoft. The second one is a study 

on the quality of API usage patterns mined by a representative 

approach MAPO [18] from the same codebase.  

In particular, we conducted the two studies against a 

large-scale codebase of a Microsoft product. We refer to it as 

codebase M in the rest of this paper for simplicity. Codebase 

M consists of over 8.5 million lines of code written in C# and 

over 40K API methods in total. More than one thousand 

developers have been involved in the development of this 

product over the past five years. 

A. An Empirical Study of API Usage Patterns 

We analyzed the characteristics of usage patterns of ten 

popular .NET API methods for database operations over 

codebase M. These ten API methods are listed in the right 

part of Table II. We choose these ten API methods since 

database operations are an important type of widely 

conducted operations in modern online service systems and 

enterprise applications. In addition, each of these API 

methods has a number of usage patterns for completing 

different database-operation tasks, such as reading/writing 

data from a database.  

We first identified all possible usage patterns of each API 

method by consulting the Microsoft Development Network 

(MSDN) and reference books. The usage patterns were first 

identified by one author A and then verified by two other 

authors independently. The two agreed with over 90% usage 

patterns identified by A, and they got agreements against with 

the remaining patterns after minor adjustments. From 

codebase M, we then collected the code snippets that contain 

those API usage patterns. The manually identified API usage 

patterns and the associated code snippets in codebase M 

served as the “golden set” for evaluations. 

We found that the distribution of API usage patterns is 

quite imbalanced - some API usage patterns occur very 

frequently and others occur quite rarely. Table I summarizes 

the results of the empirical study. For the ten studied API 

methods, the number of usage patterns ranges from 1 to 21, 

with an average of 6.3. The occurrence of a usage pattern 

ranges from 1 to 880, with an average of 71.4. 

Table I.  The distribution of API usage patterns in codebase M 

 #Total Min Max Mean  Std.Dev. 

Usage Patterns 63 1 21 6.3 6.3 

Pattern Occurrences  4499 1 880 71.4 252.2 

 

Fig.1. The usage distribution of the API method SqlCommand.ExecuteReader 
in codebase M 

As an example, Figure 1 shows that for API method 

SqlCommand.ExecuteReader, four different usage 

patterns were identified. Different usage patterns have 

different occurrences in codebase M. Pattern 1 appears 196 

times, while Pattern 4 appears only 19 times.  

This result reveals that a good miner for API usage 

patterns should be able to discover all possible API usage 

patterns, even though some are less frequently used (i.e., their 

occurrence frequency is small). Without less frequently used 

patterns available in the mining result, developers would lose 

the opportunity to leverage the existing code to implement 

similar functionalities that are enabled by such usage patterns. 

A less frequently used pattern in the past would not 

necessarily also be rarely used in the future. 

B. A Replication Study of a Representative Approach 

As discussed in the introduction section, based on the 

consideration of tool scalability, we decided to mine API 

usage patterns from the invocation sequences of API methods 

in a codebase, instead of more complicated data 
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representations, such as data/control flow graphs or partial 

order groups of API method invocations. We found that 

MAPO [18] is a representative approach that mines API 

usage patterns from invocation sequences of API methods. 

Therefore, we conducted a study to examine the quality of 

API usage patterns mined by MAPO against codebase M.  

We implemented MAPO according to its description [18]. 

Then we used MAPO to query the usage patterns of the same 

ten API methods as those used in the first empirical study. We 

found that MAPO produced a large number of patterns1. The 

number of patterns returned for each API method ranged from 

14 to 94, with an average of 45.2. We manually examined 

each returned pattern and found that there was a large 

percentage of redundancy. As an example, Figure 2 shows 

part of the results returned by MAPO for API method 

SqlConnection.Open. We can see that many patterns 

are very similar: some sequences are subsequences of the 

others. Therefore, most of them are redundant and incur extra 

effort for developers in finding usage patterns of interest. The 

percentage of duplicated patterns for API method 

SqlConnection.Open was 54.26% (Duplication is defined in 

section V.B): 51 patterns (out of 94) are duplicated and 

should be merged with other patterns. This result implies that 

in order to find API usage patterns of interest from the results 

returned by MAPO, a user has to browse a long list of 

sequences (possibly with high redundancy) before she can 

identify the usage patterns and their associated code snippets. 

SqlConnection.CreateCommand 
SqlConnection.Open 

----------------------------------------- 

SqlConnection.CreateCommand 
SqlConnection.Open  

SqlCommand.ExecuteReader 
----------------------------------------- 

SqlConnection.CreateCommand 

SqlConnection.Open  
SqlCommand.ExecuteReader 

SqlDataReader.Read 

----------------------------------------- 
SqlConnection.Open  

 

Fig.2. Partial list of patterns returned by MAPO when querying 
SqlConnection.Open 

III. PROBLEM DEFINITION 

Our empirical studies described in the previous section 

reveal a technical challenge: how to mine high quality API 

usage patterns? We measure the quality of mined API usage 

patterns from two main aspects from the view point of the 

developers/users: 

 Coverage: Patterns returned by an API usage miner 

should be able to cover all possible usage scenarios of an 

API method, including less commonly-used ones.  

 Succinctness: Patterns returned by an API usage miner 

should be succinct, since the developers usually prefer to 

examine only a small number of patterns. Ideally, each 

                                                                 
1 Detailed results can be found on the project web site  

http://research.microsoft.com/UP-Miner 

typical usage scenario is represented by only one pattern 

and there is no redundancy among the patterns. 

Our definition of the problem of mining API usage 

patterns is as follows:  

Definition (API Usage Mining): Given a set of API 

method sequences and a minimum support threshold min_sup, 

the problem of API usage mining is to find an optimal number 

of k patterns, while the occurrence of each pattern is no less 

than min-sup, and both coverage and succinctness of the 

patterns can be maximized. 

IV. THE PROPOSED APPROACH 

To address the problem defined in Section III, we propose 

UP-Miner, an approach and support tool for mining succinct 

and high-coverage API usage patterns from source code. 

A. Mining Frequent API Usage Patterns 

Figure 3 shows the overall workflow of UP-Miner. For a 

set of call sequences that include an API method, UP-Miner 

first performs clustering based on the similarity of the 

sequences. It then mines API usage patterns from each cluster 

using a frequent closed sequence mining algorithm, e.g.,  

BIDE [15], and performs clustering again to group the 

frequent closed sequences into patterns. 

SqlConnection.CreateCommand
SqlConnection.Open 
SqlCommand.ExecuteReader

SqlDataReader.Read

Cluster call 
sequences

Mine frequent 
closed 

sequences

SqlConnection.CreateCommand

SqlConnection.Open 

Cluster 
frequent 

closed 
sequences

API Method Sequences
Initial API Usage 
Clusters

Frequent Closed 
Sequences

Final API Usage Clusters
 

Fig. 3. Overall workflow of UP-Miner 

1) Clustering API Method Sequences: We first cluster 

all the input sequences before identifying the frequent ones. 

This helps to avoid the problem of imbalanced usage 

distribution that we described in Section II.A: for some very 

common API usages, their sequences are frequent and may 

gain large support, while for some less common API usages, 

their frequency is low and thus may not reach the minimum 

support threshold. Clustering the API method sequences 

before mining frequent patterns increases the probability of 

the less frequent patterns to be mined out, because the less 

frequent patterns need to satisfy only the minimum support 

within a cluster instead of the entire set of method sequences.  

To cluster the sequences, we propose SeqSim, an n-gram 

based technique to compute the similarity of any two 

sequences. We first define the n-gram set G(X) for a sequence 

X(𝑥1𝑥2 … 𝑥𝑛)  as a collection of unigrams, bi-grams, … , n-

gram of  X: 

𝐺(𝑋) = {𝑥1, 𝑥2 … , 𝑥𝑛 ,  𝑥1𝑥2, 𝑥2𝑥3 … , 𝑥𝑛−1𝑥𝑛 , …, 

𝑥1𝑥2. . 𝑥𝑛−1, 𝑥2𝑥3. . 𝑥𝑛−1𝑥𝑛, 𝑥
1
𝑥2. . 𝑥𝑛−1𝑥𝑛} 



 

We define the similarity of two API method sequences 

based on the following two intuitions: (1) Two sequences are 

similar if they share a relatively high percentage of items 

(a.k.a., API method) between their corresponding n-gram sets; 

(2) Two method sequences are more similar if they share 

longer common and consecutive subsequences instead of 

shorter ones. We compute the similarity of two call sequences 

𝑠1 and 𝑠2 as follows:  

𝑆𝑒𝑞𝑆𝑖𝑚(𝑠1, 𝑠2) =
∑ 𝑊𝑒𝑖𝑔ℎ𝑡(𝑔∩

𝑖 )𝑖

∑ 𝑊𝑒𝑖𝑔ℎ𝑡(𝑔𝑈
𝑖 )𝑖

 

where 𝑔∩
𝑖 ∈ 𝐺∩ = 𝐺(𝑠1) ∩ 𝐺(𝑠2) ,  𝑔∪

𝑖 ∈ 𝐺∪ = 𝐺(𝑠1) ∪
𝐺(𝑠2) ,𝑊𝑒𝑖𝑔ℎ𝑡(𝑔∩

𝑖 ) is equal to the length of 𝑔∩
𝑖 .  

As an example, given 𝑠1 = abc and 𝑠2 = cab, then we will 

have 𝐺∩ = {𝑎, 𝑏, 𝑐, 𝑎𝑏} , 𝐺∪ = {𝑎, 𝑏, 𝑐, 𝑎𝑏, 𝑏𝑐, 𝑐𝑎, 𝑎𝑏𝑐, 𝑐𝑎𝑏} , 

and 𝑊𝑒𝑖𝑔ℎ𝑡(𝑎𝑏) = 1 ,𝑊𝑒𝑖𝑔ℎ𝑡(𝑎𝑏) = 2 ,  𝑆𝑒𝑞𝑆𝑖𝑚(𝑠1, 𝑠2) =

0.33.  

Based on the SeqSim values, we cluster API method 

sequences. We adopt a conservative technique (e.g., the 

complete linkage technique [6]) for clustering: the distance 

between two clusters is computed as the maximum distance 

between a pair of items in two clusters. The distance between 

any two clusters should be bigger than a threshold α. We 

describe the derivation of an optimal α value in Section IV.B. 

2) Mining Frequent Closed Sequences: To identify the 

frequent API usages, we implemented the BIDE algorithm [4] 

to mine frequent closed call sequences. There are a number of 

key concepts: a sequence 𝑠1  is called a sub-sequence of 

sequence 𝑠2  and 𝑠2  is called a super-sequence of 𝑠1  if 

sequence 𝑠1  is contained in sequence 𝑠2 ; A sequence s is a 

frequent sequence in a sequence set if 𝑠𝑢𝑝 (𝑠) ≥ 𝑚𝑖𝑛_𝑠𝑢𝑝 , 

where 𝑠𝑢𝑝 (𝑠) is the support of sequence s, i.e., the ratio of 

the sequences in the sequence set that are super-sequences of 

s, 𝑚𝑖𝑛_𝑠𝑢𝑝 is the minimum support threshold; s is a frequent 

closed sequence (as defined in [6]) if sequence s is frequent 

and there are no proper super-sequence of s with the same 

support. 

We apply BIDE to each cluster derived from the process 

described in the previous section and produce frequent closed 

sequences for the cluster. For example, for the three 

sequences in a cluster, ab, abc, and abd, if the 𝑚𝑖𝑛 _𝑠𝑢𝑝 is 

0.5, BIDE produces frequent closed sequences ab. While 

other frequent sequence miners such as Bitmap (the sequence 

mining algorithm used in MAPO) return a, b, and ab. Clearly, 

since ab is frequent, a and b are also frequent and need not to 

be listed. BIDE returns only the longest sequences if there are 

subsequences with the same support.  

3) Clustering Frequent Closed Sequences: After the 

first clustering described in Section IV.A.1, sequences that 

are not similar are divided into different clusters. However, 

the frequent closed sequences mined from different clusters 

could still be similar, causing redundancy among the resulting 

patterns. To consolidate the frequent closed patterns mined 

from different clusters, we perform another round of 

clustering and treat each resulting cluster as a usage pattern. 

For example, consider a situation in which the frequent closed 

sequence abc and ab are mined from different clusters. After 

clustering, these two sequences are grouped together as one 

pattern, and is shown as abc. Using this technique, we further 

reduce the number of redundant sequences in the mined API 

usage patterns. In this round of clustering, we again use the 

complete-linkage clustering technique with a threshold β (we 

describe the derivation of an optimal β value in Section IV.B). 

The similarity between two frequent sequences is also 

computed using the SeqSim metric described in Section 

IV.A.1.  

B. Determination of the Optimal Number of Patterns 

We adopted the two-step clustering strategy described in 

the previous section to improve the quality of mined patterns. 

Such clustering can help identify less common API usages 

whose frequency does not satisfy the minimum support of the 

entire sequences. The two-step clustering process involves 

two coefficients α (the threshold for the pre-BIDE clustering) 

and β (the threshold for the post-BIDE clustering), whose 

values vary independently. Different combinations of α and β 

can result in different clustering performances and different 

numbers of patterns and thus affecting the quality of mined 

usage patterns. 

We propose an automatic technique to determine the 

optimal threshold values. As described in Section III, the goal 

of API usage mining is to identify a number of patterns from 

a set of method sequences in order to maximize both the 

coverage and the succinctness of the patterns. 

Measuring the number of resulting patterns can reflect 

succinctness. In order to ensure that one usage scenario is 

covered by a minimum number of mined usage patterns, we 

expect that the mined patterns are dissimilar as much as 

possible from one another. To measure to what extent the 

mined usage pattern are dissimilar to each other, we define an 

overall dissimilarity metric D (the dissimilarity of the 

resulting pattern graphs). The metric D is defined as the 

average dissimilarity between all pairs of usage patterns:  

𝐷 = 
∑ ∑ 𝐷𝑠𝑖𝑚(𝑖,𝑗)𝑛

𝑗=𝑖+1
𝑛−1
𝑖=0

𝑛∗(𝑛−1)/2
 

where 𝐷𝑠𝑖𝑚(𝑖, 𝑗) is the dissimilarity of usage pattern i and j. 

𝐷𝑠𝑖𝑚(𝑖, 𝑗)  is defined as (1 − 𝑠𝑖𝑧𝑒(𝐵𝐺𝑖 ∩ 𝐵𝐺𝑗)/𝑠𝑖𝑧𝑒(𝐵𝐺𝑖 ∪

𝐵𝐺𝑗)), 𝐵𝐺𝑖 is the set of distinct bi-grams of all frequent closed 

sequences in usage pattern i. This definition is based on the 

intuition that the usage patterns will be more dissimilar if the 

percentage of common bi-grams that appear in the frequent 

closed sequences of these two usage patterns is lower. 

The selection of the two clustering thresholds should 

produce patterns that maximize the dissimilarities among 

identified patterns and minimize the number of resulting 

patterns. Therefore, we define the following utility function U: 

𝑈 = 𝐷/𝑛 



 

We propose a search-based algorithm that exhaustively 

searches for the optimal combination of threshold values that 

maximize the utility function (Figure 4). In Figure 4, we first 

set the pre-BIDE clustering threshold α to a maximum value 

αmax and the post-BIDE clustering threshold β to βmax. We 

compute the utility function for each pair of clustering 

thresholds, and adjust the threshold values by decreasing it 

value by a step δ, to search for the maximum utility value, 

until their values reach αmin or βmin. Finally, we return the 

optimal threshold values, 𝑚𝑎  and 𝑚𝛽 , that lead to the 

maximum utility value. Based on our empirical exploration, 

we set αmax = βmax = 1.00, αmin = βmin = 0.00, and δ =0.01. 

C. Tool Implementation 

UP-Miner includes an API parser to parse the source code 

files and to create an index for each API method. The API 

parser is based on Roslyn2, which constructs AST trees for 

each source code file. We also filter out some common 

logging and assertion methods such as Log.Info and 

Assert.AreEqual, since these methods are typically 

irrelevant to the program logic. After identifying API 

methods from their call sites in the source code files, we then 

create an index file for each API method and collect API 

method sequences. UP-Miner then mines the API usage 

patterns and presents the resulting patterns as probabilistic 

graphs, which are ranked by the number of occurrences. 

Besides the graphical representation of a usage pattern, UP-

Miner also provides developers the code snippets associated 

with the pattern. We briefly present how we build the 

probabilistic graph for a usage pattern and our prototype in 

the following: 

1) Deriving Probabilistic Graphs: In our tool 

implementation, we represent the API usage patterns as a 

probabilistic graph to help users intuitively examine and 

understand the patterns. A graph graphically represents a 

cluster of frequent closed patterns described in the previous 

section. Developers can understand the usage scenarios 

associated with an API method by examining the graph. A 

node in the graph indicates an API method and an edge 

                                                                 
2 http://msdn.microsoft.com/en-gb/roslyn 

indicates a temporal relationship between two methods. Each 

edge is associated with a probability value that indicates the 

probability of calling one method after the other among all 

occurrences of this usage pattern in the codebase. Figure 5 

shows an example of a graphical representation of a usage 

pattern for SqlConnection.Open. By examining the 

graph, users can better understand usage scenarios associated 

with this API method. 

Note that there are also other graphical presentations that 

can be used to present usage patterns such as finite state 

automata. In the future, we will further study which graphical 

representation best fits our needs. 

2) Prototype: Figure 6 shows a screenshot of UP-

Miner. On the top of the window is an input box, which 

allows developers to input an API method’s name. On the 

left side of the window is a list box that lists all patterns 

mined by UP-Miner. The graph panel shows the pattern as 

a probabilistic graph and the code panel shows the 

associated code snippets. 
 

V. EXPERIMENTS 

A. Experimental Design 

In order to evaluate our approach, we conducted a number 

of experiments against the Microsoft codebase M, which is a 

large codebase described in Section II. We selected 20 .NET 

API methods in our experiments (as shown in Table II). Ten 

of them are the same as the ones used for our empirical 

studies in Section II, and the other ten are http-request 

handling API methods. We choose these API methods 

because they are two important types of widely used .NET 

framework API methods in modern online service systems 

and enterprise applications. Through our experiments, we 

intend to investigate the following three research questions: 

RQ1: How effective is UP-Miner in generating succinct 

and high-covering API usage patterns?  

 

Fig. 5. An example usage pattern of SqlConnection.Open 

DetermineOptimalParameters 

1. set the initial pre-BIDE clustering threshold α to  

2. set max = 0,  = 0, = 0 
3. while α >  

4. set the initial post-BIDE clustering threshold β  to  

5.     while β >  
6.          compute the utility function U  

7.          If U is greater than max 

8.              max = U,  = α , = β   
9.          EndIf 

10.      decrease β  by δ 

11.      EndWhile 
12. decrease α by δ 

13. EndWhile 

14. return ,  

Fig.4. The algorithm for determining the optimal threshold values 



 

This research question evaluates the effectiveness of UP-

Miner in generating succinct and high-coverage API usage 

patterns. To answer this question, we manually identified a 

“golden set” of API usage patterns for each of these 20 API 

methods, as described in Section II.C. After collecting the 

golden set, we then ran queries for each API method against 

both UP-Miner and MAPO, and compared the results. In 

Section IV.B, we describe the metrics (used for the result 

comparison) to reflect the succinctness and coverage of the 

mined usage patterns.  

RQ2: How much benefit can the two-step clustering 

process bring? 

In Section IV, we proposed a two-step clustering process 

in the design of UP-Miner: one before the frequent closed 

sequence mining and one after. This research question 

evaluates how much benefit such a two-step clustering 

process brings by comparing the performance of UP-Miner 

(with such a process) and a BIDE-only approach (without 

such a process). 

RQ3: How much better is UP-Miner compared with 

the one-clustering+BIDE approach? 

Related to RQ2, this RQ further evaluates how much  

benefit the second clustering brings, by comparing the API 

usage patterns mined by UP-Miner and by the one-

clustering+BIDE approach (without the second clustering).  

B. Metrics 

For RQ1 and RQ3, we define a variant of the Purity and 

Inverse Purity metrics [9] for evaluating the effectiveness of 

the tools in producing succinct and high-covering patterns. 

We denote C as the set of clusters to be evaluated. A 

cluster represents a mined usage pattern. We denote L as the 

set of patterns in the golden set. |𝐿 in 𝐶𝑖| represents the 

number of the patterns defined in L and can be found in the 

ith cluster 𝐶𝑖. |𝐿𝑖  𝑖𝑛 𝐶| represents the number of patterns in 𝐶 

that contains the ith pattern 𝐿𝑖 in the golden set. We define the 

Average Purity (AP) and Average Inverse Purity (AIP) 

metrics as follows:

 AP = 
1

|𝐶|
∑ (|L in Ci| == 0? 0:

1

|L in Ci|
)|C|

i=1  

AIP = 
1

|𝐿|
∑ (|𝐿𝑖 𝑖𝑛 𝐶| == 0? 0:

1

|𝐿𝑖 𝑖𝑛 𝐶|
)|𝐿|

𝑖=1  

The values of the metrics range from 0 to 1, the higher the 

better. Ideally, each pattern produced by an API usage miner 

should represent only one pattern in the golden set (thus AP is 

1), and each pattern in the golden set should be represented by 

only one pattern produced by an API usage miner (thus AIP is 

1). Higher AIP values indicate higher coverage and (or) lower 

redundancies, since the AIP value of API pattern miner A 

would be lower than that of B if a golden set pattern does not 

appear in any patterns returned by A, but appears in one 

returned by B; the AIP value of A could also be lower than 

that of B if gold set patterns are represented by a fewer 

number of mined patterns returned by A compared that 

returned by B. Higher AP values mean that the mined usage 

patterns are more succinct in terms of a fewer number of 

golden set patterns appearing in one mined usage pattern. We 

define F-measure to compute the weighted average of 

Average Purity and Inverse Purity to get a robust and 

balanced quality measurement. The value of F-measure is 

from 0 to 1, the higher the better.

 
𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =

2 × 𝐴𝑃 × 𝐴𝐼𝑃

𝐴𝑃 + 𝐴𝐼𝑃
 

To further directly measure the effectiveness of the tools 

in producing succinct patterns, we design the metric 

Duplication as follows: 

Duplication = #Duplicated/#Total, 

1

2

3

4
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1. Search box;
2. Usage pattern 1 for 
SqlConnection.Open: conducting a simple 
reading operation after opening a Sql 
connection;
3. Usage pattern 5: conducting a 
transaction operation after opening a Sql 
connection;
4. Sample code Tab: showed code snippets 
associated with the selected usage pattern 
shown in the left panel;
5. Graphical representation of usage 
pattern: aggregated view of API calls that 
appears before calling the searched API 
and API calls that appear after calling the 
searched API with probability of 
invocation relationship.

 

Fig 6. Screenshot of UP-MINER prototype 



 

where #Total represents the number of patterns returned by 

the tools and #Duplicated represents the number of duplicated 

patterns. To calculate #Duplicated, we first find a minimal set 

of mined usage patterns that can represent as many golden-set 

patterns as possible, or maybe even all of them; the number of 

remaining mined patterns is defined as #Duplicated. The 

values of the metric range from 0 to 1, the lower the better.  

For RQ2, because BIDE does not produce clusters, the 

Average Purity and Average Inverse Purity metrics are not 

applicable. We used the metrics Recall, Precision, and F-

measure to measure the effectiveness of BIDE. |L in C| 

represents the number of the patterns defined in L that can be 

found in C. |C in L| represents the number of patterns in C that 

can be found in L. 

𝑅𝑒𝑐𝑎𝑙𝑙(𝐿, 𝐶) =
|𝐿 in 𝐶|

|𝐿|

  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐿, 𝐶) =

|𝐶 in 𝐿|

|𝐶|
 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝐿, 𝐶) =
2 × 𝑅𝑒𝑐𝑎𝑙𝑙(𝐿, 𝐶) × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐿, 𝐶)

𝑅𝑒𝑐𝑎𝑙𝑙(𝐿, 𝐶) + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐿, 𝐶)
 

The values of the metrics are from 0 to 1, the higher the better.  

C. Experimental Results 

We present our experimental results that answer the three 

research questions and compare the performance of UP-Miner 

with a number alternative approaches in this section. 

1) RQ1: How Effective Is UP-Miner in Generating 

Succinct and High-Coverage API Usage Patterns? Table II 

shows the evaluation results of UP-Miner and MAPO on 20 

APIs using the metrics F-measure and Duplication. In terms 

of F-measure, UP-Miner outperformed MAPO on 17 APIs 

(85%). The improvement ranged from 0.359 to 0.714, with an 

average of 0.285. In terms of Duplication, UP-Miner 

performed much better than MAPO on all 20 APIs, with an 

average of 11.92% (compared to MAPO’s 51.12%). Paired t-

tests confirmed that the results were statistically significant at 

the significance level 0.05. The evaluation results show that 

UP-Miner is effective in mining succinct and high-covering 

API usage patterns.  

2) RQ2: How Much Benefit Can the Two-Step 

Clustering Process Bring? Table III shows the comparison 

results (F-measure), which were computed through Recall and 

Precision between BIDE and UP-Miner (pre-BIDE clustering 

+ BIDE + post-BIDE clustering). For 19 APIs, UP-Miner 

achieved a better or equal performance than/to BIDE, and the 

improvement ranged from 0 to 0.603 with an average of 

0.173. A paired t-test shows that the results are statistically 

significant at the significance level 0.05. The results confirm 

that the proposed two-step clustering is highly beneficial in 

terms of improving the quality of the mined API usage 

patterns. 

3) RQ3: How Much Better Is UP-Miner Compared with 

the One-Clustering + BIDE Approach? Table IV shows the 

comparison results (F-measure of AP and AIP) between UP-

Miner and one-clustering + BIDE. The results show that UP-

Miner performed better than clustering + BIDE on 16 out of 

20 API methods, with an average improvement of 0.426. A 

paired t-test shows the results are statistically significant at 

the significance level 0.05. The results confirm that the 

proposed two-step clustering is more effective than single 

one-step clustering. 

4) Comparing with Alternative Approaches: Table V 

summarizes the results of our experiments. Among 20 studied 

API methods, UP-Miner performs better than One-clustering 

+ BIDE, MAPO, and BIDE approaches on 15, 17, and 16 API 

methods, respectively. The average improvement is 0.173, 

0.285, and 0.426, respectively. The experimental results show 

that, in general, UP-Miner outperforms MAPO, a 

representative approach, and two alternative approaches.  

Table II.  Evaluation Results (Comparisons of API usage pattern mining result between UP-Miner and MAPO) 

API Name Tool  
# patterns 

returned 
F-measure Duplication API Name Tool  

# patterns 

returned 
F-measure Duplication 

WebRequest. 

Create 

MAPO 71 34.76% 57.75% SqlConnection. 

Open 

MAPO 94 39.46% 54.26% 

UP-Miner 8 47.66% 12.00% UP-Miner 12 33.10% 0.00% 

HttpWebRequest. 

GetResponse 

MAPO 58 16.07% 70.69% SqlCommand. 

ExecuteNonQuery 

MAPO 53 18.56% 60.38% 

UP-Miner 7 52.42% 14.00% UP-Miner 5 61.54% 0.00% 

HttpWebResponse. 
GetResponseStream 

MAPO 46 40.92% 63.04% SqlCommand. 
Parameters.Add 

MAPO 56 19.28% 53.57% 

UP-Miner 9 50.00% 11.11% UP-Miner 8 25.00% 12.50% 

HttpWebRequest. 

Create 

MAPO 22 32.52% 40.91% SqlCommand. 

ExecuteReader 

MAPO 57 28.96% 68.42% 

UP-Miner 4 54.91% 0.00% UP-Miner 4 50.00% 25.00% 

HttpWebRequest. 

Headers.Add 

MAPO 11 21.27% 45.45% SqlDataReader. 

Read 

MAPO 67 3.95% 61.19% 

UP-Miner 3 60.00% 33.00% UP-Miner 13 38.01% 30.77% 

WebRequest. 
GetResponse 

MAPO 6 24.55% 58.82% SqlConnection. 
Close 

MAPO 44 30.03% 34.09% 

UP-Miner 6 54.13% 0.00% UP-Miner 2 55.24% 0.00% 

HttpWebRequest. 

GetRequestStream 

MAPO 6 49.07% 33.33% SqlCommand. 

ExecuteScalar 

MAPO 29 34.44% 65.52% 

UP-Miner 1 30.00% 16.67% UP-Miner 2 50.00% 0.00% 

HttpResponse. 

SetStatusText 

MAPO 6 28.58% 83.33% SqlConnection. 

CreateCommand 

MAPO 19 27.17% 42.11% 

UP-Miner 1 100.00% 0.00% UP-Miner 1 30.77% 0.00% 

HttpResponse. 

SetContent 

MAPO 6 27.91% 83.33% SqlCommand. 
Parameters. 

AddWithValue 

MAPO 14 25.00% 35.71% 

UP-Miner 2 66.67% 50.00% UP-Miner 3 50.00% 33.33% 

HttpResponse. 
Write 

MAPO 3 N.A. 0.00% SqlDataAdapter. 
Fill 

MAPO 19 9.09% 10.53% 

UP-Miner 1 66.67% 0.00% UP-Miner 1 N.A. 0.00% 



 

Table III.  Comparisons between BIDE and UP-Miner 
 (F-Measure) 

APIName BIDE 
UP-

MINER 
APIName BIDE 

UP-

MINER 

WebRequest.Create 19.51% 69.23% 
SqlConnection. 

Open 
13.33% 57.14% 

HttpWebRequest. 

GetResponse 
38.46% 90.91% 

SqlCommand. 

ExecuteNonQuery 
N/A 68.57% 

HttpWebResponse. 
GetResponseStream 

20.00% 57.14% 
SqlCommand. 

Parameters.Add 
N/A 33.33% 

HttpWebRequest. 
Create 

28.57% 88.89% 
SqlCommand. 
ExecuteReader 

N/A 60.00% 

HttpWebRequest. 

Headers.Add 
66.67% 80.00% 

SqlDataReader. 

Read 
80.00% 70.00% 

WebRequest. 

GetResponse 
16.67% 50.00% 

SqlConnection. 

Close 
11.11% 71.29% 

HttpWebRequest. 

GetRequestStream 
24.39% 40.00% 

SqlCommand. 

ExecuteScalar 
N/A 50.00% 

HttpResponse. 

SetStatusText 
100.00% 100.00% 

SqlConnection. 

CreateCommand 
28.29% 44.44% 

HttpResponse. 

SetContent 
100.00% 100.00% 

SqlCommand. 

Parameters. 

AddWithValue 

N/A 50.00% 

HttpResponse. 

Write 
28.57% 66.67% 

SqlDataAdapter. 

Fill 
N/A 50.00% 

 

Table IV.  Comparisons between One-Clustering + BIDE and UP-Miner (F-

Measure) 

APIName 
Clusterin

g + BIDE 

UP-

MINER 
APIName 

Clusterin

g + BIDE 

UP-

MINE

R 

WebRequest.Create 52.30% 47.66% 
SqlConnection. 

Open 
53.83% 

33.10

% 

HttpWebRequest. 
GetResponse 

38.46% 90.91% 
SqlCommand. 

ExecuteNonQuery 
52.57% 

61.54
% 

HttpWebResponse. 

GetResponseStream 
41.84% 50.00% 

SqlCommand. 

Parameters.Add 
16.00% 

25.00

% 

HttpWebRequest. 

Create 
52.01% 54.90% 

SqlCommand. 

ExecuteReader 
44.22% 

50.00

% 

HttpWebRequest. 

Headers.Add 
32.14% 60.00% 

SqlDataReader. 

Read 
14.86% 

22.58

% 

WebRequest. 

GetResponse 
44.44% 50.00% 

SqlConnection. 

Close 
43.59% 

55.24

% 

HttpWebRequest. 

GetRequestStream 
24.39% 40.00% 

SqlCommand. 

ExecuteScalar 
25.64% 

50.00

% 

HttpResponse. 

SetStatusText 
40.00% 100.00% 

SqlConnection. 

CreateCommand 
52.00% 

30.77

% 

HttpResponse. 

SetContent 
50.00% 66.67% 

SqlCommand. 

Parameters. 

AddWithValue 

36.36% 
50.00

% 

HttpResponse. 
Write 

33.33% 66.67% 
SqlDataAdapter. 

Fill 
20.00% n/a 

 

VI. USER STUDY 

We designed two user studies (one controlled study and 

one user survey) to explore the usefulness of our tool and the 

user experiences. 

Table V.  Summary of comparisons  

 
One-clustering + 

BIDE 
MAPO BIDE 

# API UP-MINER 
Wins 

15 17 16 

Average F-measure 

Improvement 
0.173 0.285 0.426 

A. Controlled Study 

In the controlled study, we created a program under 

development for collecting, displaying, and saving 

information from/to a text file. We then purposely left three 

major functionalities to be completed by the participants. 

These three tasks cover three different programming aspects: 

Task 1 concerns database operations, Task 2 designs the user 

interface, and Task 3 deals with XML file processing. The 

details of these tasks are as follows: 

Task 1: Reading information. This task asked the 

participants to complete a method that reads information from 

a text file, stores the information in a database, and retrieves 

information given search conditions. The database should roll 

back to the original status if the operations fail. We provided 

the API method SqlConnection.Open as the starting 

point to the participants and asked them to complete the rest 

of the code. In this task, two types of API usages were 

involved: the transaction-related   database operations 

(implemented via SqlConnection.Open-

SqlConnection.BeginTransaction-

SqlCommand.ExecuteNonQuery) and the normal database 

operations (implemented via SqlConnection.Open- 

SqlCommand.ExecuteReader). The former is less frequently 

used than the latter. Therefore, in this task, the participants 

had opportunities to select either more popular or less popular 

API usages.   

Task 2: Displaying information. In this task, the 

participants were asked to depict information as a bar chart. 

We provided the API method Graphics.DrawRectangle as 

the starting point for this task. 

Task 3: Writing information. This task required the 

participants to save the information in an XML file. We 

provided the API method XmlWriter.Create as the starting 

point for this task. 

We designed a cross evaluation: we invited six 

participants (interns working in our lab on other teams) and 

divided them into three groups; we then asked each group to 

implement the three programming tasks. Each group had the 

same average number of years of C# experience. The C# 

programming experiences of the participants ranged from 1 to 

18 months. The group arrangement is shown in Table VI. We 

asked the participants to implement the three tasks using 

Koders 3 , MAPO, and UP-Miner, respectively.  After the 

participants finished each of the tasks, we examined the 

correctness of the task completion.  

 

Table VI.  Group arrangement of the controlled user study 

 Koders MAPO UP-Miner 

Task 1 P1 P2 P3 P4 P5 P6 

Task 2 P3 P4 P5 P6 P1 P2 

Task 3 P5 P6 P1 P2 P3 P4 

                                                                 
3 http://www.koders.com/ 



 

Table VII shows the results returned by the participants. 

Using Koders and MAPO, the participants searched 16-17 

API queries, but did not manage to finish all three tasks on 

time (we asked participants to complete all tasks in 2 hours). 

Using UP-Miner, they completed all the tasks with 13 API 

queries on average. The study showed that the UP-Miner tool 

can help developers finish more tasks with fewer API queries. 

After the study, the participants explained that the reason for 

the incomplete tasks was that they did not obtain useful API 

usage patterns by using Koders or MAPO in many cases, 

especially for those usage patterns that are less popular, e.g., 

SqlConnection.BeginTransaction. 

Table VII.  Results of the controlled user study 

 Koders MAPO UP-Miner 

#Tasks Completed 1 2 3 

#Searched API 16 17 13 

B. User Survey 

We also conducted a survey of Microsoft developers to 

investigate whether UP-Miner helps with their programming 

tasks. 60 developers working on codebase M participated in 

the survey. In addition to asking participants to experience the 

UP-Miner tool, we also asked them whether they agree on the 

usefulness of the tool. The scores were given on a five-point 

Likert scale (Strongly agree - 5, Agree - 4, Neutral - 3, 

Disagree - 2, and Strongly Disagree - 1). 

We received feedback from 28 out of the 60 developers 

who we asked. All of them gave positive comments on the 

UP-Miner tool and believed that such a tool could help with 

their programming work. The average Likert score was 4.28 

(with standard deviation of 0.60). The developers found that 

the returned patterns, the graphical representation, and the 

sample code can help them reuse APIs. Below are some 

comments and feedback from the developers: 

Developer 1: Cool! This tool is really what I am looking 

for to find the right sample code.  

Developer 2: This is really a great tool. Especially I love 

the Pattern and the graph features, especially the graph 

feature. This graph could show the usage pattern and context, 

it provides much more meaningful interpretation than plain 

text, this will help understanding other’s code a lot. 

Developer 3: It is really a cool idea and tool to help 

understand the API usage, especially for some internal 

library which doesn’t have too many docs to tell you how to 

use the API. 

VII. DISCUSSION 

A. Why Does UP-Miner Work? 

We have identified the following reasons that UP-Miner 

outperforms existing methods, especially MAPO. 

 Guiding the algorithm design by two quality metrics. We 

proposed the succinctness and high coverage as two 

quality metrics of mined usage patterns from a 

developer’s perspective. This is a key difference between 

UP-Miner and existing approaches. 

 Two-step clustering strategy. In our method, we perform 

two-step clustering before and after the mining of 

frequent sequences. After the first round of clustering, 

some popular usage patterns are put in bigger clusters, 

and less popular usage patterns are put in relatively small 

clusters. This ensures that even less popular usage 

patterns will be mined using a BIDE algorithm with a 

ratio threshold. The second round of clustering further 

helps us to reduce the redundant patterns that possibly 

appear in the frequent closed sequence set mined from 

different clusters (generated by the first round of 

clustering). Our evaluations have shown that such a 

strategy can improve the quality of the patterns. 

 Similarity measures. In our work, we propose SeqSim, an 

n-gram based technique to compute the similarity of two 

API method sequences, considering not only the 

occurrences of each API method, but also the 

occurrences of n-gram API methods. It also takes into 

consideration the weight of each n-gram of API methods.  

 Mining frequent closed sequences. As described in 

Section II, MAPO uses the Bitmap algorithm to mine 

frequent sequences, resulting in a large number of 

redundant sequences. In contrast, our approach includes 

the BIDE algorithm to mine frequent closed sequences, 

thus reducing the redundancy of the resulting sequences.  

B. Threats to Validity 

We identify several threats to validity.  

In our study, we use codebase M as the experimental 

subject, which is a large-scale industrial project. However, 

some codebases, especially codebases of small projects, may 

not contain enough API instances for UP-Miner to mine.  

We selected 20 .NET API methods in our experiments. 

Although these API methods are well-known methods 

covering both database and Web domains, they are still 

limited in number.  

Our empirical study involves human subjects. The limited 

number and the programming capabilities of the human 

subjects may bias the results. To reduce this threat, we used a 

controlled study and a crossover design. In the future, we plan 

to conduct experiments and user studies involving more 

subjects, API methods, and programming tasks to further 

reduce this threat.  

VIII. RELATED WORK 

A. Code Search  

Mining API usage patterns is closely related to the work 

on code search and specification mining. Koders and Google 

code search are code search engines that can return code 

snippets containing the keywords (or Regular Expressions) of 

API method names. Strathcona [8] is a code snippet 

recommender, which locates a set of relevant code snippets 

by matching the structure of the code under development with 

the code snippets in codebase. The approach proposed by 

Acharya et al. [1] mines API partial orders from source code 

files, but it does not do clustering first to group similar orders 

into the same clusters and different orders into different 

clusters. Portfolio [10] visualizes relevant functions and their 

usages using a combination of models that address surfing 



 

behavior of programmers and uses PageRank to mine the 

relationship of functions. However, Portfolio cannot identify 

the orders of any two functions. Recently, Buse and Weimer 

[4] presented an automatic technique for mining and 

synthesizing human-readable documentation of program 

interfaces. Its algorithm is based on a combination of path 

sensitive dataflow analysis, clustering, and pattern abstraction. 

ParseWeb [14] accepts queries of the form “Source -> 

Destination” from a programmer and gives the code samples 

containing the given Source and Destination object types. 

Wasylkowski  et al. [17] applied static analysis to mine object 

usage models from code. The object usage model is 

represented as finite state automata, which can then be used to 

detect anomalies. Nguyen et al. [11] developed GraPacc, 

which is a graph-based and pattern-oriented tool for code 

completion. It takes as an input a database of usage patterns 

and completes the code under editing based on its context and 

those patterns. API usage patterns can be also mined via 

dynamic analysis. For example, Ammons et al. [2] proposed 

inferring a specification by observing program execution and 

summarizing frequent interaction patterns as state machines.  

Unlike the related methods, we adopt a two-step 

clustering strategy and mine frequent closed method 

sequences from an organization’s local codebase based on an 

API query. We aim to produce high quality (both succinct and 

high-covering) API usage patterns.  

B. Frequent Pattern Mining  

A major challenge in frequent pattern mining is the sheer 

size of its mining results [7]. In many cases, a low minimum 

support may generate an explosive number of output patterns, 

severely restricting the usage of a frequent pattern miner. 

Researchers have proposed various techniques to reduce the 

large number of frequent patterns, while maintaining the 

quality of identified patterns. For example, Calders and 

Goethals [5] proposed mining compressed, non-derivable 

frequent patterns. Wang et al. [16] proposed pCluster, an 

algorithm to detect clusters of patterns. They consider two 

objects similar if they exhibit a coherent pattern on a subset of 

dimensions, and demonstrated its effectiveness for microarray 

data analysis.  

In our work, we apply BIDE and propose a two-step 

clustering strategy for producing high-quality API usage 

patterns. We also propose an optimization technique that 

maximizes both coverage and succinctness of the resulting 

patterns. 

IX. CONCLUSION 

In this paper, we have proposed UP-Miner, an approach 

and support tool that mines API usage patterns from source 

code. Our approach considers the coverage and the 

succinctness of the mined patterns. In our implementation, we 

further present a usage pattern as a graph to facilitate 

developers easily understanding the mined usage patterns. We 

perform evaluations on a large-scale Microsoft codebase and 

the results have shown the effectiveness of the proposed 

approach and our approach outperforms an existing 

representative approach (MAPO). The user studies performed 

with Microsoft developers and interns also confirm the 

usefulness of the proposed approach. 

In the future, we plan to explore techniques of automatic 

code completion based on the returned API usage patterns. 

We also plan to transfer the UP-Miner technique to Microsoft 

development teams. A video demo of UP-Miner can be 

accessed at http://research.microsoft.com/UP-Miner. 
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