

Mining Succinct and High-Coverage API Usage

Patterns from Source Code

Jue Wang§*, Yingnong DangƼ, Hongyu Zhang§*, Kai Chen€*, Tao Xieȝ*, Dongmei ZhangƼ
§Tsinghua Univ., China, ƼMicrosoft Research Asia, China, €Peking Univ. China, ȝNC State University, NC, USA

§cecilia.juewang@gmail.com, §hongyu@tsinghua.edu.cn, Ƽyidang, dongmeiz@microsoft.com, ȝxie@csc.ncsu.edu,
€chenkai18@pku.edu.cn

Abstract—During software development, a developer often

needs to discover specific usage patterns of Application

Programming Interface (API) methods. However, these usage

patterns are often not well documented. To help developers to

get such usage patterns, there are approaches proposed to mine

client code of the API methods. However, they lack metrics to

measure the quality of the mined usage patterns, and the API

usage patterns mined by the existing approaches tend to be

many and redundant, posing significant barriers for being

practical adoption. To address these issues, in this paper, we

propose two quality metrics (succinctness and coverage) for

mined usage patterns, and further propose a novel approach

called Usage Pattern Miner (UP-Miner) that mines succinct and

high-coverage usage patterns of API methods from source code.

We have evaluated our approach on a large-scale Microsoft

codebase. The results show that our approach is effective and

outperforms an existing representative approach MAPO. The

user studies conducted with Microsoft developers confirm the

usefulness of the proposed approach in practice.

Index Terms—API usage, usage pattern, sequence mining,

software reuse, mining software repositories.

I. INTRODUCTION

Application Programming Interface (API) is an important

form of software reuse and it has been widely used. It is

common for an API method, no matter whether it is public

(e.g., .NET framework API methods and Java Development

Kit) or private, to be used in different contexts to complete

different tasks. An API method combined with other API

methods that should be invoked before/after is named a usage

pattern.

In practice, usage patterns of API methods are often not

well documented. Thus, it is often challenging for developers

to effectively and efficiently (re)use an API method in

different contexts to complete different tasks, especially for

those developers with relatively little knowledge of an API

method. In a survey conducted at Microsoft in 2009, 67.6%

respondents mentioned that there are obstacles caused by

inadequate or absent resources for learning APIs [12].

Another field study found that a major challenge for API

users is to discover the subset of the APIs that can help

complete a task [13].

Based on our qualitative study with Microsoft developers,

we confirmed the challenge of (re)using an API method in

different contexts to complete different tasks, and were

motivated to develop a tool for mining API usage patterns to

effectively assist developers in practice. We further found

three important aspects for developers that would use such a

tool. First, the tool should be scalable to work with large-

scale codebases with millions of lines of code and thousands

of (public and private) API methods. Based on this

consideration, we decided to mine usage patterns of API

methods from the invocation sequences of API methods in

source code, instead of mining usage patterns from more

complicated data representations such as control or data flow

graphs [4][11] or partial-order graphs [1]. Second, the mined

patterns should be succinct, i.e., the mined patterns should

contain few redundant patterns so that developers do not need

to review similar patterns repeatedly to find the one that they

are interested in. Third, the mined patterns should achieve

high coverage of possible usages of an API method so that

developers may benefit from using the tool even when the

target usage pattern is less popular in the codebase being

mined.

Although approaches ([1][10][14][15][18]) have been

proposed to mine usage patterns of API methods from a

codebase, they lack the metrics to measure the quality of

mined usage patterns from the view point of developers/users.

Furthermore, our empirical study (Section II) has found that

the mined API usage patterns from a representative approach

MAPO [18] tend to be many and redundant, posing

significant barriers for being adopted in practice.

In this paper, to address these issues, we first propose two

quality metrics that measure the quality of mined usage

patterns of API methods from the view point of

developers/users, including the succinctness and coverage of

usage patterns. We further propose a novel approach called

Usage Pattern Miner of API methods (UP-Miner) that mines

API usage patterns from source code. UP-Miner aims to

achieve high coverage and succinctness of the mined patterns.

It implements the BIDE algorithm [15] to mine frequent

closed API-method invocation sequences and includes a two-

step clustering strategy before and after BIDE to identify

usage patterns. Given a user-specified API method, UP-Miner

can automatically search for all usage patterns of an API

method and return associated code snippets as reuse

candidates.

This paper makes the following contributions:

 We propose two quality metrics that measure the quality

of the mined usage patterns of API methods, including

*: The work has been done during these authors’ visit at

Microsoft Research Asia.

the succinctness and coverage. Our work is the first

attempt to measure the quality of mined usage patterns of

API methods from the view point of developers/users.

 We propose an approach called UP-Miner for mining

succinct and high-coverage usage patterns of API

methods from source code. UP-Miner includes a two-step

clustering strategy before and after mining frequent

closed API-method sequences from source code to

effectively reduce redundancy and improve the

succinctness of the mined API usage patterns.

 We evaluated UP-Miner on a large-scale Microsoft

codebase. The evaluation results show that UP-Miner is

effective in addressing developers’ API queries. UP-

Miner also reduces the average percentage of redundant

patterns to 11.92% (compared to 51.12% by MAPO

[18]).

 We conducted a user study with Microsoft developers.

The results show that UP-Miner can effectively help

developers reuse APIs in practice.

The rest of the paper is organized as follows. Section II

briefly introduces our motivating studies. Section III provides

the problem definition. Section IV introduces the proposed

UP-Miner approach. Section V and VI describe our in-house

evaluations and user studies, respectively. Section VII

discusses the results, and Section VIII discusses related

research. Section IX concludes this paper.

II. MOTIVATING STUDIES

To understand the challenges posed by API usage pattern

mining and to understand whether existing methods can

address the practical requirements, we conducted two

empirical studies. The first one attempts to understand the

characteristics of API usage patterns in a large-scale

commercial codebase at Microsoft. The second one is a study

on the quality of API usage patterns mined by a representative

approach MAPO [18] from the same codebase.

In particular, we conducted the two studies against a

large-scale codebase of a Microsoft product. We refer to it as

codebase M in the rest of this paper for simplicity. Codebase

M consists of over 8.5 million lines of code written in C# and

over 40K API methods in total. More than one thousand

developers have been involved in the development of this

product over the past five years.

A. An Empirical Study of API Usage Patterns

We analyzed the characteristics of usage patterns of ten

popular .NET API methods for database operations over

codebase M. These ten API methods are listed in the right

part of Table II. We choose these ten API methods since

database operations are an important type of widely

conducted operations in modern online service systems and

enterprise applications. In addition, each of these API

methods has a number of usage patterns for completing

different database-operation tasks, such as reading/writing

data from a database.

We first identified all possible usage patterns of each API

method by consulting the Microsoft Development Network

(MSDN) and reference books. The usage patterns were first

identified by one author A and then verified by two other

authors independently. The two agreed with over 90% usage

patterns identified by A, and they got agreements against with

the remaining patterns after minor adjustments. From

codebase M, we then collected the code snippets that contain

those API usage patterns. The manually identified API usage

patterns and the associated code snippets in codebase M

served as the “golden set” for evaluations.

We found that the distribution of API usage patterns is

quite imbalanced - some API usage patterns occur very

frequently and others occur quite rarely. Table I summarizes

the results of the empirical study. For the ten studied API

methods, the number of usage patterns ranges from 1 to 21,

with an average of 6.3. The occurrence of a usage pattern

ranges from 1 to 880, with an average of 71.4.

Table I. The distribution of API usage patterns in codebase M

 #Total Min Max Mean Std.Dev.

Usage Patterns 63 1 21 6.3 6.3

Pattern Occurrences 4499 1 880 71.4 252.2

Fig.1. The usage distribution of the API method SqlCommand.ExecuteReader
in codebase M

As an example, Figure 1 shows that for API method

SqlCommand.ExecuteReader, four different usage

patterns were identified. Different usage patterns have

different occurrences in codebase M. Pattern 1 appears 196

times, while Pattern 4 appears only 19 times.

This result reveals that a good miner for API usage

patterns should be able to discover all possible API usage

patterns, even though some are less frequently used (i.e., their

occurrence frequency is small). Without less frequently used

patterns available in the mining result, developers would lose

the opportunity to leverage the existing code to implement

similar functionalities that are enabled by such usage patterns.

A less frequently used pattern in the past would not

necessarily also be rarely used in the future.

B. A Replication Study of a Representative Approach

As discussed in the introduction section, based on the

consideration of tool scalability, we decided to mine API

usage patterns from the invocation sequences of API methods

in a codebase, instead of more complicated data

0

50

100

150

200

250

Pattern 1 Pattern 2 Pattern 3 Pattern 4

#code snippets found
in code base

representations, such as data/control flow graphs or partial

order groups of API method invocations. We found that

MAPO [18] is a representative approach that mines API

usage patterns from invocation sequences of API methods.

Therefore, we conducted a study to examine the quality of

API usage patterns mined by MAPO against codebase M.

We implemented MAPO according to its description [18].

Then we used MAPO to query the usage patterns of the same

ten API methods as those used in the first empirical study. We

found that MAPO produced a large number of patterns1. The

number of patterns returned for each API method ranged from

14 to 94, with an average of 45.2. We manually examined

each returned pattern and found that there was a large

percentage of redundancy. As an example, Figure 2 shows

part of the results returned by MAPO for API method

SqlConnection.Open. We can see that many patterns

are very similar: some sequences are subsequences of the

others. Therefore, most of them are redundant and incur extra

effort for developers in finding usage patterns of interest. The

percentage of duplicated patterns for API method

SqlConnection.Open was 54.26% (Duplication is defined in

section V.B): 51 patterns (out of 94) are duplicated and

should be merged with other patterns. This result implies that

in order to find API usage patterns of interest from the results

returned by MAPO, a user has to browse a long list of

sequences (possibly with high redundancy) before she can

identify the usage patterns and their associated code snippets.

SqlConnection.CreateCommand
SqlConnection.Open

SqlConnection.CreateCommand
SqlConnection.Open

SqlCommand.ExecuteReader

SqlConnection.CreateCommand

SqlConnection.Open
SqlCommand.ExecuteReader

SqlDataReader.Read

SqlConnection.Open

Fig.2. Partial list of patterns returned by MAPO when querying
SqlConnection.Open

III. PROBLEM DEFINITION

Our empirical studies described in the previous section

reveal a technical challenge: how to mine high quality API

usage patterns? We measure the quality of mined API usage

patterns from two main aspects from the view point of the

developers/users:

 Coverage: Patterns returned by an API usage miner

should be able to cover all possible usage scenarios of an

API method, including less commonly-used ones.

 Succinctness: Patterns returned by an API usage miner

should be succinct, since the developers usually prefer to

examine only a small number of patterns. Ideally, each

1 Detailed results can be found on the project web site

http://research.microsoft.com/UP-Miner

typical usage scenario is represented by only one pattern

and there is no redundancy among the patterns.

Our definition of the problem of mining API usage

patterns is as follows:

Definition (API Usage Mining): Given a set of API

method sequences and a minimum support threshold min_sup,

the problem of API usage mining is to find an optimal number

of k patterns, while the occurrence of each pattern is no less

than min-sup, and both coverage and succinctness of the

patterns can be maximized.

IV. THE PROPOSED APPROACH

To address the problem defined in Section III, we propose

UP-Miner, an approach and support tool for mining succinct

and high-coverage API usage patterns from source code.

A. Mining Frequent API Usage Patterns

Figure 3 shows the overall workflow of UP-Miner. For a

set of call sequences that include an API method, UP-Miner

first performs clustering based on the similarity of the

sequences. It then mines API usage patterns from each cluster

using a frequent closed sequence mining algorithm, e.g.,

BIDE [15], and performs clustering again to group the

frequent closed sequences into patterns.

SqlConnection.CreateCommand
SqlConnection.Open
SqlCommand.ExecuteReader

SqlDataReader.Read

Cluster call
sequences

Mine frequent
closed

sequences

SqlConnection.CreateCommand

SqlConnection.Open

Cluster
frequent

closed
sequences

API Method Sequences
Initial API Usage
Clusters

Frequent Closed
Sequences

Final API Usage Clusters

Fig. 3. Overall workflow of UP-Miner

1) Clustering API Method Sequences: We first cluster

all the input sequences before identifying the frequent ones.

This helps to avoid the problem of imbalanced usage

distribution that we described in Section II.A: for some very

common API usages, their sequences are frequent and may

gain large support, while for some less common API usages,

their frequency is low and thus may not reach the minimum

support threshold. Clustering the API method sequences

before mining frequent patterns increases the probability of

the less frequent patterns to be mined out, because the less

frequent patterns need to satisfy only the minimum support

within a cluster instead of the entire set of method sequences.

To cluster the sequences, we propose SeqSim, an n-gram

based technique to compute the similarity of any two

sequences. We first define the n-gram set G(X) for a sequence

X(𝑥1𝑥2 … 𝑥𝑛) as a collection of unigrams, bi-grams, … , n-

gram of X:

𝐺(𝑋) = {𝑥1, 𝑥2 … , 𝑥𝑛 , 𝑥1𝑥2, 𝑥2𝑥3 … , 𝑥𝑛−1𝑥𝑛 , …,

𝑥1𝑥2. . 𝑥𝑛−1, 𝑥2𝑥3. . 𝑥𝑛−1𝑥𝑛, 𝑥
1
𝑥2. . 𝑥𝑛−1𝑥𝑛}

We define the similarity of two API method sequences

based on the following two intuitions: (1) Two sequences are

similar if they share a relatively high percentage of items

(a.k.a., API method) between their corresponding n-gram sets;

(2) Two method sequences are more similar if they share

longer common and consecutive subsequences instead of

shorter ones. We compute the similarity of two call sequences

𝑠1 and 𝑠2 as follows:

𝑆𝑒𝑞𝑆𝑖𝑚(𝑠1, 𝑠2) =
∑ 𝑊𝑒𝑖𝑔ℎ𝑡(𝑔∩

𝑖)𝑖

∑ 𝑊𝑒𝑖𝑔ℎ𝑡(𝑔𝑈
𝑖)𝑖

where 𝑔∩
𝑖 ∈ 𝐺∩ = 𝐺(𝑠1) ∩ 𝐺(𝑠2) , 𝑔∪

𝑖 ∈ 𝐺∪ = 𝐺(𝑠1) ∪
𝐺(𝑠2) ,𝑊𝑒𝑖𝑔ℎ𝑡(𝑔∩

𝑖) is equal to the length of 𝑔∩
𝑖 .

As an example, given 𝑠1 = abc and 𝑠2 = cab, then we will

have 𝐺∩ = {𝑎, 𝑏, 𝑐, 𝑎𝑏} , 𝐺∪ = {𝑎, 𝑏, 𝑐, 𝑎𝑏, 𝑏𝑐, 𝑐𝑎, 𝑎𝑏𝑐, 𝑐𝑎𝑏} ,

and 𝑊𝑒𝑖𝑔ℎ𝑡(𝑎𝑏) = 1 ,𝑊𝑒𝑖𝑔ℎ𝑡(𝑎𝑏) = 2 , 𝑆𝑒𝑞𝑆𝑖𝑚(𝑠1, 𝑠2) =

0.33.

Based on the SeqSim values, we cluster API method

sequences. We adopt a conservative technique (e.g., the

complete linkage technique [6]) for clustering: the distance

between two clusters is computed as the maximum distance

between a pair of items in two clusters. The distance between

any two clusters should be bigger than a threshold α. We

describe the derivation of an optimal α value in Section IV.B.

2) Mining Frequent Closed Sequences: To identify the

frequent API usages, we implemented the BIDE algorithm [4]

to mine frequent closed call sequences. There are a number of

key concepts: a sequence 𝑠1 is called a sub-sequence of

sequence 𝑠2 and 𝑠2 is called a super-sequence of 𝑠1 if

sequence 𝑠1 is contained in sequence 𝑠2 ; A sequence s is a

frequent sequence in a sequence set if 𝑠𝑢𝑝 (𝑠) ≥ 𝑚𝑖𝑛_𝑠𝑢𝑝 ,

where 𝑠𝑢𝑝 (𝑠) is the support of sequence s, i.e., the ratio of

the sequences in the sequence set that are super-sequences of

s, 𝑚𝑖𝑛_𝑠𝑢𝑝 is the minimum support threshold; s is a frequent

closed sequence (as defined in [6]) if sequence s is frequent

and there are no proper super-sequence of s with the same

support.

We apply BIDE to each cluster derived from the process

described in the previous section and produce frequent closed

sequences for the cluster. For example, for the three

sequences in a cluster, ab, abc, and abd, if the 𝑚𝑖𝑛 _𝑠𝑢𝑝 is

0.5, BIDE produces frequent closed sequences ab. While

other frequent sequence miners such as Bitmap (the sequence

mining algorithm used in MAPO) return a, b, and ab. Clearly,

since ab is frequent, a and b are also frequent and need not to

be listed. BIDE returns only the longest sequences if there are

subsequences with the same support.

3) Clustering Frequent Closed Sequences: After the

first clustering described in Section IV.A.1, sequences that

are not similar are divided into different clusters. However,

the frequent closed sequences mined from different clusters

could still be similar, causing redundancy among the resulting

patterns. To consolidate the frequent closed patterns mined

from different clusters, we perform another round of

clustering and treat each resulting cluster as a usage pattern.

For example, consider a situation in which the frequent closed

sequence abc and ab are mined from different clusters. After

clustering, these two sequences are grouped together as one

pattern, and is shown as abc. Using this technique, we further

reduce the number of redundant sequences in the mined API

usage patterns. In this round of clustering, we again use the

complete-linkage clustering technique with a threshold β (we

describe the derivation of an optimal β value in Section IV.B).

The similarity between two frequent sequences is also

computed using the SeqSim metric described in Section

IV.A.1.

B. Determination of the Optimal Number of Patterns

We adopted the two-step clustering strategy described in

the previous section to improve the quality of mined patterns.

Such clustering can help identify less common API usages

whose frequency does not satisfy the minimum support of the

entire sequences. The two-step clustering process involves

two coefficients α (the threshold for the pre-BIDE clustering)

and β (the threshold for the post-BIDE clustering), whose

values vary independently. Different combinations of α and β

can result in different clustering performances and different

numbers of patterns and thus affecting the quality of mined

usage patterns.

We propose an automatic technique to determine the

optimal threshold values. As described in Section III, the goal

of API usage mining is to identify a number of patterns from

a set of method sequences in order to maximize both the

coverage and the succinctness of the patterns.

Measuring the number of resulting patterns can reflect

succinctness. In order to ensure that one usage scenario is

covered by a minimum number of mined usage patterns, we

expect that the mined patterns are dissimilar as much as

possible from one another. To measure to what extent the

mined usage pattern are dissimilar to each other, we define an

overall dissimilarity metric D (the dissimilarity of the

resulting pattern graphs). The metric D is defined as the

average dissimilarity between all pairs of usage patterns:

𝐷 =
∑ ∑ 𝐷𝑠𝑖𝑚(𝑖,𝑗)𝑛

𝑗=𝑖+1
𝑛−1
𝑖=0

𝑛∗(𝑛−1)/2

where 𝐷𝑠𝑖𝑚(𝑖, 𝑗) is the dissimilarity of usage pattern i and j.

𝐷𝑠𝑖𝑚(𝑖, 𝑗) is defined as (1 − 𝑠𝑖𝑧𝑒(𝐵𝐺𝑖 ∩ 𝐵𝐺𝑗)/𝑠𝑖𝑧𝑒(𝐵𝐺𝑖 ∪

𝐵𝐺𝑗)), 𝐵𝐺𝑖 is the set of distinct bi-grams of all frequent closed

sequences in usage pattern i. This definition is based on the

intuition that the usage patterns will be more dissimilar if the

percentage of common bi-grams that appear in the frequent

closed sequences of these two usage patterns is lower.

The selection of the two clustering thresholds should

produce patterns that maximize the dissimilarities among

identified patterns and minimize the number of resulting

patterns. Therefore, we define the following utility function U:

𝑈 = 𝐷/𝑛

We propose a search-based algorithm that exhaustively

searches for the optimal combination of threshold values that

maximize the utility function (Figure 4). In Figure 4, we first

set the pre-BIDE clustering threshold α to a maximum value

αmax and the post-BIDE clustering threshold β to βmax. We

compute the utility function for each pair of clustering

thresholds, and adjust the threshold values by decreasing it

value by a step δ, to search for the maximum utility value,

until their values reach αmin or βmin. Finally, we return the

optimal threshold values, 𝑚𝑎 and 𝑚𝛽 , that lead to the

maximum utility value. Based on our empirical exploration,

we set αmax = βmax = 1.00, αmin = βmin = 0.00, and δ =0.01.

C. Tool Implementation

UP-Miner includes an API parser to parse the source code

files and to create an index for each API method. The API

parser is based on Roslyn2, which constructs AST trees for

each source code file. We also filter out some common

logging and assertion methods such as Log.Info and

Assert.AreEqual, since these methods are typically

irrelevant to the program logic. After identifying API

methods from their call sites in the source code files, we then

create an index file for each API method and collect API

method sequences. UP-Miner then mines the API usage

patterns and presents the resulting patterns as probabilistic

graphs, which are ranked by the number of occurrences.

Besides the graphical representation of a usage pattern, UP-

Miner also provides developers the code snippets associated

with the pattern. We briefly present how we build the

probabilistic graph for a usage pattern and our prototype in

the following:

1) Deriving Probabilistic Graphs: In our tool

implementation, we represent the API usage patterns as a

probabilistic graph to help users intuitively examine and

understand the patterns. A graph graphically represents a

cluster of frequent closed patterns described in the previous

section. Developers can understand the usage scenarios

associated with an API method by examining the graph. A

node in the graph indicates an API method and an edge

2 http://msdn.microsoft.com/en-gb/roslyn

indicates a temporal relationship between two methods. Each

edge is associated with a probability value that indicates the

probability of calling one method after the other among all

occurrences of this usage pattern in the codebase. Figure 5

shows an example of a graphical representation of a usage

pattern for SqlConnection.Open. By examining the

graph, users can better understand usage scenarios associated

with this API method.

Note that there are also other graphical presentations that

can be used to present usage patterns such as finite state

automata. In the future, we will further study which graphical

representation best fits our needs.

2) Prototype: Figure 6 shows a screenshot of UP-

Miner. On the top of the window is an input box, which

allows developers to input an API method’s name. On the

left side of the window is a list box that lists all patterns

mined by UP-Miner. The graph panel shows the pattern as

a probabilistic graph and the code panel shows the

associated code snippets.

V. EXPERIMENTS

A. Experimental Design

In order to evaluate our approach, we conducted a number

of experiments against the Microsoft codebase M, which is a

large codebase described in Section II. We selected 20 .NET

API methods in our experiments (as shown in Table II). Ten

of them are the same as the ones used for our empirical

studies in Section II, and the other ten are http-request

handling API methods. We choose these API methods

because they are two important types of widely used .NET

framework API methods in modern online service systems

and enterprise applications. Through our experiments, we

intend to investigate the following three research questions:

RQ1: How effective is UP-Miner in generating succinct

and high-covering API usage patterns?

Fig. 5. An example usage pattern of SqlConnection.Open

DetermineOptimalParameters

1. set the initial pre-BIDE clustering threshold α to

2. set max = 0, = 0, = 0
3. while α >

4. set the initial post-BIDE clustering threshold β to

5. while β >
6. compute the utility function U

7. If U is greater than max

8. max = U, = α , = β
9. EndIf

10. decrease β by δ

11. EndWhile
12. decrease α by δ

13. EndWhile

14. return ,

Fig.4. The algorithm for determining the optimal threshold values

This research question evaluates the effectiveness of UP-

Miner in generating succinct and high-coverage API usage

patterns. To answer this question, we manually identified a

“golden set” of API usage patterns for each of these 20 API

methods, as described in Section II.C. After collecting the

golden set, we then ran queries for each API method against

both UP-Miner and MAPO, and compared the results. In

Section IV.B, we describe the metrics (used for the result

comparison) to reflect the succinctness and coverage of the

mined usage patterns.

RQ2: How much benefit can the two-step clustering

process bring?

In Section IV, we proposed a two-step clustering process

in the design of UP-Miner: one before the frequent closed

sequence mining and one after. This research question

evaluates how much benefit such a two-step clustering

process brings by comparing the performance of UP-Miner

(with such a process) and a BIDE-only approach (without

such a process).

RQ3: How much better is UP-Miner compared with

the one-clustering+BIDE approach?

Related to RQ2, this RQ further evaluates how much

benefit the second clustering brings, by comparing the API

usage patterns mined by UP-Miner and by the one-

clustering+BIDE approach (without the second clustering).

B. Metrics

For RQ1 and RQ3, we define a variant of the Purity and

Inverse Purity metrics [9] for evaluating the effectiveness of

the tools in producing succinct and high-covering patterns.

We denote C as the set of clusters to be evaluated. A

cluster represents a mined usage pattern. We denote L as the

set of patterns in the golden set. |𝐿 in 𝐶𝑖| represents the

number of the patterns defined in L and can be found in the

ith cluster 𝐶𝑖. |𝐿𝑖 𝑖𝑛 𝐶| represents the number of patterns in 𝐶

that contains the ith pattern 𝐿𝑖 in the golden set. We define the

Average Purity (AP) and Average Inverse Purity (AIP)

metrics as follows:

 AP =
1

|𝐶|
∑ (|L in Ci| == 0? 0:

1

|L in Ci|
)|C|

i=1

AIP =
1

|𝐿|
∑ (|𝐿𝑖 𝑖𝑛 𝐶| == 0? 0:

1

|𝐿𝑖 𝑖𝑛 𝐶|
)|𝐿|

𝑖=1

The values of the metrics range from 0 to 1, the higher the

better. Ideally, each pattern produced by an API usage miner

should represent only one pattern in the golden set (thus AP is

1), and each pattern in the golden set should be represented by

only one pattern produced by an API usage miner (thus AIP is

1). Higher AIP values indicate higher coverage and (or) lower

redundancies, since the AIP value of API pattern miner A

would be lower than that of B if a golden set pattern does not

appear in any patterns returned by A, but appears in one

returned by B; the AIP value of A could also be lower than

that of B if gold set patterns are represented by a fewer

number of mined patterns returned by A compared that

returned by B. Higher AP values mean that the mined usage

patterns are more succinct in terms of a fewer number of

golden set patterns appearing in one mined usage pattern. We

define F-measure to compute the weighted average of

Average Purity and Inverse Purity to get a robust and

balanced quality measurement. The value of F-measure is

from 0 to 1, the higher the better.

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =

2 × 𝐴𝑃 × 𝐴𝐼𝑃

𝐴𝑃 + 𝐴𝐼𝑃

To further directly measure the effectiveness of the tools

in producing succinct patterns, we design the metric

Duplication as follows:

Duplication = #Duplicated/#Total,

1

2

3

4

5

1. Search box;
2. Usage pattern 1 for
SqlConnection.Open: conducting a simple
reading operation after opening a Sql
connection;
3. Usage pattern 5: conducting a
transaction operation after opening a Sql
connection;
4. Sample code Tab: showed code snippets
associated with the selected usage pattern
shown in the left panel;
5. Graphical representation of usage
pattern: aggregated view of API calls that
appears before calling the searched API
and API calls that appear after calling the
searched API with probability of
invocation relationship.

Fig 6. Screenshot of UP-MINER prototype

where #Total represents the number of patterns returned by

the tools and #Duplicated represents the number of duplicated

patterns. To calculate #Duplicated, we first find a minimal set

of mined usage patterns that can represent as many golden-set

patterns as possible, or maybe even all of them; the number of

remaining mined patterns is defined as #Duplicated. The

values of the metric range from 0 to 1, the lower the better.

For RQ2, because BIDE does not produce clusters, the

Average Purity and Average Inverse Purity metrics are not

applicable. We used the metrics Recall, Precision, and F-

measure to measure the effectiveness of BIDE. |L in C|

represents the number of the patterns defined in L that can be

found in C. |C in L| represents the number of patterns in C that

can be found in L.

𝑅𝑒𝑐𝑎𝑙𝑙(𝐿, 𝐶) =
|𝐿 in 𝐶|

|𝐿|

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐿, 𝐶) =

|𝐶 in 𝐿|

|𝐶|

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝐿, 𝐶) =
2 × 𝑅𝑒𝑐𝑎𝑙𝑙(𝐿, 𝐶) × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐿, 𝐶)

𝑅𝑒𝑐𝑎𝑙𝑙(𝐿, 𝐶) + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐿, 𝐶)

The values of the metrics are from 0 to 1, the higher the better.

C. Experimental Results

We present our experimental results that answer the three

research questions and compare the performance of UP-Miner

with a number alternative approaches in this section.

1) RQ1: How Effective Is UP-Miner in Generating

Succinct and High-Coverage API Usage Patterns? Table II

shows the evaluation results of UP-Miner and MAPO on 20

APIs using the metrics F-measure and Duplication. In terms

of F-measure, UP-Miner outperformed MAPO on 17 APIs

(85%). The improvement ranged from 0.359 to 0.714, with an

average of 0.285. In terms of Duplication, UP-Miner

performed much better than MAPO on all 20 APIs, with an

average of 11.92% (compared to MAPO’s 51.12%). Paired t-

tests confirmed that the results were statistically significant at

the significance level 0.05. The evaluation results show that

UP-Miner is effective in mining succinct and high-covering

API usage patterns.

2) RQ2: How Much Benefit Can the Two-Step

Clustering Process Bring? Table III shows the comparison

results (F-measure), which were computed through Recall and

Precision between BIDE and UP-Miner (pre-BIDE clustering

+ BIDE + post-BIDE clustering). For 19 APIs, UP-Miner

achieved a better or equal performance than/to BIDE, and the

improvement ranged from 0 to 0.603 with an average of

0.173. A paired t-test shows that the results are statistically

significant at the significance level 0.05. The results confirm

that the proposed two-step clustering is highly beneficial in

terms of improving the quality of the mined API usage

patterns.

3) RQ3: How Much Better Is UP-Miner Compared with

the One-Clustering + BIDE Approach? Table IV shows the

comparison results (F-measure of AP and AIP) between UP-

Miner and one-clustering + BIDE. The results show that UP-

Miner performed better than clustering + BIDE on 16 out of

20 API methods, with an average improvement of 0.426. A

paired t-test shows the results are statistically significant at

the significance level 0.05. The results confirm that the

proposed two-step clustering is more effective than single

one-step clustering.

4) Comparing with Alternative Approaches: Table V

summarizes the results of our experiments. Among 20 studied

API methods, UP-Miner performs better than One-clustering

+ BIDE, MAPO, and BIDE approaches on 15, 17, and 16 API

methods, respectively. The average improvement is 0.173,

0.285, and 0.426, respectively. The experimental results show

that, in general, UP-Miner outperforms MAPO, a

representative approach, and two alternative approaches.

Table II. Evaluation Results (Comparisons of API usage pattern mining result between UP-Miner and MAPO)

API Name Tool
patterns

returned
F-measure Duplication API Name Tool

patterns

returned
F-measure Duplication

WebRequest.

Create

MAPO 71 34.76% 57.75% SqlConnection.

Open

MAPO 94 39.46% 54.26%

UP-Miner 8 47.66% 12.00% UP-Miner 12 33.10% 0.00%

HttpWebRequest.

GetResponse

MAPO 58 16.07% 70.69% SqlCommand.

ExecuteNonQuery

MAPO 53 18.56% 60.38%

UP-Miner 7 52.42% 14.00% UP-Miner 5 61.54% 0.00%

HttpWebResponse.
GetResponseStream

MAPO 46 40.92% 63.04% SqlCommand.
Parameters.Add

MAPO 56 19.28% 53.57%

UP-Miner 9 50.00% 11.11% UP-Miner 8 25.00% 12.50%

HttpWebRequest.

Create

MAPO 22 32.52% 40.91% SqlCommand.

ExecuteReader

MAPO 57 28.96% 68.42%

UP-Miner 4 54.91% 0.00% UP-Miner 4 50.00% 25.00%

HttpWebRequest.

Headers.Add

MAPO 11 21.27% 45.45% SqlDataReader.

Read

MAPO 67 3.95% 61.19%

UP-Miner 3 60.00% 33.00% UP-Miner 13 38.01% 30.77%

WebRequest.
GetResponse

MAPO 6 24.55% 58.82% SqlConnection.
Close

MAPO 44 30.03% 34.09%

UP-Miner 6 54.13% 0.00% UP-Miner 2 55.24% 0.00%

HttpWebRequest.

GetRequestStream

MAPO 6 49.07% 33.33% SqlCommand.

ExecuteScalar

MAPO 29 34.44% 65.52%

UP-Miner 1 30.00% 16.67% UP-Miner 2 50.00% 0.00%

HttpResponse.

SetStatusText

MAPO 6 28.58% 83.33% SqlConnection.

CreateCommand

MAPO 19 27.17% 42.11%

UP-Miner 1 100.00% 0.00% UP-Miner 1 30.77% 0.00%

HttpResponse.

SetContent

MAPO 6 27.91% 83.33% SqlCommand.
Parameters.

AddWithValue

MAPO 14 25.00% 35.71%

UP-Miner 2 66.67% 50.00% UP-Miner 3 50.00% 33.33%

HttpResponse.
Write

MAPO 3 N.A. 0.00% SqlDataAdapter.
Fill

MAPO 19 9.09% 10.53%

UP-Miner 1 66.67% 0.00% UP-Miner 1 N.A. 0.00%

Table III. Comparisons between BIDE and UP-Miner
 (F-Measure)

APIName BIDE
UP-

MINER
APIName BIDE

UP-

MINER

WebRequest.Create 19.51% 69.23%
SqlConnection.

Open
13.33% 57.14%

HttpWebRequest.

GetResponse
38.46% 90.91%

SqlCommand.

ExecuteNonQuery
N/A 68.57%

HttpWebResponse.
GetResponseStream

20.00% 57.14%
SqlCommand.

Parameters.Add
N/A 33.33%

HttpWebRequest.
Create

28.57% 88.89%
SqlCommand.
ExecuteReader

N/A 60.00%

HttpWebRequest.

Headers.Add
66.67% 80.00%

SqlDataReader.

Read
80.00% 70.00%

WebRequest.

GetResponse
16.67% 50.00%

SqlConnection.

Close
11.11% 71.29%

HttpWebRequest.

GetRequestStream
24.39% 40.00%

SqlCommand.

ExecuteScalar
N/A 50.00%

HttpResponse.

SetStatusText
100.00% 100.00%

SqlConnection.

CreateCommand
28.29% 44.44%

HttpResponse.

SetContent
100.00% 100.00%

SqlCommand.

Parameters.

AddWithValue

N/A 50.00%

HttpResponse.

Write
28.57% 66.67%

SqlDataAdapter.

Fill
N/A 50.00%

Table IV. Comparisons between One-Clustering + BIDE and UP-Miner (F-

Measure)

APIName
Clusterin

g + BIDE

UP-

MINER
APIName

Clusterin

g + BIDE

UP-

MINE

R

WebRequest.Create 52.30% 47.66%
SqlConnection.

Open
53.83%

33.10

%

HttpWebRequest.
GetResponse

38.46% 90.91%
SqlCommand.

ExecuteNonQuery
52.57%

61.54
%

HttpWebResponse.

GetResponseStream
41.84% 50.00%

SqlCommand.

Parameters.Add
16.00%

25.00

%

HttpWebRequest.

Create
52.01% 54.90%

SqlCommand.

ExecuteReader
44.22%

50.00

%

HttpWebRequest.

Headers.Add
32.14% 60.00%

SqlDataReader.

Read
14.86%

22.58

%

WebRequest.

GetResponse
44.44% 50.00%

SqlConnection.

Close
43.59%

55.24

%

HttpWebRequest.

GetRequestStream
24.39% 40.00%

SqlCommand.

ExecuteScalar
25.64%

50.00

%

HttpResponse.

SetStatusText
40.00% 100.00%

SqlConnection.

CreateCommand
52.00%

30.77

%

HttpResponse.

SetContent
50.00% 66.67%

SqlCommand.

Parameters.

AddWithValue

36.36%
50.00

%

HttpResponse.
Write

33.33% 66.67%
SqlDataAdapter.

Fill
20.00% n/a

VI. USER STUDY

We designed two user studies (one controlled study and

one user survey) to explore the usefulness of our tool and the

user experiences.

Table V. Summary of comparisons

One-clustering +

BIDE
MAPO BIDE

API UP-MINER
Wins

15 17 16

Average F-measure

Improvement
0.173 0.285 0.426

A. Controlled Study

In the controlled study, we created a program under

development for collecting, displaying, and saving

information from/to a text file. We then purposely left three

major functionalities to be completed by the participants.

These three tasks cover three different programming aspects:

Task 1 concerns database operations, Task 2 designs the user

interface, and Task 3 deals with XML file processing. The

details of these tasks are as follows:

Task 1: Reading information. This task asked the

participants to complete a method that reads information from

a text file, stores the information in a database, and retrieves

information given search conditions. The database should roll

back to the original status if the operations fail. We provided

the API method SqlConnection.Open as the starting

point to the participants and asked them to complete the rest

of the code. In this task, two types of API usages were

involved: the transaction-related database operations

(implemented via SqlConnection.Open-

SqlConnection.BeginTransaction-

SqlCommand.ExecuteNonQuery) and the normal database

operations (implemented via SqlConnection.Open-

SqlCommand.ExecuteReader). The former is less frequently

used than the latter. Therefore, in this task, the participants

had opportunities to select either more popular or less popular

API usages.

Task 2: Displaying information. In this task, the

participants were asked to depict information as a bar chart.

We provided the API method Graphics.DrawRectangle as

the starting point for this task.

Task 3: Writing information. This task required the

participants to save the information in an XML file. We

provided the API method XmlWriter.Create as the starting

point for this task.

We designed a cross evaluation: we invited six

participants (interns working in our lab on other teams) and

divided them into three groups; we then asked each group to

implement the three programming tasks. Each group had the

same average number of years of C# experience. The C#

programming experiences of the participants ranged from 1 to

18 months. The group arrangement is shown in Table VI. We

asked the participants to implement the three tasks using

Koders 3 , MAPO, and UP-Miner, respectively. After the

participants finished each of the tasks, we examined the

correctness of the task completion.

Table VI. Group arrangement of the controlled user study

 Koders MAPO UP-Miner

Task 1 P1 P2 P3 P4 P5 P6

Task 2 P3 P4 P5 P6 P1 P2

Task 3 P5 P6 P1 P2 P3 P4

3 http://www.koders.com/

Table VII shows the results returned by the participants.

Using Koders and MAPO, the participants searched 16-17

API queries, but did not manage to finish all three tasks on

time (we asked participants to complete all tasks in 2 hours).

Using UP-Miner, they completed all the tasks with 13 API

queries on average. The study showed that the UP-Miner tool

can help developers finish more tasks with fewer API queries.

After the study, the participants explained that the reason for

the incomplete tasks was that they did not obtain useful API

usage patterns by using Koders or MAPO in many cases,

especially for those usage patterns that are less popular, e.g.,

SqlConnection.BeginTransaction.

Table VII. Results of the controlled user study

 Koders MAPO UP-Miner

#Tasks Completed 1 2 3

#Searched API 16 17 13

B. User Survey

We also conducted a survey of Microsoft developers to

investigate whether UP-Miner helps with their programming

tasks. 60 developers working on codebase M participated in

the survey. In addition to asking participants to experience the

UP-Miner tool, we also asked them whether they agree on the

usefulness of the tool. The scores were given on a five-point

Likert scale (Strongly agree - 5, Agree - 4, Neutral - 3,

Disagree - 2, and Strongly Disagree - 1).

We received feedback from 28 out of the 60 developers

who we asked. All of them gave positive comments on the

UP-Miner tool and believed that such a tool could help with

their programming work. The average Likert score was 4.28

(with standard deviation of 0.60). The developers found that

the returned patterns, the graphical representation, and the

sample code can help them reuse APIs. Below are some

comments and feedback from the developers:

Developer 1: Cool! This tool is really what I am looking

for to find the right sample code.

Developer 2: This is really a great tool. Especially I love

the Pattern and the graph features, especially the graph

feature. This graph could show the usage pattern and context,

it provides much more meaningful interpretation than plain

text, this will help understanding other’s code a lot.

Developer 3: It is really a cool idea and tool to help

understand the API usage, especially for some internal

library which doesn’t have too many docs to tell you how to

use the API.

VII. DISCUSSION

A. Why Does UP-Miner Work?

We have identified the following reasons that UP-Miner

outperforms existing methods, especially MAPO.

 Guiding the algorithm design by two quality metrics. We

proposed the succinctness and high coverage as two

quality metrics of mined usage patterns from a

developer’s perspective. This is a key difference between

UP-Miner and existing approaches.

 Two-step clustering strategy. In our method, we perform

two-step clustering before and after the mining of

frequent sequences. After the first round of clustering,

some popular usage patterns are put in bigger clusters,

and less popular usage patterns are put in relatively small

clusters. This ensures that even less popular usage

patterns will be mined using a BIDE algorithm with a

ratio threshold. The second round of clustering further

helps us to reduce the redundant patterns that possibly

appear in the frequent closed sequence set mined from

different clusters (generated by the first round of

clustering). Our evaluations have shown that such a

strategy can improve the quality of the patterns.

 Similarity measures. In our work, we propose SeqSim, an

n-gram based technique to compute the similarity of two

API method sequences, considering not only the

occurrences of each API method, but also the

occurrences of n-gram API methods. It also takes into

consideration the weight of each n-gram of API methods.

 Mining frequent closed sequences. As described in

Section II, MAPO uses the Bitmap algorithm to mine

frequent sequences, resulting in a large number of

redundant sequences. In contrast, our approach includes

the BIDE algorithm to mine frequent closed sequences,

thus reducing the redundancy of the resulting sequences.

B. Threats to Validity

We identify several threats to validity.

In our study, we use codebase M as the experimental

subject, which is a large-scale industrial project. However,

some codebases, especially codebases of small projects, may

not contain enough API instances for UP-Miner to mine.

We selected 20 .NET API methods in our experiments.

Although these API methods are well-known methods

covering both database and Web domains, they are still

limited in number.

Our empirical study involves human subjects. The limited

number and the programming capabilities of the human

subjects may bias the results. To reduce this threat, we used a

controlled study and a crossover design. In the future, we plan

to conduct experiments and user studies involving more

subjects, API methods, and programming tasks to further

reduce this threat.

VIII. RELATED WORK

A. Code Search

Mining API usage patterns is closely related to the work

on code search and specification mining. Koders and Google

code search are code search engines that can return code

snippets containing the keywords (or Regular Expressions) of

API method names. Strathcona [8] is a code snippet

recommender, which locates a set of relevant code snippets

by matching the structure of the code under development with

the code snippets in codebase. The approach proposed by

Acharya et al. [1] mines API partial orders from source code

files, but it does not do clustering first to group similar orders

into the same clusters and different orders into different

clusters. Portfolio [10] visualizes relevant functions and their

usages using a combination of models that address surfing

behavior of programmers and uses PageRank to mine the

relationship of functions. However, Portfolio cannot identify

the orders of any two functions. Recently, Buse and Weimer

[4] presented an automatic technique for mining and

synthesizing human-readable documentation of program

interfaces. Its algorithm is based on a combination of path

sensitive dataflow analysis, clustering, and pattern abstraction.

ParseWeb [14] accepts queries of the form “Source ->

Destination” from a programmer and gives the code samples

containing the given Source and Destination object types.

Wasylkowski et al. [17] applied static analysis to mine object

usage models from code. The object usage model is

represented as finite state automata, which can then be used to

detect anomalies. Nguyen et al. [11] developed GraPacc,

which is a graph-based and pattern-oriented tool for code

completion. It takes as an input a database of usage patterns

and completes the code under editing based on its context and

those patterns. API usage patterns can be also mined via

dynamic analysis. For example, Ammons et al. [2] proposed

inferring a specification by observing program execution and

summarizing frequent interaction patterns as state machines.

Unlike the related methods, we adopt a two-step

clustering strategy and mine frequent closed method

sequences from an organization’s local codebase based on an

API query. We aim to produce high quality (both succinct and

high-covering) API usage patterns.

B. Frequent Pattern Mining

A major challenge in frequent pattern mining is the sheer

size of its mining results [7]. In many cases, a low minimum

support may generate an explosive number of output patterns,

severely restricting the usage of a frequent pattern miner.

Researchers have proposed various techniques to reduce the

large number of frequent patterns, while maintaining the

quality of identified patterns. For example, Calders and

Goethals [5] proposed mining compressed, non-derivable

frequent patterns. Wang et al. [16] proposed pCluster, an

algorithm to detect clusters of patterns. They consider two

objects similar if they exhibit a coherent pattern on a subset of

dimensions, and demonstrated its effectiveness for microarray

data analysis.

In our work, we apply BIDE and propose a two-step

clustering strategy for producing high-quality API usage

patterns. We also propose an optimization technique that

maximizes both coverage and succinctness of the resulting

patterns.

IX. CONCLUSION

In this paper, we have proposed UP-Miner, an approach

and support tool that mines API usage patterns from source

code. Our approach considers the coverage and the

succinctness of the mined patterns. In our implementation, we

further present a usage pattern as a graph to facilitate

developers easily understanding the mined usage patterns. We

perform evaluations on a large-scale Microsoft codebase and

the results have shown the effectiveness of the proposed

approach and our approach outperforms an existing

representative approach (MAPO). The user studies performed

with Microsoft developers and interns also confirm the

usefulness of the proposed approach.

In the future, we plan to explore techniques of automatic

code completion based on the returned API usage patterns.

We also plan to transfer the UP-Miner technique to Microsoft

development teams. A video demo of UP-Miner can be

accessed at http://research.microsoft.com/UP-Miner.

ACKNOWLEDGEMENT

We thank all Microsoft developers who participated in our

user studies and provided us helpful comments.

REFERENCES

[1] M. Acharya, T. Xie, J. Pei, J. Xu. “Mining API patterns as

partial orders from source code: from usage scenarios to

specification,” In Proc. ESEC/FSE 2007, pp. 25-34.

[2] G. Ammons, R. Bodik, J. R. Larus. “Mining specifications,” In

Proc. POPL 2002, pp. 4-16.

[3] J.Ayres, J. Gehrke, T. Yiu, and J. Flannick. “Sequential pattern

mining using a bitmap representation,” In Proc. SIGKDD 2002.

[4] P.L. Buse and W. Weimer. “Synthesizing API Usage Examples,”

In Proc. ICSE, pp 782-792, 2012.

[5] T.Calders, B. Goethals, “Mining all non-derivable frequent
itemsets”. In: Proc PKDD’02, pp. 74-85.

[6] J. Han and M. Kamber, Data Mining: Concept and Techniques,

Elsevier, 2006.

[7] J. Han, H. Cheng, D. Xin, and X. Yan. Frequent Pattern Mining:

Current Status and Future Directions. Data Min. Knowl. Discov.

15, 1, pp. 55-86, 2007.

[8] R.Holmes and G. C. Murphy. “Using structural context to

recommend source code examples,” In Proc. ICSE, 2005.

[9] C.D.Manning, P.Raghavan, and H.Schtze. Introduction to

Information Retrieval, Cambridge University Press, 2008.

[10] C.McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,

“Portfolio: finding relevant functions and their usages,” In Proc.

ICSE 2011, pp. 111-120.

[11] A.Nguyen, T. Nguyen, H. Nguyen, A. Tamrawi, H. Nguyen, J.

Al-Kofahi, and T. Nguyen. “Graph-based pattern-oriented,
context-sensitive source code completion,” In Proc. ICSE, 2012.

[12] M.P. Robillard, “What makes apis hard to learn? Answers from

developers,” IEEE Softw., vol. 26, no. 6, pp. 27–34, 2009.

[13] M.P. Robillard and R. DeLine. A Field Study of API Learning

Obstacles. Empirical Soft. Engin., 16(6): 703-732, 2011.

[14] S.Thummalapenta, T. Xie. “PARSEWeb: a programmer

assistant for reusing open source code on the web,” In Proc.

ASE 2007.

[15] J.Wang and J. Han. “BIDE: efficient mining of frequent closed

sequences,” In Proc. ICDE 2004, pp. 79.

[16] H.Wang, W. Wang, J. Yang, and P. S. Yu. 2002. “Clustering by

pattern similarity in large data sets,” In Proc. SIGMOD 2002.

[17] A.Wasylkowski, A. Zeller, and C. Lindig, “Detecting object
usage anomalies,” in ESEC-FSE ’07. ACM, 2007, pp. 35–44.

[18] H. Zhong, T. Xie, L. Zhang, J. Pei, H. Mei. “MAPO: mining

and recommending API usage patterns,” In Proc. ECOOP 2009,

pp. 318-343.

