
Contextual Analysis of Program Logs for 

Understanding System Behaviors  
 

Qiang Fu, Jian-Guang Lou, Qingwei Lin, Rui Ding, 

Dongmei Zhang 

Microsoft Research Asia 

Beijing, China 

{qifu, jlou, qlin, juding, dongmeiz}@microsoft.com  

Tao Xie 

Department of Computer Science 

North Carolina State University 

NC, USA 

xie@csc.ncsu.edu

 

 
Abstract—Understanding the behaviors of a software system is 

very important for performing daily system maintenance tasks. 

In practice, one way to gain knowledge about the runtime 

behavior of a system is to manually analyze system logs collected 

during the system executions. With the increasing scale and 

complexity of software systems, it has become challenging for 

system operators to manually analyze system logs. To address 

these challenges, in this paper, we propose a new approach for 

contextual analysis of system logs for understanding a system’s 

behaviors. In particular, we first use execution patterns to 

represent execution structures reflected by a sequence of system 

logs, and propose an algorithm to mine execution patterns from 

the program logs. The mined execution patterns correspond to 

different execution paths of the system. Based on these execution 

patterns, our approach further learns essential contextual factors 

(e.g., the occurrences of specific program logs with specific 

parameter values) that cause a specific branch or path to be 

executed by the system. The mining and learning results can help 

system operators to understand a software system’s runtime 

execution logic and behaviors during various tasks such as system 

problem diagnosis. We demonstrate the feasibility of our 

approach upon two real-world software systems (Hadoop and 

Ethereal).  

Index Terms—Contextual Analysis, understanding system 

behaviors, log analysis. 

I. INTRODUCTION 

With the increasing scale and complexity of software 

systems, it has become more and more difficult for system 

operators to understand the behaviors of software systems for 

tasks such as system problem diagnosis. For example, system 

operators need to understand system behaviors to figure out 

why a software system is in the current status. With such an 

understanding, they can choose the right operations to achieve 

the desired goal. System behaviors include a series of actions 

executed by the system and the corresponding changes in the 

system states. Although operators usually investigate a system 

starting from a specific state of interest, e.g., a hang state or 

failure state, contextual information for reaching that state is 

critical for identifying why the system runs in that state. Such 

contextual information includes how previous actions are 

executed by the system, what the historical system states are 

before running into the state of interest, what the input data is, 

etc. 

To help system operators understand a system’s behaviors, 

three main sources of information are available:  system 

documentations, source code, and program logs. Ideally, 

system documentations are expected to provide detailed and 

up-to-date information about the system. However, in practice, 

system documentations are often incomplete, outdated, or even 

unavailable. Many systems are not well documented due to 

tight release schedules or poor project management. Program 

source code is another source that provides accurate and 

detailed information about a system. However, the source code 

of the system is not always available to system operators. For 

example, in many cases, a system may include third-party 

components whose source code is not available. 

The information provided by program logs [1] has been the 

most widely used source for system operators to understand 

system behaviors, especially for a large-scale online system. 

Program logs contain a wealth of information to help manage 

systems. Most systems print out program logs during their 

executions to record system runtime actions and states that can 

directly reflect system runtime behaviors. System operators 

usually use these logs to track a system to detect and diagnose 

system anomalies. 

However, there are challenges in analyzing program logs in 

order to understand a system’s behaviors. The program logic of 

a system usually has a lot of branches, and thus the system’s 

behaviors may be quite different under different input data or 

environmental conditions. Knowing the execution behavior 

under different inputs or configurations can greatly help system 

operators to understand system behaviors. However, there may 

be a large number of different combinations of inputs or 

parameters under different system behaviors. Such complexity 

poses difficulties for analyzing contextual information related 

to the state of interest. 

To address this challenge, in this paper, we propose a new 

approach for the contextual analysis of program logs to better 

understand a system’s behaviors. In particular, we use 

execution patterns to represent the execution structures 

reflected by program logs, and propose an algorithm to mine 

execution patterns from the program logs.  The mined 

execution patterns correspond to different execution paths of 

the system. Based on the execution patterns, our approach 

further learns the essential contextual factors (e.g., occurrences 



of specific program logs with specific parameter values) that 

cause a specific branch or path to be executed by the system. 

The mining and learning results can help system operators 

understand the execution logic and behaviors of a software 

system for their various maintenance tasks such as system 

problem diagnosis. 

This paper makes the following research contributions: 

 We conduct Formal Concept Analysis (FCA) [4] to 

analyze log messages, and construct a concept lattice 

graph. The learned graph is used to mine execution 

patterns and to model relationships among different 

execution patterns. Such relationships represent branch 

structures in the program execution logic. 

 Based on the lattice graph, we propose a feature 

extraction technique and use decision trees to learn 

branch conditions. The learned branch conditions 

reveal essential contextual factors that determine which 

code branches the system will take at bifurcation points. 

II. BACKGROUND  

Developers often write log-printing statements [1] in key 

points of program source code to track system actions and 

states during system execution. Table 1 lists two examples of 

log-printing statements and the corresponding log messages in 

Hadoop. 

TABLE I.  EXAMPLES OF LOG-PRINTING STATEMENTS AND LOG MESSAGES 

Log-printing  

statement 
Log Message Index 

LOG.info("JVM with 

ID: " + jvmId + " 

given task: " + 

tip.getTask().getTask

ID()) 

JVM with ID: 

jvm_200906291359_0008_r_1815559152 

given task: at-

tempt_200906291359_0008_r_000009_0 

161 

LOG.info("Adding 

task '" + taskid + "' to 

tip " + tip.getTIPId() 

+ ", for tracker '" + 

taskTracker + "'") 

Adding task 

'attempt_200906291359_0008_r_000009_0' 

to tip task_200906291359_0008_r_000009, 

for tracker 'tracker_msramcom-

pt5.fareast.corp.microsoft.com:127.0.0.1/127.

0.0.1:1505' 

73 

 

Fig. 1.  A part of CVS workflow  

Generally, each log message consists of two different types 

of content: a constant string and parameter values. For example, 

for the first log-printing statement in Table 1, the constant 

string is “JVM with ID: given task:”, and the printed 

parameters are JvmId and TaskId. The log messages printed by 

the same log-print statement contain the same constant string, 

and are considered to be of the same type, represented by the 

constant string. For the first log message in Table 1, its 

message type signature is “JVM with ID:~ given task:~”, 

where “~” means a parameter place holder. Its parameter 

values are “jvm_200906291359_0008 _r_1815559152” and 

“attempt_200906291359_0008_r_000 009_0” respectively. 

Free-form texts in log messages can be converted to a 

structured representation [2]. The structured representation of 

each log message is a tuple consisting of a timestamp, a 

message type, and a parameter value list: <timestamp, message 

type, param1-value, param2-value, … paramN-value>. For 

convenience, we give each message type a unique index. The 

indexes of message types in Table 1 are 161 and 73, 

respectively. A printed parameter can be uniquely identified by 

a message type and a position index (messageTypeIndex, 

positionIndex). For example, (73,1) represents the first 

parameter in messages of type 73, and (161,2) represents the 

second parameter in messages of type 161. We denote the 

message type that parameter α belongs to as L(α). For a log 

message m of type L(α), the value of parameter α in m is 

denoted as v(α,m). For example, the value of parameter (73,1) 

in the second log message in Table 1 is attempt_200906291359 

_0008_r_000009_0. All distinct values of parameter α in all log 

messages of type L(α) form a value set of α, denoted as V(α). 

Our approach accepts as input a number of log-message 

groups, each of which consists of a log-message sequence 

corresponding to an execution instance related to the same 

object identifier (e.g., JobID and TransactionID), which is 

reflected by specific parameter values in different log messages. 

Previous approaches [2] can be extended to construct such log-

message groups from raw log messages. 

TABLE II.  EXAMPLES OF LOG-MESSAGE GROUPS, EACH CORRESPONDING TO 

THE SAME TRANSACTION TYPE 

Transaction index Sequence of log messages  

1 W X G T S A O Y 

2 W X G T N S O Y 

3 W X G T N S T S A O Y 

4 W X G S O Y 

5 W X G C I D A O Y 

TABLE III.  CONTEXT OF EXECUTIONS IN TABLE 2 

 W X G O Y S T N A C I D 

1 ○ ○ ○ ○ ○ ○ ○  ○    

2 ○ ○ ○ ○ ○ ○ ○ ○     

3 ○ ○ ○ ○ ○ ○ ○ ○ ○    

4 ○ ○ ○ ○ ○ ○       

5 ○ ○ ○ ○ ○    ○ ○ ○ ○ 

 

For example, Table 2 lists example log-message groups, 

each of which consists of a log-message sequence representing 

the execution flow for serving the same transaction (each log 

message is represented with its type in the table). Such 

examples of log-message groups are constructed from raw log 

messages that are the result of running a Concurrent Versions 

System (CVS) system whose partial workflow is shown in 

Figure 1 (presented by Lo et al. [3]).  The system execution 

goes into the five different code paths for serving five types of 

transactions. 

G

1 20 8 9 10 1911 20 21

7

3 4
5

6

W X G DC L A O Y

S

G

T

S

N

A

S

S

A

C

D

Info:
A – appendFile
C – changeWorkingDirectory

G – Login
L – listFiles
N – rename
O – Logout
D – deleteFile

Info:
S – storeFile

T – setFileType

V – retrieveFile

W – <init>

X – Connect

Y – Disconnect



III. APPROACH 

To learn essential contextual factors that cause a specific 

branch or path to be executed by the system, our approach 

consists of two major steps. First, given the log-message 

groups, we apply Formal Concept Analysis (FCA) [4] to 

identify execution patterns and build up the lattice graph to 

model the relationships among execution patterns (Section 3.1). 

Second, from the constructed lattice graph, we extract features 

from log messages, and apply machine learning techniques to 

learn essential contextual factors that cause a specific branch or 

path to be executed by the system (Section 3.2). The learned 

essential contextual factors can provide useful information for 

understanding why the system exhibits specific behaviors. 

A. Mining Execution Patterns and Relationships 

Given log-message groups, we apply Formal Concept 

Analysis (FCA) [4] to identify execution patterns and build up 

the lattice graph to model the relationships among execution 

patterns. In FCA, given a context I=(OS, AS, R), consisting of a 

binary relationship R between objects (from the set OS) and 

attributes (from the set AS), a concept c is produced by FCA as 

a pair of sets (X, Y) such that 
                      
                      

Here, X is called as the extent of the concept c and Y is its 

intent. Concepts are ordered by their partial relationship (noted 

as   ). Such partial ordering relationships can induce a 

complete lattice on concepts, called the lattice graph. 

As an example, Table 3 is a typical context representation 

that defines the binary relationship between the objects and 

attributes: operations executed by different code paths 

according to Table 2. Here, the objects (from rows) are 

execution code paths (represented by log-message sequences), 

and the attributes (from columns) are operations (represented 

by individual log messages). A circle in a table cell represents 

the situation in which the corresponding object has the 

corresponding attribute. With the context illustrated in Table 3, 

we apply FCA to obtain the lattice graph shown in Figure 2. 

In Figure 2, each node contains an execution pattern (i.e., 

the message-type set in the second line) and transaction indexes 

(i.e., the indexes of transactions in the first line) whose 

produced messages contain the message types in the execution 

pattern.  For a node, its parent (a connected upper one node) 

node’s intent represents a trunk segment of code paths. Each 

transaction index appears in the sequence (from top to down) of 

the connected nodes’ extents. The corresponding series of 

intents of these connected nodes indicates the series of 

execution patterns, which illustrate the system execution from 

the trunk to the more and more specific branch for serving the 

transaction. 

Although other kinds of information, e.g., the temporal-

order information and the message-count information, may also 

facilitate system understanding (e.g., based on frequent 

sequence mining or automaton learning), our FCA mainly 

focuses on the set of distinct message types to model system-

execution code paths. The rationale is that using the message-

type set to represent different code paths is robust in the 

presence of message disordering, which is very common in 

distributed systems because clocks of different machines are 

hard to ideally synchronize. 

Fig. 2.  Topology of execution patterns as a lattice graph 

B. Learning Essential Contextual Factors 

In practice, a system selects its execution code paths 

depending on the values of the input argument variables or 

runtime system states. In general, branch conditions can be 

various kinds of predicates and expressions, which can be 

either numerical values or simple enumerable data (e.g., system 

states and return codes). Developers of a system often record 

the values of such conditional variables as log parameters for 

diagnosing problems and tracking object life cycles. For 

example, a web application may execute different code paths 

according to the different HTTP request types, e.g., get or post. 

Such key states are recorded in logs. 

To discover conditional predicates that determine the 

selection of specific execution branches or paths, from the 

lattice graph constructed by FCA, we extract features from log 

messages and apply machine learning techniques to learn 

essential contextual factors that cause a specific branch or path 

to be executed by the system. 

In particular, we formalize this problem as a supervised 

classification problem. For each node c in the lattice graph, we 

denote its child concept nodes as c1, c2, …, cn. In order to 

determine why the code path of c would branch to the code 

paths of its child concepts ci (     ), we learn n classifiers 

for n node pairs (c, c1), …, (c, cn). The i
th
 classifier uses the 

logged parameter values in log messages produced by 

transactions within O(c) to predict whether a transaction within 

O(c) (i.e., the extent of concept c) would branch to the code 

path of ci. In other words, for a transaction in O(c), the i
th
 

classifier predicts whether the transaction is contained in O(ci) 

according to logged parameter values in log messages of the 

transaction. 

During the labeling, each transaction is given a class label 

depending on its appearance in the child nodes’ extents. At the 

same time, features are extracted from the enumerable values 

of system state parameters printed in the log messages of the 

transaction. We mainly focus on the enumerable system state 

parameters, because each of the state parameters has only a 

constantly small set of values. We plan to extend our algorithm 

to handle real-type system variables in our future research. 

After labeling and feature extraction (i.e., constructing 

feature vectors), we obtain a set of feature vectors with 

{1,2,3,4,5}

{W,X,G,O,Y}

{3}

{W,X,G,O,Y,S,T,N,A}

{2,3}

{W,X,G,O,Y,S,T,N}

{1,3}

{W,X,G,O,Y,S,T,A}

{1,2,3}

{W,X,G,O,Y,S,T}

{1,2,3,4}

{W,X,G,O,Y,S}

{1,3,5}

{W,X,G,O,Y,A}

{5}

{W,X,G,O,Y,A,C,I,D}

{}

{W,X,G,O,Y,S,T,N,A,C,I,D}



corresponding labels (i.e., +1 or -1) for each pair of nodes in 

the lattice graph. We feed such labeled feature vectors as 

training data to the C4.5 decision tree learning algorithm to 

learn a decision tree for the pair of parent-child nodes. A 

decision tree is a classical classification model that can provide 

intuitive cues for operators to understand how each feature 

dimension is correlated to the class labels. In our scenarios, the 

learned decision tree can clearly tell us how a specific 

combination of the values of state variables determines that the 

system executes the code branch of the child node. Therefore, 

the learned classifier reveals the essential factors causing 

branches. The illustrative example is shown in the next section. 

IV.  PRELIMINARY RESULTS 

We applied our approach to two open source systems: 

Ethereal and Hadoop. Our test bed for Hadoop (version 0.19) 

contained 16 machines connected with a 1G Ethernet switch. 

We ran some sample applications, such as WordCount and Sort, 

and collected the resulting log data (24 million lines). In the 

original source code of Ethereal, there is no log-printing 

statement. To collect logs, we added log-printing statements at 

the entry points of all functions related to dealing with the 

following protocols: IPv6, IP, arp, http, ftp, nbns, icmpv6m, tcp, 

udp, and ethernet2. We ran Ethereal to collect data packs from 

a LAN (about 500 machines) for about one hour. The produced 

log data from the two systems were processed by an extension 

of our previous method [2] to supply log-message groups to 

our approach as input. 

We first used FCA to construct a lattice graph from the 

given log-message groups, and then learned the essential 

contextual factors that determine a branch code path executed 

by the system. In particular, we applied the technique discussed 

in Section 3-B for each pair of parent-child nodes in the lattice 

graph. We used a 4-fold cross-validation method to evaluate 

the accuracy of our learned decision trees. For a node c, every 

transaction in its extent O(c) is a sample that has an associated 

feature vector and a corresponding label. We randomly 

partitioned all samples (i.e., all transactions in O(c)) into four 

subsamples, used three of them as the training set to learn a 

decision tree, and then test the learned decision tree on the 

remaining subsample to measure the accuracy. We repeated the 

procedure four times. Each time, we used a different subsample 

as the testing set and the remaining subsamples as the training 

set, and obtained the accuracy for the learned decision tree. 

Finally, we used the average accuracy as the accuracy of 

learning contextual factors for this pair of parent-child nodes.  

In our evaluation, we applied the learning algorithms on 

only the node pairs in which the child node’s extent contains 

more than 100 elements, because a small number of samples 

usually cannot provide results of statistical significance. We 

also excluded another kind of node. In these nodes, log-

message groups of different transactions contain the identical 

log messages. In other words, message groups corresponding to 

different transactions do not contain discriminative information 

to indicate why the system runs into different branches. 

Therefore, for such nodes, it is impossible to learn the essential 

contextual factors from logs. We call such nodes trivial nodes. 

These trivial nodes indicate that some important information is 

missing in the log data. Such feedback provides guidance for 

developers to log additional necessary information in log-

printing statements to better perform log-based monitoring, 

diagnosis, or understanding of system behaviors. 

Hadoop Results. In Hadoop, there are different kinds of 

object identifiers, which define different kinds of transactions. 

For example, when we investigate system behaviors for serving 

tasks, each task is considered a transaction. Accordingly, log 

messages with the same Task ID are grouped together as the 

message group of a transaction. We performed the proposed 

approach to understand system behaviors with specified object 

identifiers, i.e., Block ID, Task ID, Attempt ID, and JVM ID, 

respectively. The results are shown in Table 4. 

TABLE IV.  AVERAGE ACCURACY OF LEARNED DECISION TREES ON HADOOP 

Identifier Node Node-L Node-NE Accuracy 

Attempt ID 109 69 58 94.60% 

Block ID 43 4 2 97.16% 

Task ID 5 4 4 96.87% 

JVM ID 5 4 0 -- 

 

In the table, Column Node shows the number of nodes in 

the lattice graph. Column Node-L shows the number of nodes 

(denoted as Node-L) whose extents contain more than 100 

elements. Column Node-NE shows the number of non-trivial 

nodes (denoted as Node-NE) in Node-L. For each pair of 

parent-child nodes in which the nodes are in Node-NE, we 

learned the decision tree whose accuracy is evaluated with 4-

fold cross-validation. The average accuracy of all learned 

decision trees on the lattice graph is listed in Column Accuracy. 

Ethereal Results. The only object identifier of interest is 

Packet ID. Therefore, log messages with the same Packet ID 

form the message group of a transaction. The analysis results 

are listed in Table 5. 

TABLE V.  AVERAGE ACCURACY OF LEARNED DECISION TREES ON ETHEREAL 

Identifier Node Node-L Node-NE Accuracy 

Packet ID 28 16 14 99.95% 

 

Result Analysis. By manually inspecting the learned 

classifiers for both Hadoop and Ethereal, we found that the 

classifiers not only have high accuracy for determining the 

execution branches, but also offer meaningful interpretation of 

system behaviors. 

REFERENCES 

[1] D. Yuan, S. Park and Y. Zhou. Characterising logging practices 

in open-source software. In Proc. ICSE’12, 2012. 

[2] Q. Fu, J. Lou, Y. Wang and J. Li, Execution anomaly detection 

in distributed systems through unstructured log analysis, In Proc. 

ICDM’ 09, pp 149-158, 2009. 

[3] D. Lo, L. Mariani, and M. Pezzè, Automatic steering of 

behavioral model inference, In Proc. ESEC/FSE’ 09, 2009. 

[4] B. Ganter and R. Wille, Formal concept analysis, Springer-

Verlag, Berlin, Heidelberg, New York, 1996.

 


