
Identifying Security Bug Reports via Text Mining: An Industrial Case Study
1Michael Gegick, 2Pete Rotella, 3Tao Xie

1Independent, 2Cisco Systems , 3North Carolina State University Department of Computer Science
mcgegick@gmail.com, protella@cisco.com, xie@csc.ncsu.edu

Abstract -- A bug-tracking system such as Bugzilla contains
bug reports (BRs) collected from various sources such as
development teams, testing teams, and end users. When bug
reporters submit bug reports to a bug-tracking system, the bug
reporters need to label the bug reports as security bug reports
(SBRs) or not, to indicate whether the involved bugs are
security problems. These SBRs generally deserve higher
priority in bug fixing than not-security bug reports (NSBRs).
However, in the bug-reporting process, bug reporters often
mislabel SBRs as NSBRs partly due to lack of security domain
knowledge. This mislabeling could cause serious damage to
software-system stakeholders due to the induced delay of
identifying and fixing the involved security bugs. To address
this important issue, we developed a new approach that applies
text mining on natural-language descriptions of BRs to train a
statistical model on already manually-labeled BRs to identify
SBRs that are manually-mislabeled as NSBRs. Security
engineers can use the model to automate the classification of
BRs from large bug databases to reduce the time that they
spend on searching for SBRs. We evaluated the model's
predictions on a large Cisco software system with over ten
million source lines of code. Among a sample of BRs that
Cisco bug reporters manually labeled as NSBRs in bug
reporting, our model successfully classified a high percentage
(78%) of the SBRs as verified by Cisco security engineers, and
predicted their classification as SBRs with a probability of at
least 0.98.

I. INTRODUCTION
Software organizations use bug-tracking systems

(BTSs) such as Bugzilla1 to manage bug reports (BRs)
collected from various sources including development
teams, testing teams, and end users. In a BTS, some BRs
are labeled by bug reporters as security bug reports (SBRs),
whose associated bugs are found to be security problems.
SBRs generally deserve higher fix priority than not-security
bug reports (NSBRs), the subset of BRs that are believed
not to have a security impact.

Correctly labeling SBRs among BRs submitted to a
BTS is important in security practice since delay of
identifying and fixing the security bugs involved in the
SBRs causes serious damage to software-system
stakeholders. The likelihood of unlabeled SBRs in a BTS
could be high for at least three reasons. First, if bug
reporters perceive a subtle security bug that they are
reporting in a BR as an innocuous not-security bug, then
they may label the BR as an SBR. Second, some security
bugs described in BRs are associated with recommended
mitigations that may be unknown to bug reporters. For

example, if a SQL parser throws an exception due to input
containing a single quote, then a bug reporter without
sufficient security knowledge may report this bug as a
NSBR, whose related bug may be later fixed by filtering the
input for single quotes. However, attackers can write crafty
exploits to circumvent such filtering [1]. A bug reporter
with sufficient security knowledge would realize that single
quotes can be used in SQL injection attacks and report this
bug as an SBR, whose related bug would be later fixed by
limiting privileges on a database server and using prepared
statements that bind variables as advised by Howard et al.
[7]. Third, a bug related to general reliability problems can
also be related to security problems [15] and a bug reporter
without sufficient security knowledge may report this bug
as a NSBR. For example, a bug that causes a system to
crash can also be a denial-of-service security bug if
exploited by an attacker.

In the practice of bug reporting, bug reporters may
often mislabel SBRs as NSBRs partly due to lack of
security domain knowledge as discussed earlier. Then it is
desirable for security engineers to inspect NSBRs submitted
to a BTS to identify SBRs that are manually-mislabeled as
NSBRs in the BTS. However, manually inspecting (often
thousands of) NSBRs in a BTS to identify SBRs is time-
consuming and often infeasible, or not even conducted in
practice. For example, to the best of our knowledge, the
open source project members of Mozilla and Red Hat1,2 do
not have the practice of manually inspecting each NSBR
submitted to their BTSs, while acknowledging that some
NSBRs in their BTSs were in fact mislabeled, and should
have been SBRs3.

Therefore, there remains a strong need of effective tool
support for reducing human efforts in this process of
identifying SBRs in a BTS, enabling this important security
practice of SBR identification in either industrial or open
source settings. With such effective tool support, security
engineers can elevate the priority of each identified SBR
and ensure that the described security bug receives
appropriate fortification efforts, and gets fixed timely, thus
improving the security assurance of the software.

To satisfy such a strong need, in this paper, we propose
a new tool-supported approach that applies text mining on

1 https://www.mozilla.org/projects/security/security-bugs-policy.html
2 http://ovasik.fedorapeople.org/bugs.pdf
3http://mail.opensolaris.org/pipermail/tools-discuss/2009-

March/004379.html

natural-language descriptions of BRs to learn a statistical
model to classify4 a BR as either an SBR or an NSBR.
With the help of our approach, security engineers can
feasibly apply our proposed approach on NSBRs from a
BTS to effectively identify SBRs, without inspecting each
single NSBR from a BTS (which is simply infeasible in
practice as discussed earlier).

The rationale of our proposed approach is to exploit
valuable natural-language information of BRs in a BTS.
Although bug reporters may not recognize that the bug they
are describing is a security bug, the natural-language
description of the bug in the BR may be adequate to
indicate that the bug is security-related and thus the BR is
an SBR.

To identify SBRs by exploiting valuable natural-
language information in BRs, we propose an approach that
learns a natural-language statistical model for classifying a
BR as either an SBR or NSBR. We implement our
approach based on an industrial text mining tool called SAS
Text Miner5. We evaluated our model on a large Cisco
software system that contains over ten million source lines
of code (SLOC). We trained our model on four years of
Cisco SBRs and then applied the model on BRs that were
labeled as NSBRs by Cisco bug reporters. We also applied
the model on BRs from three additional large Cisco
software systems, two of which each consist of over five
million SLOC, and one of which consists of over 10 million
SLOC.

In this paper, we use the terms “bug reporters,”
“software engineers,” and “security engineers” as follows.
A bug reporter is any person (internal or external to Cisco)
who reports a bug to the Cisco BTS. A software engineer is
any stakeholder at Cisco responsible for the development of
Cisco software. Software engineers may also be bug
reporters. A security engineer is a Cisco engineer that is
responsible for securing Cisco software. Security engineers
assess SBRs that have been submitted to the BTS.

In summary, this paper makes the following main
contributions:

• The first approach that learns a natural-language model
to automate the classification of SBRs. We also show
how our model can be trained and refined to improve
the effectiveness of classifying SBRs mislabeled as
NSBRs.

• An extensive empirical evaluation of the proposed
approach on four large Cisco software systems. Two
systems each consist of over five million SLOC and the
other two systems each consist of over ten million

4 We reserve labeling for manually identifying BRs as SBRs or NSBRs and

classifying for model-based identification of SBRs and NSBRs.
5 http://www.sas.com/technologies/analytics/datamining/textminer/

SLOC. Our results indicate that our model can classify
seven times more SBRs from a BTS of one system than
randomly selecting BRs from the BTS (a default
strategy when the number of BRs is beyond the security
engineers’ afforded inspection efforts). Among a
sample of BRs that Cisco bug reporters originally
labeled as NSBRs, our model successfully identified a
high percentage (78%) of the SBRs as verified by a
Cisco security engineers, and predicted their
classification as SBRs with a probability of at least
0.98.
Due to the very promising results of our case study,

Cisco is planning on carrying out another pilot study,
confirming the value and impact of our work on Cisco
practice. The rest of this paper is organized as follows.
Section II provides background. Sections III and IV detail
our approach and case study setup. Section V presents the
results. Section VI discusses the threats to validity. Section
VII provides related work, and Section VIII concludes.

II. TEXT-MINING OVERVIEW
 Text mining uses natural-language processing to parse
terms (i.e., words and phrases) from a document to create a
term-by-document frequency matrix. Table I shows a
simple, hypothetical term-by-document matrix. A
document is represented by a vector (column) in the matrix
that contains the number of times each of the different terms
occurs in the document. The matrix provides a quantitative
representation of the document that text mining uses to
classify documents. The models that use such matrices to
represent documents are called vector space models, and are
commonly used for text mining [11].

The investigator performing text mining can decide
what terms to enter into the matrix by creating a pre-defined
list of terms. A start list contains terms that are most likely
to be indicative of categories of documents. If terms in a
document match those in the start list, then those terms are
entered into the matrix.

Table I. A term-by-document frequency matrix.
Term Document 1 Document 2 Document 3

Attack 1 0 1
Vulnerability 1 0 0
Buffer overflow 3 0 0

A stop list contains terms such as articles, prepositions,
and conjunctions that are not used in text mining. If terms
in the stop list match those in a document, then those terms
are not entered into the matrix. While the terms in the start
list are not unique to SBRs, their frequency and presence
with other security terms in a BR increase the probability
that the BR is an SBR. The synonym list contains terms
with the same meanings (e.g., “buffer overflow” and “buffer
overrun” have the same meaning). Terms in a synonym list
are treated equivalently in text mining. Therefore, a less-
used term that is associated with SBRs may be given more

weight in the predictive model if the term is synonymous
with a term that is often used with SBRs.

Weighting functions can be assigned to the terms and
their frequencies in each vector. The total weight of a term
is determined by the frequency weight and the term weight.
We use the log frequency weight function to lessen the
effect of a single term being repeated often in each BR. We
use the entropy term weight function to apply higher
weights to terms that occur infrequently in the BRs [14]. A
statistical model can then estimate the probability that a
document belongs in a given category based on the
weighted values in the vector. Being a major part of text
mining, text classification uses a built natural-language
predictive model to classify documents into predefined
categories with a pre-classified training set [14].

III. APPROACH
Our approach consists of three main steps. The first

step is to obtain a labeled BR data set that contains textual
descriptions of bugs and labels to indicate whether a BR is
an SBR or an NSBR. The labeled BR data set is required
for building and evaluating our natural-language predictive
model. The second step is to create three configuration files
that are used in text mining: a start list, a stop list, and a
synonym list. The third step is to train, validate, and test the
predictive model that estimates the probability that a BR is
an SBR.
A. Textual-Data Preparation

The textual-data step prepares labeled data for building
and evaluating our natural-language predictive model. This
step includes three sub-steps. First, from a BTS, we obtain
BRs that were submitted by stakeholders including
development team, testing teams, and end users. Second,
we distinguish between SBRs and NSBRs among the
obtained BRs. In some commercial software organizations,
a BR contains a label field that indicates whether the BR is
an SBR. A query on this field in the BTS causes all known
SBRs to be returned. If the field is not present in the BTS
or an insufficient number of BRs are labeled, then manual
efforts from software or security engineers are needed to
label a subset of all BRs as SBRs or NSBRs. In the end, we
use labeled BRs to build and evaluate our natural-language
predictive model. Finally, using a built-in function in SAS,
we enumerate all the terms in the labeled SBRs and NSBRs.
These terms are necessary for the next step where we
construct configuration files. Generally, the more labeled
data used for building the predictive model, the more
accurate the predictive model is. According to SAS [14],
the minimum count of documents required for natural-
language modeling is 100.
B. Configuration-File Preparation

After we obtain the terms from the BRs, we select
terms from them to prepare the start, stop, and synonym
lists. To the start list, we manually add terms such as

“vulnerability” and “attack” from SBRs. We also include
terms (from SBRs) that are not explicitly security-related,
but can indicate a security problem. For example, “crash”
and “excessive” are also candidates for inclusion in the start
list.

To the stop list, we add prepositions, articles, and
conjunctions since they likely have little benefit for
indicating a security bug. Both stop lists and start lists are
acceptable for text mining [14]. SAS Text Miner allows
either a start list or stop list to be used in text mining, but
not both. In our approach and case study, we tried each
type, and experienced similar classification results.

To the synonym list, we add synonyms based on
examinations of the enumerated terms from SBRs and
NSBRs. Bug reporters may use security-related verbiage
such as “buffer overflow” or “buffer overrun” to describe
the same bug. By including such terms in the synonym list,
the predictive model can identify different terms in the same
context to reflect the same type of bugs.

We next use SAS Text Miner to generate a term-by-
document frequency matrix from the terms in BRs based on
the start or stop, and synonym lists. The matrix is a
quantified format of the natural language descriptions in the
BRs. If we include a large number of BRs in text mining,
the term-by-document frequency matrix can become large.
A large matrix can hinder the predictive modeling in text
mining [5]. We reduce the size of the matrix by choosing
the singular value decomposition (SVD) option in SAS.
SVD determines the best least squares fit to the weighted
frequency matrix, based on a preset number of terms, k
[14]. High (30-200) values of k are useful for prediction
whereas small (2 to 50) values of k are more effective for
clustering similar documents [14]. We use 200 for the value
of k for our text classification, which is for prediction
instead of clustering.

C. Predictive Modeling
Next, we use the term-by-document matrix as the

independent variable (i.e., the input variable) in our
predictive model. The dependent variable (i.e., the value
that we intend to predict) is the label (SBR or NSBR) of a
BR. We apply SAS Text Miner to construct a trained model
based on the term-by-document matrix. The recall and
precision of the trained model enable us to judge whether
we need to reassess the content of the configuration files or
the value of k for SVD. If the results are satisfactory, then
the trained model is usable and we can feed a new BR data
set (e.g., BRs without labels) to the model for predicting
their labels. We next describe the training, validation, and
test data sets used for training the model, the application of
our trained model on new BRs, and retraining of the model
with corrected mislabeling (when the initial training data
include mislabeled data).

i. Training, Validation, and Test Data Sets
First, we train, validate, and test the model using the

BR data set that we earlier prepared, and divide the BR data
set into three smaller data sets: the training, validation, and
test data sets [13]. The training data set is used for
preliminary model training. The validation data set is used
for selecting the optimum configuration options (such as
weights for the term vector in the matrix). The test data set
is used for an assessment of the model for the data that have
not been used to train or validate the model. The
proportions of BRs allocated to the training, validation, and
test data sets are 60%, 20%, and 20%, respectively, as
recommended by SAS [14].

ii. Application of Trained Model on new BRs
Given new BRs (e.g., BRs without labels), our built

predictive model then estimates the probability that a BR is
an SBR. In our setting, the probability ranking is a list of
BRs sorted in descending order of the estimated probability
of being an SBR. Security engineers can start their
assessments of the BRs at the top of the probability ranking
and continue until they reach a pre-defined probability
threshold. The threshold indicates that SBRs with
probabilities below the threshold may exist, but there are
only few of them.

We determine the probability threshold with the
following technique. We first assess the probabilities of
SBRs. If all the SBRs have higher probabilities than the
NSBRs, we assign the threshold as the lowest probability
associated with an SBR. If some NSBRs have higher
probabilities than some SBRs, the threshold must be made
based on the security engineers’ available resources. In
particular, based on the results from the test set, we can
determine the lowest estimated probabilities assigned to
SBRs. Security engineers should look at the lowest
probability of an SBR in the test set and then match that
probability to the probability ranking of the BRs that they
intend to assess. If there are too many BRs above that
probability to assess, then security engineers should use the
next lower threshold, and so on.

iii. Model Retraining with Corrected Mislabeling
One inherent challenge in our research context is the

(un)certainty of the labeling of SBRs (by bug reporters)
initially used for training the model. The first author’s
empirical investigations (with security engineers in software
organizations other than Cisco) have revealed that SBRs are
sometimes mislabeled as NSBRs by bug reporters. If we
train the model on SBRs mislabeled as NSBRs, the model
may classify security-related verbiage as not security-
related, and, as a consequence, incorrectly classify an SBR
with security-related verbiage as an NSBR. Therefore, the
model’s accuracy would likely be improved if security
engineers review each BR used to train the model to ensure

that the BR’s label is correct. To address this issue, we
select a subset of the NSBRs from the BTS. Then, we
submit the NSBRs to security engineers for them to check
for mislabeling. If any true SBRs exist among the labeled
NSBRs (which are thus mislabeled), then we retrain the
model with the subset of NSBRs that are now correctly
labeled. The verbiage between SBRs that contain explicit
security verbiage (e.g., attack) may be distinctly different
than SBRs that are mislabeled as NSBRs and do not contain
such explicit security verbiage. By training the model on
SBRs that are mislabeled as NSBRs (in addition to true
NSBRs), the model can classify SBRs with terms that bug
reporters are likely to use to describe security bugs when
they do not realize the problem to be security-related.
Additionally, from the original configuration files, we add
or subtract terms from the original configuration-files that
appear in the SBRs and NSBRs that were reviewed by the
security engineers.

IV. CASE STUDY SETUP
We next describe the four large Cisco systems under

study, the research questions that we intend to answer using
studies of these systems, and our study design to address
these questions.

A. Four Cisco Software Systems
We analyzed four large Cisco software systems,

referred to as Systems A, B, C, and D. Identities of these
systems cannot be disclosed here due to confidentiality.
Each system is implemented primarily in the C
programming language. Systems A and B consist of over
ten million SLOC each and Systems C and D consist of
over five million SLOC each. Cisco’s BTS contains all BRs
associated with these software systems, and these BRs
document both bugs and failures in the software systems.
Each BR contains a field that is manually filled (initially by
bug reporters) to label the BR as an SBR. Security
engineers can then evaluate a labeled SBR to either verify
that the BR is in fact an SBR, or, if not, reset the field to
indicate an NSBR. Each BR also contains a summary text
field and a larger description text field. Our text mining
focuses on these two text fields of BRs that have a severity
rating of 1, 2, or 3, out of the range of 1-6 where severity 1
has the most detrimental impact on the system. The
severity ratings were assigned by Cisco software engineers.

B. Research Questions
In our studies, we address the following research questions:
• RQ1: How effective is our model at classifying SBRs

of a given system if the model is trained on a BR data
set from the same system?

• RQ2: Do bug reporters fail to recognize that some BRs
are SBRs?

• RQ3: How effective is our model at classifying SBRs
that are manually-mislabeled as NSBRs? How much

negative impact would training the model on SBRS
manually-mislabeled as NSBRs cause on applying our
approach?

• RQ4: How effective is our model at classifying
unlabeled SBRs in a given system if the model is
trained on a BR data set from a different system?

The answer to RQ1 helps us to assess the effectiveness
of our approach when applied to cases where the bug
reporter describes a security problem or a non-security
problem in the BR description, but does not label the BR
(i.e., not labeling the BR as an SBR or a NSBR).

The answer to RQ2 helps us to determine whether
Cisco security engineers should review the Cisco BTS for
SBRs that are manually-mislabeled as NSBRs by bug
reporters.

The answer to RQ3 helps us to determine whether our
approach is effective in automatically classifying SBRs that
bug reporters manually-mislabel as NSBRs. If such BRs
exist, then we should include the terms associated with
these SBRs in our model, since they describe real security
problems, but do not explicitly use security-related verbiage
(e.g., attack).

The answer to RQ4 helps us to assess the effectiveness
of our approach in classifying SBRs in other systems that
the model was not trained on. The results can indicate
whether the bug reporters or security engineers can obtain
assistance from our approach in automatically labeling
unlabelled BRs of other systems. Using a common model
across systems would reduce training and modeling efforts
and result in providing additional training data across
systems for the model.

C. RQ1 Study Setup

We first queried the Cisco BTS for manually-labeled
SBRs associated with System A for the past four years.
Next, we randomly sampled System A’s BRs that were
manually-labeled as NSBRs by bug reporters. The samples
of SBRs and NSBRs are equal in counts to provide the
model with enough data to classify both SBRs and NSBRs
accurately. We call the data set of SBRs and NSBRs for
System A the Afeasibility data set. We randomly partition
Afeasibility into training, validation, and test data sets. We call
the model that is trained on the Afeasibility data set the
“trained” model. The initial results are used to calibrate the
model and provide an assessment of the predictive power of
BR descriptions. The results would not indicate whether the
model correctly classifies an SBR that was mislabeled as an
NSBR.

D. RQ2 Study Setup
We randomly sampled BRs (from System A) that were

manually-labeled as NSBRs by bug reporters. We call this
data set Apilot. We applied the trained model on Apilot to

estimate the probability that a manually-labeled NSBR is an
SBR. We then submitted Apilot to the security engineers for
them to review the same content (that the model used for
prediction) to determine whether any of the manually-
labeled NSBRs are actually SBRs. We did not reveal the
estimated probabilities to the security engineers to reduce
potential bias in their analyses. Based on prior discussions
with the security engineers, we estimated that security
engineers would require approximately 175 person-hours to
analyze Apilot and determine whether the manually-labeled
NSBRs are actually SBRs. At least two security engineers
independently reviewed each BR. If two security engineers
disagreed on their evaluations of a manually-labeled BR,
then they discussed their differences and reached an
agreeable consensus. We compared their evaluations with
the model’s estimated probabilities to evaluate the model’s
predictions.

E. RQ3 Study Setup
Having the security engineers evaluate each BR in Apilot

enables us to be certain of the label of each BR in Apilot. We
then retrain the model on Apilot (which does not include any
BRs from Afeasibility) to determine whether a model trained
on SBRs mislabeled as NSBRs can be useful for the specific
purpose of classifying those SBRs that are manually-
mislabeled as NSBRs. We allocate Apilot in the 60%
(training), 20% (validation), 20% (test) proportions as with
the trained model. We refine the start list and synonym list
from Afeasibility, based on the evaluations by the security
engineers to focus on terms that bug reporters use when
they describe an SBR and do not realize that the bug is a
security bug. We call the model that is trained on Apilot the
“retrained” model.

F. RQ4 Study Setup
The security bugs associated with System A may be

specific for that software system. Additionally, the bug
reporters for System A may have different writing styles
and diction for describing bugs than bug reporters from
other software systems. To investigate these possibilities,
we randomly sampled six months of bug reports from
Systems B, C, and D and combined them into one data set
that we call BCD. We tested whether the trained model,
constructed using data from System A, can effectively
classify SBRs for three different Cisco software systems. If
the model that is trained on System A is predictive for
Systems B, C, and D, then the model may be applicable for
many other Cisco software systems. Table II provides a
summary of our two models, and the three data sets used to
train, validate, and test the models. The “Train” column
represents the data set that was used to train the model, the
“Validate” column represents the data set used to validate
the model, and the “Test” column represents the data set
used for the model’s evaluation.

Table II. Summary of models and data sets.
 Data sets
Model name Train Validate Test

Afeasibility
Apilot Trained Afeasibility Afeasibility
BCD

Retrained Apilot Apilot Apilot

V. RESULTS
We found that a model used with Afeasibility with a start

list and synonym list identified approximately the same
count of manually-labeled SBRs as a model with a stop list.
We chose to use a start list and synonym list for our text
mining because we suspect that continually updating the
start list is more feasible for a limited number of security
bugs than managing a large stop list.

If the model classifies an SBR as an NSBR, or if the
model classifies an NSBR as an SBR, then the result is a
misclassification. We now define the correct classifications
and misclassifications for the natural-language model. A
true positive (TP) is a verified (by a security engineer) SBR
that is correctly classified by the model. A false positive
(FP) is a verified NSBR that is incorrectly classified to be
an SBR. A false negative (FN) is a verified SBR that is
incorrectly classified to be an NSBR. A true negative (TN)
is a verified NSBR that is correctly classified to be an
NSBR. The success rate of the model is the number of
correct classifications divided by the total number of
classifications [17]. Model precision is the percentage of
correctly classified SBRs among SBRs and NSBRs that
have been classified by the model to be SBRs (i.e.,
exceeding a minimum probability). In our setting, recall is
the percentage of correctly classified SBRs (above a
minimum probability) among all verified SBRs. The
formulas for the success rate, precision, and recall are
provided below.

TP + TNSuccess rate = x 100%
TP + FP + TN + FN

TPPrecision = x 100%
TP + FP

TPRecall = x 100%
TP + FN

In the rest of this paper, an SBR denotes a verified SBR
unless otherwise stated. The SBR is either verified by the

Cisco security engineers before the case study began or is
verified as an SBR by the security engineers during our
study.

A. Lift Curves and Tables
We measure the effectiveness of the model with lift

curves [17], which quantify how much the model improves
the rates of classifying SBRs, compared to randomly
selecting and analyzing BRs from the BTS. Figure I shows
the lift curves for the trained model tested on Afeasibility, Apilot,
and BCD, and the retrained model tested on Apilot. We
explain the details of these results in later subsections. The
lift curve x-axis represents the BRs sorted in descending
order of likelihood of being an SBR, as predicted by the
model, and then divided into ten deciles, where the leftmost
decile contains the BRs with the highest likelihood of being
an SBR. The y-axis represents the percentage of total SBRs
(called the “cumulative” percentage) contained in a given
decile classified by the model. The lift curves are
cumulative in the sense that the counts of SBRs and BRs are
aggregated within each of the ten deciles. An accurate
model is one in which the highest SBR rate occurs in the
first decile, the second highest in the second decile, and so
on. The horizontal dashed lines in Figure I are baselines
that represent the rate of classifying SBRs for the data set’s
deciles if we manually select BRs from the BTS. The
overall SBR rate is equal to the count of SBRs divided by
the count of all BRs. For a given decile, the difference
between the cumulative SBR rate that is derived from the
model and the baseline rate represents the effectiveness of
the model’s classification for that decile. The specific
values on the y-axis in Figure I are not disclosed in order to
conceal the Cisco SBR rate.

In Table III, we show the cumulative SBR lift values
for each decile for each data set shown in Figure I. The
cumulative lift value in the first decile is equal to the SBR
rate of the model in the first decile divided by the overall
SBR rate [13]. The cumulative lift value in the second
decile is equal to the cumulative SBR rate of the model
divided by the overall SBR rate for the second decile, and
so on. The rest of this section compares the model’s
predictions to randomly selecting BRs from the BTS.

Figure I. Lift curves for case study results.

i. Classifying SBRs in System A
RQ1: How effective is our model at classifying SBRs of a
given system if the model is trained on a BR data set from
the same system?

The lift curve for the model that is trained, validated,
and tested on Afeasibility (see Figure Ia) indicates that the
chance of finding an SBR generally decreases as the
model’s estimated probabilities decrease. Although the
first decile (associated with the highest probabilities)
contains some SBRs, the highest percentage of SBRs exists
in the second decile. The increase (“lift”) for the first
decile is only 1.53, and is 1.65 in the second decile, as
shown in Table III for Afeasibility. The results indicate that
security engineers would classify 1.53 times more SBRs in
the first decile with the model than by randomly selecting
BRs from the BTS. Therefore, this result shows that the
verbiage in SBR text fields can be successfully used to
classify other unlabeled SBRs. While this lift is low, the
lift is nevertheless positive, providing enough justification
to continue our analyses on SBRs mislabeled as NSBRs.
Table III. Cumulative lift values for three data sets.

 Data sets

Decile Afeasibility Apilot
Apilot

(retrained) BCD

1 1.53 3.33 7.00 0.09
2 1.65 3.89 5.00 1.32
3 1.56 2.96 3.33 1.18
4 1.50 2.22 2.50 1.16
5 1.37 1.78 2.00 1.05
6 1.30 1.67 1.67 0.96
7 1.19 1.43 1.43 1.00
8 1.10 1.25 1.25 1.00
9 1.04 1.11 1.11 0.96

10 1.00 1.00 1.00 1.00

Our natural-language model has moderate success
in classifying SBRs that bug reporters realize as
true SBRs.

ii.Identification of SBRs Mislabeled as NSBRs

RQ2: Do bug reporters fail to recognize that some BRs are
SBRs?

The security engineers verified that some†6of the BRs
that were labeled as NSBRs by bug reporters are actually
SBRs. Figure Ib shows the lift curve when the trained
model (i.e., trained on Afeasibility) is used to classify SBRs in
Apilot. The cumulative lift value for the first decile is 3.33
(see Table III), indicating that security engineers would
classify 3.33 times more SBRs that are mislabeled as
NSBRs by using the model than they would by randomly
selecting BRs from the BTS and verifying the selected
BRs.

The model identified several† types of security bugs
demonstrating that the model does not classify only one
type of security bug. One of the SBRs identified in the
analysis was also reported in the field, thereby indicating
that the model can be used to classify BRs that are found
both internally and externally to Cisco. If the SBRs
discovered by the security engineers had not already been
fixed, it would have received either an elevated priority or
would have subjected to a careful security review.

The lift curve for the retrained model (i.e., retrained on
Apilot) shows a consistent decrease in lift from the first
decile to the tenth decile (see Figure Ib). This result
indicates that as the estimated probabilities decrease, the
likelihood of being an SBR also decreases. The largest
cumulative lift value in our case study, 7.00, is in the first
decile for the retrained model. The language used to
describe the SBRs in Afeasibility may closely resemble the
SBRs mislabeled as NSBRs in Apilot; this factor is likely to
be responsible for improving the accuracy of the retrained
model. Similarly, the NSBRs in Apilot may have
resemblance to the NSBRs in Afeasibility. For each run of the
model, security engineers can add examined BRs to the
training and validation sets to improve the model’s
accuracy. Additionally, security engineers can add or

6 †The counts, percentages, and types of security bugs are confidential.

subtract terms (collected from SBRs identified by the
security engineers) to the start and synonym lists.

As mentioned earlier, Apilot is the only data set in our
study in which security engineers reviewed each BR in the
data set. We are therefore certain which BRs are SBRs and
which are NSBRs. This certainty improves the retrained
model’s results over the trained model’s results for two
reasons. First, the certainty can improve the model training
and validation compared to other training and validation
data sets that may have SBRs mislabeled as NSBRs.
Training the model with SBRs mislabeled as NSBRs can
result in the model’s misclassification of SBRs as NSBRs.
Second, the certainty improves the accuracy of the model
in the test data set in Apilot compared to evaluations in other
test data sets. If an SBR is mislabeled as an NSBR by a
bug reporter in Afeasibility, but the model classifies the BR as
an SBR, then the result is a false positive. The cumulative
lift values decrease due to instances where the model is
correct, but the labeling of the BRs is incorrect. The
security engineers’ review of Apilot reduces such errors for
the retrained model. We show the misclassification rates in
Table IV.

Software engineers do manually mislabel SBRs as
NSBRs.

iii. Probability Ranking
RQ3: How effective is our model at classifying SBRs that
are manually-mislabeled as NSBRs? How much negative
impact would training the model on SBRS manually-
mislabeled as NSBRs cause on applying our approach?

The x-axis in Figure II shows the probability ranking
when the trained model is tested on Apilot. Approximately
25% of the BRs are found to have a greater-than-74.1%
probability of being an SBR, and 75% of the BRs are found
to be below a 50.0% probability. The model predicts that
the BRs fall into two separate groups: one group with high
estimated probabilities of being SBRs, and the other group
with low estimated probabilities (suggesting BRs in the
other group to be NSBRs). The group with the higher
estimated probabilities is small relative to the other. This
distinction enables security engineers to prioritize their
fortification efforts to a small subset of BRs in the BTS.

FR
 c

ou
nt

Figure II. Distribution of estimated probabilities from
the trained model on Apilot.

The success rate is 68.8% for the trained model and
93.8% for the retrained model as shown in Table IV. The

success rates and high precision rates (see Table IV)
indicate that the model is effective for classifying unlabeled
and manually-mislabeled SBRs. The misclassification rate
for the retrained model is lower than the one for the trained
model for the training, validation, and test sets, as shown in
Table IV. The identification of SBRs mislabeled as
NSBRs in Apilot indicates that some of the NSBRs in
Afeasibility may actually be SBRs. If the trained model
misclassified SBRs with a threshold where the probability
is greater than 50% in Afeasibility, they are considered false
positives and the resulting misclassification rate increases.
The low misclassification rate from the retrained model
indicates that security engineers can more effectively
prioritize their fortification efforts to SBRs by using the
retrained model.
Table IV. Performance for the trained and retrained
models.

 Misclassification rate
Model

(test data set)
Success

rate Precision Training Validation Test

Trained
(Afeasibility)

68.8% 73.2% 27.6% 31.2% 31.2%

Retrained
(Apilot) 93.8% 60.0% 11.9% 10.4% 6.3%

As described in Section III C ii, we chose probability
thresholds based on security engineers’ available resources
(e.g., afforded inspection efforts). If we raise the threshold
to a 97.8% probability for the trained model on the Apilot,
then 17.1% of the BRs are found above the threshold. The
resulting recall for the SBRs is 77.8% as shown in Table V.
That is, security engineers would identify 77.8% of the
SBRs in the top 17.1% of the probability ranking. The
percentage of NSBRs for the top 17.1% is 63.4%, resulting
in a precision of 21.1%. While the FP rate seems high, the
resulting count of FPs is fairly low since the threshold
restricts the analysis space to only 17.1% of all BRs in the
sample. The recall for the retrained model, 75.0% (see
Table V), is approximately equal to the recall for the
trained model, but the FP rate is only 25%. Additionally,
19.5% of the BRs in the top 17.1% do not have enough
information for the Cisco security engineers to determine
whether a BR is an SBR.

We tried a threshold of 80.5% in Apilot, and 24.6% of
the BRs were located above this threshold. The recall for
SBRs here is 88.9% in the top 24.6% of the probability
ranking, as shown in Table V. The SBRs below the
threshold do not contain diction to indicate that the BRs are
likely to be SBRs. The security engineers labeled these
BRs as SBRs because their experience with the software
indicates that these bugs can be exploited. SBR verbiage is
not always suggestive of susceptibility to attack.
Additionally, the FP rate for the trained model tested on
BCD is 96.2% (see Table V), indicating that security
engineers would encounter many NSBRs at the top of the
probability ranking.

Table V. Recall for SBRs in the probability ranking.
Model Test data set Threshold Recall FP
Trained Afeasibility 50.0% 64.2% 26.7%
Trained Apilot 97.8% 77.8% 63.4%
Trained Apilot 80.5% 88.9% 62.7%

Retrained Apilot 50.0% 75.0% 25.0%
Trained BCD 50.0% 30.0% 96.2%

Our natural-language model successfully identifies a
high percentage (77%) of SBRs manually-mislabeled
as NSBRs by bug reporters. In addition, training our
model on SBRs that were manually mislabeled as
NSBRs substantially reduces the effectiveness of the
model.

iv. Results from Three Additional Systems
RQ4: How effective is our model at classifying unlabeled
SBRs in a given system if the model is trained on a BR data
set from a different system?

The lift curve (Figure Ic) for the trained model that
was tested on the BCD data set does not demonstrate a
decrease in SBR identification as the estimated
probabilities decrease. The cumulative lift value for the
first decile is only 0.09 (see Table III). Furthermore, the
precision measured for the trained model is only 3.7%.
These results are consistent with those of Anvik et al. [2]
where the precision of their algorithm decreased from 64%
to 6% when applied to a project whose labeled data were
not used to train their model.

The Cisco security engineers analyzed the BRs in Apilot
for Systems A, B, C, and D, and identified the types of
security bugs. The counts and types are not disclosed to
protect company confidentiality. A comparison between
Systems A and D showed that the most prevalent security
bug type in A was not present in D. Furthermore, the
security bug that dominated in D was among the smallest
contributors in A. Therefore, training our model on one
system’s BR data set is likely to be inadequate to classify
BRs in another system with different types of security
bugs.

The security bug type that dominates in System A
comprises approximately half of the security bug types in
Systems B and C. The second most predominant security
bug type in Systems B and C is the primary security bug
type in System D. This analysis shows that the distribution
of security bug types between Systems A and Systems B,
C, and D are not always similar. The comparison of the
security bug types indicates that the verbiage in the SBRs
for System A is too dissimilar from the verbiage in Systems
B, C, and D to accurately classify SBRs that correspond to
different security bug types.

VI. THREATS TO VALIDITY
Our study is representative of only four large software

systems and may not necessarily yield the same results for
all software systems. The count of BRs in Apilot is smaller
than Afeasibility, but exceeds the minimum count (100) of
documents required for statistical modeling, according to
SAS [14]. Additionally, BRs are randomly selected from
the BTS in an effort to have a similar SBR representation
between Afeasibility and Apilot. Furthermore, the model’s
estimated probabilities rely on adequate textual
descriptions in the BRs. Bettenburg et al. [3] use a support
vector machine (SVM) to determine whether developers
agree on BR quality, and they found that their model can
correctly predict the developers’ BR quality rating. Their
results indicate that SVMs can be used to indicate BRs that
may require additional details required for a developer to
identify and mitigate the problems.

The rating of severity by software engineers could be
wrong, which would change the outcome of our analysis.
Additionally, the generation of the configuration files is not
an objective and repeatable process and so improving or
recreating our technique requires human intervention.

VII. RELATED WORK
Various research efforts [3, 6, 8] have been focused on

applying text mining on detecting duplicate BRs in BTSs.
These efforts can alleviate the work required in triaging
BRs to developers. In our work, we also use text mining,
but to identify SBRs and prioritize them over NSBRs,
addressing a different set of mining requirements.

Cubranic and Murphy [6] use a Bayesian learning
algorithm to predict which developer should fix a bug.
Their automated technique can reduce the time required by
manual analyses to triage BRs. They evaluated their
algorithm on the Eclipse BTS and found that the algorithm
correctly predicted the most appropriate developer to assess
a bug for approximately 30% of the BRs.

Anvik et al. [2] expand the work of Cubranic and
Murphy [6] to determine the most appropriate developer
for a BR. They use support vector machines to mine the
one-line summary and full text description of a BR to
create vectors. The vectors are used to predict the software
engineer who should fix the bug. Their model reached a
precision level of 57% for the Eclipse project and 64% for
Firefox. Bettenburg et al. [4] highlight the value of using
duplicate bug reports in the Eclipse BTS for training
machine-learning models. They observe an accuracy of
65% when predicting which developer should fix a bug.
Anvik et al. [2] and Cubranic and Murphy [6] do not train
their model to classify SBRs and NSBRs and thus their
models may not be applicable for classifying SBRs
misclassified as NSBRs.

Jeong et al. [8] use Markov chains to determine which
developer should fix a bug. They found that BRs are
assigned to developers who then reassign the BRs to other
developers. Their graph-based model shows how the
reassignment of BRs reveals developer networks. They
evaluated their model on the Eclipse and Mozilla projects
and found that their model reduces 72% of the
reassignments within the developer networks.

Recent research [9] has shown that natural-language
information can be used to classify root causes of reported
SBRs for Mozilla and Apache HTTP Server . Li et al. [9]
collected SBRs from Mozilla and Apache and used a
natural-language model to identify the root causes of the
security bugs. Based on their results, they determined the
semantic security bugs (e.g., missing features, missing
cases) comprised 71.9-83.9% of the security bugs. These
data provide guidance on what types of tools and
techniques that security engineers should use to address
most of their security bugs. Their analyses focus on only
SBRs that are reported by software and security engineers.
In contrast, we apply our model on manually labeled
NSBRs to classify SBRs. Additionally, Podgurski et al.
[10] use a clustering approach for classifying BRs to
prioritize and identify the root causes of bugs, but they do
not focus on security bugs.

Runeson et al. [12] use natural-language information
to classify duplicate BRs on Sony Ericsson Mobile
Communications software. Their model identified
approximately 67% of the detectable duplicate BRs. Wang
et al. [16] used a natural-language model in addition to
execution information of failing tests for BRs to determine
which reports are duplicates of pre-existing bug reports in
Firefox. They [16] found that when adding execution
information as an additional factor to the bug description,
they can increase duplicate BR detection from 43-72% to
67-93%. Their results indicate that relying on the text
alone of BRs may not be adequate for their predictive
models.

VIII. CONCLUSION7
BTSs may contain SBRs that are mislabeled by bug

reporters as NSBRs. If the security bugs associated with
the SBRs escape into the field, then the software can be
exploited by attackers. Security engineers may inspect
each single NSBR in a BTS to identify SBRs; however,
manually inspecting (often thousands of) NSBRs in a BTS
is time-consuming and often infeasible, or not even
conducted in practice. To address this issue, we propose a
novel approach that mines the natural-language text of BRs

7Tao Xie's work is supported in part by ARO grant W911NF-08-1-0443,
and ARO grant W911NF-08-1-0105 managed by NCSU SOSI.

and constructs a statistical model for predicting which BRs
are SBRs. Our approach identified a high percentage
(78%) of SBRs mislabeled as NSBRs by bug reporters for
a large Cisco software system. To increase the accuracy of
our model, software engineers should retrain the model
when there are new SBRs being verified by security
engineers. But the trained model is not recommended to be
applied to software systems in which the SBRs describe
different types of security bugs than those that were used to
train the model. In summary, our approach effectively
automates the identification of SBRs that would otherwise
require substantial efforts by security engineers to
manually assess each BR in a BTS to determine which BRs
are SBRs.

IX. REFERENCES
[1] C. Anley, "Advanced SQL Injection In SQL Server Applications,"

Next Generation Security Software Ltd, 2002.
[2] J. Anvik, L. Hiew, and G. Murphy, "Who Should Fix This Bug?" Proc

of the ICSE, pp. 371-380, 2006.
[3] N. Bettenburg, S. Just, A. Schroter, C. Weiss, R. Premraj, and T.

Zimmermann, "What Makes a Good Bug Report?" Proc of the FSE,
pp. 308-318, 2008.

[4] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, "Duplicate
Bug Reports Considered Harmful?" Proc of the ICSM, pp. 337-345,
2008.

[5] P. Cerrito, Introduction to Data Mining, Cary, SAS Institute, Inc.,
2006.

[6] D. Cubranic and G. Murphy, "Automatic Bug Triage Using Text
Classification" Proc of the SEKE, pp. 92-97, 2004.

[7] M. Howard, D. LeBlanc, and J. Viega, 19 Deadly Sins of Software
Security: Programming Flaws and How to Fix Them, Emeryville,
McGraw-Hill/Osborne, 2005.

[8] G. Jeong, S. Kim, and T. Zimmermann, "Improving Bug Triage with
Bug Tossing Graphs" Proc of the ESEC-FSE, 2009.

[9] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai, "Have Things
Changed Now?: An Empirical Study of Bug Characteristics in
Modern Open Source Software." Proc of the 1st Workshop on
Architectural and System Support For Improving Software
Dependability, pp. 25-33, 2006.

[10] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun, and
B. Wang, "Automated Support for Classifying Software Failure
Reports" Proc of the ICSE, pp. 465-475, 2003.

[11] V. Raghavan and M. Wong, "A Critical Analysis of Vector Space
Model for Information Retrieval," Journal of the American Society
for Information Science, vol. 37, no. 5, pp. 279-287, 1986.

[12] P. Runeson, M. Alexandersson, and O. Nyholm, "Detection of
Duplicate Defect Reports Using Natural Language Processing" Proc
of the ICSE, pp. 499-510, 2007.

[13] K. Sarma, Predictive Modeling with SAS Enterprise Miner, Cary,
SAS Institute, Inc., 2007.

[14] SAS Institute Inc., "Getting Started with SAS 9.1 Text Miner," Cary,
NC, 2004.

[15] J. Viega and G. McGraw, Building Secure Software How to Avoid
Security Problems the Right Way, Boston, Addison-Wesley, 2002.

[16] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, "An Approach to
Detecting Duplicate Bug Reports Using Natural Language and
Execution Information" Proc of the ICSE, pp. 461-470, 2008.

[17] I. Witten and E. Frank, Data Mining, Second ed. San Francisco,
Elsevier, 2005.

	I. INTRODUCTION
	II. TEXT-MINING OVERVIEW
	III. APPROACH
	A. Textual-Data Preparation
	B. Configuration-File Preparation
	C. Predictive Modeling
	i. Training, Validation, and Test Data Sets
	ii. Application of Trained Model on new BRs
	iii. Model Retraining with Corrected Mislabeling

	IV. CASE STUDY SETUP
	A. Four Cisco Software Systems
	B. Research Questions
	C. RQ1 Study Setup
	D. RQ2 Study Setup
	E. RQ3 Study Setup
	F. RQ4 Study Setup

	V. RESULTS
	
	In the rest of this paper, an SBR denotes a verified SBR unless otherwise stated. The SBR is either verified by the Cisco security engineers before the case study began or is verified as an SBR by the security engineers during our study.
	A. Lift Curves and Tables
	i. Classifying SBRs in System A
	ii. Identification of SBRs Mislabeled as NSBRs
	iii. Probability Ranking

	RQ3: How effective is our model at classifying SBRs that are manually-mislabeled as NSBRs? How much negative impact would training the model on SBRS manually-mislabeled as NSBRs cause on applying our approach?
	The x-axis in Figure II shows the probability ranking when the trained model is tested on Apilot. Approximately 25% of the BRs are found to have a greater-than-74.1% probability of being an SBR, and 75% of the BRs are found to be below a 50.0% probability. The model predicts that the BRs fall into two separate groups: one group with high estimated probabilities of being SBRs, and the other group with low estimated probabilities (suggesting BRs in the other group to be NSBRs). The group with the higher estimated probabilities is small relative to the other. This distinction enables security engineers to prioritize their fortification efforts to a small subset of BRs in the BTS.

	
	Figure II. Distribution of estimated probabilities from the trained model on Apilot.
	iv. Results from Three Additional Systems

	VI. THREATS TO VALIDITY
	VII. RELATED WORK
	VIII. CONCLUSION
	IX. REFERENCES

