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Access control (AC) is one of the most fundamental and 

widely used requirements for privacy and security. Given a 

subject’s access request on a resource in a system, AC 

determines whether this request is permitted or denied based on 

AC policies (ACPs). In a system, an ACP is implemented at 

various places with different purposes. For example, operating 

systems adopt AC to regulate which users or groups are 

permitted to read/write/execute files or folders. 

The main objective of AC is to protect resources against 

unauthorized user access. Faults in AC may result in critical 

consequences such as unauthorized user access on sensitive 

resources. However, it is a challenging task to implement and 

maintain AC correctly for two main reasons. First, AC can be 

complex, especially, when an ACP includes a large number of 

resources in a sophisticated structure for various groups and 

users. Second, policy authors may make mistakes when 

specifying or combining ACPs. 

This position paper introduces our approach to ensure the 

correctness of AC using verification. More specifically, given a 

model of an ACP, our approach detects inconsistencies 

between models, specifications, and expected behaviors of AC. 

Such inconsistencies represent faults (in the ACP), which we 

target at detecting before ACP deployment. At a high level, 

ACPs are policy specifications, which encapsulate the expected 

AC behaviors from policy authors. An ACP model is a 

representation of ACP behaviors in a formal language. 

An ACP consists of a set of rules, which regulate which 

subject can take a specific action on a specific resource under 

which condition. In the context of ACPs, input and output are a 

request (e.g., can user A access resource B?) and a response 

(e.g., Permit), respectively. Policy authors may write properties, 

which can be verified against a given AC model. Properties are 

different from rules because users create properties based on 

business practice or user experience.  For example, properties 

can be known security vulnerabilities or a user’s security and 

privacy concerns of interest in AC. We use safety and liveness 

properties where safety and liveness are characteristics of a 

given property, denoted by p. 

Safety property. Safety denotes that p is satisfied against an 

AC model. In other words, there exist no rules in the AC model 

to violate p. Therefore, verification of safety properties is to 

ensure that “something bad” (i.e., faults) does not happen. For 

example, a conference program committee member should not 

review her own submitted paper. 

Liveness property. Liveness denotes that an AC model does 

“something good” (i.e., desired system behaviors). Therefore, 

verification of a liveness property is to ensure that a “good 

thing” does happen eventually. One example is deadlock free. 

Deadlock denotes that a system does not make progress forever 

since a system waits for an action forever due to more than two 

competing actions, each of which waits for the other to finish. 

 
Figure 1. Overview of our approach 

Figure 1 illustrates our approach. More specifically, we 

translate an ACP to its corresponding AC model, which is 

represented as a finite state machine. In this paper, our 

approach is applied to mandatory access control (MAC) 

policies, which regulate user and process access to resources. 

Our verification uses black-box and white-box checking 

techniques. For black-box checking, policy authors specify 

either properties P. Given an AC model q, if there is no 

violation, we ensure that q is correct according to P. Otherwise, 

q is not correct and should be fixed to satisfy property p’ ϵ P 

that causes violations. In such cases, we use white-box 

checking to modify q to satisfy P. For example, we create 

another p’’ (called a confined property [1]) modified from p’ 

where p’’ is a subset of p that is responsible for violations. p’’ 

can be converted to a rule. We add this rule in q where p’ is 

satisfied after this addition based on the confined property. 

We use NuSMV (http://nusmv.irst.itc.it/), a symbolic model 

checker to model an ACP. NuSMV supports both BDD-based 

and SAT-based model-checking approaches, and various 

analyses including Linear Temporal Logic (TTL) and 

Computation Tree Logic (CTL) model checking for safety and 

liveness properties, and counterexample generation. Manually 

writing properties is tedious and error-prone. To address this 

issue, our approach generates test requests that can be used as 

properties for testing AC implementations. An AC 

implementation evaluates test requests and produces responses, 

which testers need to inspect to determine whether the 

responses are correct. We have implemented a prototype [1, 2] 

for the approach. 
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