
Paradigm in Verification of Access Control
(Position Paper)

Access control (AC) is one of the most fundamental and

widely used requirements for privacy and security. Given a

subject’s access request on a resource in a system, AC

determines whether this request is permitted or denied based on

AC policies (ACPs). In a system, an ACP is implemented at

various places with different purposes. For example, operating

systems adopt AC to regulate which users or groups are

permitted to read/write/execute files or folders.

The main objective of AC is to protect resources against

unauthorized user access. Faults in AC may result in critical

consequences such as unauthorized user access on sensitive

resources. However, it is a challenging task to implement and

maintain AC correctly for two main reasons. First, AC can be

complex, especially, when an ACP includes a large number of

resources in a sophisticated structure for various groups and

users. Second, policy authors may make mistakes when

specifying or combining ACPs.

This position paper introduces our approach to ensure the

correctness of AC using verification. More specifically, given a

model of an ACP, our approach detects inconsistencies

between models, specifications, and expected behaviors of AC.

Such inconsistencies represent faults (in the ACP), which we

target at detecting before ACP deployment. At a high level,

ACPs are policy specifications, which encapsulate the expected

AC behaviors from policy authors. An ACP model is a

representation of ACP behaviors in a formal language.

An ACP consists of a set of rules, which regulate which

subject can take a specific action on a specific resource under

which condition. In the context of ACPs, input and output are a

request (e.g., can user A access resource B?) and a response

(e.g., Permit), respectively. Policy authors may write properties,

which can be verified against a given AC model. Properties are

different from rules because users create properties based on

business practice or user experience. For example, properties

can be known security vulnerabilities or a user’s security and

privacy concerns of interest in AC. We use safety and liveness

properties where safety and liveness are characteristics of a

given property, denoted by p.

Safety property. Safety denotes that p is satisfied against an

AC model. In other words, there exist no rules in the AC model

to violate p. Therefore, verification of safety properties is to

ensure that “something bad” (i.e., faults) does not happen. For

example, a conference program committee member should not

review her own submitted paper.

Liveness property. Liveness denotes that an AC model does

“something good” (i.e., desired system behaviors). Therefore,

verification of a liveness property is to ensure that a “good

thing” does happen eventually. One example is deadlock free.

Deadlock denotes that a system does not make progress forever

since a system waits for an action forever due to more than two

competing actions, each of which waits for the other to finish.

Figure 1. Overview of our approach

Figure 1 illustrates our approach. More specifically, we

translate an ACP to its corresponding AC model, which is

represented as a finite state machine. In this paper, our

approach is applied to mandatory access control (MAC)

policies, which regulate user and process access to resources.

Our verification uses black-box and white-box checking

techniques. For black-box checking, policy authors specify

either properties P. Given an AC model q, if there is no

violation, we ensure that q is correct according to P. Otherwise,

q is not correct and should be fixed to satisfy property p’ ϵ P

that causes violations. In such cases, we use white-box

checking to modify q to satisfy P. For example, we create

another p’’ (called a confined property [1]) modified from p’

where p’’ is a subset of p that is responsible for violations. p’’

can be converted to a rule. We add this rule in q where p’ is

satisfied after this addition based on the confined property.

We use NuSMV (http://nusmv.irst.itc.it/), a symbolic model

checker to model an ACP. NuSMV supports both BDD-based

and SAT-based model-checking approaches, and various

analyses including Linear Temporal Logic (TTL) and

Computation Tree Logic (CTL) model checking for safety and

liveness properties, and counterexample generation. Manually

writing properties is tedious and error-prone. To address this

issue, our approach generates test requests that can be used as

properties for testing AC implementations. An AC

implementation evaluates test requests and produces responses,

which testers need to inspect to determine whether the

responses are correct. We have implemented a prototype [1, 2]

for the approach.
Acknowledgment. This work is supported in part by a NIST grant.

REFERENCES
[1] V. Hu, R. Kuhn, T. Xie, and J. Hwang. Model checking for verification

of mandatory access control models and properties, in IJSEKE, Volume
21, Issue 1, Pages 103-127, 2011.

[2] J. Hwang, T. Xie, V. Hu, and M. Altunay, ACPT: A tool for modeling
and verifying access control policies. In Proc. POLICY, Demo, Pages
40-43, 2010.

JeeHyun Hwang
1
, Vincent Hu

2
, Tao Xie

1

1
Department of Computer Science, North Carolina State University, Raleigh, USA

2
Computer Security Division, National Institute of Standards and Technology, Gaithersburg, USA

jhwang4@ncsu.edu, vincent.hu@nist.gov, xie@csc.ncsu.edu

