The Journal of Systems and Software 83 (2010) 2263-2274

journal homepage: www.elsevier.com/locate/jss

Contents lists available at ScienceDirect

The Journal of Systems and Software

i

of
ans

o
AT

Perturbation-based user-input-validation testing of web applications

Nuo Li?, Tao Xie®*, Maozhong JinP, Chao LiuP

2 Department of Computer Science, North Carolina State University, NC 27695, USA

b School of Computer Science and Engineering, Beihang University, Beijing 100083, China

ARTICLE INFO ABSTRACT

Article history:

Received 20 April 2009

Received in revised form 30 May 2010
Accepted 2 July 2010

Available online 29 July 2010

Keywords:

Software testing
Web-application testing
User-input-validation testing

User-input-validation (UIV) is the first barricade that protects web applications from application-level
attacks. Most UIV test tools cannot detect semantics-related vulnerabilities in validators, such as filling
a five-digit number to a field that accepts a year. To address this issue, we propose a new approach
to generate test inputs for UIV based on the analysis of client-side information. In particular, we use
input-field information to generate valid inputs, and then perturb valid inputs to generate invalid test
inputs. We conducted an empirical study to evaluate our approach. The empirical result shows that, in
comparison to existing vulnerability scanners, our approach is more effective than existing vulnerability
scanners in finding semantics-related vulnerabilities of UIV for web applications.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

User-input-validation (UIV) is the first barricade that protects a
web application from application-level attacks (Beaver, 2006) such
as buffer overflow, code-injection attack, hidden-field manipula-
tion, and cross-site scripting. Attackers can launch these attacks
by sending malicious inputs to a web application. As UIV protects a
web application against these attacks by rejecting malicious inputs,
improving the quality of UIV is a key means of enhancing a web
application’s security. Unfortunately, web-application developers
usually forget to implement UIV, or implement defective UIV. As
shown in a recent survey (Open Web Application Security Project,
2007), among the top 10 vulnerabilities of web applications, six
vulnerabilities are induced by defective UIV. There is a strong need
of an effective way to help improve the quality of UIV, thereby
increasing web applications’ security.

UIV testing is a common way in practice to improve the qual-
ity of UIV. There exist tools (Nikto2, 2008; Wikto, 2008; Acunetix
Web Vulnerability Scanner, 2008; Fiddler, 2009; Burp Proxy, 2009;
Tamperie, 2009) that test UIV of web applications. These existing
tools can be classified into two major categories: crawler-based
(Nikto2, 2008; Wikto, 2008; Acunetix Web Vulnerability Scanner,
2008) and proxy-based (Fiddler, 2009; Burp Proxy, 2009; Tamperie,
2009) ULV testing tools.

Crawler-based UIV testing tools retrieve HTML pages automati-
cally, and submit predefined test inputs to the server through these

* Corresponding author. Tel.: +1 919 515 3772; fax: +1 919 515 7896.
E-mail addresses: nli3@ncsu.edu (N. Li), txie@ncsu.edu (T. Xie), jmz@buaa.edu.cn
(M. Jin), liuchao@buaa.edu.cn (C. Liu).

0164-1212/$ - see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j,js5.2010.07.007

HTML pages. However, using only predefined test inputs may not
be suitable to be used for a particular input field.! For example,
consider that an input field in a web application may require a year
value to be between 1999 and 2003. To test this input field, we
shall enter possible boundary values such as 1998 or 2004. These
boundary values may not exist in the predefined test inputs; hence,
it may not be possible to check whether the web application can
deal with the boundary values properly. As a result, crawler-based
testing tools cannot detect these semantics-related UIV defects. In
this paper, we use semantic-related UIV defects to refer to defects
that are induced due to the lack of checking the semantics of inputs,
and semantic-related test inputs are test inputs that can detect
semantic-related UIV defects.

Different from crawler-based UIV testing tools, proxy-based
UIV testing tools allow developers to edit HTML requests directly.
These tools basically provide a manual testing approach, which
keeps the maximum flexibility without providing any help on test-
input generation. Weber (2005), a senior security consultant, used
Cross-Site Scripting (XSS) as an example to show how to test web
applications for such vulnerabilities in practice using the proxy-
based UIV testing technique. First, a developer finds some proxy
tools that can intercept HTTP requests. Second, the developer maps
the site and its functionality by discussing with other develop-
ers and project managers. Third, the developer identifies and lists
input fields. Fourth, the developer writes test inputs manually.
Finally, the developer starts testing with the proxy tools and adjusts
test inputs. These manual steps are tedious, and the creation of

1 In this paper, an input field is an HTML element, such as (select) and (input),
through which users can send inputs to a web-application server.

dx.doi.org/10.1016/j.jss.2010.07.007
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:nli3@ncsu.edu
mailto:txie@ncsu.edu
mailto:jmz@buaa.edu.cn
mailto:liuchao@buaa.edu.cn
dx.doi.org/10.1016/j.jss.2010.07.007

2264 N. Li et al. / The Journal of Systems and Software 83 (2010) 2263-2274

Table 1
Comparison of UIV testing approaches for web applications.
Features Crawler-based Proxy-based PIUIVT
Input fields discovery Yes No Yes
Edit test inputs No Yes Yes
Blind SQL injection Yes No Yes
Predefined XSS Yes No Yes
Context-related UIV No No Yes
test
Generate invalid inputs For user login No Yes
based on valid inputs
Test oracle For SQL injection and XSS No Yes

test inputs heavily depends on developers’ knowledge and experi-
ence.

In this paper, we propose a new approach, called Perturbation-
based Interactive UIV Testing (PIUIVT), to improve the quality of
a web-application UIV with robustness testing of web applica-
tions against invalid inputs. Table 1 shows the features of different
UIV testing approaches for web applications. PIUIVT combines
the automation of crawler-based UIV testing and the flexibility
of proxy-based UIV testing. To automatically generate semantics-
related test inputs, PIUIVT analyzes the client-side information of
a web application to collect input-field information that is helpful
to generate valid inputs. PIUIVT associates each input field with
a regular expression that defines valid-input constraints for the
input field. PIUIVT next perturbs the regular expression to gener-
ate invalid test inputs? based on the perturbed regular expressions.
Similar to crawler-based UIV testing tools, PIUIVT allows testers
to manually modify the automatically generated test inputs. To
automatically assess the test results (pass or fail), PIUIVT compares
structural similarity among the original HTML page, the response
page of an invalid input, and the response page of a valid input
(whichis automatically generated based on the regular expressions
that defines valid inputs).

This paper makes the following main contributions:

e Anapproach based on regular expressions for generating UIV test
inputs for web applications. Our approach also includes different
types of perturbation operators.

A strategy based on comparing HTML structures to assess UIV
test results (pass or fail), and a solution for the longest com-
mon subsequence problem to evaluate similarity between HTML
pages.

A prototype and a set of evaluations of PIUIVT with open-
source web applications. Our results show that PIUIVT is effective
in web-application UIV testing: PIUIVT detects 80% semantic-
related defects that we injected into a web application, while
Wikto and Paros detect 25%; compared with other similarity
measurement algorithms, our algorithm measures the similarity
among HTML pages more precisely.

The rest of this paper is structured as follows. Section 2 intro-
duces background of UIV testing. Section 3 illustrates our approach
through an example. Sections 4 and 5 explain the PIUIVT approach
and its implementation, respectively. Section 6 presents an empir-
ical evaluation of the approach. Section 7 discusses our limitation.
Section 8 discusses related work. Section 9 concludes the paper.

2 A valid test input is a test input that should be accepted by a web application
with defect-free UIV, and an invalid test input is a test input that should be rejected
by a web application with defect-free UIV.

<a href=http://www.contoso.com/req.asp?name=
<FORM action=http://www.badsite-sample-13.com/data.asp
methaod=post id="“idForm”>
<INPUT name="cookie” type="hidden"”>
</FORM>
<SCRIPT>
idForm.Cookie.value=document.cockie;
idForm.submit();
<SCRIPI>>
Click here!

Fig. 1. An XSS example.

2. Background

Existing technologies such as anti-virus software and network
firewall offer comparatively secure protection at host and net-
work levels, but not at the application level (Huang et al., 2004).
Application-level attacks are more difficult to detect than attacks
at host and network levels. These attacks can come from any on-
line user — even authenticated ones (Tipton and Krause, 2006). As
UIV checks inputs from any on-line user, UIV is an effective means
to protect a web application from application-level attacks. Here,
we give a brief introduction of several vulnerabilities in web appli-
cations to show how attacks can happen at the application level
because of defective UIV.

2.1. Hidden fields

Hidden fields refer to hidden HTML form fields, such as (input
type=hidden name=hl value="“en”). In many web applications,
developers use these fields to transfer values instead of presenting
these values to users. Unfortunately, these fields are actually visible
and manipulable to users. Malicious users could easily change the
values of these fields in HTML source code and send the changed
values back to the web application. If a web application uses a
hidden field to hold merchandise prices, malicious users could pur-
chase items at little or no cost. These attacks could be successful,
because a web application may not validate whether the returning
value of a hidden field is the same as its outgoing value, and accepts
the illegally changed value.

2.2. Cross-Site Scripting

Cross-Site Scripting (XSS) flaws occur when a web applica-
tion accepts user-supplied inputs that contain browser-executable
scripts, and posts the inputs in an HTML page without validating
or encoding. When another user accesses the HTML page, the web
browser executes scripts posted in that HTML page. Through XSS,
attackers could send an executable script to a victim’s browser,
and then possibly hijack user sessions, deface websites, introduce
wormes, etc.

Fig. 1 shows a typical XSS example, which is borrowed from the
“Writing Secure Code” book (Howard and LeBlanc, 2003). Suppose
that an attacker sends the code shown in Fig. 1 to a bulletin board,
and then an innocent user opens that bulletin board and clicks the
hyper link of “Click here!”. As a result, this user’s cookie would be
stolen. Such attacks could be successful when the web application
does not filter out or transform scripts included in users’ inputs.

2.3. SQL injection

SQL injection flaws occur when user-supplied inputs are sent to
an interpreter as part of a command or query. Attackers trick the
interpreter to execute unintended commands via supplying spe-
cially crafted data (Open Web Application Security Project, 2007).

N. Li et al. / The Journal of Systems and Software 83 (2010) 2263-2274 2265

For example, consider a web application that authenticates a user
by checking a database in this way:

SQLQuery = “SELECT * FROM Users WHERE (UserName='
“+ strUserName +”’') AND (Password=’ “+ strPass-
word +"7");";

if GetQueryResult (SQLQuery) == 0

then authenticated = false;
else authenticated = true;

If an attacker enters x* orR ‘A’ =’A for UserName and X’ OR
‘a’ ='afor Password and the web application executes the query
on the database directly, the SQL statement at runtime becomes:

SELECT * FROM Users WHERE(UserName = ‘X'OR‘A’ =‘A’)
AND(Password = ‘X'OR‘A’ =‘A’);

In this way, the attacker bypasses the authentication and accesses
all the user information in the Users table. Similar to XSS attacks,
SQL-injection attacks could be successful if the web application
does not filter or transform SQL commands included in users’
inputs.

2.4. Unconscious mistakes

Besides the preceding malicious attacks, many users can enter
invalid inputs unconsciously. For example, users may enter invalid
characters, such as multiple blanks, &, and nul1 accidentally. These
characters may lead to a failure or even crash when they are used
for database operations. Even though such inputs may not crash
a web application, there can be a negative user experience. For
example, when a user signs up for a service, a web application
requires the user’s email address, and sends an automatically gen-
erated password to that email address. If the user enters an invalid
email address, the user does not get the password and the service
sign up fails.

2.5. Solution

To avoid these vulnerabilities, a web application should validate
a user input before using the input for further processing (Howard
and LeBlanc, 2003). However, web-application developers often
forget validating users’ inputs, and UIV is often not correctly devel-
oped. As the manual process of testing UIV is tedious and strongly
dependent on the experience of developers, we propose a new
automatic approach, called PIUIVT, to improve the effectiveness of
UIV testing for web applications.

3. Example

We next explain our approach with an example of testing an
open-source web application, called Mvnforum (2006). MvnForum
is a mature forum system built on the J2EE technology. It was
started in 2001 and is continuously evolving. The latest version
(1.1RC1) of MvnForum includes 159,409 lines of Java code (exclud-
ing Java code embedded in JSP files). The application’s registration
page contains 31 input fields of which nine input fields are of the
type of selection list or check box. MvnForum accepts a user’s inputs
through these input fields, and inserts the inputs into a database
on its server.

Consider an input field of email as an example. MvnForum may
expect that a user enters a valid email address, and then insert
this email address into a table that records the basic information of
registered users in a database. However, the email address may be
invalid, and MvnForum must validate the email address before pro-
cessing it. To test whether MvnForum validates user-input email
addresses properly, we submit invalid email addresses. A valid

N\w-\.l+@([\w-1+\.)+[\w-1{2,4}

Fig. 2. RegEx1 an email regular expression.

email address can be defined with a regular expression (RegEx1,
shown in Fig. 2).

Based on RegEx1, a valid email address must have a “@”, and
consists of letters, digits, minuses, and dots (“\w” is equivalent to
“[a-zA-Z0-9]"). To test whether MvnForum can detect an invalid
email address, a developer can enter a string without “@” or with
some invalid characters, such as “$”, “&”, and “=". In addition, to test
whether MvnForum throws exceptions for some invalid characters,
a developer can try to enter an empty string to MvnForum.

Another example is that MvnForum allows a user to enter
“Birthday” by selecting dates from three selection lists in the regis-
tration page. In this way, acceptable inputs of these input fields are
restricted to the selectable options in the selection lists. Users are
supposed to enter an input by selecting an option from the selection
lists. However, inputs from this input field still need to be checked,
as users can send inputs to a server through parameters of a URL
instead of using selection lists. In this way, a user can enter unex-
pected inputs, such as numbers out of the boundary of valid day or
month (e.g., 40 for day and 13 for month), to these input fields.

Furthermore, consider an input field of address in MvnForum.
MvnForum expects a user to enter a string that stands for an
address to this input field. However, a user may enter some strings
containing SQL statements, such as name of a street’; DROP
TABLE mvnforumgroups; SELECT * FROM mvnforummember
WHERE name LIKE ‘%’. If MvnForum cannot detect the SQL
injection, the successful execution of the query can delete the
mvnforumgroups table and retrieve the private information of
members from the mvnforummember table. (An attacker may know
the table name from error messages shown by a web application
when he launches attacks.)

With PIUIVT, we automatically parse the registration page to
retrieve the 31 input fields and their surrounding text, and ana-
lyze the surrounding text to identify the type of each input field.3
Each type is associated with a regular expression that defines valid
inputs for the type of input field. For example, we associate “Email”
with RegEx1. If an input field is a selection list, such as “Birthday”,
we automatically abstract its selectable elements, i.e., option val-
ues of the selection list, and rewrite them following the grammar
of the regular expression. For input fields whose regular expres-
sions are not predefined, testers can derive expressions based on
the input field’s surrounding text. Then, we use predefined per-
turbation operators (explained in Section 4.2) to perturb these
expressions to generate invalid inputs, and automatically send the
generated invalid inputs to the web application. The returned HTML
page is saved on a local directory. Testers can continue this pro-
cedure on the same page by different valid or invalid inputs. To
determine the test results (pass or fail), we compare the similarity
among the returned pages of valid and invalid inputs (the strategy
is discussed in Section 4.3).

4. Approach

The goal of PIUIVT is to generate invalid test inputs and assess
test results of UIV testing for web applications from the client side.
The input of PIUIVT is an HTML page; the output of PIUIVT is invalid
test inputs and UIV test results. Fig. 3 presents three main com-
ponents of PIUIVT. First, the input-field identifier identifies input

3 The type of an input field refers to which kind of text is expected for the input
field, such as email address, zip code, and credit-card number.

2266 N. Li et al. / The Journal of Systems and Software 83 (2010) 2263-2274

MIUIVT

|
Test result assessor |
|

. Result page
"of invalid input

Output of MIUIVT

Test result
i (pass/fail)

Fig. 3. Overview of PIUIVT.

fields and descriptive text surrounding the input fields in HTML
pages. Then, the input-point identifier determines the type of each
input field based on analysis of key words in the descriptive text.
Second, based on a user-defined mapping between an input-field
type and the regular expression that defines valid test inputs for the
input-field type, the test-input generator relates each input field
to a regular expression that defines valid test inputs for the input
field. The test-input generator next perturbs the regular expression
to generate invalid test inputs. The test-input generator also uses
the regular expression to generate valid test inputs, which are used
by the test-result assessor. Third, the test-result assessor computes
structural similarities among the result page of invalid test inputs,
the result page of valid test inputs, and the original HTML page to
produce test results (pass or fail).

4.1. Input field identification

Given a web application under test, the input-field identifier
extracts input fields from HTML pages by accessing the web appli-
cation through its URL and analyzing HTML tags. The extracted
information of an input field includes the variable name and basic
attribute values of the input field (e.g., an (Input) tag is visible or
hidden).

After locating an input field (i.e., an HTML element that accepts
user inputs), the input-field identifier identifies descriptive text
surrounding the input field. When we access an HTML page through
a web browser, we know which types of inputs are expected for
an input field based on the text surrounding the input field, such
as an email address or zip code. However, in HTML source code,
the descriptive text surrounding an input field may not be phys-
ically adjacent to the input field (the input tags, text tags, and
format tags are often intermixed in HTML source code). There-
fore, the input-field identifier cannot determine the descriptive
text of an input field based on what text is physically adjacent
to the input field in HTML source code. To address the issue of
locating input field description, we identify descriptive text of an
input field based on the analysis of HTML Document Object Model
(DOM). DOM s a tree-structure (a node tree) representation of a
HTML document, with elements, attributes, and text (HTML DOM

Tutorial, 2009). Fig. 4 shows an example of the DOM tree. To iden-
tify the descriptive text of the (input) tag, we prune the sub-tree
belonging to the (form) tag, and then analyze the tags around
the (input) tag in the sub-tree to identify which text is descrip-
tive text of the (input) tag. In Fig. 4, the descriptive text of the
(input) tagis identified to be the text (“search”) of its brother node
(Text).

Sometimes the descriptive text of an (input) tag is in a select
box before it, or in the text node after it. If an input field is sur-
rounded by a text node before, a text node after, and a selection
list before or after, which node is the descriptive text of the input
field? To answer this question, we analyzed the descriptive text
location for 462 input fields in 50 popular websites. We randomly
chose the 50 popular websites as our subjects, most of which are
e-commercial websites and contain registration forms or search
engines. The detailed information about the analyzed websites can
be found in our project website (Perturbation-based User-Input-
Validation Testing of Web Applications, 2010). We checked the
source code of the web pages that contain the 462 input fields and
found six different locations: the first text node before an input
field, the first text node after an input field, default value of an
input field, the first button after an input field, the first select list
before an input field, and the first select list after an input field. We
counted how many input fields’ descriptive text locates in each of
these six different kinds of locations. Table 2 shows our analysis
results. Column 1 (“Locations”) lists different descriptive text loca-
tions. For each location, Column 2 (“IF#”) lists the number of input
fields whose descriptive text appearing in the location. Column 3
(“Percentage”) lists the percentage of each descriptive text location
(i.e., for each row, Percentage =IF #/462 * 100%). Column 4 (“Prior-
ity”) ranks the priority of descriptive text locations based on the
percentage. From Table 2, we noticed that 90% input fields in these
50 websites set their descriptive text in the first text node before
an input field. Therefore, the first text node before an input field
has the highest priority to be the descritive text of an input field.
Our input-field identifier identifies descriptive text of input fields
based on the priority listed in Table 2, and then identifies the type
of an input field by analyzing key words in the descriptive text. In
addition, if an input field’s type is file, password, hidden, or submit,

N. Li et al. / The Journal of Systems and Software 83 (2010) 2263-2274 2267
Root
Element |
<HTML> !
Element Element
<HEAD> <BODY>
Element I Element:]
<TITLE> f <FORM>
1]] L
. |
“ReT?:ltl:atio f"i Element:
gn” / <TR> \
Vg \
g g AN
A~ Element: N
PR e Tm— <TD> T
’//'] ‘\\\.
[I \ I I I] N
'1 _____ Element; Text: Element; Element; "'.‘
) “Search:” <INPUT> i
T /
. /
k"bi__'_ _ }/.’
S Attribute: Attribute: B
S — - “name” “type" - r
—— . S e

Fig. 4. DOM tree of an HTML page.

we can know the type of such an input field without analyzing its
descriptive text.

As many HTML pages contain the same forms in a web applica-
tion, it is unnecessary to generate test inputs for the same forms.
To avoid redundant test-input generation, the input-field identifier
combines the same forms. Two forms in a web application could be
exactly the same, inclusive, approximately the same, or different
as identified next. Formally, given two forms f1 and £2, the
value of their attributes (action, method, and enctype) are listed
here: fl.action=al, fl.method=ml, fl.enctype=el, and
f2.action=a2, f2.method=m2, f2.enctype=e2. The input
fields belonging to f1, including inputs, selects, textareas and
buttons, are the set s1 while the input fields belong to £2 are the
set s2. If (al==a2) A (ml==m2) A (el==e2), then £1 and £2
can be merged into one form whose input fields are s1U s2.

4.2. Test-input generation

In the previous section, we described how to identify an input
field and its descriptive text. In this section, we describe how to
generate test inputs for an input field based on its descriptive text.

Given the descriptive text of an input field, we can know which
types of input, such as email and zip code, this input field expects.
Is it possible to automatically identify an input field’s type based on
its descriptive text? When we analyzed the descriptive text loca-
tions for the 462 input fields mentioned in the previous section,
we also manually extracted a key word in the descriptive text for
each input field. In summary, we extracted 68 different key words,
such as email, phone, and address, which represent input types for

Table 2
Statistics of descriptive text locations for 462 input fields.
Locations IF # Percentage Priority
1st text node before IF 416 90.0 1
1st text node after IF 27 5.8 2
Default value 8 1.7 3
1st button after IF 6 13 4
1st select list before IF 4 0.9 5
1st select list after IF 1 0.2 6

IF: Input Field.

440 input fields. Among the 462 input fields, we could not extract
key words for 22 input fields from their descriptive text, such as
“How can we assist you?”. In other words, we can identify the input
types for over 95% input fields by extracting key words from their
descriptive text.

For common input types, such as email address, zip code, and
SSN, users can define regular expressions for their valid test inputs.
Based on a mapping between input-field type and the user-defined
regular expressions, the test-input generator relates each input
field to a regular expression that defines valid test inputs for
the input field. Then, the test-input generator generates invalid
test inputs based on perturbing the regular expression of valid
test inputs for each input field. The invalid test inputs can detect
UIV vulnerabilities in a web application under test, as the invalid
test inputs can induce faulty behaviors of the web application, if
there exist UIV vulnerabilities in the web application under test
(explained in Section 4.3).

Before we illustrate our perturbation strategy, we define that a
regular expression is a sequence of ordered sets and regular expres-
sion operators. Here, a set refers to a set of optional or mandatory
constants in a regular expression, and the regular expression oper-
ators refer to the repetition time of selecting elements from a set,
including “+”, “*”, “?”, and “{min,max}”. Suppose that a regular
expression is a 4-tuple (C, S, O, Q) where C is the finite alphabet
of characters, S is a finite set of characters, O is a set of the regular
expression operators ({+|x|?|{min , max }}), and Q is an ordered

\w-\.T+ (D\w-1+\)+ \w-1{2,4}
@\w-\.1+({[\w-1+\.)+[\w-1{2,4}
Nw-\.1*@([\w-1+\.)+[\w-1{2,4}

[\a]+@ ([\w-1+\.)+[\w-1{2,4}

D\w-\.1+@([\w-1+\.)+[\w-1{2,4}

D\w-\.l+@{[\w-1+\.)+[\w-1{2,4}" OR 'A’ = 'A

Fig. 5. Perturbed RegEx1.

2268 N. Li et al. / The Journal of Systems and Software 83 (2010) 2263-2274

sequence of character sets and the regular expression operators, a
subset of S x S x O.

For example, RegEx1 (shown in Fig. 2) contains four operators
and contains four sets, one of which has two subsets. “\w-\.” are
constants in Set 1, and at least one of these constants should appear
in the string. “@” is the only one element in Set 2, and it is manda-
tory. “[\w-]+" and “\.” are two subsets in Set 3, and at least one
string that consists of these two subsets should appear in the final
string. “\w-" are constraints in Set 4, and at least two and at most
four of these constraints should appear in the string.

After associating an input field with a regular expression that
defined valid inputs for the input field, we generate test inputs for
UlV testing by perturbing the regular expression of valid inputs.
We perform six types of operations (MO1-MOG6) on regular expres-
sions.

MO1: Remove the mandatory sets from a regular expression.
MO?2: Disorder the sequence of sets in a regular expression.

MO3: Change the repetition time of selecting elements from a set.
MO4: Select elements from complementary sets of sets in aregular
expression, especially characters next to the boundary of the input
domain.

MOS5: Insert invalid and dangerous characters, such as an empty
string, strings starting with a period, and extremely long strings,
into a regular expression.

MOG6: Insert special patterns, such as SQL queries and XSS seg-
ments, into regular expression.

Take RegEx1 shown in Fig. 2 for instance. If we apply each of the
perturbation operators (MO1-MOG6) on RegEx1 once, we can get six
perturbed regular expressions shown in Fig. 5.

To better identify which UIV vulnerability exists in a web appli-
cation, we apply perturbation operators individually, instead of in
a mixed way. Even so, the number of test inputs is out of control. In
order to reduce the cost of testing, we treat the elements belonging
to the same set in a regular expression as equivalent.

After we apply MO1 and MO3-MOG6, test inputs generated with
the perturbed regular expressions cannot be matched by the orig-
inal regular expression, because MO1 removes the mandatory sets
from the original regular expression. MO4-MOG6 insert some invalid
string to the original regular expression. MO3 causes the number
of elements selected from the same set to be different from the
original one. However, a perturbed regular expression with MO2
may generate a string that is also matched by the original regu-
lar expression, as the two exchanged sets could have intersections.
To avoid such repetition, we could compute the subtraction of the
two sets before they are exchanged, and then exchange the sub-
traction. However, it is expensive to compute the subtraction of
each pair of the exchanged sets. In our implementation, we check a
string generated from the perturbed regular expression with MO2
to check whether it is matched by the original regular expression. If
the string is matched by the original regular expression, this string
is discarded.

4.3. Test-result assessment

PIUIVT automatically fills input fields in an HTML page with
the test inputs generated based on perturbed regular expressions.
Users can edit the test inputs manually and click a button to submit
the test inputs to the web application under test. As defining a test
oracle foreach testinputis tedious and sometimes hard, we develop
a technique to assess the test result as pass or fail without the need
of test oracles. We classify the behavior of a web application in
the context of UIV testing into three types: defensive, insensitive,
and crashing. If a web application rejects invalid test inputs, the
web application is determined to be defensive, and the test result

The result page
of invalid input

“Contain HTTP error

no . status code?]
T~ _— yes
The
Compare original [Crash
page /| (fail) |
< Similar? > no
1 Compare
yes T —
" The result L
page of A
/ validingnt: . < Similar? > yes
no
(Defensive ." " Defensive \ Insensitive/Defensive
. (pass) (fail/pass)

_ (pass)

Fig. 6. Flowchart of test-result assessment.

is pass. If a web application accepts invalid test inputs, the web
application is determined to be insensitive or crashing, and the test
result is fail. We next give the detailed definitions of these three
types.

In particular, a web application is defensive, if the web appli-
cation can detect invalid test inputs to be invalid. There are three
types of result pages returned by defensive web applications. The
first one includes the same form as the original page, plus sugges-
tive directions, such as “please enter a valid email address”; the
second one includes no form and shows some suggestive direc-
tions; and the third one is a redirected result page. In the second
type of result, the layout of the result page differs greatly from the
original one and does not look like the result page of a valid input.
The third type is hard to determine automatically because a web
application can redirect the request to any other page on its server.

Aweb application is insensitive if the returned page of an invalid
input is structurally similar to the returned page of a valid input.
Two HTML pages are structurally similar if the two HTML pages
have similar layout when we open them with a browser. It is not
easy to automatically identify whether two HTML pages are struc-
turally similar based on comparing their layout in browsers. To
address this challenge, we extract HTML tag sequences from two
HTML pages and compare the similarity between the two HTML tag
sequences, as the structure of an HTML page depends on the HTML
tag sequences of this page.

Aweb applicationis crashing, if the returned page contains HTTP
error status code, such as “404 Not Found”. In such cases, a web
application accepts an invalid input and returns a page that leaks
information about configuration or internal workings through error
text. This information can be leveraged to launch or even automate
powerful attacks (Open Web Application Security Project, 2007).

To classify the behavior of a web application, we use the follow-
ing steps for classifications (shown in Fig. 6). At the beginning, we

N. Li et al. / The Journal of Systems and Software 83 (2010) 2263-2274 2269

determine whether the returned page of an invalid input contains
any pre-defined HTTP status code (such as “404 Not Found”). If yes,
the web application is determined to be crashing. If no, we compare
the returned page of the invalid input with the original page and
the result page of a valid input. If the result page of the invalid input
is structurally similar to the original one, the invalid input is pre-
vented, and the web application is defensive. If the result page of
the invalid input is similar to the result page of the valid input, there
are two possibilities: the web application is insensitive, because it
accepts the invalid input wrongly; the web application is defensive,
being robust enough, and it redirects to another HTML page with
the valid input. In the case that the result page of the invalid input
is different from both the result pages of the valid input and the
original page, the web application is determined to be defensive.

A challenging task during the process of test-result assessment
is to determine whether two HTML pages look similar. A previous
study (Hunt and Mcllroy, 1976) determined the similarity between
two text files by computing the Longest Common Subsequence
(LCS) (Maier, 1978) using dynamic programming. This mechanism
has been widely used in “Diff” programs since it was introduced in
1978 but it is not appropriate for evaluating the similarity of the
layout of two HTML pages, because the layout of an HTML page is
determined by the sequence of HTML tags. Therefore, we need to
focus on the tag sequence instead of lines. In addition, two HTML
pages may be similar in appearance but have different values in
some HTML tags or different HTML tags that are invisible when we
open the HTML page in a browser. For example, when we check the
detailed information for a book on the website of a library, the listed
information is different for each book, but all the pages for listing
book information are structurally similar to each other. Based on
such observations, we develop the Longest Common Tag Subse-
quence (LCTS) solution to assess the similarity of HTML pages. LCTS
treats two HTML pages as two sequences of HTML tags, which are
defined as a series of tag names along with their attributes (key-
value pairs that do not contain actual text contents). LCTS finds the
longest common subsequence of two HTML files in the following
way. We first prune the DOM trees of HTML pages by removing
pure text node and context-related tag attributes, such as href,
src, alt, and title, and then compute the LCTS for two HTML pages
under comparison. For the compared two pages, they are consid-
ered as similar pages, if they have similar tag sequences, based on
that max (1-(LCTS amount)/ (Tags amount)) is less than our prede-
fined threshold (30%). In this paper, the predefined threshold is set
based on the experimental result shown in Section 6.3. Different
web applications have different web page styles and the threshold
may need to adjust. We suggest applying LCTS on a small group of
web pages in the web application under test to set the threshold
before performing PIUIVT.

5. Implementation

Our approachisimplemented in Java with related web technolo-
gies. PIUIVT consists of three components: input-field identifier,
test-input generator, and test-result assessor (shown in Fig. 3).

The input-field identifier crawls HTML pages by their URLs and
uses an HTML analyzer (HTML Parser, 2006) to generate a DOM
tree for each HTML page. The input-field identifier extracts input
fields based on the type of nodes in the DOM tree. To get descriptive
text of input fields, PIUIVT filters input-field nodes and the nodes
surrounding input-field nodes from the DOM tree. Then, the input-
field identifier uses the pseudo-code shown in Fig. 7 to identify
descriptive text of input fields. Fig. 7 shows how to get the descrip-
tive text before an input field (the process of getting the descriptive
text after an input field is symmetric to the pseudo-code shown in
Fig. 7). Since there may be some font information inserted in the

getPreText(Input node, String lastString):
Y node; before n, node; is the brother node of n,
String text= “";
ifnode; € uselessTagSet then
jump over it
else if node; € endTagSet then
getPreText(node;, text)
clse text=getTagText(node;)
if text is sensible then
return text.concat(lastString)

getTagText(Nade n):
Case TextTag or LinkTag:
return filtrateString(n.getText())
Case SelectTag:
return getOptionTags()[option.size/2]. getOptionText()
Case InputTag:
if type of this input tag equals submit or button then
return filtrateString(n.getValue())
Case LableTag:
if text of this tag is sensible
return filtrateString(n.getText())
else getTagText(n.children)

Fig. 7. Pseudo code of the input description abstractor.

text around an input field, the process of text identification is recur-
sive. When the descriptive text is identified, the identified text is
compared with the predefined key words in a topic base to identify
the type of input fields. The descriptive text of an input field may
match several types. In this case, a type is selected on the following
order: first the type matching the longest string in the descriptive
text and then the type appearing the most times in the descrip-
tive text. If the descriptive text still matches several types after
such a process, we suggest the possible types to users and allow
users to decide what the type is. Furthermore, if the type cannot be
obtained with descriptive text or PIUIVT fails to get the descriptive
text, PIUIVT tries to identify the type based on the value of some
other attributes of the input field, including the value of its name,
id, and value. PIUIVT treats these values as the descriptive text of
the input field and then identifies the type.

Given the type or acceptable input domain of an input field (i.e.,
the values listed in the options of a selection list, or the values of
a check box or a radio box), the test-input generator automatically
maps the type to a regular expression that defines valid inputs for
this type, or constructs a regular expression to define the accept-
able input domain of this input field. We collect predefined regular
expressions of valid test inputs from RegExLib (Regular Expression
Library, 2007). RegExLib provides various types of regular expres-
sion, such as Email, Uri, numbers, strings, dates, times, address,
phone, markup, and code. These regular expression types cover the
68 different kinds of key words we identified for the 437 input
fields. If the input-field identifier fails in identifying the type of
an input field, PIUIVT assigns a default regular expression for the
input field, and allows user interaction in modifying the regular
expression.

The test-input generator next perturbs regular expressions
automatically and generates test inputs based on the perturbed reg-
ular expressions. To implement our perturbation operators, we first
use an open source library dk.brics.automaton (dk.brics.automaton,
2007) to parse aregular expression into sets and regular expression
operators defined in Section 4.2. Next, we mutate the parsed regular
expression by removing mandatory sets, disordering sets, changing
regular expression operators, replacing or inserting invalid char-
acters into a set, and inserting SQL injections into a set. We have
implemented all six types of perturbation operators (MO1-MO6).

2270 N. Li et al. / The Journal of Systems and Software 83 (2010) 2263-2274

Then, we use a method provided by dk.brics.automaton to generate
a set of acceptable strings for the perturbed regular expressions.

The test-result assessor produces a test result based on retriev-
ing result pages, checking whether the test result is crashing, and
doing similarity comparison. We use regular expressions for check-
ing whether there exist specific patterns of the combination of HTTP
status code (Fielding et al., 2007) in the text of the result page. If
none matches, following the steps described in Fig. 6, we assess the
similarity among the result page of an invalid input, the original
page, and the result page of a valid input.

6. Evaluation of the approach
6.1. Comparison with scanners

In this section, we analyze popular web-application scanners
to show their limitations on testing UIV of web applications, and
present the comparison of PIUIVT and vulnerability scanners of
web applications. Scanners of web applications are tools that auto-
matically crawl through web applications and parse the HTML
pages of web applications to identify vulnerabilities by launch-
ing various attacks. Both PIUIVT and scanners are applied on
testing the MvnForum. The results show that, comparing with
scanners, PIUIVT detects more semantic-related UIV vulnerabili-
ties.

The scanners that we choose are among the 10 most popu-
lar scanners summarized by Fyodor (Top 10 Web Vulnerability
Scanners, 2006). Since not all of them can be freely used for any
web application, we first analyze these scanners based on their
specifications and demonstration sites.

The mechanism of scanners is different from ours. The existing
scanners fetch HTML pages of a web application from the client side,
and are primarily based on pre-defined defects or rules to detect
whether there exist security vulnerabilities in the web application.
Most of these scanners focus on security-vulnerability detection
using known defects recorded in a database, such as the Open
Source Vulnerability Database (OSVDB, 2008). Both Nikto2 (2008)
and Wikto (2008), two open-source scanners, use OSVDB to scan for
possible existence of directories and files that hackers usually try
to find and treat as an entry point such as the /admin directory and
*property file. Furthermore, Google can be used as a tool to search
for signatures of online websites (Google Hacking Database, 2008).
Wikto and Acunetix Web Vulnerability Scanner (2008) use such
signatures to populate to their vulnerability database. A database-
based approach is good for defect detection of a server, network,
and popular software, but those recorded defects cannot be applied
to detect new defect types in various applications under test. It is
just like we cannot use known virus signatures to detect new-born
viruses.

Besides defect-database-based detection, some of the top 10
scanners, such as Paros (Paros - for Web Application Security
Assessment, 2008) and IBM Rational AppScan (Appscan Suite for
Web Application Security Testing, 2008), provide rule-based SQL
injection and XSS injection detection capabilities. XSS injection
testing, which is relatively easy to implement, adds script text
to an input and checks whether the added script text exists on
the response page. SQL injection, especially its assessment of test
results, is somewhat complex. One of the approaches that IBM
Rational AppScan uses for test-result assessment is capturing error
messages such as “0leDbException” to determine whether an SQL
error happens. Similarly, from source code, Paros also uses some
naive detection such as searching for “SQL, ODBC, JDBC” in defect
detection. Such an approach can cause high false alarms. Paros
reports 48 high-risk alerts for MvnForum, but all of them are false
alarms because MvnForum uses search engine optimization tech-

nologies such as adding popular keywords (including “JDBC” and
“MySQL”) in meta tags of every page.

The limitation of the preceding approaches lies in that they
aim at universal solutions for any web application. Actually, web-
application testers can often understand a web application well
based on its descriptive text in HTML pages, and the testers need
flexibility for designing test inputs but are reluctant to generate test
inputs directly by themselves. Our approach focuses on filling the
gap of this kind of requirement. We automatically generate inputs
based on testers’ design reflected by RegExs.

To assess the effectiveness of PIUIVT, we tested MvnForum’s
member registration page (described in Section 3). Since this reg-
istration page contains one CAPTCHA text box, and inputs to two
input fields need to be the same as those to two other corresponding
retype input fields, it makes all top-ten tools not usable: a crawler
cannot fetch the dynamically generated pages because of CAPTCHA
and the comparison between input fields while a proxy needs
human’s diligent typing. PIUIVT provides interactive means to let
users manually overcome these challenges, automatically gener-
ate RegExs for input fields with common types, and allow users to
choose perturbation operators. Based on these inputs, PIUIVT can
automatically generate a set of test inputs.

Another fact is that without knowing the meaning of an input
field, scanners cannot deliberately generate out-of-scope inputs for
testing related faults. We test the demonstration website of IBM
Rational AppScan with PIUIVT, and we detect that the demonstra-
tion website has a seeded fault that allows a user to transfer money
from one account to his or her own account. IBM Rational AppScan
does not detect this defect, although this fault was intentionally
injected by the tool vendor. For MvnForum, many input fields are
given by selection or scoped digits such as year, month, day, and
age. For thorough testing, we need to check what shall happen if
an input is out of scope. After our empirical study, we found two
faults of MvnForum 1.0.2, which are fixed in the latest version. We
detect both of these two faults by submitting invalid inputs, which
induces SQL exceptions in MvnForum. MvnForum displays its inter-
nal function names when some generated unexpected inputs were
entered.

6.2. A case study

To demonstrate the effectiveness of perturbation-based test
input generation, we apply perturbation operators on a benchmark
web application with 20 seeded UIV vulnerabilities, compared to
testing it with web-application scanners. Test results show that
our approach complements web-application scanners by detect-
ing more types of vulnerabilities. Furthermore, we analyze the
test inputs generated by perturbation operators for MvnForum,
and explain why UIV vulnerabilities can be detected by these test
inputs.

We create a web application including 20 UIV vulnerabilities
(eight of the vulnerabilities are from the NIST SAMATE Reference
Dataset Project, 2007). We use PIUIVT and scanners (Wikto and
Paros) to test the application. These vulnerabilities include a tainted
output that allows cross-site scripting or SQL injection attack, an
exception that leaks internal path information to the user, a tainted
input that allows arbitrary files to be read and written, etc. We clas-
sify these 20 vulnerabilities into four types based on the type of
test inputs (shown in Table 3). Based on the classification of UIV
for web applications proposed by Offutt et al. (2004), we classify
invalid inputs into four types and list them in Column 1 of Table 3.
Column 2 of Table 3 lists probable exceptions caused by each type
of invalid inputs. Column 3 shows the types of perturbation oper-
ators used to generate test inputs that cause exceptions. The last
two columns of Table 3 list the ratios of vulnerabilities detected by
the two approaches. The ratios are “the number of detected vulner-

N. Li et al. / The Journal of Systems and Software 83 (2010) 2263-2274 2271
Table 3
ULV fault detection results by three approaches.
Inputs Probable exception Corresponding MOs Detection ratio
PIUIVT Scanners
Invalid length 1. Substring exception (false assumption) MO1, MO5 2/[2 0/2
2. Null pointer exception MO1
3. Buffer/memory overflow MO1
4. Out of boundary access MO1
Invalid type 5. Parselnt, parseFloat, etc exception MO1 4/4 0/4
6. Date, Address parse exception MO1-MO5
7. Parse URL exception MO1-MO5
8. Send mail error (invalid mail address) MO1-MO5
Invalid value 9. Buffer/memory overflow MO5 7/9 0/9
10. Visit file error (invalid file name) MO1-MO5
11. Foreign key constraint violation caused database exception MO5
12. Network connection error (invalid host or port) MO5
SQL injection and XSS 13. Unexpected script execution MO6 3/5 5/5
14. SQL error MO5, MO6
15. Mal-operation on database (such as illegal insert, delete, and query) MO6

abilities in a type/the total number of vulnerabilities in the type”.
We manually counted the number of detected vulnerabilities and
checked whether the test results are correct.

Similar to the analysis in the previous section, scanners focus
on detecting dangerous configurations on a server, and try to con-
duct XSS and SQL injection based on a predefined database. As a
result, scanners cannot detect the lack of UIV on this website, while
PIUIVT can easily detect the lack of UIV. In contrast, the scanners
work better for SQL injections and XSS attacks than PIUIVT, because
the scanners generate such attacks based on a large database of
defects. If we incorporate such a database with PIUIVT, PIUIVT
would achieve similar capability as the scanners in testing SQL
injections and XSS attacks. On the other hand, PIUIVT’s detection
ratio of “Invalid Value” is 7/9. The two “Invalid Value” vulnerabil-
ities that PIUIVT cannot detect are wrong restrictions that reject
some valid inputs. PIUIVT cannot detect such a wrong restriction,
as the detection requires specific valid test inputs instead of invalid
test inputs (the detailed discussion is provided in Section 7).

In addition, when we use PIUIVT to test MvnForum, because
MvnForum does not check whether a submitted date value is
meaningful, we can submit an invalid date value, and the regis-
tration process accepts this invalid input. As the date is stored
in a MySQL datetime field, an erroneous date (0000-00-00) is
stored in its corresponding database. After inserting an invalid
birthday into the database, we next query the information of
registered users, and MvnForum throws an exception with its
internal function name (“Error executing SQL in MemberDAOIm-
pYDBC.getMember _forPublic(pk)”). We analyze the error log and find
that this error is caused by “java.sql.SQLException: Value ‘0000-00-
00’ cannot be represented as java.sql.Date”.

Besides the perturbation-based test input generation, following
the classification of UIV given by Offutt et al. (2004), there should be
two other types of UIV tests that consider inter-value constraints or
control flow restrictions. For example, MvnForum has a form that
allows users to post a thread (a thread is a set of messages grouped
visually in a hierarchy by topic) in an existing forum. MvnForum

Table 4
Applying different similarity comparison approaches to HTML pages in MvnForum.

inserts the text in the thread into a database table that has the same
forum ID as the forum where the thread is posted. To test whether
MvnForum checks the existence of forum ID for a posted thread,
we can post a thread to a non-existent forum in MvnForum with an
out-of-scope ID. Such test inputs are strongly correlated with the
business logic of a web application, and it is quite difficult to gener-
ate such test inputs without domain knowledge. In our approach,
PIUIVT allows testers to design such test inputs and generates an
“out-of-scope id” by perturbing a RegEx for the valid input domain.

6.3. Evaluation of LCTS

We use LCTS and four traditional approaches of similarity com-
parison to evaluate the similarity between different HTML pages
with similar layouts but different contents, or similar contents but
different layouts. The experimental results show that LCTS works
better than those four traditional approaches when evaluating the
similarity of HTML pages’ layout.

Three of the compared approaches are based on an LCS
algorithm, 2*LCS/(LEN1+LEN2)*100%, LCS=the longest common sub-
sequence of PAGE1 and PAGE 2, LEN1=length of PAGE1, LEN2=length
of PAGE2, PAGE1 and PAGE 2 are two web pages, on different lev-
els (character, line, and word). The fourth one counts the same
characters of two files from the beginning to the first different char-
acter from the two files. Table 4 presents our comparison results
on HTML pages in MvnForum. The higher percentage stands for the
larger similarity. In Column 1, Line Diff, Word Diff, and Char Diff
stand for the algorithms of longest common line, word, and char-
acter sequence, respectively, and Char Comp stands for character
comparison. Column 2 in Table 4 presents the similarity between
different threads’ post pages, and each percentage in this column is
an average value measuring on ten pairs of pages. Different threads’
post pages have different contents but similar layouts. We expect
the values in Column 2 to be high. Column 3 in Table 4 presents the
similarity between successful login and failed login pages. As there
are two types of failed login pages: failed because of a wrong user

Approach Different thread’s posts (%) Admin login page: success vs failed (%) Admin login page: different failed pages (%)
LCTS 81.01 23.72 67.69
Line Diff 79.99 34.30 55.23
Word Diff 71.13 34.23 60.70
Char Diff 77.59 40.23 60.16
Char Comp 0.40 0.08 0.14

2272 N. Li et al. / The Journal of Systems and Software 83 (2010) 2263-2274

name and failed because of a wrong password, each percentage in
Column 3 is an average of similarities among successful login page
and each type of failed login pages. As a successful login page and
failed login pages have different layouts, we expect that the values
in Column 3 are low. The last column of Table 4 presents the simi-
larity between these two kinds of failed login pages, and we expect
that the values in Column 4 are high.

From Table 4, the character-based comparison reports low sim-
ilarity for pages no matter whether these pages are similar or
different due to the variance of values in template slots. Since
MvnForum’s HTML code contains appropriate line breaks, Line Diff
performs well, but LCTS is better to distinguish different kinds of
pages’ similarity (the difference between a successful login page
and a failed login page should be smaller than the difference
between two failed login pages, and LCTS detects such a differ-
ence more precisely than Line Diff). In addition, not every web
application generates HTML pages with appropriate line breaks. For
example, if we use Google to search “software” and “testing”, the
similarity calculated by LCTS is 78.76%, and by Line Diff is 25.00%.
This result is because no line ending exists in Google-generated
HTML pages. Char Diff tends to report high similarity, because the
character set is limited. As a result, Char Diff may consider two
totally different pages as similar pages. Furthermore, computing
Char Diff on two HTML pages is expensive in terms of computa-
tion and memory cost. After all, algorithms of LCS are in quadratic
complexity. For approximately 10K-size pages, Char Diff requires
minutes to finish while others finish in milliseconds using a single-
core computer. If we do not use Hirschberg’s algorithm (Hirschberg,
1975) to improve the algorithm of Char Diff, the memory require-
ment cannot be met in our study platform (about 600M memory
needed in a Java implementation using a typical LCS algorithm for
Char Diff (Maier, 1978)). In summary, Char Diff is not practical.
Word Diff is also expensive and less effective; its runtime cost is
greater than one tenth of the cost of Char Diff, because the average
character length of an English word is less than 10.

To further study the capability of LCTS, we apply PIUIVT on an
open-source-code search engine, called Koders (2008). Koders has
three fields of search conditions, the search terms, programming
language, and type of licenses. Programming languages and types
of licenses are selection lists. PIUIVT submits “email validator” as
the search term, “Java” as the programming language, and “X’ OR
‘A’ = ‘A” as the type of licenses, to Koders. Because Koders is a
well-developed web application, it is robust enough to deal with
invalid inputs, and treats the invalid search condition as prede-
fined default input. The test-result page has a similar layout of a
normal search-result page, but different contents. We evaluate the
similarity between this test-result page and a normal search-result
page by LCTS, Line Diff, Char Comp, Char Diff, and Word Diff, and
similarity ratios are 87.03%, 70.90%, 0.46%, 67.77%, and 56.88%. The
similarity ratio computed by LCTS is much larger than the others.

The results show that our LCTS solution is more practical
for measuring of the similarity of HTML pages than existing
approaches.

6.4. Threats to validity

The threats to external validity primarily include the degree to
which the subject programs are representative of true practice. Our
subjects are from various sources. These threats could be further
reduced by experiments on more subjects and third-party tools.
We currently use a third-part library dk.brics.automaton (2007).
The main threats to internal validity include faults in our tool
implementation and faults in the third party library that we use to
parse regular expressions and generate test inputs. To reduce these
threats, we have manually inspected the generated test inputs for
several program subjects. These threats can be further reduced by

[T

Test inputs Valid inputs
generated

by PIUIVT

Boundary of)

valid inputs Strings

Fig. 8. Different test-input domain.

conducting experiments using more regular expression parsers and
regular-expression-based string generators.

7. Discussion

PIUIVT provides a perturbation-based approach to generate UIV
test inputs to improve the effectiveness of UIV testing. The per-
turbed object is a regular expression describing valid inputs for an
input field. It is not difficult to get such regular expressions on Inter-
net. Inregexlib.com, there are 777 regular expressions, which cover
most of common types of inputs for web applications. In addition,
our approach intends to reduce the manual efforts in testing UIV but
not to replace all manual efforts. Due to the diversity of web appli-
cations, some manual efforts may be required for defining input
type or regular expressions.

A challenge for PIUIVT is that it cannot detect UIV vulnerabil-
ities when there is a wrong constraint of inputs. For example, a
web application may expect that the input year is between 1999
and 2008, but present 1998-2008 in its selection list. If a user enters
1998, the web application may throw an exception. However, based
on the information in an HTML page, PIUIVT supposes that a valid
input should be a year between 1998 and 2008, and generates test
inputs out of this period. As a result, the exception induced by 1998
cannot be caused by test inputs generated by PIUIVT. As shown in
Fig. 8, test inputs generated by PIUIVT belong to the complement
of valid inputs, and near the boundary of valid inputs. If the infor-
mation in an HTML page cannot reflect the real boundary of valid
inputs, the effectiveness of test inputs generated by PIUIVT would
be compromised.

The observation on possible behaviors of an attacked web appli-
cation is based on our experience. We do not conduct a manual
analysis on the behaviors of attacked web applications as the
manual analysis for input fields, as it is very time consuming or
infeasible for us to collect the source code of 50 websites with UIV
vulnerabilities, set them up, and observe their behaviors for invalid
inputs. In future work, we plan to collect and analyze statistical data
about attacked web applications’ behaviors as empirical evidence.
In addition, we currently compare the effects of LCTS and other
similarity measures based on three different kinds of web pages.
In future work, we plan to perform the comparison based on more
web pages to evaluate how often each of the similarity measures
could correctly report two web pages that should be classified as
different (or as the same) with respect to the PIUIVT methodology.

8. Related work

Lucca and Fasolino (2006) classify strategies for web-application
testing into white-box testing, black-box testing, and gray-box test-
ing.

White-box testing generates test inputs based on an abstract
structure of source code, which can be generated based on client-

N. Li et al. / The Journal of Systems and Software 83 (2010) 2263-2274 2273

side source code (Liu et al., 2000a) or server-side source code (Liu
and Tan, 2006). Liu et al. (2000a,b) analyze HTML documents to cre-
ate data-flow models for a web application, and generate test inputs
based on the data-flow models. Ricca and Tonella (2001) propose
a UML model of web applications as a high-level representation.
Benedikt et al. (2002) use a model checker to explore web-site exe-
cution paths that can be followed by a user in a web application.
Compared with the model-based approaches, our approach focuses
on the UIV testing of web applications and does not require any
model. Liu and Tan (2006) abstract a control flow diagram from
server-side source code. Based on the control flow diagram, they
verify and generate UIV test inputs. Halfond and Orso (2007) use
static analysis of the server-side source code to extract input fields,
and then generate test inputs based on the input fields. Benedikt et
al. (2002) generate test inputs based on the analysis of PHP appli-
cations, monitors the application for crashes, and validates that
the output conforms to the HTML specification. On one hand, since
server-side code of a web application may be written in different
languages, it is not trivial to automatically generate control flow
diagrams based on static analysis. On the other hand, without test
oracles, it is difficult to automatically determine test results for the
server-side testing.

Black-box testing does not require the knowledge of the imple-
mentation of the software artifacts under test but generate test
inputs based on the specified or expected functionality of the
artifacts (Lucca and Fasolino, 2006). Lucca et al. (2002) exploit
an object-oriented model of a web application, and propose
approaches of unit testing and integration testing based on this
model. Andrews et al. (2005) build hierarchies of Finite State
Machines (FSMs) that model subsystems of web applications, and
then generate test requirements as subsequences of states in the
FSMs. Similar to the approach of Andrews et al., we use regular
expressions, which are translated into FSMs during test-input gen-
eration, to define valid inputs, but we perturb regular expressions
to generate UIV test inputs. Offutt et al. (2004) develop a strat-
egy to create client-side tests that intentionally violate explicit and
implicit checks on users’ inputs, but they just describe their testing
strategy and define specific rules and adequacy criteria for tests
without providing an approach to generate UIV tests. Huang et
al. (2003) combine dynamic analysis, fault injection, and behavior
monitoring techniques to assess the security of a web applica-
tion. Different from our approach, their approach focuses on SQL
injection and XSS vulnerabilities. Wang et al. (2004) emphasize the
importance of on-line testing of web applications, and UIV testing
targeted by our approach can be a component of on-line testing.

A representative technique of gray-box testing of web appli-
cations is user-session-based testing (Lucca and Fasolino, 2006).
Elbaum et al. (2003, 2005) present several techniques for using
gathered user sessions to help test web applications. Their tech-
niques can be applied either in a system’s beta testing phase
or during subsequent maintenance, but such techniques are not
directly for UIV testing.

Our approach for identifying descriptive text for input fields is
similar to approaches used by web macro recording tools such as
Chickenfoot (Bolin et al., 2005) and RoboFox (Koesnandar et al.,
2008). Different from these approaches, our approach for identify-
ing descriptive text for input fields is based on ranking priorities of
HTML tags around an input field. We analyze HTML tag sequences
to identify which HTML tag contains the description text of an input
field.

The basic idea of our LCTS algorithm is similar to the approaches
of identifying duplicated web pages (Lucia et al., 2006; Sprenkle
et al., 2005; Di Lucca et al., 2002), but our approach extracts the
template from an HTML page, instead of just comparing their tag
trees, i.e., our approach includes only presentation structures by
removing context-related attributes and values in tags. In addi-

tion, we compared LCTS with traditional Diff algorithms to show
the effectiveness of LCTS on evaluating structural similarity among
HTML pages. On one hand, our approach is more simplified than
the approaches based on edit distance (Di Lucca et al., 2002). On
the other hand, our approach is more effective than traditional Diff
algorithms.

There are some commercial or open source tools for web appli-
cation security testing, such as the top-10 scanners (Top 10 Web
Vulnerability Scanners, 2006). All of these vulnerability scanners
have the following steps. First, scanners fetch pages by using a
crawler with seed URLSs, or fetch pages according to user actions
by using a proxy. Second, scanners detect database-based security
holes and common paths (such as where the admin page is). Third,
scanners analyze a fetched page and conduct predefined injections.
Fourth, scanners analyze response pages for test-result assessment.
Except the second step, which requires a specific attack signature
database, the others rely on the right inputs and predefined injec-
tion for vulnerability scanning. However, since there is no option
for a user’s control, these scanners can find limited types of defects,
and cannot report those defects related to semantic invalid input
value.

9. Conclusion

We have proposed an approach, called PIUIVT, to improve the
effectiveness of UIV testing for web applications. Our approach
combines the automation of vulnerability scanners of web appli-
cations and the flexibility of proxy-based UIV testing tools. We
have proposed and studied six types of perturbation operators
for UIV test-input generation. The empirical study shows that
PIUIVT is more effective in terms of UIV vulnerability detection
related to input types and values of web applications than exist-
ing approaches. We also proposed the LCTS solution to assess
the similarity of HTML pages to detect problems in testing. The
experimental results show that our LCTS solution is more practi-
cal for measuring of the similarity of HTML pages than existing
approaches. On the other hand, our experimental results are lim-
ited to be from the single case study that we carried out and we
plan to add more subjects in the future to enhance the validity of
our experiment.

Acknowledgments

The work of the authors from Beihang University is sponsored
by the National Natural Science Foundation of China (NSFC) (Major
Research Plan) No. 90718018, “Research on the test-based soft-
ware trusty growing models and its evaluation methods”. The work
of the authors from North Carolina State University is supported
in part by NSF grants CNS-0720641, CCF-0725190, CCF-0845272,
CCF-0915400, CNS-0958235, and an NCSU CACC grant, ARO grant
W911NF-08-1-0443, and ARO grant W911NF-08-1-0105 managed
by NCSU SOSI.

References

Acunetix Web Vulnerability Scanner, http://www.acunetix.com/ (2008).

Andrews, A., Offutt, J., Alexander, R., 2005. Testing web applications by modeling
with fsms. Software Syst. Model. 4 (3), 326-345.

Appscan Suite for Web Application Security Testing, http://www.watchfire.com/
products/appscan/default.aspx (2008).

K. Beaver, The importance of input validation, http://searchsoftwarequality.
techtarget.com/tip/0,289483,sid92_gci1214373,00.html (2006).

Benedikt, M., Freire, J., Godefroid, P., 2002. Veriweb: Automatically testing dynamic
web sites. In: Proc. WWW.

Bolin, M., Webber, M., Rha, P., Wilson, T., Miller, R.C., 2005. Automation and cus-
tomization of rendered web pages. In: Proc. UIST, pp. 163-172.

Burp proxy, http://www.portswigger.net/proxy/ (2009).

Di Lucca, G., Di Penta, M., Fasolino, A., 2002. An approach to identify duplicated web
pages. In: Proc. CMPSAC, pp. 481-486.

http://www.acunetix.com/
http://www.watchfire.com/products/appscan/default.aspx
http://searchsoftwarequality.techtarget.com/tip/0,289483,sid92_gci12143
http://www.portswigger.net/proxy/

2274 N. Li et al. / The Journal of Systems and Software 83 (2010) 2263-2274

dk.brics.automaton, http://www.brics.dk/automaton/index.html (2007).

Elbaum, S., Karre, S., Rothermel, G., 2003. Improving web application testing with
user session data. In: Proc. ICSE, pp. 49-59.

Elbaum, S., Rothermel, G., Karre, S., Fisher I, M., 2005. Leveraging user-session data
to support web application testing. IEEE Trans. Softw. Eng. 31 (3), 187-202.

Fiddler, http://www.fiddlertool.com/fiddler/ (2009).

Fielding, R., Gettys,], Mogul,]., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T., Hypertext transfer protocol - http/1.1, http://www.w3.org/Protocols/
rfc2616/rfc2616.html (2007).

Google Hacking Database, http://johnny.ihackstuff.com/ghdb.php (2008).

HTML DOM Tutorial, http://www.w3schools.com/HTMLDOM/default.asp (2009).

Halfond, W.G.]., Orso, A., 2007. Improving test case generation for web applications
using automated interface discovery. In: Proc. ESEC-FSE, pp. 145-154.

Hirschberg, D., 1975. A linear space algorithm for computing maximal common
subsequences. Commun. ACM 18 (6), 341-343.

Howard, M., LeBlanc, D., 2003. Writing Secure Code. Microsoft Press, Redmond,
Wash.

HTML Parser, http://htmlparser.sourceforge.net/ (2006).

Huang, Y., Huang, S., Lin, T., Tsai, C., 2003. Web application security assessment by
fault injection and behavior monitoring. In: Proc. WWW, pp. 148-159.

Huang, Y.W., Yy, F., Hang, C., Tsai, C., Lee, D.T., Kuo, S., 2004. Securing web application
code by static analysis and runtime protection. In: Proc. WWW, pp. 40-52.
Hunt, J.W., Mcllroy, M.D., An Algorithm for Differential File Comparison, Technical

Report SECLAB-05-04, Bell Laboratories (1976).

Koders, http://www.koders.com/ (2008).

Koesnandar, A., Elbaum, S., Rothermel, G., Hochstein, L., Scaffidi, C., Stolee, K.T., 2008.
Using assertions to help end-user programmers create dependable web macros.
In: Proc. SIGSOFT/FSE, pp. 124-134.

Liu, H., Tan, H.B.K., 2006. Automated verification and test case generation for input
validation. In: Proc. AST, pp. 9-14.

Liu, C.-H., Kung, D.C,, Hsia, P., Hsu, C.-T., 2000a. Object-based data flow testing of
web applications. In: Proc. APAQS, pp. 7-16.

Liu, C.-H.,Kung, D.C., Hsia, P., Hsu, C.-T., 2000b. Structural testing of web applications.
In: Proc. ISSRE, pp. 84-96.

Lucca, G.A.D., Fasolino, A.R., 2006. Testing web-based applications: the state of the
art and future trends. Inf. Softw. Technol. 48 (12), 1172-1186.

Lucca, G.D., Fasolino, A., Faralli, F., 2002. Testing web applications. In: Proc. ICSM,
pp. 310-319.

Lucia, A.D., Scanniello, G., Tortora, G., 2006. Using a competitive clustering algorithm
to comprehend web applications. In: Proc. WSE, pp. 33-40.

Maier, D., 1978. The complexity of some problems on subsequences and superse-
quences. J. ACM 25 (2), 322-336.

Mvnforum, http://www.mvnforum.com/mvnforumweb/index.jsp (2006).

Nikto2 release 2.02, http://www.cirt.net/code/nikto.shtml (2008).

NIST SAMATE Reference Dataset Project, http://samate.nist.gov/SRD/index.php
(2007).

Offutt, J., Wu, Y., Du, X., Huang, H., 2004. Bypass testing of web applications. In: Proc.
ISSRE, pp. 187-197.

Open Source Vulnerability Database, http://osvdb.org/ (2008).

Open Web Application Security Project, Top 10 2007. http://www.owasp.
org/index.php/Top-10-2007.

Paros - for Web Application Security Assessment, http://www.parosproxy.org/
index.shtml (2008).

Perturbation-based User-Input-Validation Testing of Web Applications,
https://sites.google.com/site/asergrp/projects/PIUIVT (2010).

Regular Expression Library, http://regexlib.com/ (2007).

Ricca, F., Tonella, P., 2001. Analysis and testing of web applications. In: Proc. ICSE,
pp. 25-34.

Sprenkle, S., Gibson, E., Sampath, S., Pollock, L., 2005. Automated replay and failure
detection for web applications. In: Proc. ASE, pp. 253-262.

Tamperie, http://www.bayden.com/TamperlE/ (2009).

Tipton, H.F., Krause, M., 2006. Information Security Management Handbook, 6th ed.
Auerbach Publications, New York.

Top 10 Web Vulnerability Scanners, http://sectools.org/web-scanners.html (2006).

Wang, Q., Quan, L., Ying, F., 2004. Online testing of web-based applications. In: Proc.
COMPSAC, pp. 166-169.

C. Weber, Testing Your Web Applications for Cross Site Scripting Vulnerabilities,
http://www.microsoft.com/technet/community/columns/secmvp/sv0505.mspx
(2005).

Wikto: Web Server Assessment Tool, http://www.sensepost.com/research/wikto/
(2008).

Nuo Liis a researcher at ABB Corporate Research Center, P.R. China. She received her
Ph.D. degree from Beihang University, Beijing, P.R. China, in 2008. She worked as a
research assistant in the Department of Computer Science at North Carolina State
University during 2007-2009. Her research interests include automated software
engineering with emphasis on software testing and engineering process improve-
ment.

Tao Xie is an Associate Professor in the Department of Computer Science at North
Carolina State University. He received his Ph.D. in Computer Science from the Uni-
versity of Washington in 2005. His research interests are in software engineering,
focusing on automated software testing and mining software engineering data.

Maozhong Jin is a Professor in Beihang University, Beijing, P.R. China. His research
interest includes programming language processing and software engineering.

Chao Liu is a Professor, Associate Dean of School of Computer Science and Director of
Software Engineering, Beihang University, Beijing, P.R. China. He is also vice director
of Software Engineering Specialty Group of China Computer Federation, and man-
aging director of Beijing Software Industry Association. He received his Ph.D. degree
and M.S. degree in Computer Software and Theory at Beihang University, and his
B.S. Degree in Mathmatics at Beijing University of Posts and Telecommunication.
His research interests include software quality engineering, software testing, and
software process improvement.

http://www.brics.dk/automaton/index.html
http://www.fiddlertool.com/fiddler/
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://johnny.ihackstuff.com/ghdb.php
http://www.w3schools.com/HTMLDOM/default.asp
http://htmlparser.sourceforge.net/
http://www.koders.com/
http://www.mvnforum.com/mvnforumweb/index.jsp
http://www.cirt.net/code/nikto.shtml
http://samate.nist.gov/SRD/index.php
http://osvdb.org/
http://www.owasp.org/index.php/Top_10_2007
http://www.parosproxy.org/index.shtml
https://sites.google.com/site/asergrp/projects/PIUIVT
http://regexlib.com/
http://www.bayden.com/TamperIE/
http://sectools.org/web-scanners.html
http://www.microsoft.com/technet/community/columns/secmvp/sv0505.mspx
http://www.sensepost.com/research/wikto/

	Perturbation-based user-input-validation testing of web applications
	Introduction
	Background
	Hidden fields
	Cross-Site Scripting
	SQL injection
	Unconscious mistakes
	Solution

	Example
	Approach
	Input field identification
	Test-input generation
	Test-result assessment

	Implementation
	Evaluation of the approach
	Comparison with scanners
	A case study
	Evaluation of LCTS
	Threats to validity

	Discussion
	Related work
	Conclusion
	Acknowledgments
	References

