
P

N
a

b

a

A
R
R
A
A

K
S
W
U

1

w
a
t
b
w
i
a
u
s
2
v
o
i

i
W
T
t
(
2
2

c

(

0
d

The Journal of Systems and Software 83 (2010) 2263–2274

Contents lists available at ScienceDirect

The Journal of Systems and Software

journa l homepage: www.e lsev ier .com/ locate / j ss

erturbation-based user-input-validation testing of web applications

uo Lia, Tao Xiea,∗, Maozhong Jinb, Chao Liub

Department of Computer Science, North Carolina State University, NC 27695, USA
School of Computer Science and Engineering, Beihang University, Beijing 100083, China

r t i c l e i n f o

rticle history:
eceived 20 April 2009

a b s t r a c t

User-input-validation (UIV) is the first barricade that protects web applications from application-level
attacks. Most UIV test tools cannot detect semantics-related vulnerabilities in validators, such as filling
eceived in revised form 30 May 2010
ccepted 2 July 2010
vailable online 29 July 2010

eywords:
oftware testing

a five-digit number to a field that accepts a year. To address this issue, we propose a new approach
to generate test inputs for UIV based on the analysis of client-side information. In particular, we use
input-field information to generate valid inputs, and then perturb valid inputs to generate invalid test
inputs. We conducted an empirical study to evaluate our approach. The empirical result shows that, in
comparison to existing vulnerability scanners, our approach is more effective than existing vulnerability

ntics-
eb-application testing
ser-input-validation testing

scanners in finding sema

. Introduction

User-input-validation (UIV) is the first barricade that protects a
eb application from application-level attacks (Beaver, 2006) such

s buffer overflow, code-injection attack, hidden-field manipula-
ion, and cross-site scripting. Attackers can launch these attacks
y sending malicious inputs to a web application. As UIV protects a
eb application against these attacks by rejecting malicious inputs,

mproving the quality of UIV is a key means of enhancing a web
pplication’s security. Unfortunately, web-application developers
sually forget to implement UIV, or implement defective UIV. As
hown in a recent survey (Open Web Application Security Project,
007), among the top 10 vulnerabilities of web applications, six
ulnerabilities are induced by defective UIV. There is a strong need
f an effective way to help improve the quality of UIV, thereby
ncreasing web applications’ security.

UIV testing is a common way in practice to improve the qual-
ty of UIV. There exist tools (Nikto2, 2008; Wikto, 2008; Acunetix

eb Vulnerability Scanner, 2008; Fiddler, 2009; Burp Proxy, 2009;
amperie, 2009) that test UIV of web applications. These existing
ools can be classified into two major categories: crawler-based
Nikto2, 2008; Wikto, 2008; Acunetix Web Vulnerability Scanner,

008) and proxy-based (Fiddler, 2009; Burp Proxy, 2009; Tamperie,
009) UIV testing tools.

Crawler-based UIV testing tools retrieve HTML pages automati-
ally, and submit predefined test inputs to the server through these

∗ Corresponding author. Tel.: +1 919 515 3772; fax: +1 919 515 7896.
E-mail addresses: nli3@ncsu.edu (N. Li), txie@ncsu.edu (T. Xie), jmz@buaa.edu.cn

M. Jin), liuchao@buaa.edu.cn (C. Liu).

164-1212/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
oi:10.1016/j.jss.2010.07.007
related vulnerabilities of UIV for web applications.
© 2010 Elsevier Inc. All rights reserved.

HTML pages. However, using only predefined test inputs may not
be suitable to be used for a particular input field.1 For example,
consider that an input field in a web application may require a year
value to be between 1999 and 2003. To test this input field, we
shall enter possible boundary values such as 1998 or 2004. These
boundary values may not exist in the predefined test inputs; hence,
it may not be possible to check whether the web application can
deal with the boundary values properly. As a result, crawler-based
testing tools cannot detect these semantics-related UIV defects. In
this paper, we use semantic-related UIV defects to refer to defects
that are induced due to the lack of checking the semantics of inputs,
and semantic-related test inputs are test inputs that can detect
semantic-related UIV defects.

Different from crawler-based UIV testing tools, proxy-based
UIV testing tools allow developers to edit HTML requests directly.
These tools basically provide a manual testing approach, which
keeps the maximum flexibility without providing any help on test-
input generation. Weber (2005), a senior security consultant, used
Cross-Site Scripting (XSS) as an example to show how to test web
applications for such vulnerabilities in practice using the proxy-
based UIV testing technique. First, a developer finds some proxy
tools that can intercept HTTP requests. Second, the developer maps
the site and its functionality by discussing with other develop-

ers and project managers. Third, the developer identifies and lists
input fields. Fourth, the developer writes test inputs manually.
Finally, the developer starts testing with the proxy tools and adjusts
test inputs. These manual steps are tedious, and the creation of

1 In this paper, an input field is an HTML element, such as 〈select〉 and 〈input〉,
through which users can send inputs to a web-application server.

dx.doi.org/10.1016/j.jss.2010.07.007
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:nli3@ncsu.edu
mailto:txie@ncsu.edu
mailto:jmz@buaa.edu.cn
mailto:liuchao@buaa.edu.cn
dx.doi.org/10.1016/j.jss.2010.07.007

2264 N. Li et al. / The Journal of Systems and Software 83 (2010) 2263–2274

Table 1
Comparison of UIV testing approaches for web applications.

Features Crawler-based Proxy-based PIUIVT

Input fields discovery Yes No Yes
Edit test inputs No Yes Yes
Blind SQL injection Yes No Yes
Predefined XSS Yes No Yes
Context-related UIV

test
No No Yes

Generate invalid inputs For user login No Yes

t
e

b
a
t
U
t
o
r
a
t
a
i
a
S
t
a
s
p
(
t

•

•

•

d
t
a
i
S

w
b

based on valid inputs
Test oracle For SQL injection and XSS No Yes

est inputs heavily depends on developers’ knowledge and experi-
nce.

In this paper, we propose a new approach, called Perturbation-
ased Interactive UIV Testing (PIUIVT), to improve the quality of
web-application UIV with robustness testing of web applica-

ions against invalid inputs. Table 1 shows the features of different
IV testing approaches for web applications. PIUIVT combines

he automation of crawler-based UIV testing and the flexibility
f proxy-based UIV testing. To automatically generate semantics-
elated test inputs, PIUIVT analyzes the client-side information of
web application to collect input-field information that is helpful

o generate valid inputs. PIUIVT associates each input field with
regular expression that defines valid-input constraints for the

nput field. PIUIVT next perturbs the regular expression to gener-
te invalid test inputs2 based on the perturbed regular expressions.
imilar to crawler-based UIV testing tools, PIUIVT allows testers
o manually modify the automatically generated test inputs. To
utomatically assess the test results (pass or fail), PIUIVT compares
tructural similarity among the original HTML page, the response
age of an invalid input, and the response page of a valid input
which is automatically generated based on the regular expressions
hat defines valid inputs).

This paper makes the following main contributions:

An approach based on regular expressions for generating UIV test
inputs for web applications. Our approach also includes different
types of perturbation operators.
A strategy based on comparing HTML structures to assess UIV
test results (pass or fail), and a solution for the longest com-
mon subsequence problem to evaluate similarity between HTML
pages.
A prototype and a set of evaluations of PIUIVT with open-
source web applications. Our results show that PIUIVT is effective
in web-application UIV testing: PIUIVT detects 80% semantic-
related defects that we injected into a web application, while
Wikto and Paros detect 25%; compared with other similarity
measurement algorithms, our algorithm measures the similarity
among HTML pages more precisely.

The rest of this paper is structured as follows. Section 2 intro-
uces background of UIV testing. Section 3 illustrates our approach
hrough an example. Sections 4 and 5 explain the PIUIVT approach
nd its implementation, respectively. Section 6 presents an empir-

cal evaluation of the approach. Section 7 discusses our limitation.
ection 8 discusses related work. Section 9 concludes the paper.

2 A valid test input is a test input that should be accepted by a web application
ith defect-free UIV, and an invalid test input is a test input that should be rejected

y a web application with defect-free UIV.
Fig. 1. An XSS example.

2. Background

Existing technologies such as anti-virus software and network
firewall offer comparatively secure protection at host and net-
work levels, but not at the application level (Huang et al., 2004).
Application-level attacks are more difficult to detect than attacks
at host and network levels. These attacks can come from any on-
line user — even authenticated ones (Tipton and Krause, 2006). As
UIV checks inputs from any on-line user, UIV is an effective means
to protect a web application from application-level attacks. Here,
we give a brief introduction of several vulnerabilities in web appli-
cations to show how attacks can happen at the application level
because of defective UIV.

2.1. Hidden fields

Hidden fields refer to hidden HTML form fields, such as 〈input
type = hidden name = hl value = “en′′〉. In many web applications,
developers use these fields to transfer values instead of presenting
these values to users. Unfortunately, these fields are actually visible
and manipulable to users. Malicious users could easily change the
values of these fields in HTML source code and send the changed
values back to the web application. If a web application uses a
hidden field to hold merchandise prices, malicious users could pur-
chase items at little or no cost. These attacks could be successful,
because a web application may not validate whether the returning
value of a hidden field is the same as its outgoing value, and accepts
the illegally changed value.

2.2. Cross-Site Scripting

Cross-Site Scripting (XSS) flaws occur when a web applica-
tion accepts user-supplied inputs that contain browser-executable
scripts, and posts the inputs in an HTML page without validating
or encoding. When another user accesses the HTML page, the web
browser executes scripts posted in that HTML page. Through XSS,
attackers could send an executable script to a victim’s browser,
and then possibly hijack user sessions, deface websites, introduce
worms, etc.

Fig. 1 shows a typical XSS example, which is borrowed from the
“Writing Secure Code” book (Howard and LeBlanc, 2003). Suppose
that an attacker sends the code shown in Fig. 1 to a bulletin board,
and then an innocent user opens that bulletin board and clicks the
hyper link of “Click here!”. As a result, this user’s cookie would be
stolen. Such attacks could be successful when the web application
does not filter out or transform scripts included in users’ inputs.

2.3. SQL injection
SQL injection flaws occur when user-supplied inputs are sent to
an interpreter as part of a command or query. Attackers trick the
interpreter to execute unintended commands via supplying spe-
cially crafted data (Open Web Application Security Project, 2007).

s and Software 83 (2010) 2263–2274 2265

F
b

‘
o

S

I
a
S
d
i

2

i
c
c
f
a
e
r
e
e
s

2

a
a
f
o
d
a
U

3

o
i
s
(
i
p
t
t
o

e
t
r
i
c
a

test results of UIV testing for web applications from the client side.
The input of PIUIVT is an HTML page; the output of PIUIVT is invalid
test inputs and UIV test results. Fig. 3 presents three main com-
N. Li et al. / The Journal of System

or example, consider a web application that authenticates a user
y checking a database in this way:

SQLQuery = “SELECT * FROM Users WHERE (UserName=’
“+ strUserName +”’) AND (Password=’ “+ strPass-
word +”’);”;
if GetQueryResult(SQLQuery) == 0
then authenticated = false;
else authenticated = true;

If an attacker enters X’ OR ‘A’ =’A for UserName and X’ OR
A’ =’A for Password and the web application executes the query
n the database directly, the SQL statement at runtime becomes:

ELECT ∗ FROM Users WHERE(UserName = ‘X ′OR‘A′ = ‘A′)

AND(Password = ‘X ′OR‘A′ = ‘A′);

n this way, the attacker bypasses the authentication and accesses
ll the user information in the Users table. Similar to XSS attacks,
QL-injection attacks could be successful if the web application
oes not filter or transform SQL commands included in users’

nputs.

.4. Unconscious mistakes

Besides the preceding malicious attacks, many users can enter
nvalid inputs unconsciously. For example, users may enter invalid
haracters, such as multiple blanks, &, and null accidentally. These
haracters may lead to a failure or even crash when they are used
or database operations. Even though such inputs may not crash

web application, there can be a negative user experience. For
xample, when a user signs up for a service, a web application
equires the user’s email address, and sends an automatically gen-
rated password to that email address. If the user enters an invalid
mail address, the user does not get the password and the service
ign up fails.

.5. Solution

To avoid these vulnerabilities, a web application should validate
user input before using the input for further processing (Howard
nd LeBlanc, 2003). However, web-application developers often
orget validating users’ inputs, and UIV is often not correctly devel-
ped. As the manual process of testing UIV is tedious and strongly
ependent on the experience of developers, we propose a new
utomatic approach, called PIUIVT, to improve the effectiveness of
IV testing for web applications.

. Example

We next explain our approach with an example of testing an
pen-source web application, called Mvnforum (2006). MvnForum
s a mature forum system built on the J2EE technology. It was
tarted in 2001 and is continuously evolving. The latest version
1.1RC1) of MvnForum includes 159,409 lines of Java code (exclud-
ng Java code embedded in JSP files). The application’s registration
age contains 31 input fields of which nine input fields are of the
ype of selection list or check box. MvnForum accepts a user’s inputs
hrough these input fields, and inserts the inputs into a database
n its server.

Consider an input field of email as an example. MvnForum may
xpect that a user enters a valid email address, and then insert

his email address into a table that records the basic information of
egistered users in a database. However, the email address may be
nvalid, and MvnForum must validate the email address before pro-
essing it. To test whether MvnForum validates user-input email
ddresses properly, we submit invalid email addresses. A valid
Fig. 2. RegEx1 an email regular expression.

email address can be defined with a regular expression (RegEx1,
shown in Fig. 2).

Based on RegEx1, a valid email address must have a “@”, and
consists of letters, digits, minuses, and dots (“\w” is equivalent to
“[a-zA-Z0-9]”). To test whether MvnForum can detect an invalid
email address, a developer can enter a string without “@” or with
some invalid characters, such as “$”, “&”, and “=”. In addition, to test
whether MvnForum throws exceptions for some invalid characters,
a developer can try to enter an empty string to MvnForum.

Another example is that MvnForum allows a user to enter
“Birthday” by selecting dates from three selection lists in the regis-
tration page. In this way, acceptable inputs of these input fields are
restricted to the selectable options in the selection lists. Users are
supposed to enter an input by selecting an option from the selection
lists. However, inputs from this input field still need to be checked,
as users can send inputs to a server through parameters of a URL
instead of using selection lists. In this way, a user can enter unex-
pected inputs, such as numbers out of the boundary of valid day or
month (e.g., 40 for day and 13 for month), to these input fields.

Furthermore, consider an input field of address in MvnForum.
MvnForum expects a user to enter a string that stands for an
address to this input field. However, a user may enter some strings
containing SQL statements, such as name of a street’; DROP
TABLE mvnforumgroups; SELECT * FROM mvnforummember
WHERE name LIKE ‘%’. If MvnForum cannot detect the SQL
injection, the successful execution of the query can delete the
mvnforumgroups table and retrieve the private information of
members from the mvnforummember table. (An attacker may know
the table name from error messages shown by a web application
when he launches attacks.)

With PIUIVT, we automatically parse the registration page to
retrieve the 31 input fields and their surrounding text, and ana-
lyze the surrounding text to identify the type of each input field.3

Each type is associated with a regular expression that defines valid
inputs for the type of input field. For example, we associate “Email”
with RegEx1. If an input field is a selection list, such as “Birthday”,
we automatically abstract its selectable elements, i.e., option val-
ues of the selection list, and rewrite them following the grammar
of the regular expression. For input fields whose regular expres-
sions are not predefined, testers can derive expressions based on
the input field’s surrounding text. Then, we use predefined per-
turbation operators (explained in Section 4.2) to perturb these
expressions to generate invalid inputs, and automatically send the
generated invalid inputs to the web application. The returned HTML
page is saved on a local directory. Testers can continue this pro-
cedure on the same page by different valid or invalid inputs. To
determine the test results (pass or fail), we compare the similarity
among the returned pages of valid and invalid inputs (the strategy
is discussed in Section 4.3).

4. Approach

The goal of PIUIVT is to generate invalid test inputs and assess
ponents of PIUIVT. First, the input-field identifier identifies input

3 The type of an input field refers to which kind of text is expected for the input
field, such as email address, zip code, and credit-card number.

2266 N. Li et al. / The Journal of Systems and Software 83 (2010) 2263–2274

rview

fi
p
i
S
t
i
t
fi
t
t
b
s
t
p

4

e
c
i
a
h

u
s
a
a
a
t
i
f
f
t
t
l
i
(
H

Fig. 3. Ove

elds and descriptive text surrounding the input fields in HTML
ages. Then, the input-point identifier determines the type of each

nput field based on analysis of key words in the descriptive text.
econd, based on a user-defined mapping between an input-field
ype and the regular expression that defines valid test inputs for the
nput-field type, the test-input generator relates each input field
o a regular expression that defines valid test inputs for the input
eld. The test-input generator next perturbs the regular expression
o generate invalid test inputs. The test-input generator also uses
he regular expression to generate valid test inputs, which are used
y the test-result assessor. Third, the test-result assessor computes
tructural similarities among the result page of invalid test inputs,
he result page of valid test inputs, and the original HTML page to
roduce test results (pass or fail).

.1. Input field identification

Given a web application under test, the input-field identifier
xtracts input fields from HTML pages by accessing the web appli-
ation through its URL and analyzing HTML tags. The extracted
nformation of an input field includes the variable name and basic
ttribute values of the input field (e.g., an 〈Input〉 tag is visible or
idden).

After locating an input field (i.e., an HTML element that accepts
ser inputs), the input-field identifier identifies descriptive text
urrounding the input field. When we access an HTML page through
web browser, we know which types of inputs are expected for

n input field based on the text surrounding the input field, such
s an email address or zip code. However, in HTML source code,
he descriptive text surrounding an input field may not be phys-
cally adjacent to the input field (the input tags, text tags, and
ormat tags are often intermixed in HTML source code). There-
ore, the input-field identifier cannot determine the descriptive
ext of an input field based on what text is physically adjacent

o the input field in HTML source code. To address the issue of
ocating input field description, we identify descriptive text of an
nput field based on the analysis of HTML Document Object Model
DOM). DOM is a tree-structure (a node tree) representation of a
TML document, with elements, attributes, and text (HTML DOM
of PIUIVT.

Tutorial, 2009). Fig. 4 shows an example of the DOM tree. To iden-
tify the descriptive text of the 〈input〉 tag, we prune the sub-tree
belonging to the 〈form〉 tag, and then analyze the tags around
the 〈input〉 tag in the sub-tree to identify which text is descrip-
tive text of the 〈input〉 tag. In Fig. 4, the descriptive text of the
〈input〉 tag is identified to be the text (“search”) of its brother node
〈Text〉.

Sometimes the descriptive text of an 〈input〉 tag is in a select
box before it, or in the text node after it. If an input field is sur-
rounded by a text node before, a text node after, and a selection
list before or after, which node is the descriptive text of the input
field? To answer this question, we analyzed the descriptive text
location for 462 input fields in 50 popular websites. We randomly
chose the 50 popular websites as our subjects, most of which are
e-commercial websites and contain registration forms or search
engines. The detailed information about the analyzed websites can
be found in our project website (Perturbation-based User-Input-
Validation Testing of Web Applications, 2010). We checked the
source code of the web pages that contain the 462 input fields and
found six different locations: the first text node before an input
field, the first text node after an input field, default value of an
input field, the first button after an input field, the first select list
before an input field, and the first select list after an input field. We
counted how many input fields’ descriptive text locates in each of
these six different kinds of locations. Table 2 shows our analysis
results. Column 1 (“Locations”) lists different descriptive text loca-
tions. For each location, Column 2 (“IF#”) lists the number of input
fields whose descriptive text appearing in the location. Column 3
(“Percentage”) lists the percentage of each descriptive text location
(i.e., for each row, Percentage =IF #/462 * 100%). Column 4 (“Prior-
ity”) ranks the priority of descriptive text locations based on the
percentage. From Table 2, we noticed that 90% input fields in these
50 websites set their descriptive text in the first text node before
an input field. Therefore, the first text node before an input field

has the highest priority to be the descritive text of an input field.
Our input-field identifier identifies descriptive text of input fields
based on the priority listed in Table 2, and then identifies the type
of an input field by analyzing key words in the descriptive text. In
addition, if an input field’s type is file, password, hidden, or submit,

N. Li et al. / The Journal of Systems and Software 83 (2010) 2263–2274 2267

ee of a

w
d

t
T
c
e
a
v
h
f
fi
b
s
c

4

fi
g

t
I
i
t
w
e
s

T
S

I

including “+”, “*”, “?”, and “{min,max}”. Suppose that a regular
expression is a 4-tuple (C, S, O, Q) where C is the finite alphabet
of characters, S is a finite set of characters, O is a set of the regular
Fig. 4. DOM tr

e can know the type of such an input field without analyzing its
escriptive text.

As many HTML pages contain the same forms in a web applica-
ion, it is unnecessary to generate test inputs for the same forms.
o avoid redundant test-input generation, the input-field identifier
ombines the same forms. Two forms in a web application could be
xactly the same, inclusive, approximately the same, or different
s identified next. Formally, given two forms f1 and f2, the
alue of their attributes (action, method, and enctype) are listed
ere: f1.action=a1, f1.method=m1, f1.enctype=e1, and
2.action=a2, f2.method=m2, f2.enctype=e2. The input
elds belonging to f1, including inputs, selects, textareas and
uttons, are the set S1 while the input fields belong to f2 are the
et S2. If (a1 = = a2) ∧ (m1 = = m2) ∧ (e1 = = e2), then f1 and f2
an be merged into one form whose input fields are S1 ∪ S2.

.2. Test-input generation

In the previous section, we described how to identify an input
eld and its descriptive text. In this section, we describe how to
enerate test inputs for an input field based on its descriptive text.

Given the descriptive text of an input field, we can know which
ypes of input, such as email and zip code, this input field expects.
s it possible to automatically identify an input field’s type based on
ts descriptive text? When we analyzed the descriptive text loca-

ions for the 462 input fields mentioned in the previous section,
e also manually extracted a key word in the descriptive text for

ach input field. In summary, we extracted 68 different key words,
uch as email, phone, and address, which represent input types for

able 2
tatistics of descriptive text locations for 462 input fields.

Locations IF # Percentage Priority

1st text node before IF 416 90.0 1
1st text node after IF 27 5.8 2
Default value 8 1.7 3
1st button after IF 6 1.3 4
1st select list before IF 4 0.9 5
1st select list after IF 1 0.2 6

F: Input Field.
n HTML page.

440 input fields. Among the 462 input fields, we could not extract
key words for 22 input fields from their descriptive text, such as
“How can we assist you?”. In other words, we can identify the input
types for over 95% input fields by extracting key words from their
descriptive text.

For common input types, such as email address, zip code, and
SSN, users can define regular expressions for their valid test inputs.
Based on a mapping between input-field type and the user-defined
regular expressions, the test-input generator relates each input
field to a regular expression that defines valid test inputs for
the input field. Then, the test-input generator generates invalid
test inputs based on perturbing the regular expression of valid
test inputs for each input field. The invalid test inputs can detect
UIV vulnerabilities in a web application under test, as the invalid
test inputs can induce faulty behaviors of the web application, if
there exist UIV vulnerabilities in the web application under test
(explained in Section 4.3).

Before we illustrate our perturbation strategy, we define that a
regular expression is a sequence of ordered sets and regular expres-
sion operators. Here, a set refers to a set of optional or mandatory
constants in a regular expression, and the regular expression oper-
ators refer to the repetition time of selecting elements from a set,
expression operators ({+ | ∗ | ? | {min , max }}), and Q is an ordered

Fig. 5. Perturbed RegEx1.

2 s and Software 83 (2010) 2263–2274

s
s

a
c
i
t
s
s
f

d
U
W
s

p
p

c
a
o
t

t
i
f
s
o
o
m
l
T
t
t
e
s
t
t
i

4

t
U
t
o
a
o
t
a
w

268 N. Li et al. / The Journal of System

equence of character sets and the regular expression operators, a
ubset of S × S × O.

For example, RegEx1 (shown in Fig. 2) contains four operators
nd contains four sets, one of which has two subsets. “\w-\.” are
onstants in Set 1, and at least one of these constants should appear
n the string. “@” is the only one element in Set 2, and it is manda-
ory. “[\w-]+” and “\.” are two subsets in Set 3, and at least one
tring that consists of these two subsets should appear in the final
tring. “\w-” are constraints in Set 4, and at least two and at most
our of these constraints should appear in the string.

After associating an input field with a regular expression that
efined valid inputs for the input field, we generate test inputs for
IV testing by perturbing the regular expression of valid inputs.
e perform six types of operations (MO1–MO6) on regular expres-

ions.

MO1: Remove the mandatory sets from a regular expression.
MO2: Disorder the sequence of sets in a regular expression.
MO3: Change the repetition time of selecting elements from a set.
MO4: Select elements from complementary sets of sets in a regular
expression, especially characters next to the boundary of the input
domain.
MO5: Insert invalid and dangerous characters, such as an empty
string, strings starting with a period, and extremely long strings,
into a regular expression.
MO6: Insert special patterns, such as SQL queries and XSS seg-
ments, into regular expression.

Take RegEx1 shown in Fig. 2 for instance. If we apply each of the
erturbation operators (MO1–MO6) on RegEx1 once, we can get six
erturbed regular expressions shown in Fig. 5.

To better identify which UIV vulnerability exists in a web appli-
ation, we apply perturbation operators individually, instead of in
mixed way. Even so, the number of test inputs is out of control. In
rder to reduce the cost of testing, we treat the elements belonging
o the same set in a regular expression as equivalent.

After we apply MO1 and MO3–MO6, test inputs generated with
he perturbed regular expressions cannot be matched by the orig-
nal regular expression, because MO1 removes the mandatory sets
rom the original regular expression. MO4–MO6 insert some invalid
tring to the original regular expression. MO3 causes the number
f elements selected from the same set to be different from the
riginal one. However, a perturbed regular expression with MO2
ay generate a string that is also matched by the original regu-

ar expression, as the two exchanged sets could have intersections.
o avoid such repetition, we could compute the subtraction of the
wo sets before they are exchanged, and then exchange the sub-
raction. However, it is expensive to compute the subtraction of
ach pair of the exchanged sets. In our implementation, we check a
tring generated from the perturbed regular expression with MO2
o check whether it is matched by the original regular expression. If
he string is matched by the original regular expression, this string
s discarded.

.3. Test-result assessment

PIUIVT automatically fills input fields in an HTML page with
he test inputs generated based on perturbed regular expressions.
sers can edit the test inputs manually and click a button to submit

he test inputs to the web application under test. As defining a test
racle for each test input is tedious and sometimes hard, we develop

technique to assess the test result as pass or fail without the need
f test oracles. We classify the behavior of a web application in
he context of UIV testing into three types: defensive, insensitive,
nd crashing. If a web application rejects invalid test inputs, the
eb application is determined to be defensive, and the test result
Fig. 6. Flowchart of test-result assessment.

is pass. If a web application accepts invalid test inputs, the web
application is determined to be insensitive or crashing, and the test
result is fail. We next give the detailed definitions of these three
types.

In particular, a web application is defensive, if the web appli-
cation can detect invalid test inputs to be invalid. There are three
types of result pages returned by defensive web applications. The
first one includes the same form as the original page, plus sugges-
tive directions, such as “please enter a valid email address”; the
second one includes no form and shows some suggestive direc-
tions; and the third one is a redirected result page. In the second
type of result, the layout of the result page differs greatly from the
original one and does not look like the result page of a valid input.
The third type is hard to determine automatically because a web
application can redirect the request to any other page on its server.

A web application is insensitive if the returned page of an invalid
input is structurally similar to the returned page of a valid input.
Two HTML pages are structurally similar if the two HTML pages
have similar layout when we open them with a browser. It is not
easy to automatically identify whether two HTML pages are struc-
turally similar based on comparing their layout in browsers. To
address this challenge, we extract HTML tag sequences from two
HTML pages and compare the similarity between the two HTML tag
sequences, as the structure of an HTML page depends on the HTML
tag sequences of this page.

A web application is crashing, if the returned page contains HTTP
error status code, such as “404 Not Found”. In such cases, a web
application accepts an invalid input and returns a page that leaks
information about configuration or internal workings through error

text. This information can be leveraged to launch or even automate
powerful attacks (Open Web Application Security Project, 2007).

To classify the behavior of a web application, we use the follow-
ing steps for classifications (shown in Fig. 6). At the beginning, we

s and Software 83 (2010) 2263–2274 2269

d
a
t
t
t
i
v
t
a
a
b
t
i
o

i
s
t
(
h
1
l
d
f
p
s
o
d
i
b
s
q
t
d
v
l
w
p
s
u
e
t
fi
b
w
m
w
b

5

g
t

u
t
fi
t
s
fi
d
t
t
F

N. Li et al. / The Journal of System

etermine whether the returned page of an invalid input contains
ny pre-defined HTTP status code (such as “404 Not Found”). If yes,
he web application is determined to be crashing. If no, we compare
he returned page of the invalid input with the original page and
he result page of a valid input. If the result page of the invalid input
s structurally similar to the original one, the invalid input is pre-
ented, and the web application is defensive. If the result page of
he invalid input is similar to the result page of the valid input, there
re two possibilities: the web application is insensitive, because it
ccepts the invalid input wrongly; the web application is defensive,
eing robust enough, and it redirects to another HTML page with
he valid input. In the case that the result page of the invalid input
s different from both the result pages of the valid input and the
riginal page, the web application is determined to be defensive.

A challenging task during the process of test-result assessment
s to determine whether two HTML pages look similar. A previous
tudy (Hunt and McIlroy, 1976) determined the similarity between
wo text files by computing the Longest Common Subsequence
LCS) (Maier, 1978) using dynamic programming. This mechanism
as been widely used in “Diff” programs since it was introduced in
978 but it is not appropriate for evaluating the similarity of the

ayout of two HTML pages, because the layout of an HTML page is
etermined by the sequence of HTML tags. Therefore, we need to
ocus on the tag sequence instead of lines. In addition, two HTML
ages may be similar in appearance but have different values in
ome HTML tags or different HTML tags that are invisible when we
pen the HTML page in a browser. For example, when we check the
etailed information for a book on the website of a library, the listed

nformation is different for each book, but all the pages for listing
ook information are structurally similar to each other. Based on
uch observations, we develop the Longest Common Tag Subse-
uence (LCTS) solution to assess the similarity of HTML pages. LCTS
reats two HTML pages as two sequences of HTML tags, which are
efined as a series of tag names along with their attributes (key-
alue pairs that do not contain actual text contents). LCTS finds the
ongest common subsequence of two HTML files in the following

ay. We first prune the DOM trees of HTML pages by removing
ure text node and context-related tag attributes, such as href,
rc, alt, and title, and then compute the LCTS for two HTML pages
nder comparison. For the compared two pages, they are consid-
red as similar pages, if they have similar tag sequences, based on
hat max (1-(LCTS amount)/ (Tags amount)) is less than our prede-
ned threshold (30%). In this paper, the predefined threshold is set
ased on the experimental result shown in Section 6.3. Different
eb applications have different web page styles and the threshold
ay need to adjust. We suggest applying LCTS on a small group of
eb pages in the web application under test to set the threshold

efore performing PIUIVT.

. Implementation

Our approach is implemented in Java with related web technolo-
ies. PIUIVT consists of three components: input-field identifier,
est-input generator, and test-result assessor (shown in Fig. 3).

The input-field identifier crawls HTML pages by their URLs and
ses an HTML analyzer (HTML Parser, 2006) to generate a DOM
ree for each HTML page. The input-field identifier extracts input
elds based on the type of nodes in the DOM tree. To get descriptive
ext of input fields, PIUIVT filters input-field nodes and the nodes
urrounding input-field nodes from the DOM tree. Then, the input-

eld identifier uses the pseudo-code shown in Fig. 7 to identify
escriptive text of input fields. Fig. 7 shows how to get the descrip-
ive text before an input field (the process of getting the descriptive
ext after an input field is symmetric to the pseudo-code shown in
ig. 7). Since there may be some font information inserted in the
Fig. 7. Pseudo code of the input description abstractor.

text around an input field, the process of text identification is recur-
sive. When the descriptive text is identified, the identified text is
compared with the predefined key words in a topic base to identify
the type of input fields. The descriptive text of an input field may
match several types. In this case, a type is selected on the following
order: first the type matching the longest string in the descriptive
text and then the type appearing the most times in the descrip-
tive text. If the descriptive text still matches several types after
such a process, we suggest the possible types to users and allow
users to decide what the type is. Furthermore, if the type cannot be
obtained with descriptive text or PIUIVT fails to get the descriptive
text, PIUIVT tries to identify the type based on the value of some
other attributes of the input field, including the value of its name,
id, and value. PIUIVT treats these values as the descriptive text of
the input field and then identifies the type.

Given the type or acceptable input domain of an input field (i.e.,
the values listed in the options of a selection list, or the values of
a check box or a radio box), the test-input generator automatically
maps the type to a regular expression that defines valid inputs for
this type, or constructs a regular expression to define the accept-
able input domain of this input field. We collect predefined regular
expressions of valid test inputs from RegExLib (Regular Expression
Library, 2007). RegExLib provides various types of regular expres-
sion, such as Email, Uri, numbers, strings, dates, times, address,
phone, markup, and code. These regular expression types cover the
68 different kinds of key words we identified for the 437 input
fields. If the input-field identifier fails in identifying the type of
an input field, PIUIVT assigns a default regular expression for the
input field, and allows user interaction in modifying the regular
expression.

The test-input generator next perturbs regular expressions
automatically and generates test inputs based on the perturbed reg-
ular expressions. To implement our perturbation operators, we first
use an open source library dk.brics.automaton (dk.brics.automaton,
2007) to parse a regular expression into sets and regular expression

operators defined in Section 4.2. Next, we mutate the parsed regular
expression by removing mandatory sets, disordering sets, changing
regular expression operators, replacing or inserting invalid char-
acters into a set, and inserting SQL injections into a set. We have
implemented all six types of perturbation operators (MO1–MO6).

2 s and

T
a

i
d
i
s
n
s
p

6

6

t
p
w
m
p
i
t
s
t

l
S
w
s

s
a
w
M
u
S
a
p
t
*
f
W
s
b
a
t
j
v

s
A
W
i
t
t
t
r
R
m
e
n
d
r
a

270 N. Li et al. / The Journal of System

hen, we use a method provided by dk.brics.automaton to generate
set of acceptable strings for the perturbed regular expressions.

The test-result assessor produces a test result based on retriev-
ng result pages, checking whether the test result is crashing, and
oing similarity comparison. We use regular expressions for check-

ng whether there exist specific patterns of the combination of HTTP
tatus code (Fielding et al., 2007) in the text of the result page. If
one matches, following the steps described in Fig. 6, we assess the
imilarity among the result page of an invalid input, the original
age, and the result page of a valid input.

. Evaluation of the approach

.1. Comparison with scanners

In this section, we analyze popular web-application scanners
o show their limitations on testing UIV of web applications, and
resent the comparison of PIUIVT and vulnerability scanners of
eb applications. Scanners of web applications are tools that auto-
atically crawl through web applications and parse the HTML

ages of web applications to identify vulnerabilities by launch-
ng various attacks. Both PIUIVT and scanners are applied on
esting the MvnForum. The results show that, comparing with
canners, PIUIVT detects more semantic-related UIV vulnerabili-
ies.

The scanners that we choose are among the 10 most popu-
ar scanners summarized by Fyodor (Top 10 Web Vulnerability
canners, 2006). Since not all of them can be freely used for any
eb application, we first analyze these scanners based on their

pecifications and demonstration sites.
The mechanism of scanners is different from ours. The existing

canners fetch HTML pages of a web application from the client side,
nd are primarily based on pre-defined defects or rules to detect
hether there exist security vulnerabilities in the web application.
ost of these scanners focus on security-vulnerability detection

sing known defects recorded in a database, such as the Open
ource Vulnerability Database (OSVDB, 2008). Both Nikto2 (2008)
nd Wikto (2008), two open-source scanners, use OSVDB to scan for
ossible existence of directories and files that hackers usually try
o find and treat as an entry point such as the / admin directory and
.property file. Furthermore, Google can be used as a tool to search
or signatures of online websites (Google Hacking Database, 2008).

ikto and Acunetix Web Vulnerability Scanner (2008) use such
ignatures to populate to their vulnerability database. A database-
ased approach is good for defect detection of a server, network,
nd popular software, but those recorded defects cannot be applied
o detect new defect types in various applications under test. It is
ust like we cannot use known virus signatures to detect new-born
iruses.

Besides defect-database-based detection, some of the top 10
canners, such as Paros (Paros - for Web Application Security
ssessment, 2008) and IBM Rational AppScan (Appscan Suite for
eb Application Security Testing, 2008), provide rule-based SQL

njection and XSS injection detection capabilities. XSS injection
esting, which is relatively easy to implement, adds script text
o an input and checks whether the added script text exists on
he response page. SQL injection, especially its assessment of test
esults, is somewhat complex. One of the approaches that IBM
ational AppScan uses for test-result assessment is capturing error
essages such as “OleDbException” to determine whether an SQL
rror happens. Similarly, from source code, Paros also uses some
aive detection such as searching for “SQL, ODBC, JDBC” in defect
etection. Such an approach can cause high false alarms. Paros
eports 48 high-risk alerts for MvnForum, but all of them are false
larms because MvnForum uses search engine optimization tech-
Software 83 (2010) 2263–2274

nologies such as adding popular keywords (including “JDBC” and
“MySQL”) in meta tags of every page.

The limitation of the preceding approaches lies in that they
aim at universal solutions for any web application. Actually, web-
application testers can often understand a web application well
based on its descriptive text in HTML pages, and the testers need
flexibility for designing test inputs but are reluctant to generate test
inputs directly by themselves. Our approach focuses on filling the
gap of this kind of requirement. We automatically generate inputs
based on testers’ design reflected by RegExs.

To assess the effectiveness of PIUIVT, we tested MvnForum’s
member registration page (described in Section 3). Since this reg-
istration page contains one CAPTCHA text box, and inputs to two
input fields need to be the same as those to two other corresponding
retype input fields, it makes all top-ten tools not usable: a crawler
cannot fetch the dynamically generated pages because of CAPTCHA
and the comparison between input fields while a proxy needs
human’s diligent typing. PIUIVT provides interactive means to let
users manually overcome these challenges, automatically gener-
ate RegExs for input fields with common types, and allow users to
choose perturbation operators. Based on these inputs, PIUIVT can
automatically generate a set of test inputs.

Another fact is that without knowing the meaning of an input
field, scanners cannot deliberately generate out-of-scope inputs for
testing related faults. We test the demonstration website of IBM
Rational AppScan with PIUIVT, and we detect that the demonstra-
tion website has a seeded fault that allows a user to transfer money
from one account to his or her own account. IBM Rational AppScan
does not detect this defect, although this fault was intentionally
injected by the tool vendor. For MvnForum, many input fields are
given by selection or scoped digits such as year, month, day, and
age. For thorough testing, we need to check what shall happen if
an input is out of scope. After our empirical study, we found two
faults of MvnForum 1.0.2, which are fixed in the latest version. We
detect both of these two faults by submitting invalid inputs, which
induces SQL exceptions in MvnForum. MvnForum displays its inter-
nal function names when some generated unexpected inputs were
entered.

6.2. A case study

To demonstrate the effectiveness of perturbation-based test
input generation, we apply perturbation operators on a benchmark
web application with 20 seeded UIV vulnerabilities, compared to
testing it with web-application scanners. Test results show that
our approach complements web-application scanners by detect-
ing more types of vulnerabilities. Furthermore, we analyze the
test inputs generated by perturbation operators for MvnForum,
and explain why UIV vulnerabilities can be detected by these test
inputs.

We create a web application including 20 UIV vulnerabilities
(eight of the vulnerabilities are from the NIST SAMATE Reference
Dataset Project, 2007). We use PIUIVT and scanners (Wikto and
Paros) to test the application. These vulnerabilities include a tainted
output that allows cross-site scripting or SQL injection attack, an
exception that leaks internal path information to the user, a tainted
input that allows arbitrary files to be read and written, etc. We clas-
sify these 20 vulnerabilities into four types based on the type of
test inputs (shown in Table 3). Based on the classification of UIV
for web applications proposed by Offutt et al. (2004), we classify
invalid inputs into four types and list them in Column 1 of Table 3.

Column 2 of Table 3 lists probable exceptions caused by each type
of invalid inputs. Column 3 shows the types of perturbation oper-
ators used to generate test inputs that cause exceptions. The last
two columns of Table 3 list the ratios of vulnerabilities detected by
the two approaches. The ratios are “the number of detected vulner-

N. Li et al. / The Journal of Systems and Software 83 (2010) 2263–2274 2271

Table 3
UIV fault detection results by three approaches.

Inputs Probable exception Corresponding MOs Detection ratio

PIUIVT Scanners

Invalid length 1. Substring exception (false assumption) MO1, MO5 2/2 0/2
2. Null pointer exception MO1
3. Buffer/memory overflow MO1
4. Out of boundary access MO1

Invalid type 5. ParseInt, parseFloat, etc exception MO1 4/4 0/4
6. Date, Address parse exception MO1–MO5
7. Parse URL exception MO1–MO5
8. Send mail error (invalid mail address) MO1–MO5

Invalid value 9. Buffer/memory overflow MO5 7/9 0/9
10. Visit file error (invalid file name) MO1–MO5
11. Foreign key constraint violation caused database exception MO5
12. Network connection error (invalid host or port) MO5

ert, de

a
W
c

o
d
r
P
w
t
d
w
i
r
i
s
a
t

M
m
t
i
s
b
r
i
p
t
0

t
t
c
a
v

T
A

SQL injection and XSS 13. Unexpected script execution
14. SQL error
15. Mal-operation on database (such as illegal ins

bilities in a type/the total number of vulnerabilities in the type”.
e manually counted the number of detected vulnerabilities and

hecked whether the test results are correct.
Similar to the analysis in the previous section, scanners focus

n detecting dangerous configurations on a server, and try to con-
uct XSS and SQL injection based on a predefined database. As a
esult, scanners cannot detect the lack of UIV on this website, while
IUIVT can easily detect the lack of UIV. In contrast, the scanners
ork better for SQL injections and XSS attacks than PIUIVT, because

he scanners generate such attacks based on a large database of
efects. If we incorporate such a database with PIUIVT, PIUIVT
ould achieve similar capability as the scanners in testing SQL

njections and XSS attacks. On the other hand, PIUIVT’s detection
atio of “Invalid Value” is 7/9. The two “Invalid Value” vulnerabil-
ties that PIUIVT cannot detect are wrong restrictions that reject
ome valid inputs. PIUIVT cannot detect such a wrong restriction,
s the detection requires specific valid test inputs instead of invalid
est inputs (the detailed discussion is provided in Section 7).

In addition, when we use PIUIVT to test MvnForum, because
vnForum does not check whether a submitted date value is
eaningful, we can submit an invalid date value, and the regis-

ration process accepts this invalid input. As the date is stored
n a MySQL datetime field, an erroneous date (0000-00-00) is
tored in its corresponding database. After inserting an invalid
irthday into the database, we next query the information of
egistered users, and MvnForum throws an exception with its
nternal function name (“Error executing SQL in MemberDAOIm-
lJDBC.getMember forPublic(pk)”). We analyze the error log and find
hat this error is caused by “java.sql.SQLException: Value ‘0000-00-
0’ cannot be represented as java.sql.Date”.

Besides the perturbation-based test input generation, following

he classification of UIV given by Offutt et al. (2004), there should be
wo other types of UIV tests that consider inter-value constraints or
ontrol flow restrictions. For example, MvnForum has a form that
llows users to post a thread (a thread is a set of messages grouped
isually in a hierarchy by topic) in an existing forum. MvnForum

able 4
pplying different similarity comparison approaches to HTML pages in MvnForum.

Approach Different thread’s posts (%) Admin login page

LCTS 81.01 23.72
Line Diff 79.99 34.30
Word Diff 71.13 34.23
Char Diff 77.59 40.23
Char Comp 0.40 0.08
MO6 3/5 5/5
MO5, MO6

lete, and query) MO6

inserts the text in the thread into a database table that has the same
forum ID as the forum where the thread is posted. To test whether
MvnForum checks the existence of forum ID for a posted thread,
we can post a thread to a non-existent forum in MvnForum with an
out-of-scope ID. Such test inputs are strongly correlated with the
business logic of a web application, and it is quite difficult to gener-
ate such test inputs without domain knowledge. In our approach,
PIUIVT allows testers to design such test inputs and generates an
“out-of-scope id” by perturbing a RegEx for the valid input domain.

6.3. Evaluation of LCTS

We use LCTS and four traditional approaches of similarity com-
parison to evaluate the similarity between different HTML pages
with similar layouts but different contents, or similar contents but
different layouts. The experimental results show that LCTS works
better than those four traditional approaches when evaluating the
similarity of HTML pages’ layout.

Three of the compared approaches are based on an LCS
algorithm, 2*LCS/(LEN1+LEN2)*100%, LCS=the longest common sub-
sequence of PAGE1 and PAGE 2, LEN1=length of PAGE1, LEN2=length
of PAGE2, PAGE1 and PAGE 2 are two web pages, on different lev-
els (character, line, and word). The fourth one counts the same
characters of two files from the beginning to the first different char-
acter from the two files. Table 4 presents our comparison results
on HTML pages in MvnForum. The higher percentage stands for the
larger similarity. In Column 1, Line Diff, Word Diff, and Char Diff
stand for the algorithms of longest common line, word, and char-
acter sequence, respectively, and Char Comp stands for character
comparison. Column 2 in Table 4 presents the similarity between
different threads’ post pages, and each percentage in this column is

an average value measuring on ten pairs of pages. Different threads’
post pages have different contents but similar layouts. We expect
the values in Column 2 to be high. Column 3 in Table 4 presents the
similarity between successful login and failed login pages. As there
are two types of failed login pages: failed because of a wrong user

: success vs failed (%) Admin login page: different failed pages (%)

67.69
55.23
60.70
60.16

0.14

2 s and Software 83 (2010) 2263–2274

n
C
a
f
i
l
t

i
d
M
p
p
a
b
e
a
e
s
T
H
c
t
C
t
c
m
c
1
m
n
C
W
g
c

o
t
l
o
t
‘
w
i
fi
n
s
p
s
s

f
a

6

w
s
r
W
T
i
p
t
s

272 N. Li et al. / The Journal of System

ame and failed because of a wrong password, each percentage in
olumn 3 is an average of similarities among successful login page
nd each type of failed login pages. As a successful login page and
ailed login pages have different layouts, we expect that the values
n Column 3 are low. The last column of Table 4 presents the simi-
arity between these two kinds of failed login pages, and we expect
hat the values in Column 4 are high.

From Table 4, the character-based comparison reports low sim-
larity for pages no matter whether these pages are similar or
ifferent due to the variance of values in template slots. Since
vnForum’s HTML code contains appropriate line breaks, Line Diff

erforms well, but LCTS is better to distinguish different kinds of
ages’ similarity (the difference between a successful login page
nd a failed login page should be smaller than the difference
etween two failed login pages, and LCTS detects such a differ-
nce more precisely than Line Diff). In addition, not every web
pplication generates HTML pages with appropriate line breaks. For
xample, if we use Google to search “software” and “testing”, the
imilarity calculated by LCTS is 78.76%, and by Line Diff is 25.00%.
his result is because no line ending exists in Google-generated
TML pages. Char Diff tends to report high similarity, because the
haracter set is limited. As a result, Char Diff may consider two
otally different pages as similar pages. Furthermore, computing
har Diff on two HTML pages is expensive in terms of computa-
ion and memory cost. After all, algorithms of LCS are in quadratic
omplexity. For approximately 10K-size pages, Char Diff requires
inutes to finish while others finish in milliseconds using a single-

ore computer. If we do not use Hirschberg’s algorithm (Hirschberg,
975) to improve the algorithm of Char Diff, the memory require-
ent cannot be met in our study platform (about 600M memory

eeded in a Java implementation using a typical LCS algorithm for
har Diff (Maier, 1978)). In summary, Char Diff is not practical.
ord Diff is also expensive and less effective; its runtime cost is

reater than one tenth of the cost of Char Diff, because the average
haracter length of an English word is less than 10.

To further study the capability of LCTS, we apply PIUIVT on an
pen-source-code search engine, called Koders (2008). Koders has
hree fields of search conditions, the search terms, programming
anguage, and type of licenses. Programming languages and types
f licenses are selection lists. PIUIVT submits “email validator” as
he search term, “Java” as the programming language, and “X’ OR
A’ = ‘A” as the type of licenses, to Koders. Because Koders is a

ell-developed web application, it is robust enough to deal with
nvalid inputs, and treats the invalid search condition as prede-
ned default input. The test-result page has a similar layout of a
ormal search-result page, but different contents. We evaluate the
imilarity between this test-result page and a normal search-result
age by LCTS, Line Diff, Char Comp, Char Diff, and Word Diff, and
imilarity ratios are 87.03%, 70.90%, 0.46%, 67.77%, and 56.88%. The
imilarity ratio computed by LCTS is much larger than the others.

The results show that our LCTS solution is more practical
or measuring of the similarity of HTML pages than existing
pproaches.

.4. Threats to validity

The threats to external validity primarily include the degree to
hich the subject programs are representative of true practice. Our

ubjects are from various sources. These threats could be further
educed by experiments on more subjects and third-party tools.

e currently use a third-part library dk.brics.automaton (2007).

he main threats to internal validity include faults in our tool
mplementation and faults in the third party library that we use to
arse regular expressions and generate test inputs. To reduce these
hreats, we have manually inspected the generated test inputs for
everal program subjects. These threats can be further reduced by
Fig. 8. Different test-input domain.

conducting experiments using more regular expression parsers and
regular-expression-based string generators.

7. Discussion

PIUIVT provides a perturbation-based approach to generate UIV
test inputs to improve the effectiveness of UIV testing. The per-
turbed object is a regular expression describing valid inputs for an
input field. It is not difficult to get such regular expressions on Inter-
net. In regexlib.com, there are 777 regular expressions, which cover
most of common types of inputs for web applications. In addition,
our approach intends to reduce the manual efforts in testing UIV but
not to replace all manual efforts. Due to the diversity of web appli-
cations, some manual efforts may be required for defining input
type or regular expressions.

A challenge for PIUIVT is that it cannot detect UIV vulnerabil-
ities when there is a wrong constraint of inputs. For example, a
web application may expect that the input year is between 1999
and 2008, but present 1998–2008 in its selection list. If a user enters
1998, the web application may throw an exception. However, based
on the information in an HTML page, PIUIVT supposes that a valid
input should be a year between 1998 and 2008, and generates test
inputs out of this period. As a result, the exception induced by 1998
cannot be caused by test inputs generated by PIUIVT. As shown in
Fig. 8, test inputs generated by PIUIVT belong to the complement
of valid inputs, and near the boundary of valid inputs. If the infor-
mation in an HTML page cannot reflect the real boundary of valid
inputs, the effectiveness of test inputs generated by PIUIVT would
be compromised.

The observation on possible behaviors of an attacked web appli-
cation is based on our experience. We do not conduct a manual
analysis on the behaviors of attacked web applications as the
manual analysis for input fields, as it is very time consuming or
infeasible for us to collect the source code of 50 websites with UIV
vulnerabilities, set them up, and observe their behaviors for invalid
inputs. In future work, we plan to collect and analyze statistical data
about attacked web applications’ behaviors as empirical evidence.
In addition, we currently compare the effects of LCTS and other
similarity measures based on three different kinds of web pages.
In future work, we plan to perform the comparison based on more
web pages to evaluate how often each of the similarity measures
could correctly report two web pages that should be classified as
different (or as the same) with respect to the PIUIVT methodology.

8. Related work
Lucca and Fasolino (2006) classify strategies for web-application
testing into white-box testing, black-box testing, and gray-box test-
ing.

White-box testing generates test inputs based on an abstract
structure of source code, which can be generated based on client-

s and

s
a
a
b
a
B
c
C
o
m
s
v
s
a
a
c
t
s
l
d
o
s

m
i
a
a
a
m
M
t
F
e
e
t
e
i
s
w
a
m
t
i
i
t

c
E
g
n
o
d

s
C
2
i
H
t
fi

o
e
t
t
r

N. Li et al. / The Journal of System

ide source code (Liu et al., 2000a) or server-side source code (Liu
nd Tan, 2006). Liu et al. (2000a,b) analyze HTML documents to cre-
te data-flow models for a web application, and generate test inputs
ased on the data-flow models. Ricca and Tonella (2001) propose
UML model of web applications as a high-level representation.
enedikt et al. (2002) use a model checker to explore web-site exe-
ution paths that can be followed by a user in a web application.
ompared with the model-based approaches, our approach focuses
n the UIV testing of web applications and does not require any
odel. Liu and Tan (2006) abstract a control flow diagram from

erver-side source code. Based on the control flow diagram, they
erify and generate UIV test inputs. Halfond and Orso (2007) use
tatic analysis of the server-side source code to extract input fields,
nd then generate test inputs based on the input fields. Benedikt et
l. (2002) generate test inputs based on the analysis of PHP appli-
ations, monitors the application for crashes, and validates that
he output conforms to the HTML specification. On one hand, since
erver-side code of a web application may be written in different
anguages, it is not trivial to automatically generate control flow
iagrams based on static analysis. On the other hand, without test
racles, it is difficult to automatically determine test results for the
erver-side testing.

Black-box testing does not require the knowledge of the imple-
entation of the software artifacts under test but generate test

nputs based on the specified or expected functionality of the
rtifacts (Lucca and Fasolino, 2006). Lucca et al. (2002) exploit
n object-oriented model of a web application, and propose
pproaches of unit testing and integration testing based on this
odel. Andrews et al. (2005) build hierarchies of Finite State
achines (FSMs) that model subsystems of web applications, and

hen generate test requirements as subsequences of states in the
SMs. Similar to the approach of Andrews et al., we use regular
xpressions, which are translated into FSMs during test-input gen-
ration, to define valid inputs, but we perturb regular expressions
o generate UIV test inputs. Offutt et al. (2004) develop a strat-
gy to create client-side tests that intentionally violate explicit and
mplicit checks on users’ inputs, but they just describe their testing
trategy and define specific rules and adequacy criteria for tests
ithout providing an approach to generate UIV tests. Huang et

l. (2003) combine dynamic analysis, fault injection, and behavior
onitoring techniques to assess the security of a web applica-

ion. Different from our approach, their approach focuses on SQL
njection and XSS vulnerabilities. Wang et al. (2004) emphasize the
mportance of on-line testing of web applications, and UIV testing
argeted by our approach can be a component of on-line testing.

A representative technique of gray-box testing of web appli-
ations is user-session-based testing (Lucca and Fasolino, 2006).
lbaum et al. (2003, 2005) present several techniques for using
athered user sessions to help test web applications. Their tech-
iques can be applied either in a system’s beta testing phase
r during subsequent maintenance, but such techniques are not
irectly for UIV testing.

Our approach for identifying descriptive text for input fields is
imilar to approaches used by web macro recording tools such as
hickenfoot (Bolin et al., 2005) and RoboFox (Koesnandar et al.,
008). Different from these approaches, our approach for identify-

ng descriptive text for input fields is based on ranking priorities of
TML tags around an input field. We analyze HTML tag sequences

o identify which HTML tag contains the description text of an input
eld.

The basic idea of our LCTS algorithm is similar to the approaches

f identifying duplicated web pages (Lucia et al., 2006; Sprenkle
t al., 2005; Di Lucca et al., 2002), but our approach extracts the
emplate from an HTML page, instead of just comparing their tag
rees, i.e., our approach includes only presentation structures by
emoving context-related attributes and values in tags. In addi-
Software 83 (2010) 2263–2274 2273

tion, we compared LCTS with traditional Diff algorithms to show
the effectiveness of LCTS on evaluating structural similarity among
HTML pages. On one hand, our approach is more simplified than
the approaches based on edit distance (Di Lucca et al., 2002). On
the other hand, our approach is more effective than traditional Diff
algorithms.

There are some commercial or open source tools for web appli-
cation security testing, such as the top-10 scanners (Top 10 Web
Vulnerability Scanners, 2006). All of these vulnerability scanners
have the following steps. First, scanners fetch pages by using a
crawler with seed URLs, or fetch pages according to user actions
by using a proxy. Second, scanners detect database-based security
holes and common paths (such as where the admin page is). Third,
scanners analyze a fetched page and conduct predefined injections.
Fourth, scanners analyze response pages for test-result assessment.
Except the second step, which requires a specific attack signature
database, the others rely on the right inputs and predefined injec-
tion for vulnerability scanning. However, since there is no option
for a user’s control, these scanners can find limited types of defects,
and cannot report those defects related to semantic invalid input
value.

9. Conclusion

We have proposed an approach, called PIUIVT, to improve the
effectiveness of UIV testing for web applications. Our approach
combines the automation of vulnerability scanners of web appli-
cations and the flexibility of proxy-based UIV testing tools. We
have proposed and studied six types of perturbation operators
for UIV test-input generation. The empirical study shows that
PIUIVT is more effective in terms of UIV vulnerability detection
related to input types and values of web applications than exist-
ing approaches. We also proposed the LCTS solution to assess
the similarity of HTML pages to detect problems in testing. The
experimental results show that our LCTS solution is more practi-
cal for measuring of the similarity of HTML pages than existing
approaches. On the other hand, our experimental results are lim-
ited to be from the single case study that we carried out and we
plan to add more subjects in the future to enhance the validity of
our experiment.

Acknowledgments

The work of the authors from Beihang University is sponsored
by the National Natural Science Foundation of China (NSFC) (Major
Research Plan) No. 90718018, “Research on the test-based soft-
ware trusty growing models and its evaluation methods”. The work
of the authors from North Carolina State University is supported
in part by NSF grants CNS-0720641, CCF-0725190, CCF-0845272,
CCF-0915400, CNS-0958235, and an NCSU CACC grant, ARO grant
W911NF-08-1-0443, and ARO grant W911NF-08-1-0105 managed
by NCSU SOSI.

References

Acunetix Web Vulnerability Scanner, http://www.acunetix.com/ (2008).
Andrews, A., Offutt, J., Alexander, R., 2005. Testing web applications by modeling

with fsms. Software Syst. Model. 4 (3), 326–345.
Appscan Suite for Web Application Security Testing, http://www.watchfire.com/

products/appscan/default.aspx (2008).
K. Beaver, The importance of input validation, http://searchsoftwarequality.

techtarget.com/tip/0,289483,sid92 gci1214373,00.html (2006).
Benedikt, M., Freire, J., Godefroid, P., 2002. Veriweb: Automatically testing dynamic
web sites. In: Proc. WWW.
Bolin, M., Webber, M., Rha, P., Wilson, T., Miller, R.C., 2005. Automation and cus-

tomization of rendered web pages. In: Proc. UIST, pp. 163–172.
Burp proxy, http://www.portswigger.net/proxy/ (2009).
Di Lucca, G., Di Penta, M., Fasolino, A., 2002. An approach to identify duplicated web

pages. In: Proc. CMPSAC, pp. 481–486.

http://www.acunetix.com/
http://www.watchfire.com/products/appscan/default.aspx
http://searchsoftwarequality.techtarget.com/tip/0,289483,sid92_gci12143
http://www.portswigger.net/proxy/

2 s and

d
E

E

F
F

G
H
H

H

H

H
H

H

H

K
K

L

L

L

L

L

L

M

M
N
N

O

of Software Engineering Specialty Group of China Computer Federation, and man-
aging director of Beijing Software Industry Association. He received his Ph.D. degree
274 N. Li et al. / The Journal of System

k.brics.automaton, http://www.brics.dk/automaton/index.html (2007).
lbaum, S., Karre, S., Rothermel, G., 2003. Improving web application testing with

user session data. In: Proc. ICSE, pp. 49–59.
lbaum, S., Rothermel, G., Karre, S., Fisher II, M., 2005. Leveraging user-session data

to support web application testing. IEEE Trans. Softw. Eng. 31 (3), 187–202.
iddler, http://www.fiddlertool.com/fiddler/ (2009).
ielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-

Lee, T., Hypertext transfer protocol – http/1.1, http://www.w3.org/Protocols/
rfc2616/rfc2616.html (2007).

oogle Hacking Database, http://johnny.ihackstuff.com/ghdb.php (2008).
TML DOM Tutorial, http://www.w3schools.com/HTMLDOM/default.asp (2009).
alfond, W.G.J., Orso, A., 2007. Improving test case generation for web applications

using automated interface discovery. In: Proc. ESEC-FSE, pp. 145–154.
irschberg, D., 1975. A linear space algorithm for computing maximal common

subsequences. Commun. ACM 18 (6), 341–343.
oward, M., LeBlanc, D., 2003. Writing Secure Code. Microsoft Press, Redmond,

Wash.
TML Parser, http://htmlparser.sourceforge.net/ (2006).
uang, Y., Huang, S., Lin, T., Tsai, C., 2003. Web application security assessment by

fault injection and behavior monitoring. In: Proc. WWW, pp. 148–159.
uang, Y.W., Yu, F., Hang, C., Tsai, C., Lee, D.T., Kuo, S., 2004. Securing web application

code by static analysis and runtime protection. In: Proc. WWW, pp. 40–52.
unt, J.W., McIlroy, M.D., An Algorithm for Differential File Comparison, Technical

Report SECLAB-05–04, Bell Laboratories (1976).
oders, http://www.koders.com/ (2008).
oesnandar, A., Elbaum, S., Rothermel, G., Hochstein, L., Scaffidi, C., Stolee, K.T., 2008.

Using assertions to help end-user programmers create dependable web macros.
In: Proc. SIGSOFT/FSE, pp. 124–134.

iu, H., Tan, H.B.K., 2006. Automated verification and test case generation for input
validation. In: Proc. AST, pp. 9–14.

iu, C.-H., Kung, D.C., Hsia, P., Hsu, C.-T., 2000a. Object-based data flow testing of
web applications. In: Proc. APAQS, pp. 7–16.

iu, C.-H., Kung, D.C., Hsia, P., Hsu, C.-T., 2000b. Structural testing of web applications.
In: Proc. ISSRE, pp. 84–96.

ucca, G.A.D., Fasolino, A.R., 2006. Testing web-based applications: the state of the
art and future trends. Inf. Softw. Technol. 48 (12), 1172–1186.

ucca, G.D., Fasolino, A., Faralli, F., 2002. Testing web applications. In: Proc. ICSM,
pp. 310–319.

ucia, A.D., Scanniello, G., Tortora, G., 2006. Using a competitive clustering algorithm
to comprehend web applications. In: Proc. WSE, pp. 33–40.

aier, D., 1978. The complexity of some problems on subsequences and superse-
quences. J. ACM 25 (2), 322–336.
vnforum, http://www.mvnforum.com/mvnforumweb/index.jsp (2006).
ikto2 release 2.02, http://www.cirt.net/code/nikto.shtml (2008).
IST SAMATE Reference Dataset Project, http://samate.nist.gov/SRD/index.php

(2007).
ffutt, J., Wu, Y., Du, X., Huang, H., 2004. Bypass testing of web applications. In: Proc.

ISSRE, pp. 187–197.
Software 83 (2010) 2263–2274

Open Source Vulnerability Database, http://osvdb.org/ (2008).
Open Web Application Security Project, Top 10 2007. http://www.owasp.

org/index.php/Top 10 2007.
Paros - for Web Application Security Assessment, http://www.parosproxy.org/

index.shtml (2008).
Perturbation-based User-Input-Validation Testing of Web Applications,

https://sites.google.com/site/asergrp/projects/PIUIVT (2010).
Regular Expression Library, http://regexlib.com/ (2007).
Ricca, F., Tonella, P., 2001. Analysis and testing of web applications. In: Proc. ICSE,

pp. 25–34.
Sprenkle, S., Gibson, E., Sampath, S., Pollock, L., 2005. Automated replay and failure

detection for web applications. In: Proc. ASE, pp. 253–262.
Tamperie, http://www.bayden.com/TamperIE/ (2009).
Tipton, H.F., Krause, M., 2006. Information Security Management Handbook, 6th ed.

Auerbach Publications, New York.
Top 10 Web Vulnerability Scanners, http://sectools.org/web-scanners.html (2006).
Wang, Q., Quan, L., Ying, F., 2004. Online testing of web-based applications. In: Proc.

COMPSAC, pp. 166–169.
C. Weber, Testing Your Web Applications for Cross Site Scripting Vulnerabilities,

http://www.microsoft.com/technet/community/columns/secmvp/sv0505.mspx
(2005).

Wikto: Web Server Assessment Tool, http://www.sensepost.com/research/wikto/
(2008).

Nuo Li is a researcher at ABB Corporate Research Center, P.R. China. She received her
Ph.D. degree from Beihang University, Beijing, P.R. China, in 2008. She worked as a
research assistant in the Department of Computer Science at North Carolina State
University during 2007-2009. Her research interests include automated software
engineering with emphasis on software testing and engineering process improve-
ment.

Tao Xie is an Associate Professor in the Department of Computer Science at North
Carolina State University. He received his Ph.D. in Computer Science from the Uni-
versity of Washington in 2005. His research interests are in software engineering,
focusing on automated software testing and mining software engineering data.

Maozhong Jin is a Professor in Beihang University, Beijing, P.R. China. His research
interest includes programming language processing and software engineering.

Chao Liu is a Professor, Associate Dean of School of Computer Science and Director of
Software Engineering, Beihang University, Beijing, P.R. China. He is also vice director
and M.S. degree in Computer Software and Theory at Beihang University, and his
B.S. Degree in Mathmatics at Beijing University of Posts and Telecommunication.
His research interests include software quality engineering, software testing, and
software process improvement.

http://www.brics.dk/automaton/index.html
http://www.fiddlertool.com/fiddler/
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://johnny.ihackstuff.com/ghdb.php
http://www.w3schools.com/HTMLDOM/default.asp
http://htmlparser.sourceforge.net/
http://www.koders.com/
http://www.mvnforum.com/mvnforumweb/index.jsp
http://www.cirt.net/code/nikto.shtml
http://samate.nist.gov/SRD/index.php
http://osvdb.org/
http://www.owasp.org/index.php/Top_10_2007
http://www.parosproxy.org/index.shtml
https://sites.google.com/site/asergrp/projects/PIUIVT
http://regexlib.com/
http://www.bayden.com/TamperIE/
http://sectools.org/web-scanners.html
http://www.microsoft.com/technet/community/columns/secmvp/sv0505.mspx
http://www.sensepost.com/research/wikto/

	Perturbation-based user-input-validation testing of web applications
	Introduction
	Background
	Hidden fields
	Cross-Site Scripting
	SQL injection
	Unconscious mistakes
	Solution

	Example
	Approach
	Input field identification
	Test-input generation
	Test-result assessment

	Implementation
	Evaluation of the approach
	Comparison with scanners
	A case study
	Evaluation of LCTS
	Threats to validity

	Discussion
	Related work
	Conclusion
	Acknowledgments
	References

