Information and Software Technology 51 (2009) 589-598

journal homepage: www.elsevier.com/locate/infsof

Contents lists available at ScienceDirect

Information and Software Technology

| INFORMATION |
[ AND |

| _SOFTWARE |
___TECHNOLOGY |

|

On automated prepared statement generation to remove SQL injection

vulnerabilities

Stephen Thomas *, Laurie Williams, Tao Xie

Department of Computer Science, Box 8206, North Carolina State University, Raleigh, NC 27695, USA

ARTICLE INFO ABSTRACT

Article history:

Received 18 December 2007

Received in revised form 5 August 2008
Accepted 8 August 2008

Available online 27 September 2008

Keywords:

SQL injection
Prepared statement
Fix automation

projects.

Since 2002, over 10% of total cyber vulnerabilities were SQL injection vulnerabilities (SQLIVs). This paper
presents an algorithm of prepared statement replacement for removing SQLIVs by replacing SQL state-
ments with prepared statements. Prepared statements have a static structure, which prevents SQL injec-
tion attacks from changing the logical structure of a prepared statement. We created a prepared
statement replacement algorithm and a corresponding tool for automated fix generation. We conducted
four case studies of open source projects to evaluate the capability of the algorithm and its automation.
The empirical results show that prepared statement code correctly replaced 94% of the SQLIVs in these

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

SQL injection vulnerabilities (SQLIVs) accounted for 20% of in-
put validation vulnerabilities and 10% of total cyber vulnerabilities
between 2002 and 2007 [25]. SQLIVs can lead to data theft and
data corruption, costing time and resources to correct. In 2006,
CardSystems Solutions, a credit card processing company, had
one SQLIV exploited, causing 40 million credit card numbers to
be stolen and millions of dollars of fraudulent purchases [18].
Additionally, one SQLIV was exploited in a help desk system for
the University of Missouri, causing theft of information for
22,000 students in 2007 [17].

Structured query language (SQL) is a standard interactive lan-
guage used with relational databases [1]. An SQL statement is a
unit of execution that returns a single result set from a database
[1]. A vulnerability is the result of a software defect that gives an
attacker unintended access to a computer system [3,5]. An SQLIV
is a specific SQL vulnerability that exists when an attacker can in-
sert SQL character and keywords into an SQL statement and change
the logic of the SQL statement [1]. SQLIVs allow attacker input to
modify SQL structure through an SQL injection attack (SQLIA),
which changes the logic of the SQL statement. An attack is a se-
quence of actions that exploits a vulnerability, typically with dev-
astating consequences [5]. An SQLIA is an attempt to inject SQL
characters and/or keywords into an SQL statement’s input and
modify the statement’s structure [9].

* Corresponding author. Tel.: +1 919 513 4151.
E-mail addresses: stephen.smthomas@gmail.com (S. Thomas), williams@csc.
ncsu.edu (L. Williams), xie@csc.ncsu.edu (T. Xie).

0950-5849/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2008.08.002

Several solutions that mitigate the risk posed by SQLIAs have al-
ready been proposed [6,9-13,16,26]. All of these solutions have
been successful in mitigating SQLIAs. However, none of these solu-
tions address the actual SQLIVs that exist in the source code. A
common way to remove SQLIVs is to separate the SQL structure
from the SQL input by using prepared statements. A prepared
statement is an SQL statement structure with placeholders for vari-
ables [24]. Prepared statements declare the SQL structure explicitly
and can remove SQL statements against SQLIVs as long as good
coding practices are followed [13]. However, the process of manu-
ally converting vulnerable SQL statements to prepared statements
is tedious, time consuming, complex, and therefore likely to be er-
ror-prone. As a result, automation of this task would be beneficial.

The objective of this research is to propose a prepared statement
replacement algorithm and corresponding automation for removing
SQL injection vulnerabilities from vulnerable SQL statements by replac-
ing them with secure prepared statements. The source code generation
approach to removing the SQLIVs is distinct from approaches that
mitigate the risk posed by SQLIAs because the approach removes
the SQLIV instead of fortifying against the SQLIA. Additionally, the
benefit of automated fix generation is that the generators “deliver
a predictable, consistent and repeatable process” and “relieve hu-
mans from manually performing tedious and error-prone actions”
[2,4]. We created the prepared statement replacement algorithm
(PSR-Algorithm), which gathers information from source code con-
taining SQLIVs and generates secure prepared statement code that
maintains functional integrity. Correspondingly, we created the Pre-
pared Statement Replacement Generator! (PSR-Generator), which

! The PSR-Generator source code can be found at: http://agile.csc.ncsu.edu/sqlivf/
SQLIVF-Generator.zip.


mailto:stephen.smthomas@gmail.com
mailto:williams@csc. 
mailto:xie@csc.ncsu.edu 
http://agile.csc.ncsu.edu/sqlivf/SQLIVF-Generator.zip
http://agile.csc.ncsu.edu/sqlivf/SQLIVF-Generator.zip
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

590 S. Thomas et al./Information and Software Technology 51 (2009) 589-598

automates the generation of the prepared statement-based code in
Java, which results from the PSR-Algorithm. The PSR-Generator was
written for Java due to the availability of open source Java projects
containing SQLIVs. However, the logic in the algorithm is not limited
to any specific language and could be extended to fit the syntax of any
language.

We conducted four case studies on open source Java projects
using the PSR-Algorithm and the PSR-Generator on each project.
The open source Java projects used in the case studies are Net-
trust,? iTrust,> WebGoat,* and Roller.> We use code inspection and
static analysis to find the SQLIVs in each project and used the PSR-
Generator to create replacement code for each project. Unit test
suites are used to test the security of the replacement code and
integrity of the original functionality for each project. The remainder
of this paper is organized as follows: Section 2 contains background
information on SQLIVs and the proposed solution. Section 3 exam-
ines related work. Section 4 describes the logic of the PSR-Algorithm.
Section 5 discusses the case studies used to evaluate the PSR-Algo-
rithm, and Section 6 presents the conclusions.

2. Background

This section provides background on SQL injection vulnerabili-
ties, SQL injection attacks, prepared statements, and SQL structure.

2.1. SQL structure

An SQL statement’s structure is the SQL code containing the log-
ical purpose of the statement. For example, the SQL statement:

SELECT password FROM users WHERE userName = ‘userl’

has the structure:

SELECT password FROM users WHERE userName =

The structure is composed of the SELECT, FROM, and WHERE
clauses, which define the purpose of the SQL statement. The SQL
statement’s structure can contain the following elements:

e clauses, such as SELECT, FROM, and WHERE;
o identifiers, such as table and attribute names; and
e comparators, such as equals (=), AND, OR, and LIKE.

An SQL statement’s input is the part of a statement that is ex-
pected to change based on user input. In the example SQL state-
ment, ‘userl’ is the SQL input, which is combined with the
identifier WHERE and the comparator = to change the result of the
conditional WHERE clause. An SQL statement’s input is not consid-
ered part of the structure of the statement. SQL input is commonly
used in the following places:

e VALUES clause: The new inserted values in an INSERT
statement;

e SET clause: What an attribute is set to;

o WHERE clause: The values that the comparators are compared
to; and

e ORDER BY clause: The attribute that the result set is ordered by.

2.2. SQL injection attacks (SQLIAS)

Consider the following SQL statement:
SELECT password FROM users WHERE userName= ¢’’+
inputUserName + ¢ ¢’

2 Nettrust can be found at: http://code.google.com/p/nettrust/.

3 iTrust can be found at: http://agile.csc.ncsu.edu/rose/.

4 WebGoat can be found at: http://www.owasp.org/index.php/
Category:OWASP_WebGoat_Project.

5 Roller can be found at: http://rollerweblogger.org/.

If the value dynamically assigned to the inputUserName vari-
able via user input is 111> OR true#, the SQL statement executed
is:

SELECT password FROM users WHERE userName = 111’ OR
true#’

When the database executes this SQL statement, the WHERE
clause will always be true and the structure of the SQL statement
will be interpreted by the relational database management system
as:

SELECT password FROM users

The SQLIA is able to remove the WHERE clause from the previous
SQL statement since the single quote SQL character ‘ escapes out of
the variable inputUserName, the keyword OR makes the WHERE
clause conditional, the keyword true makes the conditional al-
ways true, and the character # comments out of the rest of the
SQL statement. The result of executing the modified SQL statement
would contain the entire password column from the users table,
regardless of inputUserName.

2.3. SQL injection vulnerabilities (SQLIVs)

An SQLIV exists when an SQL statement does not keep state-
ment structure and input separate. An SQL statement is vulnerable
to having the logic of the statement changed by input at runtime
when the application sends the structure and input of the state-
ment together in a combined request to the database. An SQLIV
is caused by dynamic SQL statement construction combined with
inadequately-verified input, which allows the input to change
the structure and logic of a statement [9,15]. In the SQL statement
discussed in Section 2.2, the vulnerable statement concatenates
the input inputUserName with the statement structure before
sending the statement to the database, which allows inputUser-
Name to change the WHERE clause and the ending of the statement.
Additionally, an SQL statement can contain a logical SQLIV if a
developer creates a statement with the intent to have the structure
of the statement to change based on input. A developer has to
change the logic of the SQL statement and limit the range of
acceptable SQL structures to remove this type of SQLIV.

2.4. Prepared statements

Prepared statements are SQL statements that separate state-
ment structure from statement input. Prepared statements have
a static structure when they are executed and take type-specific in-
put parameters. When prepared statements are created and the
statement structure is explicitly set before runtime, the statement
structure cannot be changed by input variables and the statement
is mitigated from the risk posed by SQLIVs. A prepared statement is
“prepared” by declaring the structure of the statement and putting
bind variables, placeholders for input, in the places where SQL in-
put goes [15]. The SQL statement structure with the bind variables
included is then sent to the database, which compiles and saves the
statement structure for future execution with input variables. A
prepared statement may look like this:

SELECT password FROM users WHERE userName = ?

where the question mark (?) is the bind variable. A setter meth-
od sets a bind variable as well as performs strong type checking
and will nullify the effect of invalid characters, such as single
quotes in the middle of a string. The setter method, set-
String(index, input), sets the bind variable in the SQL struc-
ture indicated by the index to input. For example, a call to
setString(l, ‘‘userl’’) would set the bind variable in the
above example to ¢ ‘userl’’. Additionally, the setter method
setObject (index, input) will call the appropriate setter meth-
od based on the object type of the input. After the SQL statement
has been prepared, one setter method is used per bind variable


http://www.ngssoftware.com/papers/advanced_sql_injection.pdf
http://www.ngssoftware.com/papers/advanced_sql_injection.pdf
http://www.ngssoftware.com/papers/advanced_sql_injection.pdf
http://www.ngssoftware.com/papers/advanced_sql_injection.pdf
http://www.ngssoftware.com/papers/advanced_sql_injection.pdf

S. Thomas et al./Information and Software Technology 51 (2009) 589-598 591

PreparedStatement psl =

try
{

}catch (Exception e) {}

public ResultSet executeUserQuery (String structureInput) {
Connection conn = Connect () ;

conn.prepareStatement (structureInput) ;

return psl.executeQuery /() ;

Fig. 1. Example logically vulnerable prepared statement.

to fill the bind variable with input. The static nature of a prepared
statement’s structure is the characteristic that prevents SQLIVs.
Further, since PreparedStatements,® the Java implementation
of prepared statements, can be compiled once and executed multiple
times, PreparedStatements are used for efficiency as well as secu-
rity [8].

Although PreparedStatements’ static structure enables
PreparedStatements to avoid SQLIVs, PreparedStatements
can be created which have SQLIVs if they are not developed care-
fully [22]. If a developer uses input strings as part of the structure
of a prepared statement, then the input changes the structure and
nature of the statement before it is “prepared” and the Prepared-
Statement would reflect the changes. Fig. 1 shows a logically vul-
nerable PreparedStatement using an insecure prepared
statement. The function of the method is to execute a user-speci-
fied SQL statement and allows the user to set the structure of the
SQL statement. Therefore, even though the SQL structure is “pre-
pared” before execution, the input string structureInput
changes the structure of the statement at runtime.

3. Related work

This section presents other existing solutions to mitigate the
risk posed by SQLIAs.

3.1. SQLIA risk mitigation solutions

Su and Wassermann [26] propose a solution to mitigate the risk
posed by SQLIAs which involves performing static analysis of an
SQL statement’s parse tree, generating custom input validation
code, and wrapping the statement in the validation code. Su and
Wassermann create an SQL parse tree by parsing an SQL statement
into its grammatical parts and arranging it into a tree to reveal the
structure of the statement. They use the revealed structure to
determine how to filter input and generate the input validation
code. They conducted a study using five open-source Web applica-
tion projects on GotoCode.com, the same five projects used by Hal-
fond and Orso [9], and applied their wrapper, SQLCHECK, to each
application. They found that their wrapper stopped all 18,424
SQLIAs in their attack suite without generating any false positives.
While their wrapper was effective in preventing their SQLIA attack
suite, they noted that their attack suite was created by indepen-
dent researchers, and it may not contain all possible attacks. The
parse tree approach is effective in identifying the structure of the
SQL statement and using structure comparisons to detect potential
SQLIAs. However, the parse tree approach focuses on the structure
of the attacks instead of the removal of the SQLIVs.

Huang et al. [16] secure potential vulnerabilities by combining
static analysis with runtime monitoring. Their solution, WebSSARI,
statically analyzes source code, finds potential vulnerabilities,
including SQLIVs, and inserts runtime guards into the source code,

5 PreparedStatements can be found at: http://java.sun.com/j2se/1.4.2/docs/api/
java/sql/PreparedStatement.html.

which sanitizes input. They conducted a study using 230 open-
source Web application projects on SourceForge.net and applied
their solution, WebSSARI, to each application. They found security
vulnerabilities in every application. The WebSSARI approach is
effective in preventing general input manipulation attacks through
sanitizing input. However, the solution relies on white and black
listing input, instead of removing the vulnerability.

Buehrer et al. [6] secure vulnerable SQL statements by compar-
ing the parse tree of a statement at runtime with the parse tree of
the original statement and allow a statement to execute only if the
parse trees match. They conducted a study using one student-cre-
ated web application and applied their solution, SQLGuard, to the
application. They found that their solution stopped the four SQLIA
types described in their paper without generating any false posi-
tives. The parse tree approach, the same approach Su and Wasser-
mann use, is effective in identifying the SQL statement structure
and detecting when the structure has been changed by SQLIAs.
However, SQLGuard does add a computational overhead of dy-
namic SQL statement validation and also uses white and black list-
ing, similar to Huang et al.

Halfond and Orso [9-13] secure vulnerable SQL statements by
combining static analysis with statement generation and runtime
monitoring. Their solution, AMNESIA, analyzes a vulnerable SQL
statement, generates a generalized statement structure model for
the statement, and allows or denies each statement based on
how it compares to the model at runtime. Their solution throws
an exception for each SQLIA, which the developer handles and
builds in attack recovery logic. They conducted a study using five
open-source Web application projects on GotoCode.com and two
student-created web applications, and applied their solution,
AMNESIA, to each application. They found that their solution
stopped all of the SQLIAs in their attack set, a set ranging from
140 to 280 elements for each application, without generating any
false positives. Their model generation and runtime comparison
approach is effective at detecting SQLIAs and does a comparison
similar to Buehrer et al.’s SQLGuard. AMNESIA, like SQLGuard, also
adds a computational overhead by including an additional process
that has to be integrated into the runtime environment. Addition-
ally, AMNESIA adds the capability for developers to add logic to
how SQLIAs are handled, by throwing an exception in the vulnera-
ble code.

The solutions discussed in this section have mitigated the risk
posed by SQLIAs by cleansing input before it is put into vulnerable
SQL statements or by runtime monitoring of potentially compro-
mised SQL statements [6,9-13,16,26]. These solutions have had po-
sitive results in stopping the attack methods known at the time of
the case studies. These solutions also are approaches that we used
to build our solution. We separate the SQL structure from the rest
of the SQL statement, the same way that the parse tree approach
creates a tree of the SQL structure and compares structures to find
SQLIAs. Additionally, we created our solution to work within the
existing code, similar to SQLCheck and AMNESIA. Like SQLCheck
and AMNESIA, we allow our solution to be extended by developers,


http://java.sun.com/j2se/1.4.2/docs/api/java/sql/PreparedStatement.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/PreparedStatement.html

592 S. Thomas et al./Information and Software Technology 51 (2009) 589-598

by inserting our solution into the vulnerable code. However, these
approaches are designed to fortify against SQLIAs while our pro-
posed solution is designed to preventively remove the SQLIVs.

4. Prepared statement replacement algorithm

In this section, we provide the PSR-Algorithm details, the PSR-
Generator details, and the limitations of the PSR-Algorithm.

4.1. Algorithm-generated code structure

The PSR-Algorithm is targeted to the environment where exist-
ing source code contains SQLIVs that need to be removed. The PSR-
Algorithm analyzes source code containing SQLIVs and generates a
specific recommended code structure containing prepared state-
ments. The PSR-Algorithm separates the SQL statement’s input
from the SQL structure in the generated code structure. The PSR-
Algorithm creates an additional string object for each string object
used to create the SQL statement. The new string object contains
the raw string data of the original string object and any identifiers
found in the original string object the PSR-Algorithm identifies as
SQL structure. The PSR-Algorithm creates an assistant vector for
each new string object. The assistant vector is created to contain
any SQL input found in the original string object. The PSR-Algo-
rithm-generated string objects can contain other PSR-Algorithm-
generated string objects based on how the original string objects

are used. Therefore, assistant vectors can contain other assistant
vectors, creating a tree. The significance of the assistant vector tree
is that it can branch based on conditionals, which makes the tree
contain the proper variables for each decision path of the
conditional.

When the PSR-Algorithm generates a new string object and
assistant vector for a string object used to create the SQL state-
ment, the PSR-Algorithm declares and assigns the new string ob-
ject and assistant vector in each code location the original string
object is declared and assigned. The PSR-Algorithm declares and
assigns the new string object and assistant vector in these loca-
tions to make the new string object and assistant vector have the
same decision paths for conditional code as the original string ob-
ject. Therefore, the assistant vector tree changes dynamically at
runtime and ensures that the SQL input elements are in the proper
order. Figs. 2 and 3 show an example of PSR-Algorithm-generated
code and tree structure, depicting the ability of the code to change
based on conditionals and match the structure of the original state-
ment. The PSR-Algorithm-generated code in Fig. 2 keeps the origi-
nal code intact, which is in bold in the example, and adds the new
code structure around the existing code. Fig. 3 shows an example
of how the tree structure of the generated code can change based
on conditionals, where Treel is created when the conditional is
true and Tree2 is created when the conditional is false.

Once the PSR-Algorithm creates and assigns all of the string and
vector objects, the algorithm creates a prepared statement using

concatenated with SQLInput3_2
String string3 is set to “? ?”

String stringl is declared

if conditional is true

with “?”

else

endif

the final code

for each element in returnVector

endfor

Vectors vectorl, wvector2, and vector3 are created as new Vectors
String originalString2 is set to SQLInput2 1

String string2 is set to “?” #comment: “?” is a bind variable
SQLInput2_1 is added to Vector vector2

String originalString3 is set to SQLInput3_1 concatenated with “ “

SQLInput3_1 and then SQLInput3_2 are added to Vector vector3
String originalStringl is declared

originalStringl is set to “SELECT * FROM Tablel where value = ”
concatenated with SQLInputl_ 1 concatenated with
originalString2 concatenated with SQLInputl_2

stringl is set to “SELECT * FROM Tablel where value = ”
concatenated with “?” concatenated with string2 concatenated

SQLInputl_1, wvector2, and then SQLInputl 2 are added to vectorl

originalStringl is set to “SELECT * FROM Tablel where value = ”
concatenated with SQLInputl_ 3 concatenated with originalString3

stringl is set to “SELECT * FROM Tablel where value = ”
concatenated with “?” concatenated with string3

SQLInputl_3 and then vector3 are added to vectorl

Statement stmt is created from a Connection to the database
executing originalStringl #comment: this execution is removed in
Prepared statement psStmt is created from stmt’s Connection using
stringl as the structure of the SQL statement

Vector returnVector is declared and set to the return vector of a
call to the traverseInputTree on vectorl

set the next psStmt bind variable to the element

execute psStatement, replace stmt result set with psStmt result set

Fig. 2. Example PSR-Algorithm-generated code.



S. Thomas et al./Information and Software Technology 51 (2009) 589-598 593

Treel

Tree2

Fig. 3. Conditional tree structure.

the new string objects that contain only SQL structure. Addition-
ally, as shown in Fig. 2, the PSR-Algorithm-generated code does
an in-order transversal of the tree and places all of the elements
into a single vector in the order that they are traversed. Since the
tree exists at runtime in the executing code, the PSR-Algorithm
creates a recursive method that the PSR-Algorithm places into
the source code under analysis. The method traverses the tree
and returns a vector with the elements in the traversed order.

Once the PSR-Algorithm-generated code has all of the elements
in a singular vector, the PSR-Algorithm inserts code that loops
through the vector and sets each SQL input element to the proper
bind variable. The PSR-Algorithm-generated code then executes
the prepared statement and replaces the SQLIV execution. Fig. 2
shows the final execution replacement.

4.2. Algorithm details

The PSR-Algorithm uses the objects involved in the SQLIV to
create the prepared statement. The required objects include the
execution method, the string objects containing the SQL statement,
and the Connection or Statement object. The PSR-Algorithm
cannot work without these objects.

The PSR-Algorithm starts separating the SQL statement struc-
ture from input by iterating through each string object used in
the SQL structure and creating a new string object and a new vec-
tor object for each existing string object. The PSR-Algorithm parses
each existing string object into raw string data, and identifiers. The
PSR-Algorithm leaves raw string data and any guaranteed secure
identifiers in the new string object as structure. A guaranteed se-
cure identifier is an identifier the developer determines is secure
through manual static analysis. The PSR-Algorithm allows all guar-
anteed secure identifiers to be part of the SQL structure. Of the
remaining identifiers, the PSR-Algorithm identifies all non-string
identifiers, assumes they are SQL input, puts them into the assis-
tant vector, and replaces each identifier with a bind variable. The
PSR-Algorithm determines if any of the remaining string identifiers
have already had string and vector pairs made for them. If so, the
PSR-Algorithm replaces the existing identifier with the PSR-Algo-
rithm-created identifier and puts the assistant vector into the cur-
rent assistant vector.

For all of the string identifiers that the PSR-Algorithm has not
converted yet, the PSR-Algorithm recursively repeats the new
string and vector creation process until all string objects have asso-
ciated PSR-Algorithm-generated string and vector objects. Addi-
tionally, the PSR-Algorithm recursively repeats the assignment of
the new string and vector pairs for each assign of the existing
string object. Fig. 2 shows an example of the type of string and vec-
tor objects the PSR-Algorithm creates.

With the SQL input separated from the SQL structure via the
new string and vector objects, the PSR-Algorithm creates a

PreparedStatement from the new SQL structure string objects.
Further, the PSR-Algorithm creates a call to the traverseInput-
Tree method, which does an in-order traversal of the assistant
vector tree and returns a single vector with the elements in the
proper order. The PSR-Algorithm then creates a loop that goes
through the single assistant vector and assigns each element to
each bind variable in order. The loop assigns each element to a bind
variable using the setter method setObject(index, input),
which calls the appropriate setter method based on the object type
of the input. The PSR-Algorithm creates a call to the execute
method of the PreparedStatement and replaces the call to the
Statement execute method with a call to the PreparedStatement
execute method. Fig. 4 shows an example of the PSR-Algorithm
preparing the PreparedStatement, setting the bind variables to
the appropriate values, and replacing the SQLIV with the Pre-
paredStatement execute. Fig. 4 shows the PreparedStatement
psO created by stmt’s Connection, set to the SQL structure string
PSqueryUniqueIDO, the bind variables set to the proper inputs,
and psO’s execution inserted into the if statement that the SQLIV
was in. Fig. 4 shows the original line of code in the bottom cell of
the figure.

The PSR-Algorithm inserts the traverseInputTree method
into the source code since the tree grows dynamically at runtime
and needs to be traversed at runtime. The PSR-Algorithm finishes
after the SQLIV execution is replaced.

4.3. The PSR-Algorithm implementation

We have implemented the PSR-Algorithm as an automated fix
generator in Java called the PSR-Generator. We implemented the
PSR-Algorithm in Java due to the availability of open source Java
projects containing SQLIVs. The PSR-Generator takes in a Java file
and line numbers of SQLIV method calls and outputs a Java source
file with the PSR-Algorithm-generated code structure included and
the SQLIV method calls removed. The first step of the process of
securing vulnerable source code with the PSR-Generator starts
with formatting the source code in preparation for the generator.
A developer imports the source code into an Eclipse’ Integrated
Development Environment (IDE) project and uses the Eclipse IDE
Formatter, a feature of the Eclipse IDE, to make sure that the source
code was organized in a standardized way that makes analyzing the
code a regular and repeatable process.®

After the Eclipse IDE Formatter formats the code, static analysis
and code inspection is conducted to find the SQLIVs. A developer
can use the FindBugs™ static analyzer [14] Eclipse IDE plugin
and/or code inspection to analyze the source code and find the line

7 Eclipse can be found at: http://www.eclipse.org.
8 The details of the Eclipse IDE Formatter settings can be found at: http://
www4.ncsu.edu/~smthomas/EclipseFormatterSettings.xml.


http://www.eclipse.org
http://www4.ncsu.edu/~smthomas/EclipseFormatterSettings.xml
http://www4.ncsu.edu/~smthomas/EclipseFormatterSettings.xml

594

S. Thomas et al./Information and Software Technology 51 (2009) 589-598

String PSqueryUniqueIDO;
java.util.Vector PSInput00 =
{

PSInput00 =
PSInput00.add (HCPID) ;

PSqueryUniqueID0 =
+ " AND PatientID = "
}

java.util.Vector returnVector(0 =
traverseInputTree (PSInput00,
java.sql.PreparedStatement ps0 =

g 4onom

new java.util.Vector();

new java.util.Vector();
PSInput00.add(loggedInUser.getMID() ) ;

"SELECT * FROM DeclaredHCP WHERE HCPID = "
new java.util.Vector();

returnVector0) ;

stmt.getConnection () .prepareStatement (PSqueryUniqueIDO0) ;

Fnomn

i

for(int 1 = 0; i < returnVectorO.size(); i++){
ps0.setObject((i + 1), returnVectorO.get(i));
}
if ( psO0.executeQuery () .isBeforeFirst() )
if ( stmt.executeQuery( "SELECT * FROM DeclaredHCP WHERE HCPID =
'" 4+ HCPID + "' AND PatientID = '" + loggedInUser.getMID() + "'"
) .isBeforeFirst () )

Fig. 4. The PSR-Algorithm-generated PreparedStatement preparation and execution code inserted into existing code.

numbers of all SQLIVs in the source code. Once all of the SQLIV line
numbers have been collected, a developer runs the PSR-Generator
on each Java file that has SQLIVs. For each vulnerable Java file, the
developer passes the generator the path to the Java file, all of the
SQLIV line numbers in ascending order, and any secure reference
IDs. The PSR-Generator creates a converted Java file with the SQLIV
execution calls removed. Once the PSR-Generator has converted all
of the vulnerable Java files, the vulnerable files are replaced with
the converted files and the before and after projects can be
analyzed.

4.4. Assumptions and limitations

The PSR-Algorithm and PSR-Generator assumptions and limita-
tions are discussed in this section.

4.5. Code analysis assumptions and limitations

The PSR-Algorithm assumes the language, database connector,
and database all support prepared statements. The PSR-Generator
only analyzes and creates Java code. Additionally, the PSR-Genera-
tor is limited to the knowledge of a single file and the PSR-Algo-
rithm only considers variables, methods, and method calls that
can be found in a single file. The PSR-Generator’s analysis of the
source code relies solely on pattern matching and does not take
into consideration call graphs, Abstract Syntax Trees, or other ad-
vanced code analysis. Since the PSR-Generator uses pattern match-
ing, the PSR-Generator assumes that the developer removes all
non-compiled parts of the code such as comments or documenta-
tion before the PSR-Generator converts the file.

4.6. Language specific assumptions and limitations

Additionally, since the PSR-Generator is limited to Java, the pro-
posed solution is further limited since Java currently does not have
the PreparedStatement equivalent of the Statement batch job
functionality. While PreparedStatements currently allow multi-
ple batches of input for a single prepared statement structure,
PreparedStatements do not have the ability to specify multiple
statement structures, like Statements do. Creating this function-
ality is additionally difficult since Statement batch jobs are
dependent on the database type. Statement batch jobs determine
whether to exit after one of the SQL statements causes an error in

the database or to continue despite errors based on the database
type, which is a decision that the solution cannot mimic. Therefore,
PreparedStatements cannot be used to create functionally
equivalent code for Statement batch job code. However, we did
not encounter batch jobs in any of the four case studies we
conducted.

The PSR-Algorithm assumes that all SQL structure is contained
within string objects as raw string data. Further, the PSR-Algorithm
assumes the code sets all of the SQL structure Strings explicitly in
the file. Additionally, since the PSR-Algorithm-generated code cre-
ates and inserts duplicate prepared statement code for the SQLIV
code without removing the SQLIV code, the PSR-Algorithm-gener-
ated code is unable to handle iterator data structures, or any data
structures that shift pointers when getting data. However, we only
encountered SQLIVs with iterator data structures in three of the 56
SQLIVs discovered. Table 1 summarizes the PSR-Algorithm and the
PSR-Generator code challenges.

5. Empirical studies

We evaluated the PSR-Algorithm with four empirical studies of
open source projects. The PSR-Algorithm and the PSR-Generator
removed 94% of the SQLIVs of the case studies. The 6% of the
SQLIVs not removed from the case studies are SQLIVs that are

Table 1
Code challenges for the PSR-Algorithm

SQLIV code challenge Success

Static SQLIV structure

Complex dynamic SQLIV structure

Conditional SQL input

Java file scope knowledge

Manually determines Java objects

Manually separates SQL structure/input

Standardized treatment of all SQL structure types

Standardized treatment of conditional and non-conditional code
Instance variables containing SQL structure

SQL Structure containing Strings declared and assigned in any order
Batch queries

Non-explicit setting of SQL structure

Non-string containing SQL structure

Project level knowledge SQL structure

Iterator data structure code

O W W W W W W W W W




S. Thomas et al./Information and Software Technology 51 (2009) 589-598 595

Table 2
SQLIA type code examples
SQLIA type Code Example
Conditional where Vulnerability ¢ ¢SELECT HCPID FROM DeclaredHCP WHERE PatientID =’’’ + loggedInUser.getMID() + ¢<’°°
Attack 3’ or true#
Additional column Vulnerability ¢ ‘INSERT INTO TransactionFailureAttempts (medicallD, failureCount) VALUES (’’ + id + ¢¢, 0);*’
insert Attack 4,800)#
Additional row insert Vulnerability ¢ ¢<INSERT INTO OfficeVisits (notes, HCPID, PatientID, visitDate) VALUES (’’’ +notes.replace( ¢ <’??, <¢€2227)
+ €2 0222 yhepid+ €¢7,7°7 +mid+ ¢, + visitDate + ¢ );7°
Attack 0000-00-00’ ), ( ‘patient died’, ¢2’, ¢2°, ‘0000-00-00’)#
Conditional order Vulnerability getBroadCasterName.executeQuery( ‘ ‘select BroadCasterName, broadcasters.BroadCasterID from
keyword broadcasters,broadcasternymmap where broadcasternymmap.BroadCasterID = broadcasters.BroadCasterID and
NymID=""’ + strNymID + ¢¢’ order by’’ + strCriteria +’’ desc’’);
Attack broadcastername asc#

known limitations noted in Table 1 for the PSR-Algorithm and PSR-
Generator. This section describes each case study and the tools
used in each study. To analyze the security of the PSR-Algorithm,
unit-level test suites were created for each case study. Specific
methods within the study projects were tested for security, the se-
cure execution of SQLIAs, functional integrity, and the expected
execution results of normal data.

5.1. SQLIA types

Throughout each case study, a variety of SQLIAs were used to
exploit SQLIVs to analyze the effectiveness of the Prepared-
Statement-based code. Each SQLIV in all four case studies was
exploited through one of four types of SQLIAs, selected based on
static analysis of the SQLIV, as will be explained: conditional
where, additional column insert, additional row insert, and addi-
tional order keyword. The SQLIA types are based on Chris Anley’s
SQLIA types [1]. For testing, we considered each of these types as
an equivalence class and ensured we had coverage of each of these
types. Table 2 shows an example of each SQLIA type and an exam-
ple SQLIV that is exploitable by that type.

The conditional where attack inserts an attack string into an
SQL statement WHERE clause, which turns the conditional of the
WHERE clause into an always true. The vulnerable SQL statement
in Table 2 puts the return of loggedInUser.getMID() directly into
a WHERE clause for the MID attribute. The SQLIA in Table 2 turns
the WHERE clause of the SQL statement to always be true.

The additional column insert attack inserts an attack string
into an SQL statement VALUES clause that sets the value for the
attribute as well as the following attribute(s). The vulnerable state-
ment in Table 2 puts the id method variable directly into a VALUES
clause for the id attribute. The SQLIA in Table 2 sets the medica-
1ID to 4 and the failureCount to 800, as opposed to the in-
tended O, which injects invalid data.

The additional row insert attack inserts an attack string into an
SQL statement VALUES clause that finishes the set of values, and
adds an additional set of values to be inserted as a second row in
the table. The vulnerable SQL statement in Table 2 puts the value
visitDate directly into a VALUES clause that sets the value for
the attribute visitDate. The SQLIA in Table 2 sets the visitDate
to ‘0000-00-00’, exits out of the visitDate, and adds the addi-
tional value set ( ‘patient died’, ¢2’, ‘27, €0000-00-00’)
and then exits out of the rest of the SQL statement. The SQL state-
ment inserts both value sets into the table.

The conditional order keyword attack inserts an attack string
into an SQL statement ORDER BY clause that sets the value for the
attribute and adds an order keyword to the SQL statement. The vul-
nerable SQL statement in Table 2 puts the value strCriteria di-
rectly into the ORDER BY clause that sets the attribute with which
to order by in descending order. The vulnerable SQL statement in
Table 2 sets the attribute to order by to broadcastername and

Table 3
SQLIVs vulnerable to SQLIA types by project
SQLIA type Number SQLIVs vulnerable to each SQLIA type:
Nettrust iTrust WebGoat Roller
Conditional where SQLIAs 14 19 6 1
Additional column 3 1 0 0
Additional row 2 4 1 0
Conditional order 1 0 0 0
Table 4
Case study projects details
Project Version Lines Classes SQLIVs SQLIAs Converted
of code classes
Nettrust®  Fortify 1,603 11 31 (20 20 10
Review converted)
iTrust® Fall 2213 18 24 24 4
2006
WebGoat® 0.9 19,440 77 7 7 5
Roller? 0.9.9 52,089 276 6 (2 converted 1 1 1

exploitable)

http://www4.ncsu.edu/~smthomas/Nettrust_versions.zip.
http://www4.ncsu.edu/~smthomas/iTrust_versions.zip.
http://arches.csc.ncsu.edu/smthomas/roller_versions.zip.
http://arches.csc.ncsu.edu/smthomas/roller_versions.zip.

a n T oo

adds the order keyword asc, which changes the order to ascending
and then exits out of the rest of the SQL statement. The SQL state-
ment returns the values in ascending order instead of the descend-
ing order of the original statement.

Table 3 shows the number of SQLIVs in each case study project
that was vulnerable to each type of the SQLIA types.

5.2. Evaluative empirical studies

To evaluate the security and integrity aspects of the PSR-Algo-
rithm-generated code, we assessed the results of the PSR-Algo-
rithm on four open source Java applications. Statistics and
relevant details for each project can be seen in Table 4. Study 1
was an evaluative empirical study on the Java server code of a trust
management project Nettrust. A purpose of Nettrust is to use social
trust between collaborators to create online trust. Therefore, secu-
rity is an important requirement of the system. Study 2 was an
evaluative empirical study using a role-based, web-based, open-
source healthcare application iTrust. iTrust catalogues sensitive
medical information, which makes security a high priority. Study
3 was an evaluative empirical study using the open source security
teaching Java web application WebGoat, a project from the Stan-
ford SecuriBench® [19-23]. Study 4 was an evaluative empirical

9 SecuriBench can be found at: http://suif.stanford.edu/~livshits/securibench/.


http://www4.ncsu.edu/~smthomas/Nettrust_versions.zip
http://www4.ncsu.edu/~smthomas/iTrust_versions.zip
http://arches.csc.ncsu.edu/smthomas/roller_versions.zip
http://arches.csc.ncsu.edu/smthomas/roller_versions.zip
http://suif.stanford.edu/~livshits/securibench/

596 S. Thomas et al./Information and Software Technology 51 (2009) 589-598

study using the open source Java blog server Roller, also a project
from the Stanford SecuriBench [19-23]. The original and converted
versions of each project can be found online, as noted in Table 4.
WebGoat and Roller are part of the SecuriBench [19-23] set of test
projects, along with Blojsom, BlueBlog, jboard, Pebble, PersonalBlog,
and SnipSnap. We used code inspection and static analysis to find
the SQLIVs in the entire SecuriBench [19-23] set. However, we
determined that only WebGoat and Roller had the vulnerabilities
that we needed to test the PSR-Algorithm. Each case study is re-
viewed in more detail in the subsequent sections. Additionally, each
test project was tested with SQLIAs from each of the different SQLIA

types.

5.2.1. Study setups

As mentioned in Table 4, the version of Nettrust used for Study
1 is the version of Nettrust Fortify Software used in the Java Open
Review Project.!© Fortify Software analyzed Nettrust and published
Nettrust as having 30 defects, with SQLIVs being a majority of de-
fects in Nettrust. A similar analysis of Nettrust was conducted in
Study 1 to find the SQLIVs found by Fortify Software and see if the
SQLIVs could be removed.

The version of iTrust used for Study 2 is iTrust 2.0. The input
filter code was removed from iTrust to make security validation
of iTrust more obvious. The input filter code would make sure
that the input was in the proper format (e.g., between 8 and 20
characters) before it would enter the application. The input filter
code would have restricted the SQLIAs to more complex and
harder-to-understand attacks to bypass the restrictions to expose
the SQLIVs. Since the goal of the testing was to expose the
SQLIVs, regardless of whether they are latent or not, and compare
the security of the pre- and post-algorithm versions of iTrust, the
case study did not benefit from the input filter code existing in
iTrust.

The version of WebGoat used for Study 3 is version 0.9, found in
the Stanford SecuriBench [19-23] version 0.91a. The version of
Roller used for the case study is version 0.9.9, found in the Stanford
SecuriBench [19-23] version 0.91a.

The PSR-Generator was used to convert all projects. Therefore,
each project was imported into the Eclipse IDE and the Eclipse
IDE Formatter was run. The FindBugs™ [14] Eclipse IDE plugin
was then run on each project to identify SQLIVs. The plugin found
31 SQLIVs in Nettrust, 24 SQLIVs in iTrust, 7 SQLIVs in WebGoat,
and 6 SQLIVs in Roller. Each SQLIV was confirmed through code
inspection.

Only two of the six SQLIVs in Roller were convertible, while all
of the SQLIVs in Nettrust, iTrust, and WebGoat were convertible.
Three of the four remaining SQLIVs used an iterator as part of the
code and the PSR-Algorithm is unable to create logically equivalent
prepared statement code for code containing an iterator. Further,
one of the remaining SQLIVs contained a logical SQLIV and the
PSR-Algorithm is unable to create equivalent code for SQLIV code
that is logically vulnerable. Additionally, of the two SQLIVs that
were determined to be convertible, one of the two SQLIVs con-
tained a logical vulnerability as well as an implementation vulner-
ability. A logical vulnerability exists when the logic of the code
intentionally allowed input to determine part of the SQL structure.
Therefore, only the implementation vulnerability was removed
from the SQLIV and the logical vulnerability was ignored, since
the logic of the code would have to be changed before the logical
vulnerability could be removed.

The PSR-Generator was run on each SQLIV in each of the files
containing SQLIVs in each of the projects.

10 Fortify Software’s Java Open Review Project can be found at: http://open-
source.fortifysoftware.com/.

5.2.2. Functional integrity and security unit testing

A unit test suite was created for the purpose of this research for
each project to test the integrity of the functionality of each con-
verted project. A unit test was created for each SQLIV that the
PSR-Algorithm converted to use prepared statements. The unit test
suite each study had 100% coverage of the SQLIVs, which is the
only code modified by the PSR-Algorithm. The JUnit'! [7] testing
framework was used for all unit testing to make the unit testing
repeatable. JUnit [7] is a framework that allows developers to create
and execute a repeatable unit test suite.

Additionally, a JUnit [7] SQLIA test suite was created for each
project to test the security of each converted project compared
to each original project. The security unit test suites contained
one SQLIA per SQLIV, to verify that each vulnerable method call
was exploitable. The SQLIA test suites were created by analyzing
each vulnerable SQL statement and determining which SQLIA type
could be use to exploit the statement.

As Table 4 shows, only 20 of the 31 SQLIVs were determined to
be directly exploitable through attack string input. The other 11
SQLIVs, while vulnerable, were not directly exploitable through
the basic SQLIA techniques known. The 11 SQLIVs were nested in-
side of code where no input variables could reach the SQLIVs and
test the SQLIVs for security. However, if Nettrust was refactored,
then the SQLIVs could be tested for security. Additionally, only
one of the two convertible SQLIVs in Roller was determined to be
exploitable. The other SQLIV, while vulnerable, was not exploitable
through direct input SQLIAs.

When the functional integrity unit test suites were run on both
the original and converted projects for each study, both the original
and converted projects returned the same results for all tests. All
functional integrity unit test suites had 100% coverage of the SQLIV
code, which is the only code modified by the PSR-Algorithm. There-
fore, the replacement code in the converted project has functional
integrity.

When the SQLIA test suites were run on each original project, all
SQLIVs in each project were exploited. When the SQLIA test suites
were run on each converted project, none of the SQLIAs were suc-
cessful. The results of the SQLIA test suites show that each of the
SQLIVs was vulnerable. The result that none of the SQLIAs was suc-
cessful when being run on the converted projects demonstrates
that the PreparedStatements prevented SQL characters and
keywords from modifying the prepared statement structures. The
extent that the SQLIA test suites can validate the security of the
converted projects is that the PSR-Algorithm removed only the
tested vulnerabilities that were in the system. Table 5 shows the
overall test results of the studies, including the functional integrity
and security test results for both the original and converted
projects.

5.2.3. SQL statement logical equivalency

To test the equivalency of the PSR-Algorithm-generated code,
the queries executed by the MySQL!? database were logged for
the functional integrity test suite of both the original and converted
Nettrust, and the queries were compared. The queries executed by
both projects were equivalent with the exception of two distinctions.
The developers of Nettrust created the SQL statement:

‘‘delete from nyminfo where nyminfo.NymID=>’’ +
strNymID + ¢ ¢’ and BuddyID=’’’ + strBuddyID + €<’

which takes in the string strBuddyID for setting the Budd-
yID in the statement. However, when strBuddyID is null, the
SQL statement makes the null string a ‘nul1’ while Java’s Pre-
paredStatement, when taking in a null string, sets the input to
the SQL value NULL. Java’s PreparedStatement can set a

1 JUnit can be found at: http://www.junit.org.
12 MySQL can be found at: http://www.mysql.com/.


http://www.ngssoftware.com/papers/advanced_sql_injection.pdf
http://www.ngssoftware.com/papers/advanced_sql_injection.pdf
http://www.junit.org
http://www.mysql.com/

S. Thomas et al./Information and Software Technology 51 (2009) 589-598 597

Table 5
Summary of the results of the evaluative empirical studies

Project Test suite Original project Converted project
Nettrust Equivalency Passed Passed

Security 20 attacks successful No attacks successful
iTrust Equivalency Passed Passed

Security 24 attacks successful No attacks successful
WebGoat Equivalency Passed Passed

Security 7 attacks successful No attacks successful
Roller Equivalency Passed Passed

Security 1 attack successful Attack not successful

‘null’ as the PreparedStatement variable if strBuddyID is
passed in as a ‘null’. Additionally, when Java'’s Prepared-
Statement takes in a float that has the decimal value of zero,
Java's PreparedStatement will round the float to the integer
while Java’'s Statement leaves the .0 on the float. These two dis-
tinctions were found during the analysis of the logical equiva-
lency of the Nettrust queries.

5.2.4. Stanford SecuriBench analysis

To evaluate how well the solution presented in this paper works
on a well-known set of security test projects, we analyzed the Stan-
ford SecuriBench [19-23] to determine how the solution could se-
cure the set of test projects. The Stanford SecuriBench [19-23]
analysis is distinct from Study 1 through Study 4 since we were
able to analyze the results of the PSR-Algorithm in Study 1 through
Study 4 and the Stanford SecuriBench [19-23] analysis was only
intended to analyze the usability of the PSR-Algorithm. The Securi-
Bench [19-23] project set consists of eight projects: Blojsom,
BlueBlog, jboard, Pebble, PersonalBlog, Roller, SnipSnap, and Web-
Goat. Each test project was imported into the Eclipse IDE and the
FindBugs™ [14] Eclipse IDE plugin was run on each test project to
identify SQLIVs. Five of the test projects: BlueBlog, Blojsom, Pebble,
PersonalBlog, and SnipSnap, contained no SQLIVs. The project
jboard contained three SQLIVs; however, the SQLIVs were not con-
vertible since the SQLIVs used non-String Objects to combine
both the SQL structure and SQL input, which breaks the algorithm'’s
assumption that all SQL structure will be contained in raw String
data in Strings. Therefore, including the SQLIVs from Study 3
and Study 4, 9 out of the 16 SQLIVs in the Stanford SecuriBench
[19-23] set of projects were removed using the PSR-Algorithm.
Four of the SQLIVs were unconvertible because they were logic vul-
nerabilities, while three of the SQLIVs were unconvertible because
they were outside the assumptions and limitations of the PSR-
Algorithm.

6. Conclusion

In this paper, we presented the problem of SQLIVs and the un-
ique solution of using a prepared statement replacement algorithm
to remove the vulnerabilities. We also presented the algorithm de-
tails and the logic of the generated code. We conducted four case
studies to evaluate the algorithm and the conclusions drawn from
each study are also presented. Additionally, we presented the auto-
mated fix generator, the PSR-Generator, used to implement the
PSR-Algorithm, and the process of using the generator to convert
vulnerable source code files, successfully converting 94% of the
SQLIVs found in 20 files.

The main benefit of the PSR-Algorithm outlined in this paper is
that the SQLIVs are removed with minimal manual intervention.
The PSR-Algorithm only has to be used once to remove the SQLIV
and does not have to be integrated into the runtime environment,
unlike several of the existing solutions [4,6,7]. The PSR-Algorithm
has the benefit of consuming a small footprint: the generated

prepared statement code inserted into the existing source code.
Additionally, the solution is a systematic way of removing SQLIVSs.
Finally, the prepared statement generated code creates equivalent
queries for standard data as the original SQLIVs, except for the two
distinctions noted in Section 5.2.3. Further, the solution was devel-
oped to remove the method call producing the SQLIV, not modify
or remove any other lines of code, and inject the generated code
into the existing code. The PSR-Algorithm could be expanded be-
yond the current solution while implementing the solution in mul-
tiple languages. Additionally, any positive results gained through
the solution in Java, we expect that other languages could gain
similar results. The PSR-Algorithm also benefits from automated
fix generation as a way of implementing the prepared statement
replacement algorithm.

Acknowledgements

We would like to thank Rada Chirkova and Michael Gegick for
their contributions to this research. We would also like to thank
the NCSU Software Engineering Realsearch group for their careful
review and helpful suggestions for the paper. Funding for this re-
search was provided by the North Carolina State Center for Ad-
vanced Computers and Communications (CACC) and the National
Science Foundation.

References

[1] C. Anley, Advanced SQL Injection in SQL Server Applications, 2002, <http://
www.ngssoftware.com/papers/advanced_sql_injection.pdf>, accessed January
21, 2007.

[2] N. Audsley, I. Bate, S. Crook-Dawkins, Automatic code generation for airborne
systems, in: IEEE Aerospace Conference, New York, NY, 2003, pp. 6_2863-
6_2873.

[3] S. Barnum, G. McGraw, Knowledge for software security, Security and Privacy
Magazine, IEEE 3 (2) (2005) 74-78.

[4] M. Bordin, T. Vardanega, Real-time Java from an automated code generation
perspective, in: International Workshop on Java Technologies for Real-Time
and Embedded Systems, Vienna, Austria, 2007, pp. 63-72.

[5] RE. Bryant, S. Jha, T.W. Reps, S.A. Seshia, V. Ganapathy, Automatic discovery of
API-level exploits, in: 27th International Conference on Software Engineering
(ICSE'05), St. Louis, MO, 2005, pp. 312-321.

[6] G. Buehrer, B.W. Weide, P.A.G. Sivilotti, Using parse tree validation to prevent
SQL injection attacks, in: 5th International Workshop on Software Engineering
and Middleware, Lisbon, Portugal, 2005, pp. 106-113.

[7] Y. Cheon, G.T. Leavens, A simple and practical approach to unit testing: the JML
and JUnit way, in: 16th European Conference on Object-Oriented
Programming, Spain, 2002, p. 29.

[8] D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Riccardi, T. Westmann, ]. Carey,
A. Sundararajan, The BEA streaming XQuery processor, The VLDB Journal 13 (3)
(2004) 294-315.

[9] W.GJ. Halfond, A. Orso, AMNESIA: analysis and monitoring for
NEutralizing SQL-injection attacks, in: 20th IEEE/ACM International
Conference on Automated Software Engineering, Long Beach, CA, USA,
2005, pp. 174-183.

[10] W.GJ. Halfond, A. Orso, Combining static analysis and runtime monitoring to
counter SQL-injection attacks, in: Third International Workshop on Dynamic
Analysis, St. Louis, MO, 2005, pp. 1-7.

[11] W.GJ. Halfond, A. Orso, P. Manolios, Using positive tainting and syntax-aware
evaluation to counter SQL-injection attacks, in: 14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, Portland,
Oregon, 2006, pp. 175-185.

[12] W.G.]. Halfond, A. Orso, P. Manolios, WASP: protecting web applications using
positive tainting and syntax-aware evaluation, IEEE Transactions on Software
Engineering 34 (1) (2008) 65-81.

[13] W.G.J. Halfond, J. Viegas, A. Orso, A classification of SQL-injection attacks and
countermeasures, in: International Symposium on Secure Software
Engineering Raleigh, NC, USA, 2006.

[14] D. Hovemeyer, W. Pugh, Finding bugs is easy, in: 19th Annual ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and
Applications, Vancouver, BC, Canada, 2004, pp. 92-106.

[15] M. Howard, D. LeBlanc, Writing Secure Code, second ed. Microsoft
Corporation, Redmond, 2003.

[16] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, S.-Y. Kuo, Securing web
application code by static analysis and runtime protection, in: 13th
International Conference on World Wide Web, New York, NY, 2004, pp.
40-52.

[17] G. Keizer, One-at-a-time Hacker Grabs 22,000 IDs from University of Missouri,
first ed., Retrieved Issue 1, vol. 1, 2007, <http://computerworld.com/action/


http://www.ngssoftware.com/papers/advanced_sql_injection.pdf
http://www.ngssoftware.com/papers/advanced_sql_injection.pdf
http://computerworld.com/action/article.do?command=viewArticleBasic&amp;taxonomyName=cybercrime_and_hacking&amp;articleId=9018982&amp;taxonomyId=82&amp;intsrc=kc_top

598 S. Thomas et al. /Information and Software Technology 51 (2009) 589-598

article.do?command=viewArticleBasic&taxonomyName=cybercrime_and_
hacking &articleld=9018982&taxonomyld=82&intsrc=kc_top>, accessed June
30, 2008.

[18] J. Kirk, Databases Assaulted by SQL Injection Attacks, first ed., Retrieved Issue
1, Volume 1, 2006, <http://www.cio.com/article/23133/Databases_Assaulted_
by_SQL_Injection_Attacks>, accessed June 30, 2008.

[19] M.S. Lam, ]. Whaley, V.B. Livshits, M. Martin, D. Avots, M. Carbin, C. Unkel,
Context-sensitive program analysis as database queries, in: Principles of
Database Systems (PODS), Baltimore, Maryland, 2005, p. 12.

[20] B. Livshits, Defining a set of common benchmarks for web application security,
in: Workshop on Defining the State of the Art in Software Security Tools,
Baltimore, 2005, p. 1.

[21] V.B. Livshits, Findings security errors in Java applications using lightweight
static analysis, in: Computer Security Applications Conference, Tucson, AZ,
2004, p. 2.

[22] V.B. Livshits, M.S. Lam, Finding security vulnerabilities in Java applications
with static analysis, in: 14th Usenix Security Symposium, Baltimore, MD,
2005, pp. 271-286.

[23] M. Martin, V.B. Livshits, M.S. Lam, Finding application errors and security flaws
using PQL: a program query language, in: 20th ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications, San Diego, CA,
2005, p. 19.

[24] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, D. Evans, Automatically
hardening web applications using precise tainting, in: 20th IFIP International
Information Security Conference, Chiba, Japan, 2005, p. 12.

[25] NIST, National Vulnerability Database, 2007, <http://nvd.nist.gov/>, accessed
January 16, 2007.

[26] Z. Su, G. Wassermann, The essence of command injection attacks in web
applications, in: 33rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Charleston, SC, USA, 2006, pp. 372-382.


http://computerworld.com/action/article.do?command=viewArticleBasic&amp;taxonomyName=cybercrime_and_hacking&amp;articleId=9018982&amp;taxonomyId=82&amp;intsrc=kc_top
http://computerworld.com/action/article.do?command=viewArticleBasic&amp;taxonomyName=cybercrime_and_hacking&amp;articleId=9018982&amp;taxonomyId=82&amp;intsrc=kc_top
http://www.cio.com/article/23133/Databases_Assaulted_by_SQL_Injection_Attacks
http://www.cio.com/article/23133/Databases_Assaulted_by_SQL_Injection_Attacks
http://nvd.nist.gov/

	On automated prepared statement generation to remove SQL injection vulnerabilities
	Introduction
	Background
	SQL structure
	SQL Injection injection attacks (SQLIAs)
	SQL injection vulnerabilities (SQLIVs)
	Prepared statements

	Related work
	SQLIA risk mitigation solutions

	Prepared statement replacement algorithm
	Algorithm-generated code structure
	Algorithm details
	The PSR-algorithm PSR-Algorithm implementation
	Assumptions and limitations
	Code analysis assumptions and limitations
	Language specific assumptions and limitations

	Empirical studies
	SQLIA types
	Evaluative empirical studies
	Study setups
	Functional integrity and security unit testing
	SQL statement logical equivalency
	Stanford securibench SecuriBench analysis


	Conclusion
	AcknowledgementAcknowledgements
	References


