
GDsmith: Detecting Bugs in Cypher Graph Database Engines
Ziyue Hua

2201111637@stu.pku.edu.cn

Peking University

Beijing, China

Wei Lin

linwei@stu.pku.edu.cn

Peking University

Beijing, China

Luyao Ren

rly@pku.edu.cn

Peking University

Beijing, China

Zongyang Li

lizongyang@stu.pku.edu.cn

Peking University

Beijing, China

Lu Zhang

zhanglucs@pku.edu.cn

Peking University

Beijing, China

Wenpin Jiao

jwp@sei.pku.edu.cn

Peking University

Beijing, China

Tao Xie
∗

taoxie@pku.edu.cn

Peking University

Beijing, China

ABSTRACT
Graph database engines stand out in the era of big data for their

efficiency of modeling and processing linked data. To assure high

quality of graph database engines, it is highly critical to conduct

automatic test generation for graph database engines, e.g., random

test generation, the most commonly adopted approach in practice.

However, random test generation faces the challenge of generating

complex inputs (i.e., property graphs and queries) for producing

non-empty query results; generating such type of inputs is impor-

tant especially for detecting wrong-result bugs. To address this

challenge, in this paper, we propose GDsmith, the first approach

for testing Cypher graph database engines. GDsmith ensures that

each randomly generated query satisfies the semantic requirements.

To increase the probability of producing complex queries that re-

turn non-empty results, GDsmith includes two new techniques:

graph-guided generation of complex pattern combinations and data-

guided generation of complex conditions. Our evaluation results

demonstrate that GDsmith is effective and efficient for producing

complex queries that return non-empty results for bug detection,

and substantially outperforms the baselines. GDsmith successfully

detects 28 bugs on the released versions of three highly popular

open-source graph database engines and receives positive feedback

from their developers.

CCS CONCEPTS
• Information systems→ Database query processing; • Soft-
ware and its engineering→ Software testing and debugging.

∗
Tao Xie is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0221-1/23/07. . . $15.00

https://doi.org/10.1145/3597926.3598046

KEYWORDS
Graph database systems; Differential testing; Cypher

ACM Reference Format:
Ziyue Hua, Wei Lin, Luyao Ren, Zongyang Li, Lu Zhang, Wenpin Jiao,

and Tao Xie. 2023. GDsmith: Detecting Bugs in Cypher Graph Database

Engines. In Proceedings of the 32nd ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA ’23), July 17–21, 2023, Seattle, WA,
United States. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/

3597926.3598046

1 INTRODUCTION
In recent years, graph database engines have been widely used in

database applications from various domains, such as knowledge

reasoning systems [26] and recommender systems [12, 23]. Graph

database engines use the model of labeled property graph [28] (in

short as property graph) or the Resource Description Framework

(RDF) graph model [1] to represent and store data. As a well-known

representative of graph database engines, Neo4j [15] has long been

ranked the first in the DB-Engine Ranking [25] (which ranks graph

database engines monthly based on their popularity). Over 800

enterprise customers, including over 75% of Fortune 100 compa-

nies [25], use Neo4j. Although there is currently no query language

standard for graph database engines, it is generally believed that

Cypher [8, 9], originally contributed by Neo4j, is the most widely

adopted query language specially designed for graph database en-

gines because of Neo4j’s overwhelming market share [16]. As an

open query language, Cypher is now used by over 10 other graph

database engines (e.g., RedisGraph [17] and Memgraph [14]) and

tens of thousands of developers [16]. Some graph database engines

that natively support other graph query languages (e.g., Grem-

lin [7]) are also compatible with Cypher queries via translation

tools (e.g., Cypher for Gremlin [6]).

Like other software systems, graph database engines contain

bugs, falling into two main categories. (1) Crash bugs. Crash bugs

can cause uncaught exceptions to be thrown during query execution.

When these bugs are triggered, the users of the database engines are

usually informed by error messages given by the database engines.

(2)Wrong-result bugs.Wrong-result bugs can cause incorrect return

https://doi.org/10.1145/3597926.3598046
https://doi.org/10.1145/3597926.3598046
https://doi.org/10.1145/3597926.3598046

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Ziyue Hua, Wei Lin, Luyao Ren, Zongyang Li, Lu Zhang, Wenpin Jiao, and Tao Xie

value of queries to be generated during or after query execution.

Compared to crash bugs, wrong-result bugs can happen silently

without any message given to the users.

To detect bugs in Cypher graph database engines, one can gen-

erate test inputs consisting of two parts shown in Figure 1. (1)

A property graph (which stores data in a structured way) is a

directed graph consisting of labeled entities (i.e., nodes and rela-
tionships)1 and properties on these entities. A relationship encodes

a directed connection between exactly two nodes. A property is

a pair consisting of a property key and a property value (which

is an instantiation of one of Cypher’s types such as STRING). (2)

Cypher queries are built up using various clauses for query-

ing the property graph by subgraph pattern matching and data

manipulation [16]. In each Cypher query, clauses are chained to-

gether, and a clause feeds an intermediate result table to the next

clause in the chain. For example, the MATCH clause in Figure 1 re-

trieves all subgraphs (in the property graph) that match the pattern

(user:User)-[r1:FRIEND]-()-[r2:FRIEND]-(fof). The retrieved data

is then passed to the next WHERE clause as a table of matching re-

sults. The WHERE clause then manipulates the received table by fil-

tering away all lines (in the table) that do not satisfy the condition

user.name = ‘Bob’. The last part of the Cypher query is a RETURN

clause, which returns the final data to the users.

When test generation is conducted for graph database engines,

it is important to generate complex inputs (property graphs and

queries) for producing non-empty query results, especially when

aiming to detect wrong-result bugs, for two main reasons. First, a

high ratio of queries returning empty results reduce the ability for

findingwrong-result bugs. Specifically, exposing awrong-result bug

based on a functional-correctness oracle (e.g., differential oracle [13]

and metamorphic oracle [4]) requires wrong internal states to be

propagated to a query’s return value. However, empty-result queries

stop the propagation chain in its last phase and result in a trivial

empty result. Second, testing effectiveness can be enhanced with

automatically generated complex test inputs (property graphs and

queries). Graph database engines fall into the type of software

systems that have inputs with semantic richness. For this type

of systems, complex inputs can explore atypical combinations of

features or atypical code that is important but underrepresented in

manually written test suites [30].

However, it is challenging for the commonly used random test

generation approaches [10, 24, 31], which generate property graphs

and queries separately without prior knowledge of each other, to

generate a high ratio of non-empty-result queries for two main

reasons. First, randomly generated pattern combinations in queries

are hard to be matched in a randomly generated property graph.

For example, the pattern combination

(n0:L1)-[r1:T0]->(n2)<-[r3:T1]-(n4:L2), (n2)<-[r4:T2]-(n5:L2)

(fetched from a minimized query that triggers a wrong-result bug

of RedisGraph [17]) describes a subgraph consisting of 4 nodes and

3 relationships with labels and relationship types. Such a complex

pattern combination is hard to be matched in a randomly generated

property graph. Second, complex conditions can easily become

unsatisfiable for a property graph. A randomly generated complex

1
A node may be assigned with a set of unique labels, whereas a relationship is assigned
with exactly one relationship type.

3URSHUW\�*UDSK

User

name = 'Bob'

User

name = 'Jay'

User

name = 'Tom'

FRIEND FRIEND

/DEHO

5HODWLRQVKLS�7\SH

3URSHUW\�.H\ 3URSHUW\�9DOXH

1RGH

5HODWLRQVKLS

�
&\SKHU�4XHU\

MATCH (user:User)-[r1:FRIEND]-()-[r2:FRIEND]-(fof)
WHERE user.name = 'Bob' RETURN fof.name AS fofName;

Figure 1: An example property graph (containing three User

nodes and two FRIEND relationships) and a Cypher query (find-
ing friends of friends of Bob).

condition can be perpetually false if it contains contradictory sub-

conditions such as x > 0 and x < 0. Even if the value of a condition

with variables can be true given a specific set of variable values

(e.g., for condition x > 0 and x < 2, if we assign x to 1, the value

of the condition is true), it is still possible that the property graph

contains no such set of values.

To address the aforementioned challenge, in this paper, we pro-

pose GDsmith, the first automated approach, consisting of two

main techniques, for testing Cypher graph database engines. (1)

Graph-guided generation of complex pattern combinations.
To generate complex pattern combinations while preserving a high

ratio of non-empty-result queries, GDsmith uses the graph informa-

tion as guidance for pattern generation in queries. Specifically, we

record a graph that we generate and extract patterns from it. Then

wemutate the extracted patterns and use them for query generation.

(2) Data-guided generation of complex conditions. Conditions
are the root boolean expressions in WHERE clauses. To generate com-

plex satisfiable query conditions, GDsmith conducts static query

analysis during the generation process of queries. Specifically, GD-

smith maintains a value table that records the value of each query

variable at each generation point. GDsmith then uses constraints

for expression generation to ensure that the value of each condition

expression is true for the recorded variable values (meaning that

the recorded variable values are not filtered away by any WHERE

clause).

We implement GDsmith to detect bugs in three highly popular

graph database engines (Neo4j [15], RedisGraph [17], and Mem-

graph [14]), detecting 28 bugs on their released versions. Among

the 28 detected bugs, 23 are confirmed by the developers of the

corresponding engines and 14 are already fixed. The developers

of all the three graph database engines have replied that our work

contributes to their development. The positive feedback from the

developers also shows GDsmith’s high value in practice. We further

evaluate the effectiveness of GDsmith’s non-empty-result strat-

egy. Our experimental results show that compared to the baseline

GDsmith: Detecting Bugs in Cypher Graph Database Engines ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

(which adopts random test generation), GDsmith detects 50% more

failures in 12 hours and achieves a higher non-empty-result ratio.

This paper makes the following main contributions:

• GDsmith. The first approach of automated test generation

for detecting bugs in Cypher graph database engines.

• Techniques. Two techniques for generating complex in-

puts, achieving a high ratio of non-empty-result queries and

increasing the efficiency in finding wrong-result bugs.

• Evaluations. Evaluation results for demonstratingGDsmith’s

effectiveness (substantially outperforming the baseline) and

practicability (successfully detecting 28 bugs).

• Implementation. GDsmith’s tool source code being pub-

licly available at https://github.com/ddaa2000/GDsmith.

2 BACKGROUND AND MOTIVATION
In this section, we first introduce the graph model and query lan-

guage used in Cypher graph database engines. Then we illustrate

the motivation for our work.

2.1 Graph Model in Cypher Databases
Cypher graph database engines adopt the Property Graph Model
for graph storage and query execution. All data in a Cypher graph

database engine is represented and stored as property graphs. A
property graph is defined as a directed, vertex-labeled, edge-labeled

multigraph with self-edges [16]. The Property Graph Model lever-

ages the term node to denote a vertex and the term relationship to

denote an edge. Each node contains a set of unique labels (tokens
that are used to describe the type of a node) while each relationship

contains exactly one relationship type (a token that is used to de-

scribe the type of a relationship). Both nodes and relationships are

entities in the Property Graph Model and can hold a set of prop-
erties (key-value pairs that hold the data of node or relationship

entities).

To further understand the aforementioned concepts, we take

the property graph in Figure 1 as an example. The property graph

contains three different nodes with the same label and two different

relationships with the same relationship type. Each node in the

property graph contains a label User, which indicates that each

node represents an instance of the User entity. A relationship with

a relationship type FRIEND from node A to node B represents that

UserA is a friend of UserB. Each nodewith a User label also contains

a string property name, which stores the name of the corresponding

User instance.

This example can also be described by the Entity-Relationship

Model [3] (E-R model) and stored by relational tables. Specifically,

we can define an E-R model with one E-R entity User that con-

tains a property name and an E-R relationship FRIEND2. However, for

some complicated situations, the E-R model and tables in relational

databases cannot elegantly represent equivalent data structures

described by the Property Graph Model. Specifically, the Property

Graph Model is a schema-less data model. Each node in a property

graph can be assigned with zero to more than one label. The labels

and properties of a node are decoupled, meaning that each node

2
As the terms “entity” and “relationship” are used in both the E-R model and the

Property Graph Model, we use E-R entity to represent a entity in the E-R model and

E-R relationship to represent a relationship in the E-R model.

with any set of labels can contain any set of properties. Any number

of relationships with any kind of relationship type are allowed to

connect between two arbitrary nodes.

The schema-less design of the Property Graph Model signifi-

cantly increases the complexity and flexibility of data organization

in graph database engines compared with relational databases. In

relational databases, data is represented and stored as table records.

The records in the same table are homogeneous. Such records have

the same set of properties and use the same set of foreign keys as

the reference to records in other tables. However, in graph database

engines using the Property Graph Model, nodes with the same

set of labels can be heterogeneous. Such nodes can have different

sets of properties and may connect to relationships with different

relationship types. Therefore, tools for testing relational databases

are unable to fully utilize the features of the Property Graph Model.

In addition, such complexity and flexibility increase the difficulty of

generating non-empty queries. We further illustrate such difficulty

in Section 2.2.

2.2 The Cypher Query Language
The Cypher query language adopts pattern matching to retrieve

subgraphs from a property graph. A pattern is a special expres-

sion consisting of node and relationship variables (denoted as pat-

tern variables). With a pattern, one can describe a shape of sub-

graphs satisfying some constraints, which are defined over labels,

relationship types, and property values. For example, the pattern

(n0:L1)-[r0]->(n1 {name:‘Bob’}) contains two node variables n0,

n1 and a relationship variable r0. It describes a subgraph with two

nodes n0, n1 and one relationship r0 from n0 to n1where n0 contains

label L1 and n1 contains a property name with value ‘Bob’.

One basic Cypher query is composed of a sequence of clauses

(some complex Cypher queries may contain multiple sequences

of clauses) and the clauses execute sequentially. Each clause takes

the property graph and a table of intermediate results from the

previous clause as inputs and outputs a new table of intermediate

results to the next clause. Each column of a table represents one

variable of the query and each line of the table represents one set

of values for each variable.

A MATCH clause is used for pattern matching in Cypher. A MATCH

clause contains a tuple of patterns that jointly describe a subgraph.

It retrieves all the subgraphs that match the pattern tuple from

the property graph in a graph database, and passes the retrieved

subgraphs as a table (each node or relationship variable forms a

column and each subgraph is represented as a line) to the next

clause. For example, the following MATCH clause contains a pattern

tuple with two patterns:

MATCH (n0:L1)-[r0]->(n1:L2), (n0)-[r1]->(n2:L3)

The preceding MATCH clause describes a subgraph consisting of

three nodes (n0, n1, and n2) and two relationships (r0 and r1). Cypher

allows one node variable to appear multiple times in the patterns

of a query and regards them as the same subgraph node. In this

example, the node variable n0 is shared in both patterns so the

MATCH clause refers to a subgraph where a node n0 with label L1 is

https://github.com/ddaa2000/GDsmith

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Ziyue Hua, Wei Lin, Luyao Ren, Zongyang Li, Lu Zhang, Wenpin Jiao, and Tao Xie

connected to two nodes n1 and n2 through two relationships r0 and

r1, respectively.

For multiple MATCH clauses in the same query, the subgraphs are

matched one by one and the results are joined using a subset of their

Cartesian product based on their shared variables. For example, the

following clause sequence contains two clauses:

MATCH (n0:L1)-[r0]->(n1:L2), (n0)-[r1]->(n2:L3)
MATCH (n1)-[r2]->(n3:L4)

The first clause retrieves the same table of subgraphs matched

by the previous example. Then, the second clause gets a table of

subgraphs matched by the pattern (n1)-[r2]->(n3:L4). Then, sim-

ilar to the inner-join operation of SQL, the two tables are joined

based on n1 because n1 is the pattern variable that they both share.

In addition to pattern matching, Cypher leverages some other

clauses to manipulate data. The most commonly used two clauses

are WHERE and WITH clauses. A WHERE clause uses a Boolean expression

as the condition to filter the lines in the table. For example, a WHERE

clause WHERE n0.name = ‘Bob’ checks every line in the table and

returns only the lines where the value of column n0 contains a

property name that has the value being equal to ‘Bob’. A WITH clause

is used to map the columns of the table to a new set of columns. For

example, a WITH clause WITH n0.x * n0.x as square maps a table

with column n0 to a table with one column square. Each line in the

new table contains a value square that is equal to the square value

of n0.x in a line in the previous table.

Pattern-matching operations of Cypher queries have a similar

role to table-join operations in SQL queries, especially table-joining

operations based on keys. Both of the two kinds of operations are

designed to combine sets of homogeneous data. However, due to

the complexity and flexibility of the data representation of the

Property Graph Model, the space of valid property graphs and valid

pattern combinations are relatively large compared with tables.

Therefore, given the same limit of data size, the distribution of

homogeneous data (e.g., subgraphs that can be matched by the

same pattern) in randomly generated property graphs can be sparse,

reducing the probability of generating non-empty-result queries.

Although one can add constraints for property graphs and queries,

such constraints reduce the expressiveness of property graphs and

Cypher queries.

2.3 Differential Testing of Graph Database
Engines

Differential testing [13] is a widely adopted technique in software

testing. The idea of differential testing is that, if a single specification

has multiple deterministic implementations, all of these implemen-

tations should produce the same output when given the same valid

input. Consequently, if different implementations produce two or

more distinct outputs, at least one of the implementations violates

the specification.

When leveraging differential testing to test Cypher graph data-

base engines, at least two instances should be provided. The in-

stances used for output comparison can belong to different engines,

the same engine with different versions, or different configurations.

The inputs of a graph database engine can be defined as a property

graph and a query to manipulate the graph. The outputs include the

property graph after query execution and the results of the query.

To meet the principles of differential testing, the inputs provided

to database engines should be deterministic, valid, and identical.

Therefore, the queries should be syntactically and semantically

valid and contain only deterministic features with no undefined

behaviors of the Cypher Query Language specification.

2.4 Motivation
To detect bugs in graph database engines, one can generate property

graphs and queries as test inputs and use test oracles to check the

behavior of graph database engines.

For exception and crash bugs, one can easily detect them by

catching the exceptions of query execution and monitoring crash

messages of databases. For wrong-result bugs, it is not easy to get

the ground-truth execution result of a query because of the rich

semantics of the database query language. Instead, one can adopt

functional-correctness oracles such as cross-database differential

oracles [13] or metamorphic oracles [4] to indirectly search for

wrong results based on the relationship between different inputs.

However, even if an error (i.e., wrong inner state) occurs during

the execution of a query, the error does not necessarily produce a

failure that can be detected by a functional-correctness oracle. The

reason is that a wrong inner state in the database engine may not

be propagated to the result of the query. Empty-result queries can

easily cause such cases. First, empty-result queries usually have

empty intermediate data, which can easily eliminate the effect of

later data manipulation operations in database queries. For example,

for the Cypher query MATCH (n0) WITH n0.val1 * 10 - n0.val2

as a0 RETURN a0, if the property graph is empty (which makes

the query return an empty result), the MATCH clause in the query

produces an empty table (intermediate data). Therefore, the effect

of data manipulation operations in the WITH clause is eliminated

because there is no node that can be matched by n0. Second, empty-

result queries can erase wrong intermediate data. For example, for

the Cypher query MATCH (n0) WITH n0.val1 * 10 - n0.val2 as a0

MATCH (n0)-[r]->(n1) RETURN a0, if the property graph contains

no relationship (which makes the query return an empty result)

and the WITH clause produces a wrong value of a0, the second MATCH

clause maps the result to an empty table, and the wrong value is

not propagated to the RETURN clause.

Generating complex test inputs is a strategy widely used for

databases and other complex software systems that have inputs

with semantic richness (e.g., compilers) [30]. One possible reason for

the effectiveness of this strategy is that complex inputs can explore

atypical combinations of input features in such software system and

cover atypical paths that are not unimportant but underrepresented

in manually written test suites of the software system [30].

However, it is challenging to generate complex test inputs while

preserving a high non-empty-result query ratio for graph data-

base engines. For graph database engines, the test inputs include

property graphs and queries for manipulating the property graphs.

More complex queries usually contain more constraints (over prop-

erty graphs) that are hard to be satisfied. Therefore, generating

property graphs and queries separately without prior knowledge

of each other can easily lead to a low non-empty-result query ratio.

GDsmith: Detecting Bugs in Cypher Graph Database Engines ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

Algorithm 1 The top-level algorithm of GDsmith

Input: 𝐷𝑎 : one instance of a graph database engine; 𝐷𝑏 : the other

instance of a graph database engine; 𝑁𝑔 : the maximum number

of newly generated queries.

Output: 𝐵: bug reports.
1: while the timeout does not exceed do
2: 𝑆 ← GeneratePropertyGraphSchema(𝐷𝑎, 𝐷𝑏)

3: 𝐺 ← GeneratePropertyGraph(𝑆, 𝐷𝑎, 𝐷𝑏)

4: 𝐵 ← ∅
5: 𝑖 ← 0

6: while 𝑖 < 𝑁𝑔 do
7: 𝑄 ← GenerateCypherQuery(𝑆,𝐺)

8: 𝑅𝑎 ← ExecuteCypherQuery(𝑄,𝐷𝑎)

9: 𝑅𝑏 ← ExecuteCypherQuery(𝑄, 𝐷𝑏)

10: if 𝑅𝑎 ≠ 𝑅𝑏 or an exception is caught then
11: 𝐵 ← 𝐵 ∪ < 𝐺,𝑄 >

12: end if
13: 𝑖 ← 𝑖 + 1
14: end while
15: end while
16: return 𝐵

For graph database engines, the large input space of valid prop-

erty graphs and valid pattern combinations makes it even harder

to generate non-empty-result queries compared with relational

databases.

3 APPROACH
We propose GDsmith, the first automated approach for testing

Cypher graph database engines. GDsmith is black-box, portable,

and compatible without any requirement of code instrumentation.

Given multiple different instances of graph database engines un-

der test, GDsmith automatically outputs test inputs, each of which

includes both a property graph and multiple Cypher queries. GD-

smith leverages differential testing [13] to detect whether a bug

is triggered (with a test oracle) regardless of crashing or not. For

example, GDsmith users can use cross-engine (i.e., comparing re-

sults fetched by different graph database engines), cross-version

(i.e., comparing results fetched by different versions of the same

graph database engine), or cross-optimization (i.e., comparing re-

sults fetched by different query options on the same graph database

engine) differential oracles.

The overall algorithm of GDsmith is shown in Algorithm 1. In

particular, GDsmith generates test inputs through a four-step iter-

ation. First, GDsmith randomly generates a database schema that

defines the set of labels and properties in the property graph (Line 2,

shown in Section 3.1). Second, GDsmith randomly generates a prop-

erty graph and feeds it into the graph database engine instances

under test (Line 3, shown in Section 3.1). GDsmith also stores the

property graph for later query generation. Third, GDsmith gen-

erates semantically valid Cypher queries based on the guidance

of the property graph (Line 7, shown in Section 3.2). GDsmith en-

sures that each query is deterministic, valid, and has no undefined

behaviors; thus, all properly implemented graph database engine

instances should return the same results. Fourth, GDsmith executes

the generated queries on each engine instance and records the re-

sults returned by each engine instance (Lines 8 and 9). In the end,

if a discrepancy between results is found or an exception of any

graph database engine is caught, GDsmith generates a bug report

including the property graph and Cypher queries that trigger the

bug (Lines 10-12, shown in Section 3.3). In the rest of this section,

we illustrate the details of these steps.

3.1 Schema and Property Graph Generation
In each iteration, GDsmith first randomly generates a property

graph schema. A property graph schema defines the labels, the

relationship types, and the properties on the labels and the relation-

ship types [11]. In particular, GDsmith randomly generates a set

of labels and a set of relationship types (the maximum size of each

set is predefined by the GDsmith users). Each label or relationship

type has a unique name and a set of associated properties
3
. GD-

smith generates a unique name and a data type for each property.

Additionally, GDsmith randomly generates a set of constant values

as the possible values for each property.

GDsmith then randomly generates a property graph and feeds it

into each graph database engine instance under test. Specifically,

GDsmith first generates a set of nodes with labels and properties.

Each node is randomly given zero to many labels. GDsmith then

randomly adds properties to the nodes. Note that each node contains

only a subset of the properties that are determined by its labels.

GDsmith randomly generates relationships for the property graph

by randomly selecting node pairs and adding a relationship between

the nodes in each pair. GDsmith finally adds exactly one relationship

type and multiple properties to each relationship using the same

way as node generation.

3.2 Query Generation
GDsmith includes a grammar-based generator for query generation.

The goal of the generator is to generate a set of semantically valid

queries with a high non-empty result ratio. To ensure the semantic

validity of queries, GDsmith uses a set of built-in rules to ensure

that the generated queries are both syntactically correct and se-

mantically valid. To increase the non-empty result ratio of queries,

for the generation of patterns, GDsmith uses the graph recorded

in the graph generation step to guide the generation of patterns.

For the generation of conditions, GDsmith conducts static query

analysis during the generation process to generate conditions that

can be satisfied by the data in the property graph.

3.2.1 Overview of theQuery Generation Process. GDsmith includes

a two-step technique to generate a query. Figure 2 outlines the

generation process. First, GDsmith randomly generates a Cypher

skeleton. We refer to a clause sequence with uninstantiated parts

(e.g., patterns and expressions) as a Cypher skeleton. Specifically, a

Cypher skeleton can be considered as a language L𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛 gener-

ated by the grammar shown in Table 1. The grammar of Cypher

skeletons is consistent with the Cypher syntax except that each

uninstantiated part 𝑝 is denoted as ⃝𝑝 .

3
Although the Property Graph Model is a schema-less data model, and the labels and

relationship types are decoupled with the properties, the implementation of some

graph databases still requires a pre-defined schema where the properties of each label

or relationship type are defined using special schema building queries.

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Ziyue Hua, Wei Lin, Luyao Ren, Zongyang Li, Lu Zhang, Wenpin Jiao, and Tao Xie

Figure 2: The overview of query generation

Table 1: Core grammar of Cypher skeletons

skeleton ::= RETURN ret [ORDER BY {⃝𝑜 }] [SKIP ⃝𝑠] [LIMIT ⃝𝑙] | clause skeleton
ret ::= * | {⃝𝑟 [AS ⃝𝑎]}

clause ::= [OPTIONAL] MATCH {⃝𝑚 } [WHERE ⃝𝑤] | WITH ret [WHERE ⃝𝑤] [ORDER BY {⃝𝑜 }] [SKIP ⃝𝑠] [LIMIT ⃝𝑙]

| UNWIND ⃝𝑢 [AS ⃝𝑎]

Algorithm 2 The GenPatterns function

Input: 𝐺 : the property graph.

Output: 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 : the patterns that can be used to complete skele-

tons; 𝑉𝑎𝑙𝑠 : the initial values of entity variables.

1: function GenPatterns(𝐺)

2: 𝑖 ← 0

3: 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 ← ∅
4: 𝑉𝑎𝑙𝑠 ← ∅
5: while 𝑖 < 𝑀𝑎𝑥𝑅𝑒𝑔𝑖𝑜𝑛𝑁𝑢𝑚𝑏𝑒𝑟 do
6: 𝑟𝑒𝑔𝑖𝑜𝑛 ← Randomly get one region (connected sub-

graph) from 𝐺

7: 𝑚 ← NewVars(𝑟𝑒𝑔𝑖𝑜𝑛)

8: 𝑉𝑎𝑙𝑠 ← GetVals(𝑚) ∪ 𝑉𝑎𝑙𝑠
9: 𝑗 ← 0

10: while 𝑗 < 𝑀𝑎𝑥𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝐼𝑛𝑅𝑒𝑔𝑖𝑜𝑛 do
11: 𝑔← ExtractSimpleSubgraph(𝑟𝑒𝑔𝑖𝑜𝑛)

12: 𝑝 ← TranslateToPattern(𝑔,𝑚)

13: 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 ← 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 ∪ {𝑝}
14: 𝑗 ← 𝑗 + 1
15: end while
16: 𝑖 ← 𝑖 + 1
17: end while
18: return 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠,𝑉𝑎𝑙𝑠
19: end function

Second, GDsmith completes the patterns and expressions in the

skeleton according to the semantics of Cypher. To ensure the se-

mantic validity of queries, GDsmith uses a set of built-in rules over

value types and variable life cycles during generation. To increase

the non-empty result ratio of queries, for the generation of patterns,

GDsmith uses the graph recorded in the graph generation step to

guide the generation of patterns while for the generation of expres-

sions, GDsmith conducts static query analysis during the generation

process to generate condition expressions that are satisfiable.

3.2.2 Graph-guided Pattern Generation. In this subsection, we de-

scribe the pattern generation algorithm of GDsmith. The main goal

of this algorithm is to generate pattern combinations that match

at least one set of subgraphs in the generated property graph. In

addition, we try to generate diverse pattern combinations that have

both patterns with shared entity variables (such patterns together

describe a complex connected subgraph) and patterns with isolated

entity variables (such patterns describe subgraphs unrelated to each

other).

To achieve our goal, the conceptual idea of GDsmith is to select

multiple self-connected subgraphs (we refer to such self-connected

subgraphs as regions), and construct patterns by mapping the nodes

and relationships into entity variables. The sets of entity variables

between regions are disjointed so only the patterns constructed

from the same region share common entity variables.

Algorithm 2 outlines the process of pattern generation. In each

iteration (Lines 5-17), GDsmith randomly extracts a region from

the property graph 𝐺 (Line 6). GDsmith then creates a new entity

variable for each node or relationship in the region, and uses𝑚 to

record the mapping from these entities to entity variables (Line 7).

GDsmith then randomly extracts simple subgraphs from the region

(Line 11). We refer to subgraphs that can be directly represented by

one Cypher pattern as simple subgraphs. GDsmith then translates

each simple subgraph to a pattern 𝑝 (Line 12). Specifically, the struc-

ture of the simple subgraph is represented with the corresponding

entity variables in𝑚. The labels and relationship types of the nodes

and relationships in the subgraph are added as constraints in the

pattern.

Figure 3 gives an example of translating simple subgraph 𝑔 to

pattern 𝑝 . Suppose that 𝑔 has two nodes N0 and N1, and one rela-

tionship R0 from N0 to N1, and𝑚 records that entity variables n0,

n2, and r5 are used to represent N0, N1, and R0, respectively. The

function 𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑇𝑜𝑃𝑎𝑡𝑡𝑒𝑟𝑛 first reads 𝑔 to determine that the

structure of 𝑔 should be represented by a pattern with the struc-

ture (?)-[?]->(?) or (?)<-[?]-(?). Suppose that the first pattern

structure is selected, the function then fills in the pattern with en-

tity variables n0, r5, and n2, and gets (n0)-[r5]->(n2). Finally, the

GDsmith: Detecting Bugs in Cypher Graph Database Engines ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

R0

L0 L0
N0 N1

g

p(n0:L0) - [r5:T0] -> (n2:L2)

N0->n0
N1->n2
R0->r5
R1->r2...

m
T0

p TranslateToPattern(g,m)

Figure 3: Example of TranslateToPattern

Algorithm 3 The GenExpr function

Input: 𝑐: a constraint that the generated expression needs to sat-

isfy;𝑉𝑎𝑙𝑠 : the value table of variables; 𝑡𝑦𝑝𝑒 : the expected value

type of the expression.

Output: 𝑒: the expression tree that satisfies 𝑐 and has the type

𝑡𝑦𝑝𝑒 .

1: function GenExpr(𝑐,𝑉𝑎𝑙𝑠, 𝑡𝑦𝑝𝑒)

2: 𝑒 ← Get one expression skeleton that has 𝑡𝑦𝑝𝑒

3: if 𝑒 requires identifiers then
4: 𝑒.𝑐𝑜𝑛𝑠𝑡𝑠 ← GenConsts(𝑒, 𝑐)

5: 𝑒.𝑣𝑎𝑟𝑠 ← GenVarRefs(𝑒, 𝑐,𝑉𝑎𝑙𝑠)

6: 𝑒.𝑓 𝑢𝑛𝑐𝑠 ← GenFuncRefs(𝑒, 𝑐)

7: end if
8: 𝑐ℎ𝑖𝑙𝑑𝑃𝑜𝑠𝐶𝑜𝑛𝑠 ← SplitConstraints(𝑒, 𝑐)

9: for each 𝑝, 𝑐𝑐 ∈ 𝑐ℎ𝑖𝑙𝑑𝑃𝑜𝑠𝐶𝑜𝑛𝑠 do
10: 𝑒.𝑐ℎ𝑖𝑙𝑑 [𝑝] ← GenExpr(𝑐𝑐 , 𝑉𝑎𝑙𝑠 , Type(𝑒.𝑐ℎ𝑖𝑙𝑑 [𝑝]))
11: end for
12: return 𝑒
13: end function

function selects some labels and relationship types as constraints

and adds them to the pattern, and gets (n0:L0)-[r5:T0]->(n2:L2).

3.2.3 Data-guided Condition Generation. To generate queries with
satisfiable conditions, GDsmith conducts static query analysis to

guide the generation of conditions. Here, a condition in a query is

satisfiable if at least one group of data in the property graph can be

retrieved and mapped to a line of the intermediate table produced

by the corresponding WHERE clause. Take the following query as an

example:

MATCH (n0)-[r0]->(n1) WHERE n0.k0 = ‘x’ WITH n0.k1
+ n1.k1 as a0 WHERE a0 > 5000 RETURN *

The conditions n0.k0 = ‘x’ and a0 > 5000 are satisfiable if there

exists one subgraph (n0)-[r0]->(n1) where n0 has a property k0

that equals ‘x’ while both n0 and n1 have a property k1 and the

sum of them is greater than 5000.

To achieve the goal, GDsmith maintains a value table 𝑉𝑎𝑙𝑠 for

each query during the generation process. The value table is a

mapping where its keys are query variables and the value of a key

is the value of the variable at the present generation point. The

data-guided condition generation can be divided into the following

three parts: value table initialization, value table maintenance, and

condition generation.

Value table initialization. The value table is initialized in the

pattern generation process. Specifically, when a new entity variable

is created according to an entity, its value is recorded exactly as the

entity with its labels, relationship type, and property values (Lines

7-8 in Algorithm 2). Note that each entity variable can possibly

match other entities from the property graph, but the strategy of

GDsmith is to record only one value.

Value table maintenance. After the filling of each clause, GD-

smith updates the value table to maintain the values of variables

at the generation point. For each variable defined or updated in

the present clause, GDsmith adds or updates the variable and its

value in the value table. The value of the variable is calculated by

simulating the expression assigned to the variable. For some com-

plicated built-in functions (e.g., the 𝑆𝑈𝑀 aggregation function) the

value is hard to predict without execution so GDsmith assigns the

special value𝑈𝑁𝐾𝑁𝑂𝑊𝑁 to the expression. Any expression that

contains a sub-expression with the value𝑈𝑁𝐾𝑁𝑂𝑊𝑁 will also be

assigned to the value𝑈𝑁𝐾𝑁𝑂𝑊𝑁 .

Condition generation. Algorithm 3 outlines the process of

expression generation with constraints. This algorithm takes a pa-

rameter 𝑐 that describes a constraint and a parameter 𝑡𝑦𝑝𝑒 that

specifies the value type requirement for the generated expression.

This algorithm also takes the value table 𝑉𝑎𝑙𝑠 for information on

available variables and their values. Generally, this algorithm gen-

erates an expression that satisfies 𝑐 and has the value type of 𝑡𝑦𝑝𝑒 .

GDsmith uses this algorithm to generate all expressions in a Cypher

query. For condition expressions in WHERE clauses, the parameter 𝑐 is

set to 𝑣𝑎𝑙𝑢𝑒 = 𝑡𝑟𝑢𝑒 , which indicates that the value of the expression

should equal 𝑡𝑟𝑢𝑒 . For other expressions, 𝑐 is simply assigned with

𝑛𝑖𝑙 , which indicates that there is no constraint for the value of the

expression.

GDsmith uses a top-down technique to generate an expression

tree. GDsmith first randomly selects a Cypher expression skeleton

𝑒 having the type 𝑡𝑦𝑝𝑒 (Line 2). Then GDsmith completes 𝑒 with

identifiers and sub-expressions. If 𝑒 requires no sub-expression, GD-

smith generates its identifiers (constants, variables, and functions)

to satisfy 𝑐 (Lines 3-7). For example, if 𝑒 is a variable reference

expression and 𝑐 is 𝑣𝑎𝑙𝑢𝑒 > 100, GDsmith selects from 𝑉𝑎𝑙𝑠 an

integer variable or variable property that has a value greater than

100.

If 𝑒 requires sub-expressions, GDsmith splits 𝑐 into a set of sub-

constraints required for each sub-expression and ensures that if all

sub-expressions satisfy their corresponding sub-constraints, 𝑐 will

be satisfied (Line 8). To achieve this goal, GDsmith uses a set of

designed rules for each kind of expression to split the constraint.

For example, for an “or” expression, if 𝑐 is 𝑣𝑎𝑙𝑢𝑒 = 𝑡𝑟𝑢𝑒 , to satisfy 𝑐 ,

at least one sub-expression of the “or” expression should have the

value 𝑡𝑟𝑢𝑒 . Therefore, GDsmith splits 𝑐 to the constraint for left sub-

expression 𝑛𝑖𝑙 and the constraint for right sub-expression 𝑣𝑎𝑙𝑢𝑒 =

𝑡𝑟𝑢𝑒 . Finally, GDsmith recursively generates all sub-expressions

with sub-constraints and types, and constructs the final expression

by filling in 𝑒 with its generated sub-expressions (Lines 9-11). One

special case is an expression with the value 𝑈𝑁𝐾𝑁𝑂𝑊𝑁 . As we

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Ziyue Hua, Wei Lin, Luyao Ren, Zongyang Li, Lu Zhang, Wenpin Jiao, and Tao Xie

cannot calculate the value of such expressions, all such expressions

are considered to satisfy the constraint.

3.3 Bug Detection
By comparing the returned results of the same Cypher query on

different instances of graph database engines, GDsmith can detect

two main types of bugs. (1) A crash bug is triggered if a syntacti-

cally correct and semantically valid query cannot be successfully

executed (e.g., throwing an exception). Such bugs prevent users

from obtaining expected results, and in more serious cases, cause

the graph database engine under test to crash and lose connection

to upper-level database applications. (2) A wrong-result bug is

triggered if a syntactically correct and semantically valid query

is executed successfully but returns incorrect results. Such bugs

are more dangerous because users may mistakenly believe that the

Cypher query returns correct results and have wrong expectations

about the behavior, leading to potential risks.

Note that when GDsmith aims to detect wrong-result bugs, there

are prerequisites for each Cypher query. First, the Cypher query

containing non-deterministic sub-clauses may result in false alarms.

For example, the results will get trimmed from the top by using

the SKIP sub-clause. However, without an ORDER BY sub-clause, the

records are randomly selected because no guarantees are made

on the order of the results [16]. To avoid such false alarms, GD-

smith uses deterministic clauses and routines for query generation.

Second, undefined behaviors make it hard to determine whether

inconsistent results are bugs or just different implementations. For

example, integer overflows and divisions by zero are handled dif-

ferently by different engines (e.g., returning NaN or throwing ex-

ceptions). GDsmith does not generate Cypher queries that may

exhibit such undefined behaviors. Third, for convenient and effi-

cient comparison, a Cypher query should return only a few specific

expressions instead of a large number of entities. For example,

when executing a Cypher query whose RETURN clause contains the

∗ symbol on each graph database engine, parsing and comparing

results including all nodes and relationships from different engine

instances are time-consuming because an entity may consist of

plenty of property values.

4 EVALUATIONS
In our evaluations, we address the following three research ques-

tions (RQs):

• RQ1: How effectively can GDsmith generate test inputs

compared to the baselines?

• RQ2: How much do different techniques in GDsmith con-

tribute to the overall effectiveness of GDsmith?

• RQ3: How practicably does GDsmith detect real-world bugs

in popular graph database engines?

4.1 Evaluation Setup
4.1.1 Subjects. We select three popular real-world graph database

engines as our evaluation subjects. (1) Neo4j [15] is the market

leader, graph database category creator, and the most widely de-

ployed graph data platform in the market. It has long been ranked

first in the DB-Engines Ranking [25]. It is a high-performance graph

store with all the features expected of a mature and robust database.

(2) RedisGraph [17] is the first queryable property graph database

to use sparse matrices to represent the adjacency matrix in graphs

and linear algebra to query a graph. (3) Memgraph [14] is a stream-

ing graph application platform and leverages an in-memory-first

architecture.

We test the released versions of the Neo4j Community Edition

from 3.5 to 4.4, the released versions of RedisGraph 2.8, and the

released version 2.4 of the Memgraph Community Edition. All

of these subjects are downloaded from their official repositories

without any modification.

4.1.2 Implementation. We implement the GDsmith prototype with

over 22K non-comment lines of Java code. Its framework is derived

from SQLancer [18] (which is a tool to automatically test relational

database engines). GDsmith uses Neo4j Java Driver 4.1.1 to connect

and interact with Neo4j and Memgraph, and uses JRedisGraph 2.5.1

to connect and interact with RedisGraph. The default length of

clauses is set to nine. The default number of nodes in a graph is

set to 128. The default maximum number of patterns in each MATCH

clause is set to four. The default maximum depth of expression trees

is set to two.

Some graph database engines implement only a subset of the

Cypher language. When conducting cross-engine differential test-

ing, we configure GDsmith in advance so that all Cypher queries

generated by GDsmith do not contain any Cypher feature that is

unsupported by any of the three graph database engines. All eval-

uations are conducted on a Ubuntu 20.04 server with two AMD

EPYC-7H12 CPUs and 512GB of memory.

4.1.3 Baselines. There is no applicable baseline to which we can

compare our work because no existing work focuses on detecting

bugs in Cypher graph database engines and GDsmith is the first

approach for this purpose. Therefore, we design and implement two

variants of GDsmith for our evaluations to analyze the respective

contribution of our techniques. One variant named GDsmith!𝑝𝑐

disables both the graph-guided generation of complex pattern com-

binations and the data-guided generation of complex conditions,

and generates semantically valid patterns and conditions randomly.

The other variant named GDsmith!𝑐 disables only the data-guided

generation of complex conditions. Note that there is no variant

named GDsmith!𝑝 that disables only the graph-guided generation

of complex pattern combinations because the data-guided genera-

tion of complex conditions relies on the information provided by

the graph-guided generation of complex pattern combinations.

4.1.4 Metrics. To measure the effectiveness of GDsmith, we design

the following three types of metrics:

(1) The number of version-distinct discrepancies (𝑁𝑉𝐷𝐷)

is used to estimate the number of distinct bugs detected in

the given time period. Consider that we have a set of test

cases t = {𝑡1, 𝑡2, ..., 𝑡𝑘 } that trigger discrepancies between a

buggy graph database engine instance 𝑒𝑓 and a ground-truth

instance 𝑒𝑡 . Now, we want to estimate how many distinct

bugs these discrepancies reflect. We run each test case 𝑡𝑖 on

a set of additional engine instances e ={𝑒1, 𝑒2, ...𝑒𝑛} sharing

the same engine with 𝑒𝑓 but having different versions. We

compare the results of these instances with the result of 𝑒𝑓
to check whether they reproduce a discrepancy (we consider

GDsmith: Detecting Bugs in Cypher Graph Database Engines ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

that a discrepancy is reproduced in 𝑒 𝑗 if the result of 𝑒 𝑗 is

identical to the result of 𝑒𝑓) and get the reproducing version

set calculated for the test case: 𝑣𝑖 ={𝑒 𝑗 | 𝑒 𝑗 reproduces the

discrepancy }. The number of version-distinct discrepancies

detected by these test cases is defined as the number of

distinct reproducing version sets calculated for these test

cases.

This metric is similar to the Correcting Commits measure-

ment, which is widely used to approximate the number of

unique bugs detected by compiler testing [2]. We use ver-

sions instead of commits to reduce the cost of running each

discrepancy triggering test input. Although this metric has a

high tendency to underestimate the number of unique bugs

as multiple bugs can be fixed or introduced in the same ver-

sion, we can still use it to measure the number of unique

wrong-result bugs for comparison between approaches. A

high number of version-distinct discrepancies indicate that

the generated inputs can effectively detect distinct wrong-

result bugs.

(2) The number of discrepancies (𝑁𝐷) is defined as the num-

ber of discrepancies detected within the same time period.

A high number of discrepancies indicate that the generated

inputs are able to detect wrong-result bugs at a high speed.

(3) The non-empty-result query ratio is defined as the per-

centage of queries returning non-empty results among all

generated Cypher queries. A high non-empty-result query

ratio indicates that the generated queries are meaningful

toward differential testing, especially for detecting wrong-

result bugs.

4.2 RQ1/RQ2: Effectiveness
To assess the effectiveness and efficiency of GDsmith and the respec-

tive contribution of our techniques, we run GDsmith, GDsmith!𝑐 ,

and GDsmith!𝑝𝑐 for the same period of time and measure the met-

rics of these three approaches. Specifically, we conduct two experi-

ments as shown in Table 2. The first experiment uses cross-engine

difference as the oracle to assess the effectiveness and efficiency

of GDsmith on recent release versions of graph databases. The

database engine instances under test are Neo4j Community 4.4.12,

RedisGraph Docker 2.8.20, and Memgraph Docker 2.4.0, which

are the recent release versions of each engine. The second exper-

iment uses cross-version difference as the oracle. It takes Neo4j

Community 3.5.0 and Neo4j 4.4.12 as the engine instances under

test. We use Neo4j Community 3.5.0 because old versions of graph

database engines usually contain more bugs and can provide more

statistically significant results compared to recent versions. We run

each approach for 12 hours for each experiment and collect all the

detected discrepancies.

To calculate the number of version-distinct discrepancies, for the

cross-version experiment, we store all test inputs that trigger dis-

crepancies and re-run them in different versions of Neo4j Commu-

nity from 3.5.0 to 4.4.20 (all release versions, including maintenance

versions). We use version 4.4.20 as the ground-truth instance to

determine whether the instance of 3.5.0 or 4.4.12 is buggy and then

calculate the number of version-distinct discrepancies. For the cross-

engine experiment, we select 10% of the discrepancy-triggering test

Table 2: Experiment groups of GDsmith

Experiment Engine Instances

Cross-engine

Neo4j 4.4.12

RedisGraph 2.8.20

Memgraph 2.4.0

Cross-version

Neo4j 4.4.12

Neo4j 3.5.0

Table 3: Discrepancies detected by the three approaches in
cross-database and cross-version experiments.𝑁𝐷 is the num-
ber of discrepancies. 𝑁𝑉𝐷𝐷 is the number of version-distinct
discrepancies

Experiment Approach 𝑁𝐷 𝑁𝑉𝐷𝐷

Cross-engine

GDsmith 11275 26

GDsmith!𝑐 9286 22

GDsmith!𝑝𝑐 8815 17

Cross-version

GDsmith 483 18

GDsmith!𝑐 199 9

GDsmith!𝑝𝑐 87 7

inputs and re-run them in different versions of Neo4j Community

from 3.5.0 to 4.4.20, RedisGraph Docker from 2.8.0 to 2.8.26 and

Memgraph Docker from 2.0.0 to 2.7.0. We use majority voting of the

three newest versions of each engine as the oracle. Only if at least

one pair of the newest versions retrieves the same result for a test

input, we keep the test input. In addition, we discard the test inputs

that trigger crash bugs in the selected versions as these test inputs

may introduce different bugs to interfere with the calculation of

this metric.

4.2.1 Wrong-result BugDetection. Table 3 shows the𝑁𝐷 and𝑁𝑉𝐷𝐷

values of the three approaches in two experiments. In both experi-

ments, GDsmith gets higher 𝑁𝐷 and 𝑁𝑉𝐷𝐷 than the two baselines.

GDsmith!𝑐 gets higher 𝑁𝐷 and 𝑁𝑉𝐷𝐷 than GDsmith!𝑝𝑐 . The re-

sults indicate that both techniques of GDsmith contribute to the

effectiveness in detecting wrong-result bugs.

Figure 4 shows the 𝑁𝐷 of the three approaches over time. In both

cross-version and cross-engine experiments, the 𝑁𝐷 of GDsmith

grows faster than the two baselines. In the cross-version experiment,

the 𝑁𝐷 of GDsmith!𝑐 grows faster than GDsmith!𝑝𝑐 in the cross-

version experiment. In the cross-engine experiment, the 𝑁𝐷 of

GDsmith!𝑐 and GDsmith!𝑝𝑐 have similar growth speeds.

Figure 5 shows the 𝑁𝑉𝐷𝐷 of the three approaches in the cross-

version experiment. The 𝑁𝑉𝐷𝐷 of GDsmith grows faster than

the two baselines, and the 𝑁𝑉𝐷𝐷 of GDsmith!𝑐 grows faster than

GDsmith!𝑝𝑐 in the cross-version experiment.

The evaluation results show that GDsmith is more effective

in detecting discrepancies than the two baselines. The results of

GDsmith!𝑝𝑐 and GDsmith!𝑐 also show that both of our techniques

contribute to the overall effectiveness of GDsmith.

4.2.2 Non-empty-result Query Ratio. We run the three approaches

for 1 hour. Table 4 shows the non-empty-result query ratio of each

approach. GDsmith achieves the non-empty-result query ratio of

73.66% while GDsmith!𝑝𝑐 and GDsmith!𝑐 achieve 18.19% and 36.79%,

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Ziyue Hua, Wei Lin, Luyao Ren, Zongyang Li, Lu Zhang, Wenpin Jiao, and Tao Xie

GDsmith
GDsmith!c
GDsmith!pc

GDsmith
GDsmith!c
GDsmith!pc

Experiment Time (12 Hours In Total)

C
ro

ss
-v

er
si

on
C

ro
ss

-e
ng

in
e

T
he

 N
um

be
r

of
 D

is
cr

ep
an

ci
es

Figure 4: The number of discrepancies detected by GDsmith
and two baselines

Experiment Time (12 Hours In Total)

GDsmith

GDsmith!pc
GDsmith!c

T
he

 N
um

be
r

of
 V

er
si

on
-d

is
tin

ct
 D

is
cr

ep
an

ci
es

Figure 5: The number of version-distinct discrepancies de-
tected by GDsmith and two baselines in the cross-version
experiment

respectively. The results illustrate that the techniques in GDsmith

can generate test inputs for increasing the non-empty-result query

ratio. Specifically, by comparing the results between GDsmith!𝑝𝑐

and GDsmith!𝑐 , and the results between GDsmith!𝑐 and GDsmith,

we find that both of our techniques contribute to increasing the

non-empty-result query ratio. Note that each technique focuses on

one pre-condition for generating non-empty-result queries, which

can be generated only when both pre-conditions are satisfied.

4.3 RQ3: Practicability
4.3.1 Study Findings. Table 5 shows, for each subject, the number

of crash bugs (Bug𝑐𝑟) and wrong-result bugs (Bug𝑤𝑟) detected in

the second and third columns, respectively, and the number of fixed

bugs, confirmed but unfixed bugs, and reported but unconfirmed

Table 4: The non-empty-result query ratio of GDsmith and
two baselines

Approach Non-empty-result Query Ratio
GDsmith 73.66%

GDsmith!𝑝𝑐 18.19%

GDsmith!𝑐 36.79%

Table 5: Bug detection results of GDsmith

Subject Bug𝑒𝑟 Bug𝑤𝑟 Fixed Confirmed Reported
Neo4j 5 2 7 0 0

RedisGraph 3 11 6 7 1

Memgraph 0 7 1 2 4

SUM 8 20 14 9 5

bugs in the fourth, fifth, and sixth columns, respectively. GDsmith

detects 28 bugs in total. Note that all these bugs are detected on the

released versions of the engines under test. Among the 28 detected

bugs, 23 are confirmed by developers of the corresponding engines

and 14 are already fixed.

4.3.2 Example Bugs. We next show the following three examples

of confirmed bugs detected by GDsmith to illustrate what kinds

of bugs in the three graph database engines can be detected by

GDsmith. For brevity, we show only reduced Cypher queries that

demonstrate the underlying core problem, rather than the original

queries and property graphs that trigger the bugs.

Example Bug 1: Cypher queries that trigger a wrong-result
bug in RedisGraph 2.8.20.

① CREATE (n0:T2), (n1)<-[r1:T1{id:2, k51:1}]-(n2);
② MATCH (n7) OPTIONAL MATCH (n0:T2), (n7)<-[r7:T1]
-(n8) RETURN (r7.k51) AS a0;

The first query uses a CREATE clause to create a property graph

with three nodes and one relationship. The second query should

return a table of three lines: {a0:1}, {a0:null}, {a0:null}. How-

ever, the result of RedisGraph is {a0:1}, {a0:1}, {a0:1}. Note that

if (n0:T2) in the second query is removed, the query will return

the correct result table.

The root cause is that one query operator named Argument is

mistakenly put at the wrong position in the operator tree. We

observe two phenomena in such a bug-triggering case. First, this

bug can be triggered only through the combination of language

features. Although the pattern (n0:T2) in the second query should

not affect the result of the query on this specific property graph,

it is integral to have this pattern to trigger the wrong planning of

the OPTIONAL MATCH clause. Second, returning non-empty results

is a prerequisite to detecting such a bug. Although such wrong

planning happens regardless of the structure of the property graph,

GDsmith: Detecting Bugs in Cypher Graph Database Engines ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

only non-empty query results can reveal the different behaviors

between wrong and correct planning.

Example Bug 2: Cypher queries that trigger a wrong-result
bug in Neo4j 4.2.14.

① CREATE (n0), (n1);
② MATCH (n0) OPTIONAL MATCH (n3) WITH n3 OPTIONAL
MATCH (n3), (n5) OPTIONAL MATCH (n3) RETURN 1;

The first query uses a CREATE clause to create a property graph

with two unlabeled nodes. Neo4j 4.2.14 mistakenly doubles each

returned line.

The root cause is that the plannermistakenly uses an AllNodesScan

operator for pattern n3, and the operator introduces an unnecessary

multiplication of rows. Although the patterns in the query are quite

simple, triggering the bug requires the combination of multiple

clauses, including OPTIONAL MATCH clauses and a WITH clause.

Example Bug 3: Cypher queries that cause RedisGraph 2.8.20
to crash.

① CREATE (n:N);
② MATCH (n:N) OPTIONAL MATCH (n:Q) RETURN 1;

The first query creates a node with one label. Then the second

query triggers the crash of the database engine instance under test.

The root cause is that the second query triggers the Label-Scan

optimization strategy in RedisGraph. However, the optimization is

buggy and causes the whole engine instance to crash. Note that the

query to trigger this bug is simple but atypical because it operates on

only one node but matches it multiple times with different labels.

However, such a simple query can cause a severe crash and be

potentially triggered on more typical queries in future versions if

not detected or fixed.

4.4 Threats to Validity
For external validity, the main threat is that the subjects chosen

in our evaluations might not be generalized to other subjects. To

reduce the threat, we pick three well-known and open-source graph

database engines as representatives. In fact, GDsmith is able to test

any graph database engine supporting the Cypher language.

For internal validity, the main threat lies in the implementation

of GDsmith. Not all Cypher features are currently supported (e.g.,

UNION clauses). To mitigate the threat, we investigate the covered

Cypher language features by multiple graph database engines and

refer to the description of core Cypher’s syntax and semantics,

enabling GDsmith to support commonly used grammars.

5 RELATEDWORK
Testing Relational Database Engines. There are various ap-

proaches to testing relational database engines. SQLsmith [22] con-

tinuously generates syntactically correct SQL queries from the

abstract syntax tree (AST) directly, meanwhile detecting whether

the relational database engine under test faces crashes. Squirrel [33]

combines coverage-based fuzzing and model-based generation. It

performs type-based mutations on the defined DSL and optimizes

for semantic validity with additional analysis. Ratel [27] is an

enterprise-level fuzzer that improves the feedback precision, en-

hances the robustness of input generation, and performs an on-line

investigation on the root cause of bugs with its industry-oriented

design.

The aforementioned approaches can detect only crashing bugs in

relational database engines. To detect wrong-result bugs, RAGS [24]

generates and executes SQL queries in multiple relational database

engines, and meanwhile observes differences in the output sets.

Any inconsistency among results indicates that at least one rela-

tional database engine contains bugs. PQS [21] detects wrong-result

bugs by checking whether a specific record is fetched correctly.

NoREC [19] detects bugs in a relational database engine by apply-

ing a semantic-preserving transformation to a given SQL query

to disable the engine’s optimizations and addresses PQS’ high im-

plementation effort. TLP [20] derives multiple SQL queries that

compute a partial result of the initial query. By using a composition

operator, the partitions can be combined to yield the same result as

the original query; if the result differs, a bug in the relational data-

base engine has been detected. MutaSQL [5] generates test cases by

mutating a SQL query over a database instance into a semantically

equivalent query mutant, and checks the results returned by the

relational database engine under test.

Comparedwith these approaches, GDsmith includes our skeleton-

based completion technique to ensure that each randomly gener-

ated Cypher query satisfies the semantic requirements. GDsmith

also includes our novel techniques to increase the probability of

producing Cypher queries returning non-empty results, and these

techniques are designed according to unique features of the Cypher

language.

TestingGraphDatabase Engines.There are various approaches
to testing graph database engines. The latest work most related to

GDsmith is Grand [32]. Grand is a random differential testing tool

for Gremlin-based graph databases. It conducts a model-based ap-

proach to generate valid Gremlin queries and then uses differential

testing to detect wrong-result bugs. RD
2
[29] is another random

differential testing tool that detects wrong-result bugs in graph

database engines that adopt the RDF model [1]. Compared with

these approaches, GDsmith includes our two techniques (namely

graph-guided pattern generation and data-guided condition gener-

ation) to increase the non-empty result ratio for generated queries,

improving the capability of revealing wrong-result bugs.

6 CONCLUSION
In this paper, we have introduced a new important problem of test-

ing graph database engines to detect wrong-result bugs, and have

proposed GDsmith, the first automatic testing approach for detect-

ing bugs in Cypher graph database engines. We have implemented

GDsmith and evaluated it against the baselines. The evaluation re-

sults demonstrate GDsmith’s high effectiveness and efficiency. We

have also applied it to test three highly popular open-source graph

database engines, successfully detecting 28 bugs on their released

versions and receiving positive feedback from their developers.

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Ziyue Hua, Wei Lin, Luyao Ren, Zongyang Li, Lu Zhang, Wenpin Jiao, and Tao Xie

7 ACKNOWLEDGMENTS
This work was partially supported by National Natural Science

Foundation of China under Grant No. 62161146003, National Sci-

ence and Technology Major Project No. 2020AAA0109401, and

the Tencent Foundation/XPLORER PRIZE. Lu Zhang, Wenpin Jiao,

and Tao Xie are also affiliated with the Key Laboratory of High

Confidence Software Technologies (Peking University), Ministry of

Education China.

REFERENCES
[1] Ibrahim Abdelaziz, Essam Mansour, Mourad Ouzzani, Ashraf Aboulnaga, and

Panos Kalnis. 2017. Query Optimizations over Decentralized RDF Graphs. In

Proceedings of the 33rd International Conference on Data Engineering. 139–142.
https://doi.org/10.1109/ICDE.2017.59

[2] Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang,

and Bing Xie. 2016. An Empirical Comparison of Compiler Testing Techniques. In

Proceedings of the 38th International Conference on Software Engineering. 180–190.
https://doi.org/10.1145/2884781.2884878

[3] Peter Pin-Shan Chen. 1976. The Entity-Relationship Model—Toward a Unified

View of Data. ACM Transactions on Database Systems (1976), 9–36. https:

//doi.org/10.1145/320434.320440

[4] Tsong Yueh Chen, Shing Chi Cheung, and Siu Ming Yiu. 1998. Metamorphic

Testing: a New Approach for Generating Next Test Cases. Technical Report
HKUST-CS98-01 (1998).

[5] Xinyue Chen, Chenglong Wang, and Alvin Cheung. 2020. Testing Query Execu-

tion Engines with Mutations. In Proceedings of the 8th International Workshop on
Testing Database Systems. 6:1–6:5. https://doi.org/10.1145/3395032.3395322

[6] The Apache Software Foundation. 2022. Cypher for Gremlin. https:

//github.com/opencypher/cypher-for-gremlin/tree/master/tinkerpop/cypher-

gremlin-server-client

[7] The Apache Software Foundation. 2022. Gremlin Query Language. https:

//tinkerpop.apache.org/gremlin.html

[8] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-

daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Martin Schuster, Petra

Selmer, and Andrés Taylor. 2018. Formal Semantics of the Language Cypher.

arXiv preprint arXiv:1802.09984 (2018). http://arxiv.org/abs/1802.09984

[9] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-

daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and

Andrés Taylor. 2018. Cypher: An Evolving Query Language for Property Graphs.

In Proceedings of the 2018 International Conference on Management of Data. 1433–
1445. https://doi.org/10.1145/3183713.3190657

[10] Bogdan Ghit, Nicolás Poggi, Josh Rosen, Reynold Xin, and Peter A. Boncz. 2020.

SparkFuzz: Searching Correctness Regressions in Modern Query Engines. In

Proceedings of the 8th International Workshop on Testing Database Systems. 1:1–1:6.
https://doi.org/10.1145/3395032.3395327

[11] Lior Kogan. 2017. V1: A Visual Query Language for Property Graphs. arXiv
preprint arXiv:1710.04470 (2017). http://arxiv.org/abs/1710.04470

[12] Takahiro Konno, Runhe Huang, Tao Ban, and Chuanhe Huang. 2017. Goods Rec-

ommendation Based on Retail Knowledge in a Neo4j Graph Database Combined

with an Inference Mechanism Implemented in Jess. In 2017 IEEE SmartWorld,
Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable
Computing & Communications, Cloud & Big Data Computing, Internet of People
and Smart City Innovation. 1–8. https://doi.org/10.1109/UIC-ATC.2017.8397433

[13] William M. McKeeman. 1998. Differential Testing for Software. Digital Techni-
cal Journal (1998), 100–107. http://www.hpl.hp.com/hpjournal/dtj/vol10num1/

vol10num1art9.pdf

[14] Memgraph. 2022. Memgraph: Frictionless, Innovative, Graph Applications. https:

//memgraph.com/

[15] Neo4j. 2022. The Fastest Path To Graph Productivity: Neo4j Graph Database.

https://neo4j.com/product/neo4j-graph-database/

[16] The openCypher Implementers Group. 2022. Cypher Query Language Reference,

Version 9. https://s3.amazonaws.com/artifacts.opencypher.org/openCypher9.pdf

[17] RedisGraph. 2022. RedisGraph - a Graph Database Module for Redis. https:

//oss.redis.com/redisgraph/

[18] Manuel Rigger. 2022. SQLancer: Detecting Logic Bugs in DBMS. https://github.

com/sqlancer/sqlancer

[19] Manuel Rigger and Zhendong Su. 2020. Detecting Optimization Bugs in Database

Engines via Non-optimizing Reference Engine Construction. In Proceedings of
the 28th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1140–1152. https://doi.org/10.1145/

3368089.3409710

[20] Manuel Rigger and Zhendong Su. 2020. Finding Bugs in Database Systems via

Query Partitioning. Proceedings of the ACM on Programming Languages (2020),
211:1–211:30. https://doi.org/10.1145/3428279

[21] Manuel Rigger and Zhendong Su. 2020. Testing Database Engines via Pivoted

Query Synthesis. In Proceedings of the 14th USENIX Symposium on Operating Sys-
tems Design and Implementation. 667–682. https://www.usenix.org/conference/

osdi20/presentation/rigger

[22] Andreas Seltenreich. 2022. Bug Squashing with SQLsmith. https://github.com/

anse1/sqlsmith

[23] Sudipta Sen, Akash Mehta, Runa Ganguli, and Soumya Sen. 2021. Recommenda-

tion of Influenced Products Using Association Rule Mining: Neo4j as a Case Study.

SN Computer Science (2021), 74. https://doi.org/10.1007/s42979-021-00460-8

[24] Donald R. Slutz. 1998. Massive Stochastic Testing of SQL. In Proceedings of
the 24rd International Conference on Very Large Data Bases. 618–622. http:

//www.vldb.org/conf/1998/p618.pdf

[25] solid IT gmbh. 2022. DB-Engines Ranking of Graph DBMS. https://db-engines.

com/en/ranking/graph+dbms

[26] Jian Wang, Ke Wang, Jing Li, Jianmin Jiang, Yanfei Wang, Jing Mei, and

Shaochun Li. 2020. Accelerating Epidemiological Investigation Analysis

by Using NLP and Knowledge Reasoning: A Case Study on COVID-19.

In 2020 American Medical Informatics Association Annual Symposium. 1258–

1267. https://knowledge.amia.org/72332-amia-1.4602255/t003-1.4606204/t003-

1.4606205/3417206-1.4606266/3415131-1.4606263

[27] Mingzhe Wang, Zhiyong Wu, Xinyi Xu, Jie Liang, Chijin Zhou, Huafeng Zhang,

and Yu Jiang. 2021. Industry Practice of Coverage-Guided Enterprise-Level

DBMS Fuzzing. In Proceedings of the 43rd International Conference on Software
Engineering: Software Engineering in Practice. 328–337. https://doi.org/10.1109/

ICSE-SEIP52600.2021.00042

[28] Ran Wang, Zhengyi Yang, Wenjie Zhang, and Xuemin Lin. 2020. An Empirical

Study on Recent Graph Database Systems. In Knowledge Science, Engineering and
Management. 328–340.

[29] Rui Yang, Yingying Zheng, Lei Tang, Wensheng Dou, Wei Wang, and Jun Wei.

2023. Randomized Differential Testing of RDF Stores. In Proceedings of the 45th
International Conference on Software Engineering: Demonstrations. 136–140.

[30] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding And Un-

derstanding Bugs in C Compilers. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation. 283–294.
https://doi.org/10.1145/1993498.1993532

[31] Michal Zalewski. 2022. American Fuzzy Lop (2.52b). https://lcamtuf.coredump.

cx/afl/

[32] Yingying Zheng, Wensheng Dou, Yicheng Wang, Zheng Qin, Lei Tang, Yu Gao,

Dong Wang, Wei Wang, and Jun Wei. 2022. Finding Bugs in Gremlin-Based

Graph Database Systems via Randomized Differential Testing. In Proceedings of
the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis.
302–313. https://doi.org/10.1145/3533767.3534409

[33] Rui Zhong, Yongheng Chen, Hong Hu, Hangfan Zhang, Wenke Lee, and Dinghao

Wu. 2020. SQUIRREL: Testing Database Management Systems with Language

Validity and Coverage Feedback. In Proceedings of the 2020 ACM SIGSAC Con-
ference on Computer and Communications Security. 955–970. https://doi.org/10.

1145/3372297.3417260

Received 2023-02-16; accepted 2023-05-03

https://doi.org/10.1109/ICDE.2017.59
https://doi.org/10.1145/2884781.2884878
https://doi.org/10.1145/320434.320440
https://doi.org/10.1145/320434.320440
https://doi.org/10.1145/3395032.3395322
https://github.com/opencypher/cypher-for-gremlin/tree/master/tinkerpop/cypher-gremlin-server-client
https://github.com/opencypher/cypher-for-gremlin/tree/master/tinkerpop/cypher-gremlin-server-client
https://github.com/opencypher/cypher-for-gremlin/tree/master/tinkerpop/cypher-gremlin-server-client
https://tinkerpop.apache.org/gremlin.html
https://tinkerpop.apache.org/gremlin.html
http://arxiv.org/abs/1802.09984
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1145/3395032.3395327
http://arxiv.org/abs/1710.04470
https://doi.org/10.1109/UIC-ATC.2017.8397433
http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
https://memgraph.com/
https://memgraph.com/
https://neo4j.com/product/neo4j-graph-database/
https://s3.amazonaws.com/artifacts.opencypher.org/openCypher9.pdf
https://oss.redis.com/redisgraph/
https://oss.redis.com/redisgraph/
https://github.com/sqlancer/sqlancer
https://github.com/sqlancer/sqlancer
https://doi.org/10.1145/3368089.3409710
https://doi.org/10.1145/3368089.3409710
https://doi.org/10.1145/3428279
https://www.usenix.org/conference/osdi20/presentation/rigger
https://www.usenix.org/conference/osdi20/presentation/rigger
https://github.com/anse1/sqlsmith
https://github.com/anse1/sqlsmith
https://doi.org/10.1007/s42979-021-00460-8
http://www.vldb.org/conf/1998/p618.pdf
http://www.vldb.org/conf/1998/p618.pdf
https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms
https://knowledge.amia.org/72332-amia-1.4602255/t003-1.4606204/t003-1.4606205/3417206-1.4606266/3415131-1.4606263
https://knowledge.amia.org/72332-amia-1.4602255/t003-1.4606204/t003-1.4606205/3417206-1.4606266/3415131-1.4606263
https://doi.org/10.1109/ICSE-SEIP52600.2021.00042
https://doi.org/10.1109/ICSE-SEIP52600.2021.00042
https://doi.org/10.1145/1993498.1993532
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://doi.org/10.1145/3533767.3534409
https://doi.org/10.1145/3372297.3417260
https://doi.org/10.1145/3372297.3417260

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Graph Model in Cypher Databases
	2.2 The Cypher Query Language
	2.3 Differential Testing of Graph Database Engines
	2.4 Motivation

	3 Approach
	3.1 Schema and Property Graph Generation
	3.2 Query Generation
	3.3 Bug Detection

	4 Evaluations
	4.1 Evaluation Setup
	4.2 RQ1/RQ2: Effectiveness
	4.3 RQ3: Practicability
	4.4 Threats to Validity

	5 Related Work
	6 Conclusion
	7 acknowledgments
	References

