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ABSTRACT
Regression performance testing is an important but time/resource-
consuming process. Developers need to detect performance re-
gressions as early as possible to reduce their negative impact and
fixing cost. However, conducting regression performance testing
frequently (e.g., after each commit) is prohibitively expensive. To
address this issue, in this paper, we propose PerfRanker, the first
approach to prioritizing test cases in performance regression test-
ing for collection-intensive software, a common type of modern
software heavily using collections. Our test prioritization is based
on performance impact analysis that estimates the performance
impact of a given code revision on a given test execution. The eval-
uation shows that our approach can cover top 3 test cases whose
performance is most affected within top 30% to 37% prioritized test
cases, in contrast to top 65% to 79% by three baseline approaches.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;
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1 INTRODUCTION
During software evolution, frequent code changes, often including
problematic changes, may degrade software performance. For ex-
ample, a study [24] found that upgrading from MySQL 4.1 to 5.0
caused the loading time of the same web page to increase from 1
second to 20 seconds in a production e-commerce website. Even
small performance degradation may result in severe consequence.
For example, Google could lose 20% traffic due to an increase of
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500ms latency [40]. Amazon could have 1% decrease in sales due to
a 100ms delay in page rendering [56].

Developers can apply systematic, continuous performance re-
gression testing to reveal such performance regressions in early
stages [14, 18, 27, 42, 60]. But due to its high overhead, performance
regression testing is expensive to conduct frequently. The typical
execution cost of popular performance benchmarks varies from
tens of minutes to tens of hours [24], so it is impractical to run
all performance test cases for each code commit. Recently, Perf-
Scope [24] was proposed to predict whether a code commit may
significantly affect software performance. Specifically, PerfScope
extracts various features from the original version and the code
commit, and trains a classification model for prediction. Although
PerfScope helps reduce code commits for performance regression
testing, its evaluation shows that a non-trivial proportion of code
commits still require performance testing; thus, there is still a strong
need of reducing the cost of conducting performance regression
testing on a code commit, even after applying PerfScope.

To address such strong need, developers shall prioritize perfor-
mance test cases on a code commit for three main reasons. First,
there can be high cost to execute all performance test cases on a
code commit for large systems in practice. Second, as reported in a
previous industrial study [61] and our study in Section 2, various
random factors may affect the observed execution time, so it typi-
cally requires a large number of repetitive executions to confirm
a performance regression. Therefore, with prioritized test cases,
developers can better distribute testing resources (i.e., do more ex-
ecutions on test cases likely to trigger performance regressions).
Third, a code commit may accelerate some test cases while slowing
down others. Developers often need to understand the performance
of their software under different scenarios, while a coarse-grained
commit-level technique is not helpful on this requirement.

To develop an effective test-prioritization solution for perfor-
mance regression testing, we focus on collection-intensive software,
an important type of modern software whose execution time is
heavily spent on loading, manipulating, and writing collections
of data. Collections are widely used in software for scalable data
storage and processing, and thus collection-intensive software is
very common. Examples include libraries for data structures, text
formating and parsing, mathematics, image processing, etc. Also,
collection-intensive software is often used as components in com-
plex systems. Moreover, a recent study [25] shows that a large
portion of performance bugs are related to loops, which are often
used to iterate through collections. Our statistics show that 89%
and 77% of loops iterate through collections for our two subjects
Xalan and Apache Commons Math, respectively.
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For collection-intensive software, a straightforward approach
to prioritizing performance test cases on a code commit would be
measuring collection iterations (e.g., loops) impacted by the code
commit and executed by each test case. However, such an approach
may not be precise enough to differentiate test cases in the pres-
ence of newly added iterations, manipulations, and processing of
collections, as well as their effect on existing collection iterations.
Consider the simplified code example from Xalan in Listing 1. The
code commit involves a new loop, and its location may or may not
be at the hot spot for all or most test cases. Therefore, its impact on
different test cases may largely depend on the different iteration
counts of the added loop, the side effect of changing variable list,
and the operations in the loop. Since LoopB depends on a collection
variable limits, which further depends on LoopA, we can infer
the test-case-specific iteration count of LoopB from that of LoopA;
such iteration count can be acquired by profiling the base version
for all test cases. Furthermore, we can infer the effect of adding
list.add(...) on list with the iteration count of LoopB , and up-
date the iteration count of loops dependent on list. Moreover, we
can enhance the estimation precision by using test-case-specific
execution time of operations (e.g., new Arc(...)).
1 while(i <= m_size){ //Loop A
2 limits.add(new Limit(...))
3 ...
4 }
5 ...
6 + Collections.sort(limits);
7 + for (int i = 0; i < limits.size()-1; i++) { //Loop B
8 + list.add(new Arc(limits.get(i), ...));
9 + }

Listing 1: Collection Loop Correlation
These observations inspire us for three main insights to effec-

tively model a code commit and its effect on existing collections and
their iterations. First, collection sizes (e.g., limits.size()) and loop-
iteration counts (e.g., LoopB ) can often be correlated, so collection
sizes can be inferred from loop-iteration numbers and vice versa.
Also, collection variables (e.g., limits) can be used as bridges to
infer iteration counts of new loops (e.g., LoopB ) from existing loops
(e.g., LoopA). Second, collection manipulations (e.g., list.add(...))
are often inside loops, so the size of collections referred by col-
lection variables (e.g. list) can be estimated from loop-iteration
counts (e.g., LoopB ). Third, due to the large number of elements
in collections, the average processing time of elements (e.g., new
Arc(...)) is relatively stable, so a method’s average execution time
in the new version may be estimated from that in the base version.
Based on the three insights, we propose PerfRanker, which consists
of four automatic steps. First, on a base version, we execute each
test case in a profiling mode to collect information about the test
execution, including the runtime call graph and the iteration counts
of all executed loops. We also perform static analysis to capture
the dependency among collection objects and loops. Second, based
on the profiling information, we construct a performance model
for each test case. Third, given a code commit, we estimate the
execution time of each test case on the new version (formed by
the code commit) by extending and revising its old performance
model. We use profiling information and loop-collection correla-
tions to infer parameters of the new performance model, and refer
to this step as Performance Impact Analysis. Fourth, we rank all
the test cases based on the performance impact on them. We im-
plement our approach and apply it on two sets of code commits
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Figure 1: Relative Standard Deviation vs. Sample Size

collected from popular open source collection-intensive projects:
Apache Commons Math and Xalan. To measure the effectiveness
of test case prioritization for a code commit in performance regres-
sion testing, we use three metrics: (1) APFD-P (Average Percentage
Fault Detected for Performance), an adapted version of the APFD
metric [39] for performance testing, (2) DCG [5], a general met-
ric for comparing the similarity of two sequences, and (3) Top-N
Percentile, which calculates the percentage of test cases needed to
be executed to cover the top N test cases whose execution time
is most affected by the code commit. Our evaluation results show
that, compared with the best of the three other baseline approaches,
our approach achieves an average improvement of 17.6 percentage
points on APFD-P and 27.4 percentage points on DCG. Furthermore,
for Apache Commons Math and Xalan, our approach is able to rank
top 1 affected test case within top 8% and top 16% test cases, and top
3 affected test cases within top 37% and 30% test cases, respectively.
This paper makes the following major contributions:
• A novel approach to prioritizing test cases in performance
regression testing of collection-intensive software.
• Adaptation of the APFD metric to measure the result of test
prioritization for performance regression testing.
• An evaluation of our approach on real-world code commits
from two popular open source collection-intensive projects.

2 MOTIVATION
In this section, we provide preliminary study results to motivate
prioritization of performance regression tests, due to high cost
of executing the same test case for many times for performance
regression testing. In particular, modern mechanisms in hardware
and software often bring in random factors impacting performance.
Some well-known examples are the randomness in scheduling cores
and buses in multi-core systems [48], in caching policies [50], and
in the garbage-collection process [62], etc. These factors interact
with each other and amplify their effect so that the execution time
of a test case may vary substantially from time to time.

To neutralize such randomness, researchers or developers ex-
ecute a test case multiple times and calculate the average perfor-
mance [36]. To better understand this requirement, we perform a
motivating study (with more details on the project website [3]) on
the two open source projects used in evaluating our approach. In
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Figure 2: Workflow of Our Approach

particular, we execute the test cases for 5,000 times, and randomly
select samples with different sizes to calculate their standard de-
viation. In Figure 1, we show how the execution time’s relative
standard deviation (y axis) changes as the execution times (x axis)
increase from 1 to 5,000. The figure shows that the average relative
standard deviation with sample size 1 is over 20% in both projects.
In other words, if only one execution is used, the recorded execution
time is expected to have more than 20% difference from the average
execution time in the 5,000 executions. Note that 20% is a very large
variance because 10% performance enhancement is typically con-
sidered significant, and techniques incurring over 10% overhead are
often considered too slow for deployment purposes [35]. The figure
also shows that 173 and 47 executions are required to achieve rela-
tive standard deviation less than 10% for Apache Commons Math
and Xalan, respectively. Executing the whole test suite for many
times can be prohibitively expensive, calling for prioritization of
performance regression tests, as targeted by our approach.

3 APPROACH
In this section, we introduce our test prioritization approach in
detail. In particular, we first present the overview of our approach,
major technical challenges, and our performance model. After that,
we introduce performance-impact estimation of a code commit
based on our performance model, including method-execution-time
estimation, and method-invocation-frequency estimation based on
collection-loop correlation and iteration-count inference.

3.1 Overview
Figure 2 shows the workflow of our approach. The input to our
approach includes the project code base, its code commits, and
performance test cases. The output of our approach is an ordered list
of performance test cases. The first step of our approach is to profile
the base version of the project under test. During the profiling, for
each test case, we record the dynamic call graph as its original
performance model. We also record average execution time and

frequency of methods, and iteration counts of all loops. At the same
time, we statically analyze the base version to gather dependencies
between loops and collection variables, as well as aliases among
collection variables. When a new code commit comes, we conduct
performance impact analysis to estimate its performance impact
on all test cases, and prioritize test cases accordingly.

Technical Challenges. Performance impact analysis is the core
of our approach. Although we focus on collection-intensive soft-
ware, it is still challenging to conduct performance impact analysis,
facing three major technical challenges:
• Challenge 1. A code commit may include any type and scope
of code changes, from one-line revision, to feature addition
and interface revision. Therefore, there is a strong need of a
unified and formal presentation for code commits.
• Challenge 2. A code commit may contain newly added code,
especially new loops. No execution information of such code
is available, but given that loops can have high impact on
performance, there is a strong need of estimating the code
commit’s execution time and frequency.
• Challenge 3. Even if the execution time of changed code in a
code commit has little impact on performance, the code com-
mit may include changes on collection variables, eventually
affecting the performance of unchanged code.

To address Challenge 1, we present a code commit as three sets of
methods: added methods, revised methods, and removed methods.
As our performance model is based on the dynamic call graph, any
code commit can be mapped to a series of operations for method
addition, removal, and replacement in the performance model. To
address Challenge 2, we leverage the recorded profiling information
of the base version as much as possible. Specifically, if an existing
method is invoked in the newly added code, we can use the recorded
execution time of the existing method as its execution-time estima-
tion for this new invocation. Furthermore, as discussed in Section 1,
we use collection variables as bridges to estimate iteration counts
of new loops from those of existing loops. To address Challenge 3,
we track all the element-addition and element-removal operations
of collection variables in the newly added code, and estimate the
size change of collection variables from the iteration count of their
enclosing loops. This new size is used to update the iteration counts
of loops depending on the changed collection variables.

Since we focus on collection-intensive software, we consider
only loops whose iteration number depends on collection variables,
e.g., variables of array type, and other collection types defined in
Java Utility Collections. Note that there are also some loops whose
iteration number depends on simple integers, such as a loop to
sum up a numbers from i to j, but such loops are not common in
collection-intensive software, and our evaluation results show that
our approach is effective on both data-processing software (Xalan)
an mathematics software (Apache Commons Maths).

3.2 Performance Model
In this subsection, we introduce our performance model to break
down execution time of a test case to all the methods invoked
by the test case. The basic intuition behind our model is that the
execution time of a method invocationM is the execution-time sum
of all method invocations directly invoked inM , together with the
execution time of instructions inM . Since most basic operations in
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Figure 3: An Example Performance Model

Java programs are performed by JDK library methods (e.g., a string
concatenation), the latter part is typically trivial compared with the
former part, so our performance model ignores instructions inM
itself, but focuses only on methods thatM invokes.

We illustrate our model in Figure 3, where each node represents
a method and each directed edge represents an invocation relation.
Here each node annotated with label tavд , which represents the
average execution time of a method. Each edge in the graph is
labeled with fAB , which represents the invocation frequency of
method B from method A. Given a code commit, the performance
model of the post-commit version can be acquired by adding and
removing nodes and edges to the original performance model. For
example, in Figure 3, method D is a revised method and it now calls
(1) method G, which it originally calls, (2) E, which is an existing
method in the base version, and (3) H , which is a newly added
method. With the average execution time and invocation frequency
of all invoked methods in D, we are able to calculate an execution-
time estimation for revised method D. The new execution time at D
can be propagated upward to its ancestors, until the main method
is reached and a new estimation of the whole program’s execution
time can be made.

3.3 Performance Impact Analysis
The basic idea of performance impact analysis is to calculate the
execution-time change of each revised methodM in the code com-
mit. Then, through propagating the execution-time change toM’s
predecessors in the performancemodel, we can calculate the execution-
time change of the whole test case at the root node.

We realize this idea in three steps. First, for each revised method,
we extend the performance model to either add it and/or some of its
callees (and transitive callees). Second, we estimate the execution-
time change of each method in the new performance model. Third,
we estimate the invocation frequency on the edges of the new
performance model. We next introduce the three steps in details.

3.3.1 Model Extension. For each revised method, we add its
direct and transitive callees (e.g., methods E through K in Figure 3
for the revised methodmD ) into the performance model, if they
do not already exist in the model. In this recursive process, we
terminate the extension of a method node if it is an unrevised

method existing in the base version, a JDK library method, or a
method whose source code is not available. Since we use one base
version for a series of code commits, a revised method (and even
some of its predecessors) may not exist in the base version because
they are added after the base version. In such a case, we transitively
determineM ’s predecessors (callers) until we reach methods in the
base version. For example, ifC and D in Figure 3 are added between
the base version and the code commit under analysis, we determine
that D is invoked by B andC , andC is invoked byA, so that we add
C and D to the performance model.

When the new code version of the revised methods is available,
we statically determine the direct and transitive callers and callees
for the revised method, and one remaining challenge is to resolve
polymorphism, where one method invocation may have multiple
targeted method bodies. Although it is straightforward to apply off-
the-shelf points-to analysis, since we have the profiling information
of the base version, we make use of the information to acquire a
more precise call graph. Specifically, if a method invocation is not
involved in the method diff (i.e., the method invocation can be
mapped to the same method invocation in the base version, such
as G in Figure 3), we assume that its target is not changed and
we use the same targeted method body as recorded for the base
version. Otherwise, we apply points-to analysis [33] in Soot [58] to
find the possible targeted method bodies for the method invocation.
When a method invocation is mapped to multiple method bodies,
we add all bodies to the new performance model, and we divide the
estimated frequency of the method invocation by the number of
possible targets to attain the invocation frequency of each target.

3.3.2 Execution-Time Change of Method Bodies. The method
bodies invoked from a revised method fall into three categories.
The first category is removed method bodies. Their execution-time
data are recorded in the performance model of the base version,
and their new execution time is estimated as 0.

The second category includes method bodies already existing in
the performance model of the base version. Such method bodies
include both those defined in the source code and those defined in
the JDK library, or those without source code. For existing method
bodies, we simply use the recorded average execution time in the
base version as their estimated average execution time. For bodies
of JDK library methods, we profile Dacapo [10] to acquire the
average execution time of those common JDK library methods. For
methods without source code or those not invoked by Dacapo, we
use the average execution time of all method bodies in the profile as
their estimated execution time, as we have no further information.
Note that when a method from the second category is added to the
performance model, its original execution time is set as 0.

The third category includes newly added method bodies in the
source code. Note that such method bodies include both those added
to the source code in the code commit and those added in any other
code commits between the base version and the code commit under
analysis. They also include method bodies defined in libraries but
are newly reached due to code revisions from the base version
to the new version. For a newly added method body (such as H
in Figure 3), as discussed in Section 3.3.1, we extract all its callee
method bodies, and add them to the performance model (such as J
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and K in Figure 3), and then we calculate its execution-time change
using our performance model.

3.3.3 Invocation Frequencies of Method Bodies. Given a newly
added or revised methodmx , for each methodmy that is directly
invoked in mx , we estimate the invocation frequency of my in
mx (denoted as f q(mx ,my )) to apply our performance model on
the new version. Our estimation technique is based on the control
flow graph ofmx and the average iteration counts of loops inmx .
Specifically, for any code block b inmx , we use f q(b,my ) to denote
the invocation frequency ofmy from b for each execution of b. If b
is a basic block without branches and loops, f q(b,my ) is exactly the
number of invocation statements tomy in b; such number can be
easily counted statically. Thenwe calculate f q(mx ,my ) by applying
the inference rules for sequential, branch, and loop structures in
Formulas 1-3 below recursively on the code blocks ofmx :

f q([b1; b2],my ) = f q(b1,my ) + f q(b2,my ) (1)

f q([if() b1 else b2],my ) = Max(f q(b1,my ), f q(b2,my )) (2)

f q([whilei () b]) = f q(b,my ) ×C(loopi ) (3)
In the inference rules, the only unknown parameter is C(loopi ),

which denotes the average iteration count of the ith loop in A. As
an example, given the control flow graph in Figure 4 of mx , for any
my thatmx invokes, f q(mx ,my ) can be estimated as in Formula 4.

f q(mx ),my ) = f q(A,my ) + (Max(f q(D,my ), f q(E,my ))
+ f q(F ,my )) ×C(LoopB ) + f q(G,my ) (4)

3.4 Loop-Count Estimation with
Collection-Loop Correlation

With the estimation of invocation frequency, the only remaining
unknown parameter in the performance model of the new version
is the loop count of all loops. If a loop exists in the base version and
is not affected by the code commit, we directly use the recorded
profile from the base version to acquire the iteration count. Two
more complicated cases are (1) when a new loop is added, and (2)
when the code commit affects the iteration count of an existing
loop. Here is our insight: for collection-intensive software, we can
construct the correlation between collection sizes and loop counts,
and use iteration counts of known loops to infer that of unknown
loops, as well as a code commit’s impact on iteration counts of
known loops.

3.4.1 Correlating Loops and Collections. In particular, we con-
sider the following two types of dependencies between loops and
collection variables:
• Iteration Dependency. A loop L is iteration-dependent on
a collection variable v if L’s loop condition depends on the
size attribute of v .

  

public void foo (int limit, List w, List v) {
for (I = 0; I < limit; i++){

bar(v);
while(…){

w.add(…)
}

}
}

public void bar (List v) {
v.add(…)

}

Figure 5: Code Sample of Operation Dependency
• Operation Dependency. A collection variable v is operation-
dependent on a loop L if there exists an element addition or
removal on v in L.

To identify iteration dependencies, for a For-Each loop (e.g,
for(A a : ListOfA)), we simply consider that the loop is iteration-
dependent on the collection variable being iterated via the loop.
For other loops, we use standard inter-procedural data flow anal-
ysis [11] [51] to track data dependency backward from the loop
condition expression, until we reach a size/length attribute of an
array or a known collection class from the Java Collection Library.
To make sure that the collection size is comparable with the loop
count, we consider only two types of data dependencies: (1) direct
assignment (e.g., a = b;), and (2) addition or subtraction expression
with one operand as constant (e.g., a = b.size() - 1).

To identify operation dependencies, for each loop L, we check
its body for element-addition and element-removal operations on
collection variables. For any other method invocations in the loop,
we recursively go into the body of each invoked method to further
look for such operations. However, we do not consider nested-loop
blocks in L or a method invoked from L, because such blocks are
dependent on their direct enclosing loop. For example, in Figure 5,
collection variablev is operation-dependent on LoopA, butw is not
(it is operation-dependent on LoopB ).

After identifying these two types of dependency relations, we fur-
ther apply points-to analysis [33] to identify alias relations among
collection variables. Note that in our analyses we consider only
variables of known collection classes from the Java Collection Li-
brary. User-defined collections are also common. However, since
we use inter-procedural analysis for identifying both types of de-
pendencies, as long as the user-defined collections extend or wrap
Java-Collection classes from the Java Collection Library, we are able
to handle these user-defined collections by building dependencies
directly on the Java-Collection variables inside them. Also note
that we identify all dependencies and alias relations on the base
version and record the results so that we need to re-analyze only
the revised/added methods when a code commit comes.

3.4.2 Iteration-Count Inference. With the dependencies identi-
fied among collections and loops, when a new code commit comes,
we use Algorithm 1 to infer the iteration count of new loops and
update the iteration count of existing affected loops.

In the algorithm, we use a work queue to iteratively update
sizes of collection variables and loop-iteration counts (stored in
lCount ), andwe use the combinedmap ofMapI andMapO to transit
between collections and loops. In particular, as shown in Lines 6-
11, we update the iteration count of each loop at most once, to
avoid infinite update process caused by cyclic dependency (the
more in-depth reason is that we use numbers to represent iteration
counts, which are not in a bounded domain). In the end, we remove
collection variables from lCount to retain only the loops in the map.
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Algorithm 1 Iteration Count Inference
Input:

MapO is a map from collection variables to loops
MapI is a map from loops to collection variables
lCount is a map from loops to iteration counts

Output:
updated lCount

1: Q ← MapI .keys()
2: Map ← MapO

⋃
MapI

3: while Q , ∅ do
4: top ← Q .pop()
5: for all val ∈ Map.дet(top) do
6: if val < lCount .keys() then
7: lCount .add(val , lCount .дet(top)
8: Q .add(val)
9: else if val is a collection variable then
10: lCount .set(val , lCount .дet(val) + lCount .дet(top)
11: Q .add(val)
12: end if
13: end for
14: end while
15: lCount .removeAll(MapO .keys())

3.5 Test Case Prioritization
Once our approach estimates the performance impact of the code
commit on each test case, we can rank test cases according to their
relative performance impact. We use the main method as the root
for system tests and each test method as the root for unit tests. We
consider both positive and negative effect on execute time as it
is often also important for developers to understand whether and
where their commit is able to enhance the software performance.

4 EVALUATION
For our evaluation, we implement PerfRanker based on Soot for
static analysis and Java Agent for profiling the base version.

4.1 Evaluation Subjects
Weapply PerfRanker on two popular open source projects: Xalan [2]
and Apache Commons Math [1]. Specifically, Xalan is an XSLT
processor, and Apache Commons Math is a library for mathemat-
ical operations. We choose these two projects to cover both data
formatting and mathematical computations, which are two repre-
sentative time-consuming components in modern software. Xalan
is equipped with a performance test suite of 64 test cases. Since
Apache Commons Math is not equipped with a performance test
suite, we leverage its unit test cases as performance test cases.

Version Selection. For Apache Commons Math, we use its ver-
sion on Jan 1, 2013 as its base version. For Xalan, since there are
very few code commits after 2013, we use version 2.7.0 as its base
version, as 2.7.0 is the first Xalan version compatible with Java 6
and higher. For both software projects, we collect all code com-
mits from the base version until Mar 17, 2016, the time when we
started collecting data for our work. From all code commits, we
remove those that do not change source files and those that do not
involve semantic changes (e.g., renaming variables), as developers
can easily determine that those commits will not affect software
performance. Furthermore, we choose as our code-commit set the

Table 1: Evaluation Subjects
Subject Xalan Apache Commons Math
Base Ver. 2_7_0 Jan 1st, 2013
Size (LOC) of Base Ver. 413,534 398,171
# Commits Since Base Ver. 354 1,321
# Changed Files 1,206 1,613
Last Commit Date Aug 11, 2015 Mar 17, 2016

top 15 code commits whose changed code portions are covered by
most test cases, where test prioritization is most needed.

In Table 1, we present some statistics of the studied subjects and
versions. The table shows that either project has more than 300K
lines of code. Furthermore, there are hundreds of code commits
and changed files between the base version and our selected code
commits. In our evaluation, we do not update the base version, so
the overhead of profiling the base version is low compared with
the number of code commits under study. More details about our
evaluation subjects can be found on our project website [3].

4.2 Evaluation Setup
To determine performance regressions as the ground truth of per-
formance changes for all test cases and code commits, we execute
the test cases for 5,000 times on the base version and each code
commit under study. Furthermore, we execute the base version with
our Java Agent to record the dynamic call graph and the execution
time of each method, as well as the iteration number of each loop.
To record average execution time of methods defined in the JDK
library, we execute the Dacapo benchmark 9.12 [10] with profiling
(we remove Xalan from the benchmark to avoid bias). All the ex-
ecutions are conducted on a Dell x630 PowerEdge Server with 32
cores and 256GB memory, and the server is used exclusively for
our evaluation to avoid noises.

4.3 Evaluation Metrics
To the best of our knowledge, our work is the first on prioritiz-
ing performance test cases for code commits, and we propose a
set of metrics to evaluate the quality of different rankings. In our
evaluation, we consider three ranking metrics: Average Percent of
Fault-Detection on Performance (APFD-P), normalized Discounted
Cumulative Gain (nDCG), and Top-N Percentile.

APFD-P. APFD [39] is a commonly used metric for assessing a
test sequence produced by test-case prioritization. If the test-suite
size is N , the total number of faults detected by the test suite is T ,
and the number of faults detected by the first x test cases in the test
sequence is detected(x), then the APFD of the test sequence can be
defined in Formula 5:

APFD =

N∑
x=1

detected (x )
T

N
∗ 100% (5)

Unlike functional bugswhere a test case either passes or fails, per-
formance regressions are not binary but continuous. Performance
downgrades of 20% and 50% are both regressions, with different
severity. Therefore, instead of counting detected faults to attain
the value of detected(x), we replace the value of detected(x) with
the accumulated performance change. We define the performance
change of the ith test case in the test sequence (denoted as chanдe(i))
in Formula 6 as below, in which exe(i) is the execution time of the
ith test case in the current version, and exe(ibase ) is the execution
time of the ith test case in the base version.

chanдe(i) = |exe(i) − exe(ibase )|
exe(ibase )

(6)
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Then, we define APFD-P the same as Formula 5, except that
detected(x) is defined as the accumulated performance change, as
shown in Formula 7, and T is the sum of performance changes
on all test cases. Actually, with such a definition, APFD-P can be
viewed as APFD where all test cases reveal faults, and these faults
are weighted by performance changes.

detected(x) =
x∑
i=1

chanдe(i) (7)

As an illustrative example, consider 3 tests t1, t2, and t3 with
10%, 20%, and 30% performance downgrades, respectively. The best
ranking is t3, t2, t1; the total performance impact is 10% + 20% +
30% = 60%; and the covered performance impact after each test
is 30%/60% = 50%, (30% + 20%)/60% = 83%, and (30% + 20% +
10%)/60% = 100%. The P-APFD is thus (50% + 83% + 100%)/3 = 78%.

nDCG. nDCG [5] is a metric of ranking widely used in infor-
mation retrieval. The basic idea is to calculate the relative score a
given ranking with an ideal ranking, and the score of an arbitrary
ranking is defined below, where chanдe(i) is defined in Formula 6.

DCG(seq) = chanдe(1) +
N∑
i=2

chanдe(i)
loд2(i)

(8)

Top-N Percentile. The APFD-P and nDCG defined earlier are
adapted versions of widely used metrics, and can be used to com-
pare different prioritization approaches. However, they are not
sufficiently intuitive to help understand how much developers can
benefit from an approach. Therefore, in our evaluation, we also
measure how high percentage of top-ranked test cases in a test
sequence need to be executed to cover the test cases with top N
performance impacts (we use 1 and 3 for N ). For example, if the
test cases with top 1, 2, and 3 performance impacts are ranked in
the 2nd , 9th , and 5th positions in a test sequence with length 100,
then the top 1, 2, and 3 percentiles are 2%, 9%, and 9%, respectively.

4.4 Baseline Approaches Under Comparison
Although we are not aware of approaches specifically designed for
prioritizing performance test cases in regression testing, it is possi-
ble to adapt existing approaches for performance test prioritization.
In our evaluation, we compare our approach with three baseline
approaches: Change-Aware Random, Change-Aware Coverage, and
Change-Aware Loop Coverage.

Specifically, in all baseline approaches, we apply change-impact
analysis to rule out the test cases that do not cover any revised
methods. Since our performance-impact analysis includes basic
change-impact analysis, for fair comparison, we apply this change-
impact analysis in all baseline approaches. Note that we gathered
coverage information from the base version, and we use the same
technique as in our approach when selecting the code commits
affecting most test cases in the three baseline approaches.

After selecting the relevant test cases, the Change-Aware Random
(CAR) approach simply ranks the test cases in random order1. The
Change-Aware Coverage (CAC) approach applies coverage-based
test prioritization [53] on the covered methods with the additional
strategy [65], being a state-of-the-art approach in defect-oriented
test prioritization. The basic idea is to first select the test case with
1To acquire more stable results, we use the average result of 100 random ordered test
sequences as the result for CAR.
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Figure 7: APFD-P Comparison on Xalan
the highest coverage, and iteratively select the test case that covers
the most not-covered code portions as the next test case. In our eval-
uation, we use method coverage as the criterion, being consistent
with the granularity of our performance model. The Change-Aware
Loop Coverage (CALC) approach is the same as CAC, except for
using coverage of loops instead of methods as the criterion.

4.5 Quantitative Evaluation
In our quantitative evaluation, we compare our approach and the
three baseline approaches on all three metrics.

4.5.1 APFD-P Metric. Figures 6 and 7 show the comparison
results between our approach and three baseline approaches on the
APFD-P metric. In the two figures and all the following figures, the
X axis lists all the code commits studied chronologically, and the
Y axis shows the APFD-P value (or nDCG value). We use different
colors to represent different approaches consistently for all figures
according to the legend in Figure 6.

Figures 6 and 7 show that our approach is able to achieve over
80%APFD-P value in most code commits affecting performance, and
outperforms or rivals all baseline approaches in all code commits
affecting performance from both subject projects. Specifically, for
Apache Commons Math, our approach achieves an average APFD-P
value of 83.7%, compared with 64.3% by CAR, 64.6% by CAC, and
66.1% by CALC. For Xalan, our approach achieves an average APFD-
P value of 83.5%, compared with 65.8% by CAR, 63.6% by CAC, and
59.8% by CALC. Therefore, the improvement on the averageAPFD-P
is at least 17 percentage points, compared with baseline approaches
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Figure 9: nDCG Comparison on Xalan
on both projects. Furthermore, we do not observe significant effec-
tiveness downgrade in the later versions, indicating that one base
version can be used for a relatively long time.

4.5.2 nDCG Metrics. Similarly, Figures 8 and 9 show the com-
parison results between our approach and the three baseline ap-
proaches on the nDCG metric.

The figures show that our approach outperforms or rivals base-
line approaches on nDCG in almost all code commits from both
subject projects. Specifically, for Apache Commons Math, our ap-
proach achieves an average nDCG value of 74.5%, compared with
47.2% by CAR, 46.5% by CAC, and 48.4% by CALC. For Xalan, our
approach achieves an average nDCG value of 71.7%, compared with
43.0% by CAR, 41.4% by CAC, and 37.4% by CALC. Therefore, the
improvement on the average nDCG is over 26 percentage points
on both projects. We also observe that there is one code commit
from Xalan, in which our approach performs slightly worse than
CAR on nDCG. In Section 4.6, we further discuss the details of this
code commit in Listing 4.

Finally, we observe that comparedwithAPFD-P, the nDCG values
are generally lower and vary more significantly from code commit
to code commit. The reason is that an nDCG value is more sensitive
to the rank of test cases with the highest performance impacts. For
example, consider a test sequence with 100 test cases and only 1 test
case has performance impact, and the performance impact value is
100%. When this test case is ranked top, both APFD-P and nDCG
are 1.0. However, if this test case is ranked 25th in the sequence, the
APFD-P value is still as high as 75%, but the nDCG value becomes
1/loд2(25), which is less than 25%. This result is reasonable because

Table 2: Top-N Percentile of Apache Commons Math
C T Top 1 Top 3
# # Our CAC CALC CAR Our CAC CALC CAR
1 55 2% 3% 1% 49% 6% 43 27% 74%
2 60 40% 61% 38% 49% 51% 61% 93% 74%
3 152 2% 84% 79% 49% 28% 88% 88% 74%
4 97 3% 18% 87% 49% 5% 18% 87% 74%
5 130 4% 29% 43% 49% 4% 96% 97% 74%
6 15 13% 40% 33% 46% 66% 40% 100% 73%
7 18 5% 5% 88% 47% 15% 40% 88% 74%
8 10 10% 10% 40% 45% 60% 60% 70% 70%
9 12 8% 66% 75% 45% 50% 66% 75% 72%
10 12 8% 50% 83% 45% 83% 50% 100% 72%
11 36 5% 94% 38% 48% 66% 94% 58% 74%
12 13 7% 76% 38% 45% 76% 84% 100% 72%
13 711 7% 81% 84% 49% 7% 81% 84% 74%
14 39 2% 84% 25% 48% 12% 84% 79% 74%
15 34 11% 52% 17% 48% 26% 58% 26% 74%

Avg 8% 50% 51% 48% 37% 65% 78% 73%

Table 3: Top-N Percentile of Xalan
C T Top 1 Top 3
# # Our CAC CALC CAR Our CAC CALC CAR
1 63 20% 46% 14% 49% 36% 60% 50% 74%
2 63 17% 85% 22% 49% 17% 85% 80% 74%
3 63 7% 85% 50% 49% 38% 85% 66% 74%
4 63 20% 80% 7% 49% 20% 85% 73% 74%
5 63 6% 85% 100% 49% 53% 85% 100% 74%
6 63 11% 63% 31% 49% 26% 76% 77% 74%
7 63 11% 46% 12% 49% 15% 85% 93% 74%
8 63 9% 35% 36% 49% 20% 82% 95% 74%
9 58 3% 96% 5% 49% 25% 96% 98% 74%
10 63 30% 47% 17% 49% 31% 85% 84% 74%
11 63 1% 31% 12% 49% 7% 62% 74% 74%
12 63 23% 85% 88% 49% 34% 90% 88% 74%
13 63 12% 46% 82% 49% 53% 65% 82% 74%
14 58 34% 34% 8% 49% 43% 37% 72% 74%
15 63 36% 4% 12% 49% 36% 79% 61% 74%

Avg 16% 57% 34% 49% 30% 77% 79% 74%

in information retrieval (where nDCG was first proposed), ranking
the most relevant result at the 25th position is very bad, but in test
prioritization (whereAPFDwas first proposed), ranking the test case
at the 25th position is not so bad, because only 25% test cases need
to be executed to execute the test case. Therefore, which of APFD-P
and nDCG is a better metric may depend on whether developers
are interested in only a few most severely affected test cases, or a
larger number of test cases whose performance is affected.

4.5.3 Top-N Percentile. While APFD-P and nDCG are normal-
ized quantitative metrics for our problem, they are not sufficiently
intuitive for understanding the direct benefit of our approach on
developers. Therefore, we further measure how many test cases
developers need to consider if they want to cover the top 3 most
affected test cases. Tables 2 and 3 show the results. Columns 1 and 2
present the code commit number and the total number of test cases
affected by the code commit, respectively. Columns 3-6 and 7-10
present the top proportion of ranked test cases required to cover
top 1 and 3 most-performance-affected test cases2.

Tables 2 and 3 show that on average our approach is able to cover
Top 1 and 3 most-performance-affected test cases within top 8%,
21%, and 37% of ranked test cases in Apache Commons Math, and
16%, 22%, and 30% of test cases in Xalan. The improvements over the
baselines approaches are at least 33%, 37%, and 28%. Furthermore,
on top 1 coverage, our approach outperforms or rivals the best
baseline approach on 13 code commits from Apache Commons
Math, and 10 code commits from Xalan. On top 3 coverage, our
approach achieves the highest percentage on 11 code commits from
Apache Commons Math, and 14 code commits from Xalan.
2The results for top 2 show similar trends and are available on the project website [3]
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4.5.4 Overhead and Performance. In test prioritization, it is im-
portant to make sure that the time spent on prioritization is much
smaller than the execution time of performance test cases. To con-
firm indeed that is the case, we record the overhead and execution
time of our analysis. Our profiling of the base version has a 1.92
times overhead on Apache Commons Math, and 5.18 times over-
head on Xalan. The static analysis per test case takes 29.90 seconds
on Apache Commons Maths, and 34.35 seconds on Xalan. Finally,
for Apache Commons Math, the average, minimal, and maximal
time for analyzing a code commit are 45.35 seconds, 4.23 seconds,
and 262.30 seconds, respectively, while for Xalan, the average, min-
imal, and maximal time for analyzing a code commit are 9 seconds,
3.36 seconds, and 21.80 seconds, respectively. In contrast, it takes
averagely 52 (3) minutes to execute test suite of Apache Commons
Math (Xalan) for 173 (47) times to achieve an expectation of equal
to or less than 10% execution-time variance.

4.6 Successful and Challenging Examples
In this section, with representative examples of code commits, we
explain why our approach performs well on some code commits
but not so well on some others.

Successful Example 1. Listing 2 shows the simplified code
change of code commit hash d074054... of Xalan. On this code
commit, our approach is able to improve the APFD-P and nDCG
values by at least 13.53 and 31.22, respectively, compared with the
three baseline approaches. In this example, several statements are
added inside a loop. Our approach can accurately estimate the
performance change because (1) Line 2 in the code is an existing
loop and from the profile database for the base version we can find
out exactly howmany times it is executed, and (2) the addedmethod
invocations are combinations of existing method invocations whose
execution time is already recorded for the base version.
1 int nAttrs = m_avts.size();
2 for (int i = (nAttrs - 1); i >= 0; i--){
3 ...
4 + AVT avt = (AVT) m_avts.get(i);
5 + avt.fixupVariables(vnames, cstate.getGlobalsSize());
6 ...
7 }

Listing 2: Change Inside a Loop
Successful Example 2. Listing 3 shows the simplified code

change of code commit hash 64ec535... of Xalan. On this code com-
mit, our approach is able to improve the APFD-P and nDCG values
by at least 17.14 and 24.33, respectively, compared with the baseline
approaches. In this example, the loop at Line 4 depends on the
collection variable m_prefixMappings at Line 1 whose size can be
inferred from the recorded number of iterations of existing loops. In
this case, our approach can accurately estimate the iteration count
of this new loop and estimate the overall performance impact based
on the estimated iteration count.
1 + int nDecls = m_prefixMappings.size();
2 +
3 + for (int i = 0; i < nDecls; i += 2){
4 + prefix = (String) m_prefixMappings.elementAt(i);
5 + ...
6 + }

Listing 3: A Newly Added Loop Correlating to an
Existing Collection

Challenging Example 1. Listing 4 shows the simplified code
change of code commit hash 90e428d... of Apache Commons Math.
On this code commit, with respect to the nDCGmetric, our approach

performs better than the CAC baseline approach but slightly worse
than the CAR baseline approach. In the example, at Line 2, an
invocation to method checkParameters() is added, and the method
may throw an exception. In this example, the execution time of
checkParameters() can be easily estimated with our performance
model. However, if the exception is thrown, the rest of the method
will not be executed. Although we are able to estimate the execution
time of the method’s remaining part, it is impossible to estimate the
probability of throwing the exception, as checkParameters() is a
newly added method without any profile information. In such cases,
if the probability of throwing the exception is higher in some test
cases, the reduction of execution time due to the exception will be
the dominating factor and result in inaccuracy in our prioritization.

1 protected PointVectorValuePair doOptimize(){
2 + checkParameters();
3 ...
4 }
5 + private void checkParameters() {
6 + ...
7 + throw new MathUnsupportedOperationException;
8 + }

Listing 4: Return or Throw Exception at Beginning

ChallengingExample 2.There are also caseswhere developers
added a loop that is not relevant to any existing collection variables.
As one of such examples, Listing 5 shows the simplified code change
of code commit hash a51119c... of Apache Commons Math. On this
code commit, the improvement of our approach over the best result
of the three baseline approaches is only 0.8 for APFD-P and 6.0
for nDCG. In the example, Line 2 introduces a new loop that does
not correlate to any existing collection or array. In such a case,
our approach cannot determine the iteration count of this loop
and the depth of recursion at Line 8. To still provide prioritization
results, our approach uses the average iteration counts of all known
loops to estimate the iteration count of this new loop and always
estimates the recursion depth to be 1. However, our prioritization
result becomes less precise due to such coarse approximation.

1 public long nextLong(final long lower, final long upper){
2 + while (true) {
3 ...
4 + if (r >= lower && r <= upper) {
5 + return r;
6 + }
7 + }
8 + return lower + nextLong(getRan(), max);
9 }

Listing 5: New Loop with No Correlation

4.7 Threats to Validity
Major threats to internal validity are potential faults in the im-
plementation of our approach and baseline approaches, potential
errors in computing evaluation results of various metrics, and the
various factors affecting the recorded execution time for the test
cases. To reduce such threats, we carefully implement and inspect
all the programs, and execute the test cases for 5,000 times to re-
duce random noises in execution time. Major threats to external
validity are that our evaluation results may be specific to the code
commits and subjects studied. To reduce the threats, we evaluate
our approach on both data processing/formatting software and
mathematical computing software, and both a unit test suite and a
performance test suite.
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5 DISCUSSION
Handling Recursions. Recursions and loops are two major ways
to execute a piece of code iteratively. Our approach constructs
dependency relationships between loops and collection variables to
estimate the iteration counts of loops. For recursion cycles existing
in the base version, we simply update execution-time changes along
the cycle only once, and multiply the execution-time change by
averaging the invocation depths, attained via dividing the total
execution frequency of all methods in the cycle by the product
of invocation-frequency sum of these methods from outside the
cycle and the accumulated recursive invocations inside the cycle
(multiplying invocation frequencies along the cycle once). As an
example, consider a cyclic call graph: X → A, Y → B, A→ B, and
B → A. When t(B) is changed, the impact is propagated to A as
t(A) = t(B) ∗ fAB . The propagation then stops to break the cycle.
After that, impact on X becomes fXA ∗ depth ∗ t(A) where depth is
the cycle’s number of execution iterations, estimated as below:

total(A) + total(B)
(fXA + fYB ) ∗ fAB ∗ fBA

(9)

where total(F ) is the total frequency of method F in profile, and
the divisor is the product of all calling frequencies from outside
and inside of a cycle. For newly added recursions, our approach
currently does not support estimation of the invocation depth, and
simply assumes the invocation depth to be 1. In future work, we
plan to develop analysis to estimate the termination condition of
newly added recursions and relate invocation depths to collection
variables.

Approximation in Performance Estimation. Since our ap-
proach is not able to make any assumption on the given code com-
mit, we have to make coarse approximations for the parameters of
our performance model. For example, we ignore non-method-call
instructions in revised methods, assume all newly added recursions
to have invocation depth 1, and use the average recorded execution
time of existing methods and JDK library methods to estimate their
execution time in the new version. More advanced analysis can
result in more accurate execution-time estimation, yet with higher
overhead in the prioritization process, so future investigation is
needed for the best trade-off.

Supporting Multi-threaded Programs. Multi-threaded pro-
grams are widely used for high-performance systems. In multi-
threaded programs, methods and statement blocks can be executed
concurrently, and thus our performance model can be inaccurate
because the product of invocation frequency and average execution
time of a method is no longer the total execution time. To address
concurrent execution, we need to analyze the base version to find
out the methods that can be executed concurrently. Then, we can
give such methods a penalizing coefficient to reflect the extent of
concurrency. We plan to explore this direction in future work.

Selection of Base Versions. The overhead of our approach
largely depends on the required number of base versions. In our
evaluation, we use one base version to estimate the subsequent code
commits ranging over more than 3 years and 300 code commits. The
evaluation results do not show significant effectiveness downgrade
as time goes by. One potential reason is that, both software projects
in our evaluation are in their stable phase and the code commits
are less likely to interfere with each other.

6 RELATEDWORK
Performance Testing and Faults. Previous work focuses on gen-
erating performance test infrastructures and test cases, such as auto-
mated performance benchmarking [27], model-based performance
testing framework for workloads [8], using genetic algorithms to
expose performance regressions [38], learning-based performance
testing [19], symbolic-execution-based load-test generation [66],
probabilistic symbolic execution [12], and profiling-based test gen-
eration to reach performance bottlenecks [37]. Pradel et al. [49]
propose an approach to support generation of multi-threaded tests
based on single-threaded tests. Kwon et al. [30] propose an ap-
proach to predict execution time of a given input for Android apps.
Bound analyses [20] try to statically estimate the upper bound of
loop iterations regarding input sizes, but they cannot be directly
applied as the size of collection variables under a certain test can be
difficult to determine. Most recently, Padhye and Sen [47] propose
an approach to identify collection traversals in program code; such
approach has the potential to be used for execution-time prediction.
In contrast to such previous work, our approach focuses on prior-
itizing existing performance test cases. The most related work in
this direction is done by Huang et al. [24], whose differences with
our approach are elaborated in Section 1.

Another related area is research on performance faults, including
studies on performance faults [25, 64], static performance-fault
detection [26, 28, 45, 63], debugging of known performance faults
[4, 21, 32, 54], automatic patches of performance faults [44], and
analysis of performance-testing results [16, 17].
Test Prioritization and Impact Analysis. Test prioritization is a
well explored area in regression testing to reduce test cost [9, 23, 67]
or to detect functional faults earlier [15, 29, 34]. Mocking [43] is
another approach to reduce test cost, but it does not work for per-
formance testing as mocked methods do not have normal execution
time. Another related area is test selection or reduction [13, 22, 52]
which sets a threshold or other criteria to select/remove part of the
test cases. Most of the proposed efforts are based on some coverage
criterion for test cases, and/or impact analysis of code commits.
The impact analysis falls into three categories: static change im-
pact analysis [7, 57, 59], dynamic impact analysis [6, 31, 46], and
version-history-based impact analysis [41, 55, 68]. Our approach
leverages a similar strategy to rank performance tests according
to the change impact on them. However, we propose specific tech-
niques to estimate performance impacts, such as method-based
performance model and collection-loop correlation.

7 CONCLUSION
In this paper, we present a novel approach to prioritizing perfor-
mance test cases according to a code commit’s performance impact
on them. With our approach, developers can execute most-affected
test cases earlier and for more times to confirm a performance re-
gression. Our evaluation results show that our approach is able to
achieve large improvement over three baseline approaches, and to
cover top 3 most-performance-affected test cases within 37% and
30% test cases on Apache Commons Math and Xalan, respectively.
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