
Constructing Coding Duels in Pex4Fun and Code Hunt

Nikolai Tillmann,
Jonathan de Halleux

Microsoft Research
Redmond, WA, USA

nikolait@microsoft.com
jhalleux@microsoft.com

Tao Xie
University of Illinois at
Urbana-Champaign

Urbana, IL, USA
taoxie@illinois.edu

Judith Bishop
Microsoft Research
Redmond, WA, USA

jbishop@microsoft.com

ABSTRACT

Pex is an automatic white-box test-generation tool for .NET. We
have established that games can be built on top of Pex to open the
tool to students and to the general public. In particular, we have re-
leased Pex4Fun (www.pexforfun.com) and its successor Code
Hunt (www.codehunt.com) as web-based educational gaming
environments for teaching and learning programming and software
engineering. In Pex4Fun and Code Hunt, the main game type is a
coding duel, where a player writes code in a method to achieve the
same functionality as the secret method implementation, based on
feedback provided by the underlying Pex tool. Players iteratively
modify their code to match the functional behavior of the secret
method. The scope of duels extends from the simplest one-line
method to those including advanced concepts such as writing pa-
rameterized unit tests and code contracts. We have also used the
game type for competitions with thousands of players, and have
found that it differentiates well between beginners and top coders.
This tool demonstration shows how coding duels in Pex4Fun and
Code Hunt can be constructed and used in teaching and training
programming and software engineering.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—Symbolic

execution

General Terms

Languages, Experimentation

Keywords

Symbolic execution, educational platforms, gaming for learning

1. INTRODUCTION
To offer an online platform for learning programming and soft-

ware engineering, in 2010, Microsoft Research released Pex4Fun [12,
14] (www.pexforfun.com), built on top of Pex [10], an au-
tomatic white-box test-generation tool for .NET. Pex4Fun is an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’14, July 21-25, 2014, San Jose, CA, USA
Copyright 2014 ACM 978-1-4503-2645-2/14/07 ...$15.00.

interactive-gaming-based platform for .NET programming languages
such as C#, Visual Basic, and F#. It targets teachers, students, en-
thusiasts, and even software practitioners. The core type of Pex4Fun
games is a coding duel, where the player has to solve a particular
coding problem. In a coding duel, a player writes code in a method
to achieve the same functionality as a secret method implementa-
tion, based on feedback provided by the underlying Pex tool. The
provided feedback is in the form of input-output test cases, some
of which indicate functionality matching, while the rest of which
indicate mismatching.

Pex4Fun quickly gained popularity in the programming commu-
nity: since it was released to the public in June 2010, the number
of clicks of the “Ask Pex!” button (indicating the attempts made
by players to solve games at Pex4Fun) reached over 1.5 million
(1,517,859) as of June 9, 2014. Pex4Fun has provided a number of
open virtual courses (similar to MOOCs in spirit) including learn-
ing materials along with games used to reinforce students’ learn-
ing. The level of programming ability required to solve a duel
varies enormously from almost no knowledge of coding (e.g., a
duel where the secret implementation could be return -x;) to
advanced training on unit testing, as described in Section 4. Over
several years, we have shown that Pex4Fun, with its gamification
and tutorials, was an effective learning platform [11].

Although Pex4Fun was and is very popular, we wanted to ex-
plore more deeply the gamification aspect of the platform. It was
clear from users’ comments that they were prepared to stay with
the gaming there because it presented a challenge. We felt that we
could make Pex4Fun more fun and appealing to a wider audience.
Thus, Code Hunt was born.

Code Hunt [9,11] (www.codehunt.com) was released in early
2014. It evolved from Pex4Fun by incorporating more gaming as-
pects so as to be more engaging. With coding duels as the game
type, Code Hunt organizes games in a series of worlds, sectors, and
levels, which become increasingly challenging. In each level, the
player has to discover a secret code fragment (i.e., coding duel)
and write code for it. As the game develops, the underlying Pex
tool gives customized progress feedback to the player via the gen-
erated unit tests (called clues). When the player’s code achieves the
same result as the secret implementation, Code Hunt flashes “Cap-
tured Code” and provides a score to the player based on how good
the code was. The game also has sounds and a leaderboard to keep
the player engaged. Other improvements for Code Hunt are that it
offers Java as a supported language (via a source code translator)
and it runs on Microsoft Azure, making it scalable to a large num-
ber of simultaneous users. Currently we have over a million users,
and the cloud is kept active with up to 20 cores at peak time.

In the rest of this paper, Section 2 presents background infor-
mation (including DSE, parameterized unit testing, and code con-

tracts). Section 3 presents the game type of coding duel. Section 4
describes how to construct teaching and learning materials based
on coding duels. Section 5 reports on our experience with using
coding duels for competitions and Section 6 concludes the paper.

2. BACKGROUND
Dynamic Symbolic Execution (DSE). Pex is a test-generation

tool based on Dynamic Symbolic Execution (DSE) [4], which re-
alizes symbolic execution [5] by leveraging runtime information
from concrete executions. Through iterations, DSE systematically
increases code coverage such as block or branch coverage. In each
iteration, DSE executes the program under test with a test input,
which could be a default or randomly generated input in the first it-
eration or an input generated in one of the previous iterations. Dur-
ing the execution of the program under test, DSE performs sym-
bolic execution in parallel to collect symbolic constraints on pro-
gram inputs obtained from predicates in branch statements along
the execution. The conjunction of all symbolic constraints along
an executed path is called the path condition. Then DSE flips a
branching node in the executed path to construct a new path that
shares the prefix to the node with the executed path, but then devi-
ates and takes a different branch.

Parameterized Unit Testing. A key methodology that Pex sup-
ports is parameterized unit testing [13]. Parameterized unit testing
extends previous industry practice by allowing unit test methods to
have parameters. This extension serves two main purposes. First,
parameterized unit tests are specifications of the behavior of the
methods under test: not only exemplary arguments to the methods
under test, but also ranges of such arguments. Second, parameter-
ized unit tests describe a set of traditional unit tests that can be ob-
tained by instantiating the methods of the parameterized unit tests
with given argument-value sets. An automatic test-generation tool
such as Pex can be used to generate argument-value sets for param-
eterized unit tests.

Code Contracts. Based on the concept of Design by Contract [7],
Code Contracts [6] from Microsoft Research allows developers to
write design-by-contract specifications. These Code Contracts take
the form of preconditions, postconditions, and object invariants.
Preconditions specify conditions that must hold before a method
can be executed. Postconditions specify conditions that must hold
after a method is completed. Object invariants specify conditions
that the objects of the class should always satisfy. Object invari-
ants are checked for every non-static, non-private method’s entry
and exit, and for every non-private constructor’s exit. Class invari-
ants can be treated as preconditions and postconditions for these
methods.

3. OVERVIEW OF CODING DUELS
The theory behind creating coding duels in Pex4Fun and Code

Hunt is the same, and is described in this section and the next sec-
tion. Currently, only Pex4Fun provides the capability for players
to add duels, and thus the description here is written for Pex4Fun.
In Code Hunt, duels (known as levels) are created by experts and
uploaded behind the scenes. A new editor to enable the same capa-
bility as in Pex4Fun is under construction.

A game creator (who could be any user around the world) can
create a coding duel. A duel consists of two methods with the
same method signature and return type1. One of these two methods
is the secret (golden) implementation, which is not visible to the
player. The other is the player implementation, which is visible to

1The method signature of a coding duel must have at least one input
parameter. The return type of a coding duel must not be void.

the player and can be empty implementation or faulty. The player
implementation can include optional comments to give the player
some hints in order to reduce the difficulty level of the duel.

After a player selects a coding-duel game to play, the player’s
winning goal is to modify the player implementation (visible to the
player) to make its behavior (in terms of the method inputs and re-
sults) to be the same as the secret implementation (not visible to
the player). Clearly, without any feedback or help, the player has
no way to guess how the secret implementation would behave. The
player can start getting feedback by clicking the button “Ask Pex”
to request under what sample method input(s) the player imple-
mentation and the secret implementation have (1) the same method
result and (2) different method results.

Pex4Fun leverages Pex to generate such feedback and determine
whether the player wins the game: the player wins the game if Pex
cannot generate any method input to cause the player implementa-
tion and the secret implementation to have different method results.

4. CONSTRUCTION OF CODING DUELS
There are five steps for a user to create a coding duel. First,

the user logs into the Pex4Fun platform. Second, the user writes
a secret implementation as a Puzzle method that takes input ar-
guments and produces a result. Third, the user creates a coding
duel by clicking a button “Turn This Puzzle Into A Coding Duel”
(appearing after the user clicks “Ask Pex!”). Fourth, the user edits
the player implementation (i.e., program text visible to players) by
clicking the coding duel Permalink URL, which opens the coding
duel, and by filling in a slightly useful outline of the implemen-
tation (with optional comments) that players will eventually com-
plete. Fifth, the user publishes the coding duel after the user fin-
ishes editing the visible Puzzle method text by clicking the “Pub-
lish” button.

A Puzzle method can be turned into a coding duel only if it ful-
fills two main requirements: (1) it must have a non-void return type,
so that the behavior of the secret implementation and the player
implementation can be compared using their return values; (2) the
Puzzle method must have at least one parameter, so that Pex can
generate argument values for it.

The game creator has great flexibility in controlling the difficulty
of a coding duel. He or she can vary (1) the complexity of the se-
cret implementation; (2) the similarity level of the player imple-
mentation (visible to players) to the secret implementation; (3) the
strength of the hints given in code comments in the player imple-
mentation.

We next use examples to illustrate how one can construct coding
duels as teaching and training materials for two topics: parameter-
ized unit testing and writing code contracts; these examples were
used in teaching a graduate software engineering course [12].

4.1 Teaching and Training Parameterized Unit
Testing

In a coding duel, the player is asked “For each coding duel, you
need to complete the given incomplete parameterized unit test to
match the secret parameterized unit test for testing the UBIntStack
class that implements a bounded stack that holds unique integer
elements.” The initial player implementation of the coding duel
is shown in Figure 1 and its solution (the secret implementation)
is shown in Figure 2. In particular, in the player implementation
given to the player, we already include test-scenario setup (includ-
ing some assumptions) and test oracles (i.e., assertions), and the
player is asked to fill in the middle part of the parameterized unit
test, which is the Puzzle method itself. As shown in Figure 2, the
middle part includes additional test-scenario setup (including some

public static string Puzzle(int[] elems, int capacity, int elem)

{

if (capacity <= 0) return "Assumption Violation!";

if (elems == null) return "Assumption Violation!";

if (elems.Length > (capacity + 1)) return "Assumption Violation!";

UBIntStack s= new UBIntStack(capacity);

for (int i = 0; i < elems.Length; i++)

s.Push(elems[i]);

int origSize = s.GetNumberOfElements();

//Please fill in below test scenario on the s stack

//including necessary assumptions (no additional assertions needed)

//The lines below include assertions to assert the program behavior

PexAssert.IsTrue(s.GetNumberOfElements() == origSize + 1);

PexAssert.IsTrue(s.Top() == elem);

PexAssert.IsTrue(s.IsMember(elem));

PexAssert.IsTrue(!s.IsEmpty());

return "s.GetNumberOfElements():" + s.GetNumberOfElements().ToString() + "; "

+ "s.Top():" + s.Top().ToString() + "; "

+ "s.IsMember(elem):" + s.IsMember(elem).ToString() + "; "

+ "s.IsEmpty():" + s.IsEmpty() + "; ";

}

Figure 1: An example coding duel for teaching parameterized unit testing

public static int Puzzle(int pref_id, string value)

{

....

//Please fill in below test scenario on the s stack

//including necessary assumptions (no additional assertions needed)

if (s.IsMember(elem)) return "Assumption Violation!";

if (s.GetNumberOfElements() >= s.MaxSize()) return "Assumption Violation!";

s.Push(elem);

....

}

Figure 2: The solution to the example coding duel shown in Figure 1

assumptions) and the method under test (i.e., the Push method).
The comments in the player implementation inform the player

partially what exactly they need to accomplish in terms of the secret-
implementation functionality. Thus the player needs to do some
“guessing” based on the feedback given by Pex4Fun. For exam-
ple, the comments in the player implementation do not inform the
player which method of UBIntStack is the method under test (it
is Push) or what additional test-scenario setup is needed. In the
example coding duel in Figure 1, additional test-scenario setup in-
cludes that the elem being pushed is not in the stack already and
the stack is not full. The player needs to “guess” such information
based on the feedback given by Pex4Fun.

4.2 Teaching and Training Code Contracts
In an example coding duel, the player is asked to “translate the

natural-language requirement above the method below to be in code
contracts.” The initial player implementation of the coding duel is
shown in Figure 3 and its solution (the secret implementation) is
shown in Figure 4. To construct this coding duel, we extracted the
natural-language requirements (used in the coding duel) from real-
world evaluation subjects (API documents) used in related previous
work [8]. In particular, two code contracts are needed for the re-
quirements, as shown in Figure 4.

The comments in the player implementation inform the player
what the player needs to accomplish in terms of the secret im-
plementation’s functionality. The player does not have to “guess”
based on the feedback given by Pex4Fun. Such design style is in
contrast to many coding duels in Pex4Fun, where “guessing” is
heavily involved and no or few hints are given to players.

5. CODING COMPETITIONS
An application of Pex4Fun and Code Hunt that is gaining in pop-

ularity is their use in competitions. There are three main reasons:
(1) the gaming aspect is attractive, (2) there are clear winning crite-
ria, and (3) cheating is not possible. Both platforms have been used
for competitions with success.

In May 2011, Microsoft Research hosted a competition on solv-
ing coding duels2 at the 2011 International Conference on Software
Engineering (ICSE 2011). The ICSE 2011 coding-duel competi-
tion received 7,000 Pex4Fun attempts, 450 duels completed, and
28 participants (though likely more, since not everyone logged in
to enter the competition). Recently, Pex4Fun inspired a new com-
petition form [1] in the 2013 International Conference on Func-
tional Programming (ICFP 2013) Programming Contest3. Compet-
ing entirely over the Internet, more than 300 participating teams of
programmers from around the world were asked to complete a se-
ries of programming tasks, using any programming languages and
tools they desired, to address an extremely challenging scenario
in program synthesis. Results were assessed using Microsoft Re-
search’s Z3 [3] running on Windows Azure to compare submitted
solutions to actual solutions to determine correctness, in a similar
way as coding duels in Pex4Fun. Over the competition’s 72 hours,
Z3 received about a million requests and successfully decided all,
except about 300 problem instances, within an imposed time limit

2
http://research.microsoft.com/
ICSE2011Contest
3
http://research.microsoft.com/en-us/events/
icfpcontest2013/

//param:name:This name also needs to be a valid identifier,

//which is no longer than 32 characters, starting with a letter (a-z)

//and consisting of only small letters (a-z), numbers (0-9) and/or underscores.

//Can you write preconditions in code contracts for the above natural-language requirements?

public static int Puzzle(string name)

{

return name;

}

Figure 3: An example coding duel for teaching and training code contracts

public static int Puzzle(string name)

{

Contract.Requires(Regex.IsMatch(name.Substring(0,1),@"[a-z]"));

Contract.Requires(Regex.IsMatch(name,@"^[a-z0-9]*$"));

return name;

}

Figure 4: The solution to the example coding duel in Figure 3

of 20 seconds, the overwhelming majority within a matter of a few
milliseconds.

In April 2014, we were able to test out Code Hunt at a very large
competition in the Greater China Region called Beauty of Program-
ming. In three rounds, 2,353 students scored in the game, with an
average 55.7% puzzles solved across this large number. Since Code
Hunt runs on Microsoft Azure, we have all the statistics. We could
see that, on average, it took players 41 tries to capture the code
for puzzles. However, what really interested us were the 350 top
students, who solved all the puzzles, even the most difficult ones.
These students needed only 7.6 tries on average to solve a puz-
zle, showing that Code Hunt can reliably surface the better coders.
Code Hunt is now being offered for more competitions, with the
only challenge being the creation of new worlds of puzzles.

6. CONCLUSION
Traditional coding exercises work from a specification. Our ex-

periences with coding duels have shown how successful teaching
and learning can be achieved over a range of educational levels
using platforms that guide users to a solution for an unknown prob-
lem. Pex4Fun, and its successor, Code Hunt, are both browser-
based games [2] that are attractive, scalable, and interesting as re-
search projects because of the data that they generate. In future
work, we plan to extend Code Hunt to provide hints, as well as to
include a social experience where players can add duels.

Acknowledgments

Tao Xie’s work is supported in part by a Microsoft Research Award,
NSF grants CCF-1349666, CNS-1434582, CCF-1434596, CCF-
1434590, CNS-1439481, and NSF of China No. 61228203.

7. REFERENCES

[1] T. Akiba, K. Imajo, H. Iwami, Y. Iwata, T. Kataoka,
N. Takahashi, M. Moskal, and N. Swamy. Calibrating
research in program synthesis using 72,000 hours of
programmer time. Technical report, Microsoft Research,
December 2013.

[2] J. Bishop, J. de Halleux, N. Tillmann, N. Horspool, D. Syme,
and T. Xie. Browser-based software for technology transfer.
In Proc. Annual Research Conference of the South African

Institute for Computer Scientists and Information

Technologists (SAICSIT 2011), Industry Oriented Paper,
pages 338–340, 2011.

[3] L. M. de Moura and N. Bjørner. Z3: An efficient SMT
solver. In Proc. 14th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems

(TACAS 2008), pages 337–340, 2008.

[4] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. In Proc. ACM SIGPLAN

Conference on Programming Language Design and

Implementation (PLDI 2005), pages 213–223, 2005.

[5] J. C. King. Symbolic execution and program testing.
Communications of the ACM, 19(7):385–394, 1976.

[6] F. Logozzo. Practical verification for the working
programmer with codecontracts and abstract interpretation.
In Proc. 12th International Conference on Verification,

Model Checking, and Abstract Interpretation (VMCAI 2011),
pages 19–22, 2011.

[7] B. Meyer. Object-Oriented Software Construction. Prentice
Hall, 1988.

[8] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and
A. Paradkar. Inferring method specifications from natural
language api descriptions. In Proc. 34th International

Conference on Software Engineering (ICSE 2012), pages
815–825, 2012.

[9] N. Tillmann, J. Bishop, R. N. Horspool, D. Perelman, and
T. Xie. Code hunt - searching for secret code for fun. In
Proc. 7th International Workshop on Search-Based Software

Testing (SBST 2014), pages 23–26, 2014.

[10] N. Tillmann and J. de Halleux. Pex - white box test
generation for .NET. In Proc. International Conference on

Tests and Proofs (TAP 2008), pages 134–153, 2008.

[11] N. Tillmann, J. de Halleux, T. Xie, and J. Bishop. Code
Hunt: Gamifying teaching and learning of computer science
at scale. In Proc. 1st ACM Conference on Learning at Scale

(Learning at Scale 2014), pages 221–222, 2014.

[12] N. Tillmann, J. D. Halleux, T. Xie, S. Gulwani, and
J. Bishop. Teaching and learning programming and software
engineering via interactive gaming. In Proc. International

Conference on Software Engineering (ICSE 2013), Software

Engineering Education (SEE), pages 1117–1126, 2013.

[13] N. Tillmann and W. Schulte. Parameterized unit tests. In
Proc. 5th joint meeting of the European Software

Engineering Conference and ACM SIGSOFT Symposium on

the Foundations of Software Engineering (ESEC/FSE 2005),
pages 253–262, 2005.

[14] T. Xie, N. Tillmann, and J. de Halleux. Educational software
engineering: Where software engineering, education, and
gaming meet. In Proc. 3rd International Workshop on Games

and Software Engineering (GAS 2013), pages 36–39, May
2013.

