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ABSTRACT

Software programs evolve throughout their lifetime undergoing
various changes. While making these changes, software develop-
ers may introduce regression faults. It is desirable to detect these
faults as quickly as possible to reduce the cost involved in fixing
them. One existing solution is continuous testing, which runs an
existing test suite to quickly find regression faults as soon as code
changes are saved. However, the effectiveness of continuous test-
ing depends on the capability of the existing test suite for finding
behavioral differences across versions.

To address the issue, we propose an approach, called eXpress,
that conducts efficient regression test generation based on a path-
exploration-based test generation (PBTG) technique, such as dy-
namic symbolic execution. eXpress prunes various irrelevant paths
with respect to detecting behavioral differences to optimize the
search strategy of a PBTG technique. As a result, the PBTG tech-
nique focuses its efforts on regression test generation. In addition,
eXpress leverages the existing test suite (if available) for the orig-
inal version to efficiently execute the changed code regions of the
program and infect program states. Experimental results on 67 ver-
sions (in total) of four programs (two from the subject infrastruc-
ture repository and two from real-world open source projects) show
that, using eXpress, a state-of-the-art PBTG technique, called Pex,
requires about 36% less amount of time (on average) to detect be-
havioral differences than without using eXpress. In addition, Pex
using eXpress detects four behavioral differences that could not be
detected without using eXpress (within a time bound). Further-
more, Pex requires 67% less amount of time to find behavioral dif-
ferences by exploiting an existing test suite than exploration with-
out using the test suite.
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1. INTRODUCTION

Software programs continue to evolve throughout their lifetime
undergoing various kinds of changes. While making changes to
a program, software developers may introduce regression faults in
the program. It is highly desirable to detect these regression faults
as quickly as possible to reduce the cost of developers in fixing the
introduced faults. Continuous testing [15] tests a program as soon
as developers make changes to the program and these changes are
compilable. To detect regression faults quickly, existing continuous
testing techniques [15] execute an existing test suite as soon as the
changes are saved in an editor. The tests that fail on the modified
program version (and pass on the original version) expose behav-
ioral differences' between the two versions. Developers can inspect
these behavioral differences to determine whether they are intended
or unintended (i.e., regression faults). However, the effectiveness
of existing continuous testing techniques depends on the capability
of the existing test suite in detecting behavioral differences between
the original and the new program versions.

The existing test suite might not be able to detect behavioral dif-
ferences as it is usually created (or generated) without taking into
consideration the changes to be made in the future. Then the ex-
isting test suite can be augmented using existing test generation
techniques to improve the capability of the test suite in terms of de-
tecting behavioral differences. Existing test generation techniques
such as path-exploration-based test generation (PBTG) [17, 8, 12,
2, 3, 23, 9] and search-based test generation [22, 10] focus their
efforts on increasing structural coverage and do not specifically fo-
cus on detecting behavioral differences between two versions of
a program. As a result, these techniques are ineffective and ineffi-
cient for regression test generation, even with increasing computing
power thanks to multi-core architectures and cloud computing.

To address the issue, we propose an approach called eXpress? for
efficient regression test generation with PBTG techniques. PBTG
techniques (such as dynamic symbolic execution [21, 27] and con-
colic test generation [8, 17]) are gaining popularity due to their
effectiveness in generating a test suite that achieves high structural
coverage. To achieve high structural coverage, PBTG techniques
try to explore all feasible paths in the program under test, and such
exploration is typically quite expensive. However, if our aim is to
detect behavioral differences between two versions of a program,

lA behavioral difference between two versions of a program can be reflected by the
difference between the observable outputs produced by the execution of the same test
(referred to as a difference-exposing test) on the two versions.

2An earlier version [20] of this work is described in a four-page paper that appears in
the NIER track of ICSE 2009. This work significantly extends the previous work in
the following major ways. First, we develop techniques for exploiting the existing test
suite for efficiently generating regression tests. Second, we develop more prioritization
techniques. Third, we automate our approach by developing a tool. Fourth, we conduct
extensive experiments to evaluate our approach.



we do not need to explore all these paths in the program since
some of these paths are irrelevant paths, i.e., paths whose execu-
tions can never detect any behavioral differences. These irrelevant
paths need not be explored to make regression test generation ef-
ficient. eXpress prunes out these irrelevant paths from the explo-
ration space of a PBTG technique. In general, our path pruning
can be used to optimize both path-oriented (such as PBTG) as well
as goal-oriented test generation techniques (such as eToc [22]) for
regression test generation. Goal-oriented techniques generate tests
to execute a goal (such as a branch). For regression test generation,
the goal can be the changes made to a program. Our approach can
optimize goal-oriented techniques by pruning irrelevant branches
(i.e., branches whose executions can never detect any behavioral
differences) from the list of branches that may lead to the changes
(and propagate the change effects).

eXpress includes a novel practical application of a theoreti-
cal fault model: the Propagation, Infection, and Execution (PIE)
model [24] of error propagation. According to the PIE model, a
fault can be detected by a test if a faulty statement is executed (E),
the execution of the faulty statement infects the state (I), and the
infected state (i.e., error) propagates to an observable output (P). A
change in the new version of a program can be treated as a fault
and then the PIE model is applicable for effect propagation of the
change. Our key insight is that execution of many paths in a pro-
gram guarantees not to satisfy any of the conditions E, I, or P of
the PIE model. These paths can be pruned out from the exploration
space of a PBST technique, directing its efforts towards regression
test generation. In particular, eXpress first determines a set of paths
(P-E) that cannot lead to any changed code region and a set of
paths (P-p) through which a state infection cannot propagate to
any observable output. eXpress then prunes paths P-g and P-p
(from the exploration space of a PBST technique). In addition, eX-
press prunes other irrelevant paths (P-r) that are determined dur-
ing exploration with a PBST technique (see Section 4); these paths
do not cause state infection immediately after the execution of any
changed code region. Our technique for pruning paths P-g can
be used in general to achieve new code coverage (or violate asser-
tions) by treating not-covered locations (or assertions) as changed
code regions, while the pruning of paths P-p and P-; is specific
for regression test generation.

There are two technical challenges that our approach addresses.
First, to find paths P-r and P-p (before path exploration is
started), one needs to build an inter-procedural control-flow graph
(CFG), and often the construction of an inter-procedural CFG is
not scalable for real-world programs. To address the preceding
challenge, we build a minimal inter-procedural CFG for which our
purpose of finding sets P-r and P-p can still be served. Sec-
ond, to determine P-; (during path exploration), we need to de-
termine whether the program state is infected by a generated test.
A PBST technique could be modified to simultaneously explore
both the program versions to determine whether the program state
is infected by a generated test, but realizing such simultaneous ex-
ploration can be challenging. To address the preceding challenge,
eXpress explores only the new program version and executes a gen-
erated test (that executes a changed code region) on the original
program version to determine whether the program state is infected
by the generated test.

We have implemented eXpress as a search strategy for Dynamic
Symbolic Execution (DSE) [8, 17], a state-of-the-art PBTG tech-
nique. In particular, our implementation guides DSE to avoid from
flipping branching nodes®, whose unexplored side is guaranteed to

A branching node in the execution tree of a program is an instance of a conditional
statement in the source code. A branching node consists of two sides (or more than

lead to an irrelavant path*). In addition, eXpress can exploit the ex-
isting test suite (if available) for the original version by seeding the
tests in the test suite to further optimize exploration. Our seeding
technique efficiently augments an existing test suite so that various
changed code regions of the program (that are not covered by the
existing test suite) are covered by the augmented test suite. As a
result, behavioral differences are likely to be found earlier in path
exploration.

This paper makes the following major contributions:
Path Exploration for Efficient Regression Test Generation. We
propose an approach called eXpress for efficient generation of re-
gression tests. To optimize the search strategy of a PBTG tech-
nique, eXpress prunes paths whose execution guarantees not to
satisfy condition E, I, or P. As a result, behavioral differences are
found efficiently by the PBTG technique with eXpress than without
eXpress.
Incremental Exploration. We develop a technique for exploiting
an existing test suite, so that path exploration focuses on covering
the changes rather than starting from the scratch. As a result, be-
havioral differences are found more efficiently by the PBTG tech-
nique with eXpress based on an existing test suite than starting from
the scratch.
Implementation. We have implemented our eXpress approach in
a tool as an extension for Pex [21], an automated structural testing
tool for .NET developed at Microsoft Research.
Evaluation. We have conducted experiments on 67 versions (in
total) of four programs with two from the Subject Infrastructure
Repository (SIR) [5] and two from real-world open source projects.
Experimental results show that Pex using eXpress requires about
36% less amount of time (on average) to detect behavioral differ-
ences than without using eXpress. In addition, Pex using eXpress
detects four behavioral difference that could not be detected with-
out using eXpress (within a time bound). Furthermore, Pex requires
67% less amount of time to find behavioral differences by exploit-
ing an existing test suite than exploration without using the test
suite.

2. DYNAMIC SYMBOLIC EXECUTION

We implement our approach for Pex [21], an engine for Dynamic
Symbolic Execution (DSE), a state-of-the-art PBST technique. Pex
starts path exploration with some default inputs. Pex then collects
constraints on program inputs from the predicates at the conditional
statements executed in the program. We refer to these constraints at
conditional statements as branch conditions. The conjunction of all
branch conditions in the path followed during execution of an input
is referred to as a path condition. Pex (and other PBST techniques)
keeps track of the previous explored paths to build an execution
tree. Each node in the tree is an instance of some conditional state-
ment in the source code, each edge in the tree is an instance of some
branch in the program source code (or its CFG), and different paths
in the tree are (already explored) execution paths. The nodes of the
tree are referred to as branching nodes. Pex, in the subsequent run’,
chooses one of the branching nodes in the execution tree (explored
thus far), such that not all outgoing branches of the node have been
explored yet. Pex flips the chosen branching node to generate a
new input whose execution follows a new path. Intuitively, flip-

two sides for a switch statement): the true branch and the false branch. Flipping
a branching node is flipping the execution of the program from the true (or false)
branch to the false (or true) branch. Flipping a branching node for a switch statement
is flipping the execution of the current branch to another unexplored branch.

An irrelevant path here is a path whose execution guarantees not to satisfy any of the
E, I, and P of the PIE model.

5 . P .
A run is an exploration iteration.



ping a branching node in an old path is to construct a new path that
shares the prefix (in the execution tree) to the node with an old path
(containing the flipped node), but then deviates and takes a different
branch of the node. Pex uses various heuristics [27] for choosing
a branching node (to flip next) applying various search strategies
with an objective of achieving high code coverage fast. Hence, the
path exploration in PBST techniques (including DSE) is realized
through flipping branching nodes.

We next present definitions of some terms that we use in the rest
of this paper.
Instance of a Conditional Statement. Multiple instances of a
conditional statement in the source code (of a program) can be
present in the execution tree. The branching nodes in the execu-
tion tree corresponding to a conditional statement s in the source
code are referred to as instances of s. Note that statements other
than conditional statements are abstracted away from the execution
tree.
Branch. A branch <s;, s;> in the source code (or its CFG) is
an edge connecting conditional statement s; to statement s; in the
CFG. A conditional statement typically has two branches (or more
than two branches for a switch statement): the true branch and the
false branch.
Branch Instance. Let <s;, s;> be a branch in the source code (or
its CFG) from statement s; to statement s; such that s; is a con-
ditional statement. Let s; be the first conditional statement that is
encountered (in the CFG) after taking branch <s;, s;>. Note that
if s; is a conditional statement, s, = s;. A branch br;;, =<b;, by,>
in the execution tree® of a program is an instance of <s;,s;> iff
branching node b; is an instance of conditional statement s; and
branching node by, is an instance of conditional statement s.
Unexplored Branch Instance. An unexplored branch instance of
a branching node b; in the execution tree of a program is a branch
instance br;; =<b;, bi,> of b; such that the branch instance br;
is not taken yet.
Discovered Node. A discovered branching node (in short as a
discovered node) is a branching node that is explored in the cur-
rent DSE run but whose corresponding conditional statement in the
source code was not executed in previous runs.
Path. A path P in the execution tree of a program is a list of
branching nodes P = <by, b2, bs, .., b, > in the execution tree such
that the branching nodes b1, b2, bs, ....b,, are executed in order.
Unexplored Branch Instances along a Path. Let B be the
set of all branches of all the branching nodes in path P =
<bi, b2, bs, .., b, >. Unexplored branch instances along path P are
all those branch instances B,, € B such that Vbr;, =<b;,bp>€
B, briy is unexplored.
Path Prefix. Two paths P, and P> have a common prefix up to a
branching node b; iff the the two lists P, and P have a maximum
prefix ending with branching node b;.
Branch Pruning. Let b; be a branching node (an instance of an
if or a while/for statement) such that at least one of the branch
instances br;, =<b;, bpy> of b; is unexplored. Pruning of branch
instance br;y is the removal of b; from the exploration space of a
PBST technique. As a result, b; is prevented from being flipped by
the PBST technique. The effect is pruning all such paths that share
the prefix up to branching node b;, and take an unexplored branch
instance of branching node b;.
Branch Pruning along a Path. Pruning a branch <s;, s;> (in
the source code) along path P = <b1, b2, b3, .., bn,> is the pruning
of all the instances of branch <s;, s;> from P.

A branch in the execution tree is an edge in the execution tree. Every edge in the
execution tree is an instance of a branch in the source code. In the rest of this paper,
we refer to a branch in the execution tree as a branch instance.

static public int TestMe (char[] c) {

1 int state = 0;
2 if(c == null || c.Length == 0)
3 return -1;
4 for (int i=0; i< c.Length; i++){
5 if(c[i] == "[") state =1;
6 else if(state == 1 && c[i] == "{") state =2;
7 else if (state == 2 && c[i] == "<") state =3;
8 else if(state == 3 && c[i] == "x")({
9 state =4;
10 if (c.Length==15) //Added in new version
11 state = state + 1;//Added in new version
}
12 if(c(i]==" ")
13 return state;
14 if (! (c[i] >= ’a’ && c[i] <= "z")){
15 state=-1; return state;
}
}
}
16 if (c.Length >=15 && c[15] == "}")
17 return state;
18 return -1;

Figure 1: An example program

Changed Code Region. A changed code region (in a new pro-
gram version) is a minimal set of statements S that contains all
modified (in the new or original program version), added (in the
new program version), or deleted (in the original program version)
statements in a method such that the nodes corresponding to .S in
the CFG of the new program version form a single-entry-single-exit
subgraph’.

3. EXAMPLE

In this section, we illustrate our eXpress approach with an ex-
ample. eXpress takes as input two versions of a program and pro-
duces as output a regression test suite, with the objective of detect-
ing behavioral differences (if any exist) between the two versions
of the program. Although eXpress analyzes assembly code of C#
programs, in this section, we illustrate the eXpress approach using
program source code.

To make a PBST technique efficient, eXpress prunes paths from
the exploration space of the PBST technique so that the PBST
technique focuses its efforts on regression test generation. To
prune various paths from the exploration space of the PBST tech-
nique, eXpress determines certain branches (referred to as irrel-
evant branches) before the path exploration by the PBST tech-
nique. eXpress then uses these irrelevant branches to prune irrele-
vant paths (during path exploration) from the exploration space of
the PBST technique. To explain the path pruning by eXpress, we
use DSE as a representative PBST technique.

Consider an example program TestMe in Figure 1. Lines 10 and
11 of the program are added in a new version.

Detection of Irrelevant Branches. The left hand side of Figure 2
shows the CFG of the program in Figure 1. The labels of vertices
in the CFG denote the corresponding line numbers in Figure 1. The
black vertices denote the newly added statements at Lines 10 and
11. The gray vertices denote the conditional nodes (for the condi-
tional statements in the program), while the white vertices denote
the other statements in the program. From the CFG, eXpress first
determines two categories of branches Br and Bp. eXpress then
uses Br and Bp to prune irrelevant paths during path exploration.

e Category Br. On statically traversing the CFG in Figure 2,
eXpress detects that taking the branches <2,3>, <4,16>,

7The requirement of single-entry-single-exit subgraph ensures that instrumented code
(see Section 4.3), inserted just after a changed code region §, post-dominates §.



Figure 2: The left side shows the CFG for the program in Fig-
ure 1, while the right side shows a part of the execution tree of
the program for test T ={"[", "{", "<", "*" L.

<16,17>, <16,18>, <12,13>, and <14, 15> (dotted edges
in Figure 2), the program execution cannot reach any of the black
vertices. Hence, the execution of these branches guarantees not
to execute the changed statements.

e Category Bp. In addition, eXpress statically detects that among
the source vertices of the six branches in Category Bp, there
is no path from any of any black vertices to vertex 3. Hence,
a state infection after the execution of any black vertex cannot
propagate through branch < 2,3 >.

Path Pruning. To cover the changed statements at Lines 10 and 11
(in Figure 1) and detect behavioral differences, DSE needs at least
6 DSE runs (starting from an empty input array c). However, the
number of runs depends on the choice of the branching node that
DSE flips in each run. In each run, DSE has the choice of flipping
8 new branching nodes (apart from the branching nodes that accu-
mulate in previous runs) in the program. For TestMe, Pex takes
441 DSE runs to cover the true branch of the statement at Line 10.
The number of runs can be much more if the number of branch-
ing statements in the program increases. Since path exploration
is realized in DSE through flipping of branching nodes, eXpress
dynamically prunes certain instances of branches in the execution
tree. As an effect, eXpress prunes paths containing the instances of
the branches.

o Category P-p. eXpress prunes all instances of branches
Bp from the exploration space of DSE since executing these
branches guarantees not to execute a changed code region or
propagate a state infection to an observable output. As an effect,
all the paths containing instance of any node in Bp are pruned
from the exploration space.

e Category P-p. If along an already explored path no black
vertex is executed, all the instances of branches in B — Bp
along the path are pruned. Note that category P-p already
includes the paths containing Bp. Hence, to make the three
categories exclusive, we prune B — Bp instead of Bg. For
example, if a test / = {"["} is generated that follows a path
Pr =<...,5,12,14,4,16, 18> and does not execute any black
vertex, the unexplored branch instances <12,13>, <14,15>,
and <16, 17> (along the path Pr) are pruned since exploring
these branch instances guarantees not to execute the black ver-
tices along the path prefix shared with P.

e Category P-;. If along an already explored path, some black
vertex is executed but the program state is not infected after the
execution of the black vertex, all the instances of branches in Bg

after the execution of the last black vertex in the path are pruned.
For example, ifatest I = {"[", "{","<", "*" } is generated to fol-
low a path Pr = <...,10,12,14, 4,16, 18> is explored, the un-
explored branch instances <12,13>, <14,15>, and <16, 17>
(along Pr) are pruned since the program state is not infected and
exploring these branch instances guarantees not to execute the

black vertices along the path prefix shared with Pr.

Incremental Exploration. eXpress can reuse an existing test
suite for the original version so that changed code regions of the
program can be explored efficiently due to which test generation is
likely to find behavioral differences earlier in path exploration. As-
sume that there is an existing test suite covering all the statements
in the original version of the program in Figure 1. Suppose that the
test suite hasatest / = {"[", "{", "<", "*" }. The input covers all the
statements in the new version of TestMe except the newly added
statement at Line 11. If we start the path exploration from scratch
(i.e., with default inputs), Pex takes 441 runs to cover the statement
at Line 11. However, we can reuse the existing test suite for ex-
ploration to cover the new statement efficiently. Our approach exe-
cutes the test suite to build an execution tree for the tests in the test
suite. Our approach then starts path exploration using the dynamic
execution tree built by executing the existing test suite instead of
starting from an empty tree. Some branching nodes in the tree may
take many runs for Pex to discover if starting from an empty tree.
The right side of Figure 2 shows a part of the execution tree for the
input /. A gray edge in the tree indicates the false branch instance
of a branching node while a black edge indicates the true branch
instance. To generate an input for the next DSE runs, Pex flips a
branching node b whose other side has not yet been explored and
generates an input so that program execution takes the unexplored
branch instance of b. Pex chooses such branching node for flipping
using various heuristics for covering changed code regions of the
program. It is likely that Pex chooses branching node 10 (colored
black), which on execution covers the added statement at Line 11.
Using our approach of seeding the tests from the existing test suite,
Pex takes 39 runs (in contrast to 441) to flip the branching node and
cover the statement at Line 11.

4. APPROACH

eXpress takes as input the assembly code of two versions vl
(original) and v2 (new) of the program under test. In addition, eX-
press takes as input the name and signature of a parameterized unit
test®(PUT). When an existing test suite is available for the original
version, eXpress conducts incremental exploration that exploits the
test suite for generating tests for the new version. We next discuss
in detail the eXpress approach.

4.1 Code-Difference Identification

eXpress analyzes the two versions vl and v2 to find pairs
<M1, Mi2> of corresponding methods in v1 and v2, where M;;
is a method in v1 and M;> is a method in v2. A method M is de-
fined as a triple <F'QN, Sig, I>, where FQN is the fully qual-
ified name® of the method, Sig is the signature'® of the method,
and [ is the list of assembly instructions in the method body. Two
methods <Mj1, M;>> form a corresponding pair if the two meth-
ods M;; and M;o have the same FQN and Sig. For each pair

8A parametarized unit test [21] is a test method with parameters. Such a method
serves as a driver for path exploration.

9The fully qualified name of a method m is the combination of the method’s name,
the name of the class ¢ declaring m, and the name of the namespace containing c.
10The signature of a method m is the combination of parameter types of m and the
return type of m.



<M1, M;2> of corresponding methods, eXpress finds a set of
differences A;1 (for the original version) and A;z (for the new ver-
sion) between the list of instructions Ins,, and I, in the body
of Methods M;1 and Mz, respectively. A;1 (Aj2) includes all
those instructions such that each instruction ¢ in A1 (A42) is an
instruction in Iaz;, (I, for A;2), and ¢ is added (deleted for A;2)
or modified from list Ips,, to form Ips,,. We denote the set of
all added, modified, or deleted instructions in v1 as A1 and in vs
as A,. Currently our approach considers as different methods the
methods that have undergone Rename Method or Change Method
Signature refactoring. A refactoring detection tool [4] can be used
to find such corresponding methods.

4.2 Graph Building

eXpress efficiently constructs the inter-procedural CFG
g <V, E> of the program under test such that each vertex v € V'
corresponds to an instruction ¢ € M (denoted as v < ¢), where
M is some method in v2. eXpress starts the construction of the
inter-procedural CFG from the Parametrized Unit Test (PUT) 7
provided as input. The inter-procedural CFG is used by eXpress to
find branches (in the graph) via which the execution cannot reach
any vertex containing a changed instruction in the graph.

Algorithm 1 Pseudo code of Construction of Inter-Procedural Control Flow Graph

Input: A test method 7.
Output: The inter-procedural Control Flow Graph (CFG) of the program under test.

Inter ProceduralCFG(T)

1: g « GenerateIntraProcedural CFG(T)

2: MethodCallStack +« (), CanReachChangedRegion +«— ),

Visited < 0

3: ChangedMethods < FindChangedMethods()

4: AChangedMethod — m € ChangedMethods

5: acg «— GenerateIntraProcedural CFG(AChangedMethod)

6: forall Vertex v € g.Vertices do

7 if v.Instruction = MethodInvocation then

8 ¢« getMethod(v.Instruction)

9 if c € MethodCallStack then

10: goto Line 6 //To handle loops or recursions
11: end if

12: if c € CanReachChangedRegion then
13: g < GraphUnion(acg, g, v)

14: goto Line 6

15: end if

16: if ¢ € Visited then

17: goto Line 6

18: end if

19: if c € ChangedMethods then

20: for all Method m € MethodCallStack do
21: CanReachChangedRegion.Add(m)
22: end for

23: end if

24 MethodCallStack.Add(c)

25: cg «— Inter Procedural CFG(c)

26: MethodCallStack.Remove(c)

27: Visited. Add(c)

28: g <+ GraphUnion(cg, g, v)

29: end if

30: end for

31: return g

Since a moderate-size program can contain a large num-
ber of method invocations (including those in its dependent
libraries), often the construction of its inter-procedural CFG is
not scalable to real-world situations. Hence, we build a minimal
inter-procedural CFG for which our purpose of finding branches
whose execution cannot later reach some changed code region
in the program can be served. The pseudo code for building
the inter-procedural CFG is shown in Algorithm 1. Initially, the
algorithm InterProceduralCFG is invoked with the argument as
the PUT 7. The algorithm first constructs an intra-procedural CFG

g for method 7. For each method invocation vertex'! (invoking
method ¢) in g, the algorithm InterProceduralCFG is invoked
recursively with the invoked method c as the argument (Line 25 of
Algorithm 1), after adding c to the call stack (Line 24). After the
control returns from the recursive call, the method ¢ is removed
from the call stack (Line 26) and added to the set of visited
methods (Line 27). The inter-procedural graph cg (with ¢ as an
entry method) resulting from the recursive call at Line 25 is merged
with the graph g (Line 28). The algorithm InterProceduralCFG
is not invoked recursively with ¢ as the argument in the following
situations:

c is in call stack. If ¢ is already in the call stack,
InterProceduralCFG is not recursively invoked with ¢ as
the argument (Lines 9-10). This technique ensures that our ap-
proach is not stuck in a loop in method invocations. For example,
if method A invokes method B, and method B invokes method
A, then the construction of the inter-procedural graph stops after
method A is encountered the second time.

c is already visited. If c is already visited, InterProceduralCFG
is not recursively invoked with ¢ as the argument (Lines 16-17).
This technique ensures that we do not build the same subgraph
again.

¢ is in  CanReachChangedRegion. The  set
CanReachChangedRegion is populated whenever a changed
method'? is encountered. In particular, if a changed method is
encountered, the methods currently in the call stack are added
to the set CanReachChangedRegion (Lines 19-23). If ¢ is
in CanReachChangedRegion, InterProceduralCFG iS not
recursively invoked with c as the argument, while merging CFG of
some changed method with g (Lines 12-15).

Note that if method m can invoke (directly or indirectly) a changed
method cm, not all the branches in this method m may be able to
reach'® the changed region in cm (e.g., due to return statements).
Branches that cannot reach any changed code region (i.e., irrelevant
branches) are found by eXpress. If a node b can (or cannot) reach
a changed code region in inter-procedural CFG ¢ built without
using the preceding optimization, the node b can (or cannot) reach
a changed code region (maybe a different one) in the graph built
using the preceding optimizations. Since our aim of building the
inter-procedural CFG is to find irrelevant branches, i.e., those in
the graph via which the execution cannot reach any changed code
region, the preceding three optimizations help achieve the aim
while reducing the cost of building the inter-procedural CFG. In
addition, the size of the inter-procedural CFG is reduced resulting
in reduction in the cost of finding irrelevant branches.

4.3 Code Instrumentation

The code instrumentation helps eXpress in determining whether
the program state is infected by a generated test. For each changed
method pair <M;1, M;2> (ie., Aj1 # O or Aja # 0), eXpress
finds changed code regions d;1 and d;2 (for the original and new
program versions, respectively) containing all the changed instruc-
tions in the program. At the end of each changed code region d;1
and d;2, eXpress inserts instructions to save the program state. In
particular, eXpress finds the set of variables vq; that can potentially
be defined in ;1 (and 6§,2). eXpress then inserts instructions to cap-
ture the value of each variable in vg; as an assertion (if the variable
is of primitive type). If the variable is of a non-primitive type, eX-
press captures the object state of the variable and linearizes the state

" A method invocation vertex is a vertex representing a call instruction.
12A changed method M is a method for which the set A; # .

13A branch can reach a changed region if the edge (in the CFG) corresponding to the
branch can reach the nodes corresponding to the changed region.



to a string. These observed values (or object states) are stored and
inserted in assertions in a generated test to compare with the ob-
served program state. A PBST technique is used to generate tests
for the new version v2. During path exploration, whenever a test is
generated (for v2) by a PBST technique to execute a changed code
region, eXpress executes the generated test on the original program
version (v1) to determine whether the program state is infected im-
mediately after the execution of the changed code region. If any
of the captured values (or object states) is different across the two
versions, an assertion fails for indicating program state infection.
The instrumentation enables to perform only one instance of path
exploration on the new version instead of performing two instances
of path exploration: one on the original and the other on the new
program version. Performing two instances of DSE can be techni-
cally challenging since the two DSE instances need to be performed
in a controlled manner such that both versions are executed with the
same input and the execution trace is monitored for both the ver-
sions by a common exploration strategy to decide which branching
node to flip next in the two versions.

4.4 Irrelavant-Branch Identification

There can be an infinite number of paths in the CFG of the pro-
gram and many of them are infeasible. Hence, it is often not feasi-
ble to enumerate all irrelevant paths in the program thus far. More-
over, path exploration is realized through flipping branching nodes
by PBST techniques. Hence, eXpress first finds branches whose
corresponding branching nodes need not be flipped (under certain
situations), and uses these branches for path pruning. In particular,
eXpress traverses g to find a set of branches Bg (in the CFG) via
which the execution cannot reach any of the instructions in Az, and
a set of branches Bp via which no state infection can propagate to
any observable output. eXpress then uses these branches (and the
already explored paths) to prune various paths (during path explo-
ration) that need not be explored to find behavioral differences. A
branch b in CFG g is an edge e =<v;,v;>: e € I/, v; € V with
an outgoing degree of more that one. We next describe the sets B
and Bp.

Let V. = {v1,v2,..,u} be the set of all vertices in CFG
g<V,E> such that v; € V and v;.degree > 1. Let E; =
{ei1, €i2, ..., €im } be the set of outgoing edges (branches) from v;.
Let C be the set of vertices in the CFG g such that Vv € C, 3. €
A1JA2 : v < 1. p(vi,vj,ei;) denotes the set of paths from a
source vertex v; to a destination vertex v; such that these paths take
the branch e;; (if p(vi, v;,e;5) = 0, there is no such path from v;
to v;), and p(v;,v;) denotes the set of paths from a source vertex
v; to a destination vertex v; (if p(vsi, v;) = 0, there is no such path
from v; to v;).

Branches Bg. Br C FE is the set of branches such that
Vei; =< v;,v;>€ Br AVc, € C : p(vi,c,ei;) = 0. Since
p(vi, ek, eij) = (0, after taking a branch e;; € Bg, the program
execution cannot reach a changed code region. Hence, the program
state cannot be infected.

Branches Bp. Bp C E is the set of branches such that Ve;; =<
v;,0;>€ Bp AVer, € C i p(vi,cr,eij) = 0 A p(cr,vi) = 0.
Since p(ck, vi) = (), a state infection after a changed vertex cy, can-
not reach v;. Hence, the state infection cannot propagate through
ei;j. Note that Bp C Bg.

4.5 Path Pruning

eXpress prunes various paths for a PBST technique to make path
exploration efficient for regression test generation. During path ex-
ploration, eXpress uses the the set of branches Br and Bp to de-
termine paths that can be pruned from the exploration space of a

PBST technique. These paths are guaranteed not to be able to de-
tect behavioral differences between vy and v2. We next describe
the three categories of paths that eXpress prunes from the explo-
ration space of a PBTG technique:

Category P-p. Along all the paths already explored by a PBST
technique, eXpress prunes all the instances of branches b € B,,. As
an effect, P-p contains all paths (in the program) that include an
instance of some branch b € Bp. Since all branches in Bp cannot
reach a changed code region and no changed code region has a path
to any branch in Bp, each path in P-p guarantees not to execute
any of the changed code regions or propagate a state infection to
an observable output. Hence, along these paths, no behavioral dif-
ferences could be found. Note that the branches in Bp — Br may
be able to propagate a state infection along some path in which a
changed code region is executed. Hence, it is not safe to prune all
paths including these branches.

Category P-g. Let P, be the set of all paths (in the explored ex-
ecution tree) that do not execute any changed code region, eXpress
prunes all the instances of branches in B — Bp. Since along the
paths P,., no changed code region is executed, the program state
cannot be infected along these paths. Hence, it is safe to prune
branches B — Bp along these paths since these branches cannot
reach a changed code region. As an effect, eXpress prunes all the
paths that have a common prefix with some path in P, up to a
branching node by such that b =<b1, 2> is an instance of branch
br and br € Bg — Bp, and b is not explored yet.

Category P-;. Let P,; be the set of all paths (in the explored
execution tree) that execute some changed code region. However,
the program sate is not infected after the execution of any changed
code region. Along each path in P, ., eXpress prunes the instances
of branches Bg that are explored after the execution of the last
changed code region. Since the state is not infected along any path
in P, and the branches in Bg cannot reach any changed code re-
gion (again), it is safe to prune these branches.

4.6 Incremental Exploration

A regression test suite achieving high code coverage may be
available along with the original version of a program. However,
the existing test suite might not be able to cover all the changed
code regions of the new version of the program. Our approach can
reuse the existing test suite so that changed code regions of the
program can be executed efficiently due to which test generation is
likely to find behavioral differences earlier in path exploration. Our
approach executes the existing test suite to build an execution tree
for the tests in the test suite. Our approach then starts the path ex-
ploration using the execution tree instead of starting from an empty
tree. Our approach of seeding tests can help efficiently cover the
changed code regions of the program with two major reasons:
Discovery of hard-to-discover branching nodes. By seeding the
existing test suite for DSE to start exploration with, our approach
executes the test suite to build an execution tree of the program.
Some of the branching nodes in the built execution tree may take
a large number of DSE runs (without seeding any tests) to get
discovered. Flipping some of these discovered branching nodes
whose corresponding branches are closer in the CFG to the changed
parts of the program has more likelihood of covering the changed
code regions of the program [1]. Although our approach currently
does not specifically first flip branching nodes whose correspond-
ing branches are near the changed code regions, our approach can
help these branching nodes to get discovered (by executing the ex-
isting test suite), which might take a large number of DSE runs as
shown in the example in Section 3.



Priority of DSE to cover not-covered regions of the program.
DSE techniques typically prioritize branching nodes for flipping so
that high coverage can be achieved faster. Thus, DSE techniques
choose a branching node from the execution tree (built thus far)
such that flipping it has a high likelihood of covering changed code
regions (that are not covered by the existing test suite for the origi-
nal version). By seeding the existing test suite to path exploration,
the DSE techniques do not waste time on covering the regions of the
program already covered by the existing test suite. Instead, the DSE
techniques give high priority to branching nodes that can cover the
program’s not-covered regions, which include the changed code re-
gions. Hence, it is likely to cover the changed code regions earlier
in path exploration.

S. EXPERIMENTS

We conduct experiments on four programs and their 67 versions
(in total) collected from three different sources. In our experiments,
we address the following research questions:

RQ1. How high percentage of paths explored by Pex belong to
the three categories of irrelevant paths (P-p, P-g, and P~ as de-
scribed in Section 4) being pruned by eXpress?

RQ2. How many fewer DSE runs and how much less amount of
time does Pex using eXpress require to find behavioral differences
than Pex without using eXpress?

RQ3. How many fewer DSE runs and how much less amount of
time does Pex require to find behavioral differences when the path
exploration is seeded with an existing test suite?

5.1 Subjects

To address the research questions, we conducted experiments on
four subjects. Table 1 shows the details about the subjects. Column
1 shows the subject name. Column 2 shows the number of classes
in the subject. Column 3 shows the number of classes that are cov-
ered by tests generated in our experiments. Column 4 shows the
number of versions (not including the original version) used in our
experiments. Column 5 shows the number of lines of code in the
subject.

replace and siena are programs available from the Subject In-
frastructure Repository (SIR) [S]. replace and siena are written
in C and Java, respectively. replace is a text-processing program,
while siena is an Internet-scale event notification program. We
choose these two subjects (among the others available at SIR) in
our experiments as we could convert these subjects into C# us-
ing the Java 2 CSharp Translator'*. We could not convert other
subjects available at SIR (with the exception of tcas) because of
extensive use of C or Java library APIs in these subjects. The ex-
perimental results on tcas are presented in a previous version of
this work [20] and show similar conclusions as the results from the
subjects used in the experiments here. We seed all the 32 faults
available for replace at SIR one by one separately on the origi-
nal version to synthesize 32 new versions of replace. For siena,
SIR contains 8 different sequentially released versions of siena
(versions 1.8 through 1.15). Each version provides enhanced func-
tionalities or corrections with respect to the preceding version. We
use these 8 versions in our experiments. In addition to these 8
versions, there are 9 seeded faults available at SIR. We seed all
the 9 faults available at SIR one by one separately on the original
version to synthesize 9 new versions of siena. In total, we con-
duct experiments on these 17 versions of siena. For replace, we
use the main method as a PUT for generating tests. We capture
the concrete value of the string sub at the end of the PUT using

l4http://sourceforge.net/projects/j2cstranslator/

the PexStore.vValueForvValidation ("v", v) statement. This
statement captures the current value of v in a particular run (i.e.,
an explored path) of DSE. In particular, this statement results in an
assertion Assert.AreEqual (v, cv) in a generated test, where
cv is the concrete value of v in the test during the time of explo-
ration. This assertion is used to find behavioral differences when
the tests generated for a new version are executed on the original
version. For siena, we use the methods encode (for changes that
are transitively reachable from encode) and decode (for changes
that are transitively reachable from decode) in the class SENP as
PUTs for generating tests. We capture the return values of these
methods using the PexStore statement in the PUTs.

The method encode requires non-primitive arguments. Pex cur-
rently cannot handle non-primitive argument types effectively but
provides support for using factory methods for non-primitive types.
Hence, we manually write factory methods for the non-primitive
types in SENP. In particular, we write factory methods for classes
SENPPacket, Event, and Filter. Each factory method invokes a
sequence (of length up to three) of the public state-modifying meth-
ods in the corresponding class. The parameters for these methods,
and the length of the sequence (up to three) are passed as inputs to
the factory methods. During exploration, Pex generates concrete
values for these inputs to cover various parts of the program under
test.

STPG'? is an open source program hosted by the codeplex web-
site, which contains snapshots of check-ins in the code reposi-
tories for STPG. We collect three different versions of the sub-
ject STPG from the three most recent check-ins. We use the
Convert (string path) method as the PUT for generating tests
since Convert is the main conversion method that converts a string
path data definition to a PathGeomet ry object. We capture the re-
turn value of Convert using the PexStore statement in the PUT.

structorian'® is an open source tool for binary-data viewing
and reverse engineering. structorian is hosted by Google’s open
source project hosting website. The website also contains snap-
shots of check-ins in the code repositories for st ructorian. We
collect all the versions of snapshots for the classes StructLexer
and structParser. We chose these classes in our experiments
due to three factors. First, these classes have several revisions
available in the repository. Second, these classes are of non-
trivial size and complexity. Third, these classes have correspond-
ing tests available in the repository. For classes StructLexer
and structParser, we generalized some of the available concrete
test methods by promoting primitive types to arguments of the test
methods. Furthermore, we convert the assertions in the concrete
test methods to PexStore statements. For example, if an asser-
tion Assert.IsEqual (v, 0) existsin a concrete test, we convert
the assertion to PexStore.ValueForValidation ("v", v). We
use these generalized test methods as PUTs for our experiments.
structorian contains a manually written test suite. We use this
test suite for seeding the exploration for addressing RQ3.

To address questions RQ1-RQ2, we use all the four subjects,
while to address question RQ3, we use structorian because of
two major factors. First, st ructorian has a manually written test
suite that can be used to seed the exploration. Second, revisions of
structorian contain non-trivial changes that cannot be covered
by the existing test suite. Hence, our technique of seeding the ex-
isting test suite in the path exploration is useful for covering these
changes. replace contains changes to one statement due to which
most of the changes can be covered by the existing test suite. Sim-

15http://stringtopathgeometry.codeplex.com/

16http://code.googleAcom/p/structorian/



Table 1: Experimental subjects

Project Classes Classes Covered Versions LOC
replace 1 1 32 625
STPG 1 1 2 684
siena 6 6 17 1529
structorian 70 8 16 | 6561

ilarly, the changes in siena are covered by the existing test suite.
Hence, our incremental exploration technique is not beneficial for
the version pairs of replace or siena under test. STPG does not
have an existing test suite to use.

5.2 Experimental Setup

For replace and siena, we conduct regression test generation
between the original version and each version v2 synthesized from
the available faults and released versions (if any) in SIR. We use
eXpress and the default search strategy in Pex [21, 27] to con-
duct regression test generation. In addition to the versions syn-
thesized by seeding faults, we also conduct regression test gener-
ation between each pair of successive versions of siena (versions
1.8 through 1.15) available in SIR, using eXpress and the default
search strategy in Pex [21, 27]. For STPG and structorian, we
conduct regression test generation between each pair of two suc-
cessive versions that we collect.

To address RQ1, we categorize all the irrelevant paths explored
by Pex (without using eXpress) as one of the three categories de-
scribed in Section 4 and measure the percentage of paths in each
category. To address RQ2, we compare the number of runs and the
amount of time required by Pex with the number of runs required
by Pex using eXpress (referred to as Pex+eXpress in the rest of this
paper) to find behavioral differences between two versions of a pro-
gram under test. To address RQ3, we compare the number of DSE
runs and the amount of time required by Pex (and Pex+eXpress) to
identify behavioral differences with and without seeding the path
exploration (with the existing test suite).

Currently, we have not automated our code-instrumentation tech-
nique. We instrument each version manually for our experiments.
In future work, we plan to automate the technique. The rest of
the approach is fully automated and is implemented in a tool as
an extension'’ to Pex [21]. We have developed its components to
statically find irrelevant branches as a .NET Reflector'® AddIn.

To find behavioral differences between two versions, we execute
on the original version the tests generated for a new version. Be-
havioral differences are detected by a test if an assertion in the test
fails.

5.3 Experimental Results

In this section, we present the experimental results to address the
Research Questions RQ1, RQ2, and RQ3.

5.3.1 RQI: Path Categorization

We next address RQ1 regarding the categorization of different
irrelevant paths (described in Section 4) explored by Pex. Ta-
ble 2 shows the categorization of paths explored by Pex. Column
Subject shows the subject name. Column #Bp shows the aver-
age number of branches in the set Bp. Column #Bp shows the
average number of branches in the set Br. Column #T shows the
average number of branches in the CFG. Column P; shows the per-
centage of irrelevant paths (on average) in Category P- p among all
the paths explored by Pex. Column P» shows the percentage of ir-
relevant paths (on average) in Category P among all the paths

17http: //pexase.codeplex.com/

18http: //www.red-gate.com/products/reflector/

Table 2: Categorization of the paths explored by Pex.

Subject #Bp | #Bg | #T Py Py Ps T(Irr)
replace 4 84 | 206 | 23% | 25% 8% 55%
siena 9 29 | 157 6% | 18% 5% 29%
STPG 2 13 | 145 0% | 12% 1% 13%
structorian (SL) 1 13 69 0% | 11% | 13% 24%
structorian (SP) 21 49 | 447 | 13% | 28% 0% 41%
Table 3: Results of path pruning.
S V | Ppex | Prea | My | Tppex | T's+Tq | TPRea
replace | 32 9812 63% | 37% 711 305 57%
siena 17 6914 33% | 11% 1011 718 29%
STPG 2 378 23% | 23% 353 286 19%
SL 6 4326 37% | 26% 144 98 31%
SP 10 | 49889 68% | T7% Shr 3.25hr 35%

explored by Pex. Column P3 shows the percentage of irrelevant
paths (on average) in Category P-; among all the paths explored
by Pex. Column T'(Irr) shows the percentage of irrelevant paths
(on average) among all the paths explored by Pex. Note that the
branch set Bp C Bg, while the path sets P-p, P-g, and P-; are
disjoint.

The number of branches in Bp is substantially less than the num-
ber of branches in Br. We observe that the number of branches in
Bp is higher when a change is deeper inside the CFG, i.e., at a
larger distance from the start node of the CFG. For example, the
versions 5, 6, 8, 15, 16, and 24-27 of replace have a higher num-
ber of branches in Bp. As a result, the number of paths in Cate-
gory P_p (P1) is substantially higher (than the average) in these
versions. In contrast, there are hardly any branches in Bp for the
versions of STPG. Hence, there is no path in P-p (P) for these
versions. The number of paths in P-g (F-) is higher (on average)
than the number of paths in P-p (F) as there are more branches in
Bpg. The number of paths in P-; (Ps) is smaller than in P-p (P;)
and P~ (F2) as not many generated tests execute a changed code
region such that the program state is not infected. We also observe
that the number of irrelevant paths increases with the increase in
the number of irrelevant branches. In total, 46% of the total paths
explored by Pex are irrelavant paths. This percentage indicates the
benefit that our path pruning techniques can potentially achieve in
optimizing a PBST technique for regression test generation.

5.3.2 RQ2: Path Pruning

Table 3 shows the experimental results of applying our path prun-
ing techniques. Due to space limit, we provide only the total, aver-
age, and median metric values of the versions for which behavioral
differences were found by both Pex and Pex+eXpress. The de-
tailed results for experiments on all the versions of these subjects
are available on our project web'”.

Column S shows the name of the subject.  The class
StructLexer is denoted by SL and the class StructParser is
denoted by SP. Column V' shows the number of version pairs. Col-
umn Pp., shows the total number of DSE runs required by Pex for
satisfying P for all version pairs. Column Pr.q shows the average
percentage reduction in the number of DSE runs by Pex+eXpress
for satisfying P (i.e., finding behavioral differences). Column M,
shows the median percentage reduction in the number of DSE runs
by Pex+eXpress for satisfying P. Column 7}, pe,, shows the time (in
seconds) taken by Pex for satisfying P. Column 7’s + Ty shows the
time (in seconds) taken by Pex+eXpress for satisfying P. This time
includes the time taken to statically identify irrelevant branches.
Column 7'p req shows the average percentage reduction in amount
of time taken by Pex+eXpress for satisfying P.

19https ://sites.google.com/site/asergrp/projects/express/



Results of replace. For the replace subject, among the 32 pairs
of versions, the changed code regions cannot be executed for 4
of theses version pairs (version pairs 0-14, 0-18, 0-27, and 0-31,
where 0 is the original version) by Pex or by Pex+eXpress in 1000
DSE runs. We do not include these version pairs while calculat-
ing the sum of DSE runs for satisfying I and E of the PIE model.
For 3 of the version pairs (version pairs 0-12, 0-13, and 0-21), the
changes are in the fields due to which there are no benefits of using
Pex+eXpress. We exclude these 3 version pairs from the experi-
mental results shown in Table 3. For 3 of the version pairs (version
pairs 0-3, 0-22, and 0-32), a changed code region is executed but
the program state is not infected (by Pex or Pex+eXpress) in the
time bound of 5 minutes. In addition, for 3 of the version pairs, the
state infection is not propagated to an observable output within the
bound of 1000 DSE runs. We do not include these version pairs
while calculating the sum of DSE runs for finding behavioral dif-
ferences. We observe that, for replace, Pex+eXpress takes 63%
fewer runs (median 37%) and 57% less amount of time in finding
behavioral differences.

Results of siena. We observe that the behavioral differences be-
tween 7 of the version pairs of siena are found within 20 runs by
Pex and Pex+eXpress. For these version pairs, there is no reduction
in the number of runs. The reason for the preceding phenomenon
is that changes in these version pairs are close to the start node in
the CFG. Hence, these changes can be covered within a relatively
small number of runs. In 2 of the version pairs, changed code re-
gions are not covered by either Pex+eXpress or Pex. An exception
is thrown by the program before these changes could be executed.
Pex and Pex+eXpress are unable to generate a test to avoid the ex-
ception. Changes between 2 of the version pairs are refactorings
due to which the program state is never infected. We observe that,
for siena, Pex+eXpress finds behavioral differences in 33% fewer
runs (median 11%) and 29% less amount of time than Pex.
Results of STPG. We observe that for the 2 version pairs of STPG,
Pex+eXpress finds behavioral differences in 23% fewer runs (me-
dian 23%) and 19% less amount of time than Pex.

Results of structorian. For two versions of StructLexer, nei-
ther Pex nor Pex+eXpress is able to find behavioral differences.
For the others, Pex+eXpress takes 37% fewer runs (median 26%)
and 31% less amount of time to find behavioral differences. Neither
Pex+eXpress nor Pex is able to find behavioral differences between
all version pairs of class St ructParser within 5 minutes (a bound
that we use in our experiments for all subjects). For these version
pairs, we increase the bound to 1 hour (or 10000 runs). Pex is not
able to find behavioral differences for 8 version pairs even within 1
hour, while Pex+eXpress finds behavioral differences for 4 of these
8 version pairs. If Pex is unable to detect behavioral differences,
for a version pair, within the bound of 1 hour, we use 1 hour (for
the version pair) to calculate the total in column T}, pe,. In addi-
tion, we use the number of runs as 10000 (the bound on the number
of runs) to calculate the total in column P,.,. Changes between
two version pairs (40-45 and 40-47) could not be covered by either
Pex or Pex+eXpress. One of the changes (between version pairs
47-50) is a refactoring. For this version pair, the program state is
infected but no behavioral differences are detected by either Pex or
Pex+eXpress. In summary, for st ructorian, Pex+eXpress is able
to detect behavioral differences for 4 of the version pairs that could
not be detected by Pex. On average, Pex is able to find behavioral
differences in 68% fewer runs (median 77%) and 35% less amount
of time. The reduction in the number of runs is substantially larger
than reduction in the amount of time due to non-trivial time taken
by eXpress in identifying irrelevant branches.

Table 4: Results of seeding the existing test suite.

C % Npeo /T Npsa/T Nexp/T Negq/T
SP 25 | 10000/60* | 10000/60* 2381/35 181/17
SP 37-39 3699/26 60/1 851/22 47/11
SP 3940 | 10000/60* 304/2 | 10000/60* 251/12
SP 4547 | 10000/60* | 10000/60* | 10000/60* | 10000/60*
SP 47-50 | 10000/60* 81/1 | 10000/60* 64/10
SP | 6124 | 10000/60* 59/1 7228/58 41/10
SL | 169-174 478/1 324/1 34/1 18/1
SL | 150-169 299/1 37/1 52/1 29/1
SL 9-139 2988/2 69/1 1002/1 52/1
Tot 64476/330 | 20934/128 | 41568/309 | 10683/123

*If behavioral differences are not detected, we take the number of runs as 10000 (the
maximum number of runs that we run our experiments with).

Overall for all the subjects, Pex is able to find behavioral differ-
ences in 62% fewer runs and 36% less amount of time.

5.3.3 RQ3: Incremental Exploration

Table 4 shows the results of using the existing test suite to seed
the path exploration. Column C' shows the class name. Column V'
shows the pair of version numbers. The next four columns show
the number of runs and time taken by the four techniques: Pex,
Pex with seeding, Pex+eXpress, and Pex+eXpress with seeding, re-
spectively, for finding behavioral differences. Note that DSE runs
required by our incremental exploration also include the seeded test
runs. In Table 4, if none of the changed blocks is covered, we
take the number of runs as 10000 (the maximum number of runs
that we run our experiments with). For 9 of the 16 version pairs
of structorian that we used in our experiments, the existing
test suite of structorian could not find behavioral differences.
Therefore, we consider these 9 version pairs for our experiments
for RQ3. Pex could not find behavioral differences for 5 of the 9
version pairs in 10000 runs. Seeding the path exploration with the
existing test suite helps Pex in finding behavioral differences for 3
of the 5 version pairs under test. Pex+eXpress could not find behav-
ioral differences for 3 of the 9 version pairs in 10000 runs. Seeding
the path exploration with the existing test suite helps Pex+eXpress
in finding behavioral differences for 2 of these 3 version pairs under
test.

In summary, Pex requires around 68% of the original runs and
67% less time (than time required by Pex without test seeding) and
Pex+eXpress requires around 74% of the original runs and 70% less
time (than time required by Pex+eXpress without test seeding). In
terms of time, Pex with seeding marginally wins over Pex+eXpress
with seeding due to time taken by Pex+eXpress in identifying irrel-
evant branches.

5.3.4  Summary

In summary, this section addresses research questions RQI,
RQ2, and RQ3.
RQ1. Among the total paths explored by Pex, 46% (on average)
are irrelavant. 14%, 26%, and 6% of all the paths explored by Pex
belong to P-p, P-, and P-, respectively.
RQ2. Pex+eXpress requires 36% less amount of time (on average)
to detect behavioral differences than without using eXpress.
RQ3. Pex with test seeding requires 67% less amount of time to
find behavioral differences than Pex without test seeding.

6. DISCUSSION

In this section, we discuss some of issues of the current imple-
mentation of our approach and how they can be addressed.
Added/Deleted and Refactored Methods. If a method M (or a
field I) is added or deleted from the original program version, eX-



press does not identify M (or F) as a changed code region. The
change is identified if a method call site (or reference to F') is
added or deleted from the original program version. If the added
or deleted method (or field) is never invoked (or accessed), the be-
havior of the two versions is the same unless M is an overriding
method. We plan to incorporate support for handling such overrid-
ing methods that are added or deleted. Similarly, if a method M is
refactored between the two versions, eXpress does not identify M
as a changed code region. However, when a method is refactored,
its call sites are changed accordingly (unless the method undergoes
Pull Up or Push Down refactoring). Hence, eXpress identifies
the method containing call sites of M as changed. In our experi-
ments, we consider versions of replace in which a method signa-
ture is changed, and versions of structorian in which a method
is renamed.

Granularity of Changed Code Region. In our current implemen-
tation, a changed code region is the list of continuous instructions
that include all the changed instructions in a method. One method
can have only a single changed code region. Hence, a changed code
region can be as big as a method and as small as a single instruc-
tion. The granularity of a changed code region can be increased
to a single method or reduced to single instruction. Changing the
granularity to single method M can affect the efficiency of our ap-
proach in reducing DSE runs since some of the branches (in M)
that should be considered irrelevant would not be considered irrel-
evant. In contrast, reducing the granularity to a single instruction
makes our approach more efficient in reducing DSE runs. How-
ever, the overhead cost of our approach is increased due to state
checking at multiple points in the program. In future work, we plan
to enhance eXpress to allow users to choose from different levels
of granularity.

Pruning of Branches for Propagation. In future work, we plan
to prune more categories of branches whose execution guarantees
not to satisfy Propagation (P). Consider that a changed code region
is executed and the program state is infected after the execution of
the changed code region; however, the infection is not propagated
to any observable output. Let x be the last location in the execution
path such that the program state is infected before the execution
of x but not infected after its execution. x can be determined by
comparing the value spectra [26] obtained by executing the test on
both versions of the program. All the branching nodes after the ex-
ecution of x can be removed from the exploration space of a PBST
technique.

Changes in Fields. Currently, eXpress does not detect changes (in
program code) that is outside method bodies. For example, if the
declaration of a field f is modified, eXpress cannot help in reducing
DSE runs to detect behavioral differences that may be introduced in
the program due to the change. In such situations, the source code
can be searched to find the references of f. The corresponding in-
structions for all these statements referring to f can be considered
as changed. If a field is added or deleted, eXpress can still be help-
ful in reducing DSE runs as in the case of added or deleted methods
as discussed earlier in this section.

Factors Affecting Test Seeding. The effectiveness of our incre-
mental exploration technique is dependent on the characteristics of
the existing test suite. In future work, we plan to conduct more ex-
tensive experiments with test suites of different characteristics, as
done by Xu et al. [29, 28].

Incremental Call Graph Analysis. In our current implementa-
tion, the static analysis to construct the inter-procedural CFG and
identify irrelevant branches is done from the scratch. However, the
static analysis can be applied incrementally [18] to amortize the

cost of static analysis across versions to further reduce the cost of
incremental exploration.

7. RELATED WORK

Previous approaches [6, 19, 11] generate regression unit tests
achieving high structural coverage on both versions of the class un-
der test. However, these approaches explore all the irrelevant paths,
whose execution guarantees not to satisfy any of the conditions E,
I, or P in the PIE model [24]. In contrast, we have developed a new
search strategy for DSE to avoid exploring these irrelevant paths.

Some existing search strategies [1, 27] guide DSE to efficiently
achieve high structural coverage in a program under test. However,
these techniques do not specifically target covering a changed code
region. In contrast, our approach guides DSE to avoid exploring
paths whose execution guarantees not to satisfy any of the condi-
tions E, I, or P of the PIE model.

Santelices et al. [16] use data and control dependence infor-
mation along with state information gathered through symbolic
execution, and provide guidelines for testers to augment an ex-
isting regression test suite. Unlike our approach, their approach
does not automatically generate tests but provides guidelines for
testers to augment an existing test suite. Differential symbolic ex-
ecution [13] determines behavioral differences between two ver-
sions of a method (or a program) by comparing their symbolic
summaries [7]. Summaries can be computed only for methods
amenable to symbolic execution. However, summaries cannot be
computed for methods whose behavior is defined in external li-
braries not amenable to symbolic execution. Our approach still
works in practice when these external library methods are present
since our approach does not require summaries. Qi et al. [14] pro-
pose an approach for guided test generation for evolving programs.
The approach guides path exploration towards executing a change
and propagating state infection to an observable output. However,
their approach cannot deal with multiple interacting changes in the
program in contrast to our approach. In addition, our approach can
prune some paths (belonging to P- i and P- ) that are explored by
their approach.

Our previous Orstra approach [25] automatically augments an
automatically generated test suite with extra assertions for guarding
against regression faults. Orstra first runs the given test suite and
collects the return values and receiver-object states after the execu-
tion of the methods under test. Based on the collected information,
Orstra synthesizes and inserts new assertions in the test suite for
asserting against the collected method-return values and receiver
object states. However, this approach observes the behavior of the
original version to insert assertions in the test suite generated for
only the original version. Therefore, the test suite might not in-
clude tests for which the behavior of a new version differs from the
original version.

Xu and Rothermel [30] propose a directed test generation tech-
nique that uses the existing test suite to cover parts of the program
not covered by the existing test suite. In particular, the approach
first collects the set of branches B not covered by the existing test
suite. To cover a branch <s;, s;>¢& B, the approach selects all the
tests 7' that cover statement s;. For each test ¢; € 7', the approach
collects the path condition p; of the path followed by ¢; until the
first instance of s;, negates the predicate at the first instance of s;
from p; to get path condition p;. The approach then generates a
test that covers the branch <s;, s;> by solving the path condition
p% . However, if none of the preceding path conditions p; derived
from the paths followed by the tests 7" is solvable, the approach
cannot generate a test to cover the branch <s;, s;>, which can
furthermore compromise the coverage of additional branches. In



contrast, our incremental exploration technique can still generate a
test to cover such branches. In addition, Xu et al. [29, 28] propose
a search-based test augmentation technique that seeds the existing
test suite for test generation. All these techniques focus on satisfy-
ing condition E of the PIE model. In contrast, our approach helps
in satisfying E, I, and P of the PIE model.

Our previous approach [19] instruments a program to add
branches such that behavioral differences can be found effectively.
However, a test generation tool needs to explore branches in both
the original and new versions of the program to detect behavioral
differences. In contrast, eXpress prunes irrelevant branches to find
behavioral differences efficiently. The two approaches are comple-
mentary and can be combined for effective and efficient regression
test generation.

8. CONCLUSION

Regression testing aims at generating tests that detect behavioral
differences between two versions of a program. To expose behav-
ioral differences, test execution needs to satisfy three conditions:
Execution (E), Infection (I), and Propagation (P), as stated in the
PIE model [24]. Path-exploration-base test generation (PBTG)
techniques can be used to generate tests for satisfying these
conditions. PBTG techniques explore paths in the program to
achieve high structural coverage, and exploration of all these
paths can often be expensive. However, the execution of many
of these paths in the program guarantees not to satisfy any of the
three conditions in any way. In this paper, we have presented
an approach and its implementation called eXpress for efficient
regression test generation. eXpress prunes paths or branches
whose execution guarantees not to satisfy the E, I, or P condition
such that these conditions are more likely to be satisfied earlier
in path exploration. In addition, our approach can exploit the
existing test suite for the original version to efficiently execute the
changed code regions (if not already covered by the test suite).
Experimental results on various versions of programs have shown
that our approach can efficiently find behavioral differences than
without using our approach.
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