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ABSTRACT

Techniques for test-case prioritization re-order test cases to
increase their rate of fault detection. When there is a fixed
time budget that does not allow the execution of all the test
cases, time-aware techniques for test-case prioritization may
achieve a better rate of fault detection than traditional tech-
niques for test-case prioritization. In this paper, we propose
a novel approach to time-aware test-case prioritization us-
ing integer linear programming. To evaluate our approach,
we performed experiments on two subject programs involv-
ing four techniques for our approach, two techniques for an
approach to time-aware test-case prioritization based on ge-
netic algorithms, and four traditional techniques for test-
case prioritization. The empirical results indicate that two
of our techniques outperform all the other techniques for
the two subjects under the scenarios of both general and
version-specific prioritization. The empirical results also in-
dicate that some traditional techniques with lower analysis
time cost for test-case prioritization may still perform com-
petitively when the time budget is not quite tight.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging
General Terms

Measurement, Performance, Experimentation
Keywords

Test-case prioritization, Integer linear programming

1. INTRODUCTION

In the software industry, developers usually rely on regres-
sion testing to confirm that changes to the software achieve
their intentions and do not introduce unexpected side ef-
fects. Typically, regression testing involves executing a large
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number of test cases and thus is very time-consuming. For
instance, the industrial collaborator of Elbaum et al. [11, 13]
reported that it costs seven weeks to execute the entire test
suite of one of their products.

To cope with the preceding situation, researchers have
proposed various techniques for test-case prioritization [32,
11, 33, 13] to re-order the test cases for regression testing to
meet the goal of detecting faults as early as possible. How-
ever, these techniques do not explicitly consider the time
budget (which does not allow the execution of the entire test
suite) and the difference in execution time of each test case.
To address this problem, Walcott et al. [35] and Alspaugh et
al. [1] studied a time-constrained situation for test-case pri-
oritization (i.e., time-aware test-case prioritization). In par-
ticular, they formalized the problem of time-aware test-case
prioritization as a 0/1 Knapsack problem and proposed var-
ious techniques for solving this problem. Walcott et al. [35]
studied the use of a genetic algorithm (GA) and empirically
compared the proposed approach with the initial ordering,
the reverse ordering, random prioritization, and fault-aware
prioritization. Alspaugh et al. [1] studied the use of tradi-
tional Knapsack solvers for time-aware test-case prioritiza-
tion and empirically compared seven Knapsack solvers with
and without scaling.

As the time budget does not allow the execution of the
entire test suite, time-aware test-case prioritization implies
the selection of a subset from the test suite for prioritization.
In this paper, we propose to explicitly separate test-case se-
lection and prioritization for time-aware test-case prioritiza-
tion. The rationales for this separation are as follows. First,
previous research [39] demonstrates that integer linear pro-
gramming (ILP) [36] is more effective than GA for selecting
a subset of test cases in the context of test-suite reduction.
Second, previous research [21] also demonstrates that tradi-
tional techniques can outperform GA-based techniques for
prioritizing test cases without considering the time budget.
In this paper, we propose to use ILP for the test-case se-
lection, and traditional techniques of test-case prioritization
for prioritizing the selected test cases.

Previous studies on time-aware techniques for test-case
prioritization [35, 1] do not evaluate the effectiveness of tra-
ditional techniques for test-case prioritization in the time-
constrained situation and a recent study [8] on traditional
techniques for test-case prioritization in the time-constrained
situation does not consider time-aware techniques. There-
fore, it is unknown to what extent the traditional techniques



for test-case prioritization can still perform as competitively
as time-aware techniques. Note that traditional techniques
for test-case prioritization are typically less time-consuming
to conduct than techniques for time-aware test-case prioriti-
zation, which may take much longer analysis time than the
execution time of the entire test suite [35]. In this paper,
we empirically compare four of our ILP-based techniques
with two GA-based techniques [35] and four traditional tech-
niques for test-case prioritization under the scenarios of both
general and version-specific prioritization. The experimental
results indicate that our additional techniques are superior
to other techniques especially when the time budget is tight;
and that the traditional techniques perform competitively
when the time budget is not quite tight.

In summary, this paper makes the following main contri-
butions:

e The first attempt to separate test-case selection and
prioritization in time-aware test-case prioritization, and
the first attempt to use ILP for test-case selection in
time-aware test-case prioritization.

e Empirical evaluation of the proposed approach in com-
parison with existing approaches, including the first
empirical comparison of time-aware techniques and tra-
ditional techniques in the context of time-aware test-
case prioritization.

The rest of this paper is organized as follows. Section 2
presents the formal definition of time-aware test-case pri-
oritization. Section 3 presents the details of our approach.
Section 4 presents empirical results of our approach, the
existing GA-based approach, and the traditional approach.
Section 5 discusses related research. Section 6 concludes.

2. TIME-AWARE TEST-CASE PRIORITIZA-

TION

According to Rothermel et al. [32, 33] and Walcott et
al. [35], we formally define the problem of time-aware test-
case prioritization as follows.

The Problem of Time-Aware Test-Case Prioritization:

Given: T, a test suite; PT, the set of permutations of all
subsets of T'; f and time, two functions from PT to the real
numbers; timemaqz, the time budget.

Problem: Find T' € PT and time(T') < timemaz, such

that (VT"')(T" € PT)(T" #T")(time(T") < timemaz)[f(T") >

T,

In the preceding definition, PT is the set of all possible
orderings of T" and all possible orderings of any subset of T,
time is a function that measures the execution time of each
such ordering, and f is a function that measures the award
value of each such ordering. For test case t, we use time(t)
to denote the execution time of ¢ for simplicity. Thus, with
the time function, we can decide whether ordering 7" satis-
fies the time budget (i.e., timemas) through evaluating the
inequality time(T") < timemas. With the f function, the
problem requires us to seek for an ordering that satisfies the
time budget and has the highest award value.

3. OUR APPROACH

Similar as previous research [35], our approach also re-
quires that test cases in the original test suite (denoted as
T) be independent of each other. This requirement has the
following two properties. First, any ordering of T or any
subset of T is a feasible ordering. That is to say, any such
ordering can be used for the actual testing. Second, let

Table 1: Coverage and execution time

st1 sta stz sta sts stg | Time (Second)
t1 | X X X X 9
ta | X 2
t3 X X X 6
ta | X X 4
ts X 5
te X X 5

T = {t1,ta,t3,...txs} be T or a subset of T, and T" be a
permutation of 7", time(T”) = Y.F_, time(t;). That is to
say, the execution time of any test case remains the same,
no matter where it appears in an ordering. These two prop-
erties enable us to divide time-aware test-case prioritization
into two steps. In the first step, we use ILP to select a sub-
set of test cases that satisfy the time budget. In the second
step, we adopt traditional techniques to prioritize the test
cases selected in the first step.

In the research of Rothermel et al. [32, 33] and Elbaum et
al. [11, 13], the total strategy and the additional strategy are
two main strategies for test-case prioritization. These two
strategies are applicable for any coverage criterion (such as
statement coverage or method coveragel). Let us use state-
ment coverage as an example. Total statement-coverage pri-
oritization just sorts the test cases in the descending order
of the number of statements covered by each test case. Ad-
ditional statement-coverage prioritization always orders the
test case covering the most statements not yet covered by
previously executed test cases before any other previously
unexecuted test cases. Similarly, for other coverage criteria,
there are also total and additional strategies.

Unlike the work of Walcott et al. [35], which does not
explicitly distinguish the total and the additional strategies,
our approach supports both total and additional strategies
for each coverage criterion. For the ease of presentation, we
present our total and additional strategies for time-aware
test-case prioritization only in terms of statement coverage.
Analogously, we also have total and additional strategies for
other coverage criteria (e.g., method coverage) in time-aware
test-case prioritization.

3.1 Example

Before we present our approach, we present an illustrative
example to facilitate the presentation of our approach.

There are six test cases in a regression test suite (denoted
as T = {t1,t2,t3,ta,t5,t6}) and there are six statements
(denoted as ST = {st1, sto, sts, sta, sts, sts}). We depict
the coverage information and the execution time of the six
test cases in Table 1. Supposing that the time budget is 19
seconds, we need to find an ordering (denoted as T") of a
subset of T' under the condition that the execution time of
T’ is no more than 19 seconds. Furthermore, we also expect
that the ordering can be effective in detecting faults as early
as possible.

3.2 Total Strategy

In time-aware total statement-coverage prioritization, we
select a subset (denoted as T”) of the original test suite (de-
noted as T') such that T" satisfies both the time budget and
the following condition. For each test case t in T”, if we

!Method coverage is similar to function coverage studied
in previous research. As the subjects in our experiments
are written in Java, we use the term “method” instead of
“function”.



denote the number of statements covered by ¢ as StN (t), we
require to maximize Y, ., StN(t). Then we prioritize the
selected test cases (i.e., T") using traditional total statement-
coverage prioritization [32, 11, 33, 13]. In particular, we for-
malize test-case selection in our time-aware total statement-
coverage prioritization as an ILP model consisting of deci-
sion variables, an objective function, and a constraint system
described below followed by an illustration with the example
in Section 3.1.

3.2.1 Decision Variables

For each test case, we use a Boolean decision variable to
represent whether the test case is selected. Thus, for test
suite T' = {t1,t2,...tn }, we use n Boolean decision variables
(denoted as x;, where 1 < ¢ < n). Formally, we define z; in
Formula 1 as follows.

L
Xr; =
0,

3.2.2 Objective Function

To achieve the goal of test-case selection in our total strat-
egy, we define our objective function as Formula 2.

if t; (1 <1i<mn) is selected
otherwise

(1)

max z": StN(t;) * ; (2)

In the objective functizori, the coefficient of variable z; is
StN (t;), which represents the number of statements covered
by test case t;. Thus, as z; is 0 for an unselected test case t;,
only statements covered by selected test cases are counted
in the objective function.

3.2.3 Constraint System

To ensure that the selected test cases satisfy the time bud-
get, we define the constraint system of this model as the
following inequality (i.e., Formula 3), which indicates that
the sum of execution time of all the selected test cases is no
more than the time budget.

> time(t:) * i < timemas (3)
i=1

In the constraint system, Y ., time(t;) *x; represents the
sum of execution time of selected test cases, because if test
case t; is not selected, x; is 0 and its execution time is not
counted in the sum in Formula 3.

3.2.4 lllustration with the Example

For the example in Section 3.1, our total statement-coverage
strategy yields the following ILP model. The objective func-
tion and the constraint system are depicted in Formula 4 and
Formula 5, respectively.

max (4z1 + z2 + 3xs + 224 + ©5 + 2x6) (4)

9zx1 + 222 + 623 + 424 + Hx5 + Hag < 19 (5)

Thus, our total statement-coverage strategy in our ap-

proach selects ¢1 (covering four statements in nine seconds),

ts (covering three statements in six seconds), and ¢4 (cov-

ering two statements in four seconds); and the selected test

cases in total cover the six statements nine times in 19 sec-
onds. The ordering is ¢1, t3, and t4.

3.3 Additional Strategy

Similar to our total strategy, our additional strategy se-
lects a subset (denoted as T") of T such that T’ satisfies
the time budget, and prioritizes the selected test cases (i.e.,

T’) using traditional additional statement-coverage prioriti-
zation [32, 11, 33, 13]. However, the technique for test-case
selection in our additional strategy is different from that
in our total strategy. In our additional strategy, we select
test cases to maximize the number of covered statements,
where we count each covered statement just once although
more than one selected test case may cover the statement.
In particular, we formalize test-case selection in our time-
aware additional statement-coverage prioritization as an ILP
model described below.

3.3.1 Decision Variables

The same as the ILP model in our total strategy, the ILP
model in our additional strategy also has a group of Boolean
decision variables (denoted as x;) to represent whether each
test case is selected. Furthermore, to facilitate the counting
of the number of covered statements, we use another group of
Boolean decision variables to represent whether each state-
ment is covered by one or more test cases. Formally, for a
set of statements (denoted as ST = {sti, sta,...stm}), we
define y; (1 < j < m) in Formula 6.

v = {(1) (©)

With the help of y; (1 < j < m), we have the following
objective function.

3.3.2 Obijective Function

As the goal of test-case selection in our additional strategy
is to maximize the number of covered statements, we define
our objective function in Formula 7.

if one or more selected test cases cover st;
otherwise

max Z Yj (7)
j=1

In the objective function, if any selected test case does not
cover stj, the value of y; is 0. Thus, Formula 7 ensures to
count each covered statement just once.

3.3.3 Constraint System

To ensure that the selected test cases satisfy the time bud-
get, the constraint system for the ILP model in our addi-
tional strategy also includes the inequality denoted in For-
mula 3.

Furthermore, we need a group of inequalities to ensure
that, if y; (1 <7 < m) is 1, at least one test case covering
st; is selected. To define these inequalities, we need the cov-
erage information of the test cases. In particular, for a test
suite (denoted as T' = {t1,t2,...tn}) and a set of statements
(denoted as ST = {sti, sta,...stm}), we use Formula 8 to
represent whether a test case covers a statement.

1, if t; covers st;
C»L'j = . ’ (8)
0, otherwise
Using the coverage information, we define these inequali-
ties in Formula 9.

n
D cyrmi >y (1<j<m) )
=1
If y; is 1, Formula 9 ensures that at least one test case
covering st; is selected. Otherwise, if no such test case is
selected, for any test case ¢; (1 <14 < n), either ¢;; or x; is 0,
and thus the value of Y7 | ¢;j*a; is 0 for any j (1 < j < m),
not satisfying Formula 9.



3.3.4 Further Test-Case Selection

Using the preceding ILP model, we can select a subset of
test cases that can satisfy the time budget and maximize
the number of statements covered by the selected test cases.
However, there may be some unselected test cases that, if
further selected, cannot exceed the time budget. Of course,
further selecting such test cases cannot increase the num-
ber of covered statements, but these test cases may still be
helpful for revealing faults.

To further select these test cases, we use another ILP
model, in which we adopt a strategy similar to our total
strategy in Section 3.2. We present the decision variables,
the objective function, and the constraint system of the ILP
model as follows.

Let us use T'C = {tc1, tca, ...tc;} to denote the set of uns-
elected test cases and timeert to denote the time left from
the time budget. The ILP model for further test-case se-
lection includes ! Boolean decision variables (denoted as zj
(1 <k <)), defined in Formula 10.

1, ifter (1 <k <1) is further selected
2k = . (10)
0, otherwise
We define the objective function for the ILP model in

Formula 11.

l
maxZStN(tck) * 2k (11)
k=1
We define the constraint system for the ILP model as the
inequality in Formula 12.

1
Z time(tex) * zip < timegeys (12)
k=1

3.3.5 lllustration with the Example

For the example in Section 3.1, our additional statement-
coverage strategy yields the ILP model with the objective

function and the constraint system depicted in Formula 13

and Formula 14, respectively.

max (Y1 + Y2 + y3 + Y4 + Y5 + Yo) (13)

91 + 222 + 623 + 424 + D25 + Hre < 19

1+ T2+ 242> Y1

1+ x3 + T > Y2
T3 > Y3 (14)

1+ 23+ Te > Ya

T1+ T4 2> Ys

L 5 2 Yo
According to the preceding ILP model, selecting ts, t4,
and t5 can cover all the six statements, and the total ex-
ecution time of the three test cases is 15 seconds. As the
time budget is 19 seconds and there are still 4 seconds left,
our time-aware additional statement-coverage strategy uses
the following ILP model to select more test cases. The ob-
jective function and the constraint system are depicted in

Formula 15 and Formula 16, respectively.

max (4x1 + z2 + 226) (15)

91 + 222 + dxe < 4 (16)

By solving this ILP model, we further select t2, and we

prioritize the selected test cases in the order of ts, t4, t5, and
ta.

4. EXPERIMENTS

To evaluate the techniques proposed in Section 3, we ex-
perimentally compare our techniques and existing techniques
for both traditional and time-aware test case prioritization.
To evaluate the effectiveness of the techniques considered
in our experiments, we adopt the APFD? metric defined by
Walcott et al. [35] for measuring the effectiveness of time-
aware test-case prioritization. Furthermore, we also com-
pare the analysis time efficiency of the considered techniques
in our experiments.

In previous research, Rothermel et al. [32, 33] and Elbaum
et al. [11, 13] evaluated techniques for test-case prioritization
in two scenarios: general prioritization (in which, the effec-
tiveness of a technique is measured in terms of the rate for
detecting faults over a succession of subsequent versions) and
version-specific prioritization® (in which, the effectiveness of
a technique is measured in terms of the rate for detecting
faults in a particular version).

In general, we investigate the following research questions
in our experiments:

e RQ1: How do our techniques compare with existing
techniques under the scenario of general prioritization
in terms of APFD?

e RQ2: How do our techniques compare with existing
techniques under the scenario of version-specific prior-
itization in terms of APFD?

e RQ3: How do our techniques compare with existing
techniques in terms of analysis time efficiency?

4.1 Experimental Setup

We conducted our experiments on a PC with a 3GHz Intel
Pentium 4 CPU and 1GB memory running the Windows XP
operating system. In the rest of this subsection, we present
detailed information of the techniques considered in our ex-
periments (Section 4.1.1), subject programs, versions, faults,
and test suites used in our experiments (Section 4.1.2), and
how we collected the information of coverage and execution
time in our experiments (Section 4.1.3).

4.1.1 Considered Techniques

Table 2 lists the 11 techniques considered in our experi-
ments. First, as the control technique in our experiments,
we considered random prioritization (abbreviated as rand in
Table 2), in which we iteratively select one test case ran-
domly from the test suite until the selected test cases reach
the time budget. We did not consider optimal prioritization
as a control technique, as it is not straightforward to obtain
the optimal ordering for time-aware test-case prioritization
even if the faults are known.

Second, for our approach, we considered both the total
and the additional strategies at both the statement and the
method levels. In particular, we considered four techniques
for our approach: time-aware total statement-coverage pri-
oritization via ILP (TA-ILP-st-total), time-aware additional
statement-coverage prioritization via ILP (TA-ILP-st-addtl),

2APFD is the abbreviation of Average of the Percentage
of Faults Detected, which was first introduced by Rother-
mel et al. [32] for traditional test-case prioritization. Walcott
et al. [35] adapted the APFD metric for time-aware test-case
prioritization.

3Researchers (such as Srivastava and Thiagarajan [34]) have
proposed techniques especially for version-specific prioritiza-
tion. However, previous research [32, 11, 33, 13] also evalu-
ated techniques for general prioritization under the scenario
of version-specific prioritization.



Table 2: Techniques being experimented Table 3: Statistics of subjects

No. | Abbreviation Description JDepend | JTopas
T1 | rand random prioritization Classes/Interfaces 22 44
T2 | trdtl-st-total traditional total statement- Methods 305 555
coverage prioritization Non-Comment Source Statements 1808 5361
T3 | trdtl-st-addtl traditional additional statement- Test Cases 53 209
coverage prioritization Faults 40 40

traditional total method-
coverage prioritization

T4 | trdtl-md-total (NO =60, NI =25), (NO =30, NI = 50), and (NO = 15,

NI = 75). As the GA-based approach produces initial or-

traditional additional method-
coverage prioritization

T5 | trdtl-md-addtl derings of test cases randomly, for each combination, we ran

the GA-based approach five times and used the average re-

T6 TA-GA-st time-aware statement-

coverage prioritization via GA

sults of the five runs as the results of the GA-based approach
for that combination.

time-aware method-
coverage prioritization via GA

T7 | TA-GA-md 4.1.2 Subject Programs, Versions, Faults, and Test

Suites

T8 TA-ILP-st-total time-aware total statement-

coverage prioritization via ILP

time-aware additional statement-
coverage prioritization via ILP

T9 | TA-ILP-st-addtl

time-aware total method-
coverage prioritization via ILP

T10 | TA-ILP-md-total

time-aware additional method-
coverage prioritization via ILP

T11 | TA-ILP-md-addtl

time-aware total method-coverage prioritization via ILP (TA-
ILP-md-total), and time-aware additional method-coverage
prioritization via ILP (TA-ILP-md-addtl). As our approach
models test-case selection in the four techniques as ILP mod-
els, we employed IBM’s SYMPHONY [29] for solving the
ILP models.

Third, as there is no reported study on evaluating tra-
ditional techniques for test-case prioritization in the time-
constrained situation, it should be interesting to consider
the comparison between our techniques and traditional tech-
niques. In particular, we considered four traditional tech-
niques for test-case prioritization [32, 11, 33, 13] with some

In our experiments, we used two programs written in Java
as subjects: JDepend (Release 2.9), which is downloadable
from its website?, and JT opas (Release 0.6), which is down-
loadable from the Software-artifact Infrastructure Reposi-
tory (SIR)®. Table 3 lists the statistics about the two sub-
jects.

JDepend is a tool that measures the design quality of Java
software. Walcott et al. [35] also used JDepend to evaluate
their GA-based approach to time-aware test-case prioritiza-
tion. The developers of JDepend distribute 53 test cases
with the software. We seeded 40 faults® in the original pro-
gram using Jester [25] based on mutation operators [26] such
as wrong constants and variables, and faults in arithmetic,
logical, and relational operators. The 53 test cases can de-
tect all the 40 faults. In fact, we repeatedly seeded one new
fault until the total number of seeded faults that the 53 test
cases can detect reached 40.

JTopas is a tool that facilitates users to tokenize and parse
arbitrary text data. Do and Rothermel [9] used JTopas
in their experiments on test-case prioritization. From SIR,

straightforward adaptation: traditional total statement-coverage there are 209 test cases distributed with the JTopas subject.
prioritization (trdtl-st-total), traditional additional statement-  Fyrthermore, we seeded 40 faults in JTopas using the same
coverage prioritization (trdtl-st-addtl), traditional total method-  procedure for JDepend and the 209 test cases can detect all

coverage prioritization (trdtl-md-total), and traditional ad-
ditional method-coverage prioritization (trdtl-md-addtl). In
our adaptation, for each such technique, we use the tech-
nique to produce an ordering of the entire test suite, and in
this ordering, we take the longest prefix that still satisfies
the time budget as the ordering for time-aware prioritiza-
tion. For example, if the ordering of the entire test suite is
< t1,ta,t3,ta, ts >, < t1,te,ts > satisfies the time budget,
and < t1,t2,t3,ta > does not satisfy the time budget, we use
< t1,t2,t3 > as the ordering for time-aware prioritization.
Finally, as Walcott et al. [35] also studied time-aware test-
case prioritization, we compared our approach with their ap-
proach at both the statement and the method levels in our
experiments. In particular, we considered two techniques for
their GA-based approach: time-aware statement-coverage
prioritization via GA (TA-GA-st) and time-aware method-
coverage prioritization via GA (TA-GA-md). The settings of
the parameters of our implementation of the GA-based ap-
proach are the same as those provided by Walcott et al. [35].
In particular, the number of initial orderings of test cases
(denoted as NO) and the number of iterations for the ge-
netic algorithm (denoted as NT) are two main parameters of
the GA-based approach. Like Walcott et al. [35], our experi-
ments considered three combinations of the two parameters:

the 40 faults.

In the scenario of version-specific prioritization, for each
subject, we required a series of faulty versions. To create
these faulty versions, we adopted the same methodology
used by Elbaum et al. [11, 13]. First, we created 40 single-
fault versions for JDepend and 40 single-fault versions for
JTopas. Second, for JDepend, we created 10 multiple-fault
versions, each being the combination of some single-fault
versions; and for JT opas, we created 10 multiple-fault ver-
sions in the same way. In the scenario of version-specific
prioritization, these 20 multiple-fault versions served as the
subject versions.

41.3
cution Time

In our experiments, we used Emma’ to collect the cover-

“http://www.clarkware.com/software/JDepend.html,
Accessed in Jan. 2009.
Shttp://sir.unl.edu/portal/index.html,
Jan. 2009.

5To produce results comparable with Walcott et al. [35], we
seeded the same number of faults.
"http://emma.sourceforge.net/index.html, Accessed in
Jan. 2009.

Accessed in

Information Collected for Coverage and Exe-



0.6 77 7 77

APFD

TT T2 T3 T4 T5 Te T7 T8 T9 Ti0 T11
(a) 75% Time Budget

0.9 -
0.8 E

0.7 4

0.6

i
XX
!

XX
2
K55
(3%

0.5

APFD
XX

0.4

K

X%

0.3

X%

0.2

X%

XL
QKK
5
%
0

0.1

.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11
(b) 50% Time Budget

0.0

0.9

NN
< <N \

0.3

APFD

0.2

0.1

0.0

T T2 T3 T4 T5 T6 T7 T8 T9 T10 T11
(c) 25% Time Budget

0.9
0.8

0.7

0.6

0.5

APFD

0.4

0.3

0.2

0.1

0.0

T4 T2 T3 T4 T5 Te T7 T8 T9 T10 T11
(d) 5% Time Budget

Figure 1: General prioritization for JDepend

age information. As Emma provides the coverage informa-
tion of only an entire test suite, for either subject, we cre-
ated a series of test suites, each containing just one test case.
That is to say, we created 53 test suites for J Depend and 209
test suites for JTopas. Using these test suites, we collected
the coverage information for each test case, and thus our im-
plementation of the considered techniques used the collected
coverage information instead of interacting with Emma di-
rectly. As interaction with Emma is time-consuming, our
implementation ensured that all the techniques considered
in our experiments execute efficiently. As both JDepend
and JTopas are in Java, we executed each test case and
used the facility provided by JDK to record its execution
time. In total, the execution time of the 53 test cases for
JDepend is 2.141 seconds® and that of the 209 test case for
JTopas is 5.859 seconds.

8Due to the difference in hardware and software configura-
tions, the total execution time for JDepend in our experi-
ments is different from that in previous research [35].
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4.1.4 Time Budgets

Following Walcott et al. [35], we used their three time
budgets for each subject program: 25%, 50%, and 75% of
the execution time of the entire test suite. We also used 5%
of the total execution time to represent a very tight time
budget for each subject program.

4.2 Experimental Results

4.2.1 RQ1.: Effectiveness for General Prioritization

The first research question is concerned with comparing
the effectiveness achieved by the 11 techniques under the
scenario of general prioritization. Figures 1 and 2 depict the
results on JDepend and JTopas, respectively. The X-axis
shows the 11 techniques and the Y-axis shows the APFD
values. Concerning the comparison of our techniques with
other techniques, we have the following observations.

First, almost for both subjects and all the four time bud-
gets, the four techniques of our ILP-based approach (i.e.,
T8,T9, T10, and T11) outperform the two techniques of the
GA-based approach (i.e., 76 and T'7). The only exception
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is that, for JTopas, both GA-based techniques outperform
our two total techniques for 75%, 50%, and 25% time bud-
gets. Note that, for the 5% time budget for JDepend, the
execution time of the first test case in each of the traditional
total and additional techniques exceeds the time budget and
thus produces no APFD value in Figure 1. It should also
be noted that, for JDepend, the results of the GA-based
approach are a little different from the results reported by
Walcott et al. [35]. We suspect the reason to be that the
seeded faults in our experiments are different from theirs.
Second, when comparing our techniques with the tradi-
tional techniques (i.e., T2, T3, T4, and T5), each of our
four techniques (i.e., T8, T'9, T'10, and T'11) outperforms its
corresponding traditional technique for both subjects and
all the four time budgets, although for some cases the differ-
ences are very small. Furthermore, the difference between
our techniques and the traditional techniques becomes larger
when the time budget becomes tighter. For JDepend, our
additional techniques slightly outperform the traditional ad-
ditional techniques for the 75% time budgets and the differ-
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ences become more significant for 50%, 25%, and 5% time
budgets. For JTopas, the traditional additional techniques
perform very competitively for 75%, 50%, and 25% time
budgets but our additional techniques significantly outper-
form the corresponding traditional additional techniques for
the 5% time budget. This result also indicates that, when
the time budget is not quite tight, using the traditional tech-
niques based on additional coverage would be sufficient.

Third, except for the two total techniques in our approach
for JTopas for 75%, 50%, and 25% time budgets, our tech-
niques also outperform the random prioritization (i.e., T'1)
for both subjects and all the four time budgets. It should be
noted that, for some cases, the random prioritization even
outperforms the GA-based techniques and some of the tra-
ditional techniques.

From the preceding three observations, we conclude that
our techniques (especially the additional techniques) outper-
form the other techniques for both JDepend and JT opas.
Beside the three observations concerning the comparison of
our techniques and other techniques, we also have the fol-



lowing observations from Figures 1 and 2.

First, with the increase of the time budget, the effective-
ness of each technique also increases. This result is natural,
because when the time budget increases, the constraint im-
posed by the time budget loosens and thus it becomes easier
for each technique to select a good ordering.

Second, techniques based on additional coverage (i.e., T'3,
T5,T9, and T'11) typically outperform techniques based on
total coverage (i.e., T2, T4, T8, and T'10). Note that, for
JTopas, both our total techniques and the traditional total
techniques achieve surprisingly unsatisfactory performance
compared with their corresponding additional techniques.
We checked the source code and the test cases of JTopas.
We found that the 209 test cases can be classified into a
few groups, and each group contains test cases with very
similar coverage and fault-detection capability. Thus, the
total strategy typically orders test cases from the same group
next to each other, and thus produces unsatisfactory APFD
values.

Third, for both subjects, a technique at the statement
level does not significantly outperform the corresponding
technique at the method level. For some cases, the method-
level technique may even outperform the statement-level
technique. One possible explanation is that methods in both
subjects are typically very small and thus techniques based
on statement coverage do not actually differ much with tech-
niques based on method coverage. In JDepend, one method
contains only 5.93 non-comment source statements on av-
erage; in JTopas, one method contains 9.66 non-comment
source statements on average. In fact, the preceding infor-
mation is in accordance with the trend that a statement-
level technique is more likely to outperform its correspond-
ing method-level technique for JTopas than for JDepend.

Fifth, when comparing any two techniques, the difference
between them becomes larger when the time budget becomes
tighter. That is to say, with a tighter time budget, the need
to seek for a good prioritization becomes more urgent.

4.2.2 RQ2: Effectiveness for Version-Specific Prior-

itization

The second research question is concerned with comparing
the effectiveness of the 11 techniques under the scenario of
version-specific prioritization. The box plots in Figures 3
and 4 depict the results of the comparison for JDepend and
JTopas, respectively. From the two figures, we have the
following observations.

First, under the scenario of version-specific prioritization,
all the 11 techniques perform similarly compared with the
scenario of general prioritization for both subjects. That is
to say, our techniques also outperform the other techniques
in version-specific prioritization, except for the two total
techniques for JTopas. Note that, similar to Figure 1, the
four traditional techniques in Figure 3 have no APFD value
for the 5% time budget for JDepend. Furthermore, the
traditional techniques based on additional coverage achieve
effectiveness somehow close to our techniques when the time
budget is not quite tight.

Second, beside random prioritization, all the other 10
techniques become less stable when the time budget becomes
tighter. We suspect the main reasons as follows. When the
time budget is tight, a particular technique cannot guaran-
tee that the executed test cases can detect all the faults in
all the versions. Thus, for a particular version, the number

of faults not detected by the executed test cases seriously
affects the effectiveness of the technique. That is to say, the
instability comes from the difference among versions. For
the random prioritization, whose instability mainly comes
from the randomness of prioritization, the difference among
versions does not further increase its intrinsic instability.

Third, concerning the stability of each technique, our tech-
niques, especially the two additional techniques (i.e., 79 and
T11), perform more stably than the other techniques for
both subjects and for all the four time budgets. That is to
say, no matter what the version is and what the time bud-
get is, our additional techniques always achieve the expected
effectiveness.

4.2.3 RQ3: Analysis Time Efficiency

The third research question is concerned with comparing
the analysis time efficiency of the 11 techniques. As random
prioritization serves as the control technique and does not
require much analysis time, we compare only the other 10
techniques. Given a subject and a time budget, the analysis
time cost for each GA-based technique is the average analy-
sis time cost under different parameters and different initial
orderings. Table 4 lists the analysis time costs of the 10
techniques for both JDepend and JT opas. From this table,
we have the following observations.

First, the four traditional techniques are much more time
efficient than the other techniques. For the two traditional
total techniques, due to the precision limit, we even record
zeros as their time costs in the table.

Second, our four techniques are more time efficient than
the two GA-based techniques in most cases. The only ex-
ceptions are our additional statement-coverage technique for
both JDepend and JTopas and our additional statement-
coverage technique for JTopas. Within our approach, the
two additional techniques require more analysis time than
the two total techniques; and the two statement-level tech-
niques require more time than the two method-level tech-
niques. Furthermore, when the time budget becomes very
tight, the analysis time of our additional techniques also in-
creases.

Third, the GA-based approach seems to be the least time
efficient in most cases. Within the GA-based approach, the
statement-level technique requires more analysis time than
the method-level technique. Furthermore, unlike our ap-
proach, the analysis time of the GA-based approach seems
to increase when the time budget becomes less tight. Note
that the analysis time costs of the GA-based approach are
much smaller than those reported by Walcott et al. [35]. One
possible explanation is that we used pre-collected coverage
information in the experiments.

4.2.4 Summary

In summary, we have the following main findings from the
preceding experimental results:

e Concerning the rate of fault detection, our ILP-based
approach (especially the two additional techniques) out-
performs all the other approaches considered in the
experiments for both general and version-specific pri-
oritization.

e Concerning the analysis time costs, our ILP-based ap-
proach outperforms the GA-based approach, but re-
quires more analysis time than the traditional tech-
niques for test-case prioritization.



metrics for various kinds of test-case prioritization, and the

Table 4: Analysis time costs for the subjects (Sec.) APFD metric used in our experiments is the only APFD

Subject JDepend JTopas

metric designed particularly for time-aware test-case prior-

Time 75% | 50% | 25% | 5% 75% | 50% | 25% | 5% itization. However, as pointed out by Walcott et al. [35],

T2 0.00 | 0.00 | 0.00 | 0.00 0.00 | 0.00 | 0.00 | 0.00
T3 0.02 | 0.02 | 0.02 | 0.00 0.63 | 0.63 | 0.63 | 0.67
T4 0.00 | 0.00 | 0.00 | 0.00 0.00 | 0.00 | 0.00 | 0.00
TS 0.02 | 0.02 | 0.02 | 0.00 0.14 | 0.14 | 0.14 | 0.16
T6 22.7 | 21.8 | 17.1 | 15.8 3498 | 1498 | 335 | 11.3
T7 5.88 | 5.22 | 4.48 | 3.94 708 | 310 75.6 | 2.98
T8 0.69 | 0.39 | 0.31 | 0.20 239 | 291 | 213 | 1.64
T9 1.27 | 1.13 | 2.42 | 35.71 || 5.80 | 15.06 | 7.17 | 109
T10 0.22 | 0.20 | 0.23 | 0.19 2.09 | 0.81 1.08 | 1.63
T11 0.67 | 0.52 | 0.84 | 3.52 1.25 | 2.50 | 1.81 | 4.66

this APFD metric also has its limitations. Further reduc-
tion of this threat requires the use of better metrics to assess
the effectiveness of techniques for time-aware prioritization.
One possible metric is the APFD metric proposed by Qu
et al. [28], which considers the situation where the budget
does not allow executing all the test cases or detecting all
the faults.

5. RELATED WORK

e When the time budget is not quite tight, traditional
techniques based on additional coverage can be as com-
petitive as our approach for both general and version-
specific prioritization.

e With a tight time budget, it is preferable to choose an
advanced technique (like ours) for prioritization, as the
tight time budget may magnify the differences between
techniques.

4.3 Threatsto Validity
4.3.1 Internal Validity

Threats to internal validity are concerned with the uncon-
trolled factors that may also be responsible for the results.
In our experiments, the main threat to internal validity is
the possible faults in our implementation of the techniques
considered in our experiments and the tool for calculating
the APFD values. To reduce this threat, we reused some ex-
isting robust components, such as IBM SYMPHONY. Fur-
thermore, we reviewed all the code that we produced for our
experiments before conducting the experiments.

4.3.2 External Validity

Threats to external validity are concerned with whether
the results in our experiments are generalizable for other
situations. The first threat lies in the representativeness of
the subjects. To reduce this threat, we chose two subjects
(including one used in previous research [35] for evaluat-
ing an approach to time-aware test-case prioritization) with
medium sizes. The second threat lies in the faults in the
subjects. To reduce this threat, we used a widely accepted
procedure® to produce the faults for the two subjects. The
third threat lies in the test cases used in our experiments. To
reduce this threat, we used the test cases distributed by the
developers for both subjects. Conducting more experiments
using more subjects of larger sizes with more real-world test
cases and faults is one way to further reduce these threats.

4.3.3 Construct Validity

Threats to construct validity are concerned with whether
the setup and the measurement in our experiments reflect
real-world situations. The main threat to construct validity
is the APFD metric. To reduce this threat, we used the
same APFD metric proposed by Walcott et al. [35] for mea-
suring the effectiveness of time-aware test-case prioritiza-
tion. To our knowledge, APFD metrics are widely accepted

®Andrew et al. [2] and Do and Rothermel [9] reported em-
pirical evidence that faults seeded via mutation operators
achieve similar effects as real faults in testing experiments,
especially in those for test-case prioritization.

Test-case prioritization [37, 32] is an intensively studied
research topic in regression testing. Techniques for test-
case prioritization aim to improve the rate of fault detection
through re-ordering test cases for execution. In the litera-
ture, there are several lines of research on test-case prioriti-
zation.

The first line of research is to study techniques for test-
case prioritization based on different coverage criteria. Rother-
mel et al. [32, 33] developed a family of techniques for test-
case prioritization based on several coverage criteria at the
statement level, such as statement coverage, branch cover-
age, and the probability of exposing known faults. Elbaum
et al. [11, 13] further considered the coverage criterion at the
function level. Do et al. [10] considered the coverage criteria
at the block level and the method level for Java software.
Note that there is a subtle difference between function cov-
erage and method coverage: function coverage implies pro-
cedural code and method coverage implies object-oriented
code. Jones and Harrold [16] considered a coverage criterion
at a very fine granularity: the modified condition/decision
coverage. Korel et al. [19, 18] even considered the coverage
of the system model. Typically, for each coverage criterion,
researchers used two greedy strategies for test-case prioriti-
zation (i.e., the total and the additional strategies).

The second line of research is to study techniques for test-
case prioritization under different usage scenarios. That is
to say, techniques for test-case prioritization can be used
for the scenario of both general prioritization and version-
specific prioritization. In general prioritization, a technique
is expected to be effective over a succession of subsequent
versions of the software; in version-specific prioritization, a
technique is expected to be effective for a particular version.
Most of the research (e.g., Rothermel et al. [32, 33]) on test-
case prioritization focused on general prioritization. Elbaum
et al. [11, 13] studied the effectiveness of various techniques
for test-case prioritization under the scenario of version-
specific prioritization, but the studied techniques are not
designed especially for version-specific prioritization. Srivas-
tava and Thiagarajan [34] proposed a technique especially
for version-specific prioritization. Unlike previous techniques,
Srivastava and Thiagarajan’s technique further considers the
changes between a version and its previous version, and uses
the coverage of the code impacted by the changes to guide
the prioritization process.

The third line of research is to study different strategies
and practical complications in test-case prioritization. The
total and the additional strategies are two widely-investigated
greedy strategies for test-case prioritization. However, Rother-
mel et al. [33] also pointed out that the greedy strategies
may not always produce the optimal ordering of test cases.



Li et al. [21] further studied another greedy strategy (i.e.,
the 2-optimal strategy based on the k-optimal greedy al-
gorithm [22]) and two meta-heuristic search strategies [30]
(i.e., the hill-climbing strategy and the strategy using a ge-
netic algorithm). Elbaum et al. [12, 23] and Park et al. [27]
studied the impacts of test costs and fault severities on test-
case prioritization. Elbaum et al. [12, 23] proposed a new
APFD metric named APF D¢ to consider test costs and
fault severities in the evaluation of test-case prioritization.
They also proposed techniques for test-case prioritization
based on the weighted function coverage, where estimated
fault proneness or severity serves as the weight. Park et
al. [27] proposed a technique based on estimation of test
costs and fault severities using historical information. In our
previous research [15], we studied the constraint imposed by
request quotas of Web services when prioritizing test cases
for regression testing of software composed of Web services.
We divided the testing process into a series of time slots
and adopted integer linear programming for the test-case
prioritization under the quota constraint for each time slot.

The research most similar to our research in this paper is
the research by Kim and Porter [17], by Walcott et al. [35],
by Alspaugh et al. [1], and by Do et al. [8]. Kim and
Porter [17] studied the situation when the resource con-
straint does not allow the execution of the entire test suite,
and they proposed a technique based on the performance
of each test case in prior testing using exponential smooth-
ing. Given a percentage number (denoted as n), Kim and
Porter’s technique selects and prioritizes n% test cases in
the entire test suite. Walcott et al. [35] studied the problem
of time-aware test-case prioritization, which considers an ex-
plicit time budget and the difference in execution time for
each test case. Walcott et al. proposed an approach based
on a genetic algorithm and empirically compared the pro-
posed approach with the initial ordering, the reverse order-
ing, and two control techniques (i.e., random prioritization
and fault-aware prioritization). Walcott et al. also defined a
new APFD metric for evaluating the effectiveness of prioriti-
zation in the time-constrained situation. Alspaugh et al. [1]
further studied the problem of time-aware test-case priori-
tization, and empirically compared seven Knapsack solvers
(i.e., the random, the greedy by ratio, the greedy by value,
the greedy by weight, dynamic programming, generalized
tabular, and the core) with and without scaling. Do et al. [§]
evaluated traditional techniques for test-case prioritization
in the context of time-aware test-case prioritization.

In this paper, we also study the problem of time-aware
test-case prioritization. Our research differs from previous
research on test-case prioritization as follows. First, to our
knowledge, this paper presents the first study on the use
of integer linear programming for time-aware test-case pri-
oritization. Second, to our knowledge, this paper presents
the first empirical comparison of techniques specific to time-
aware test-case prioritization and traditional techniques for
test-case prioritization in the context of time-constrained
prioritization.

As our approach involves the selection of a subset from
the original test suite, our approach is also related to the
research on test-suite reduction [14, 6, 24, 5, 38, 39] and
regression test selection [20, 7, 31, 4, 3] in a broad sense.
Test-suite reduction, which is also referred to as test-suite
minimization, aims to select the minimal subset from the
original test suite while maintaining the same capability of

coverage. Like test-case prioritization, test-suite reduction
is applicable for different overage criteria, and there are dif-
ferent strategies for test-suite reduction (e.g., greedy strate-
gies [14, 6], simulated annealing and genetic algorithms [24,
38], and integer linear programming [5]). Regression test se-
lection aims to select a subset from the original test suite to
test a specific modified version. Typically, such a technique
analyzes the changes between a version and its previous ver-
sion to select test cases that are most likely to be affected by
the changes. Based on whether the technique can guarantee
that the selected test cases have the same capability to de-
tect faults as the original test suite, techniques for regression
test selection can be divided into safe techniques [7, 31, 3]
and non-safe techniques [20, 4]. It should also be noted that
some research considered test-suite reduction [16] or regres-
sion test selection [37] together with test-case prioritization.
The technique for test-case selection proposed in this paper
fundamentally differs from previous techniques for test-case
selection in both test-suite reduction and regression test se-
lection, as the objective and constraints of our test-case se-
lection differ from those in previous techniques for test-case
selection. For example, although both our approach and the
approach by Black et al. [5] use ILP for test-case selection,
the ILP models formulated by our approach are significantly
different from those by Black et al. [5]. The reason is that
our ILP models aim to maximize total and additional cover-
age under the constraint of the time budget while Black et
al.’s ILP models aim to minimize the number of selected test
cases and to maximize fault detection under the constraint
of maintaining coverage.

6. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel approach to time-aware
test-case prioritization using integer linear programming.
This paper also reports empirical results of comparing four
techniques for our approach with two techniques for the GA-
based approach and four traditional techniques for test-case
prioritization. The empirical results indicate that our addi-
tional techniques are superior to other techniques, especially
when the time budget is tight, and the traditional additional
techniques with lower analysis time cost can perform com-
petitively when the time budget is not quite tight.

In future work, we plan to study the following issues.
First, we plan to further improve our approach in the follow-
ing ways: using additional coverage rather than resorting to
total coverage when the full coverage is reached, and consid-
ering the execution time when prioritizing the selected test
cases. Second, we plan to investigate other ways of test-case
selection for time-aware test-case prioritization. Finally, we
plan to conduct more experiments on larger subjects to fur-
ther investigate the concern of time cost for our approach.
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