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Abstract—To address software engineering tasks such as se-
curity risk assessment, software change government, and access
control in database applications, taint analysis approaches for
SQL statements have been commonly adopted for tracking
information flows in these applications. However, existing taint
analysis approaches cannot track implicit flows (i.e., control
dependencies between sources and sinks) for SQL statements,
facing the challenges of native/unmanaged code and database
management system (DBMS) complexity. To address these chal-
lenges, in this paper, we propose TaintSQL, a cell-level dynamic
taint analysis (DTA) framework (maintaining a taint tag for each
table cell) to track fine-grained implicit flows for SQL statements.
Our TaintSQL framework includes two novel techniques, namely
MutaIF and MockIF. MutaIF aims to track implicit flows with
causal relationships, whereas MockIF aims to dynamically track
implicit flows at runtime. We implement the two techniques of
TaintSQL and evaluate them on a set of test subjects to assess
their effectiveness and efficiency. The evaluation results show that
both techniques effectively track fine-grained implicit flows for
SQL statements with reasonable runtime overhead. The F1 scores
of MutaIF and MockIF are 96.2% and 97.9%, respectively. We
also conduct an industrial study of MutaIF in an international IT
company (which serves over 1 billion global users and 80 million
merchants). The positive feedback from the software engineers
also demonstrates the practicability of the TaintSQL framework
and the MutaIF technique in industrial settings.

Index Terms—implicit flow, taint analysis, SQL statement

I. INTRODUCTION

Nowadays there is an increasing demand for tracking in-
formation flows in database applications to address various
software engineering tasks such as security risk assessment [1],
software change government [2], and access control [3].
Addressing such tasks is of great significance for software
engineers to ensure that database applications provide secure,
expected, and reliable services to their users. To track informa-
tion flows in database applications, taint analysis [4], [5] (also
referred to as information flow tracking) marks all or some
program inputs as tainted (i.e., sources), and then propagates
taint tags to check whether they reach the target area (i.e.,
sinks).

In database applications, there are two critical types of
information flows (i.e., explicit flows [6] and implicit flows [7])
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for SQL statements. First, explicit flows (also known as data
flows) occur due to assignments or arithmetic operations that
directly pass information from sources to sinks. For example,
there are explicit flows from each program input in the VALUES
clause of an INSERT statement to the corresponding newly
inserted table cells’ values. There are also explicit flows from
the fetched table cells’ values in the database state to the
corresponding values in the result set returned by a SELECT

statement. Second, implicit flows are indirect passages of
information between values typically as a result of condition
branches or column names. Unlike an explicit flow, each sink’s
value in an implicit flow is not directly computed from the
corresponding source’s value. Instead, the sinks’ values in
implicit flows are control-dependent on the sources’ values.
For example, condition branches in the WHERE clause of a SQL
statement affect whether the records should be fetched or the
table cells’ values should be updated. Recent studies [8], [7]
have demonstrated the importance of tracking implicit flows.
Tracking only explicit flows without implicit flows may result
in critical data relationships being lost, causing under-tainting.

To track implicit flows for SQL statements, one indeed
can conduct column-level static taint analysis (STA)1 , which
however generally generates over-tainted results due to two
main factors. First, column-level STA does not execute SQL
statements to obtain database states or returned results and
thus cannot maintain a taint tag for each table cell. Column-
level STA tracks implicit flows by statically scanning statement
contents, so it is impossible to know which table cells’ values
in concrete database states are changed or which table cells’
values are fetched for subsequent execution. In other words,
column-level STA maintains taint tags at a coarse granularity
(i.e., the column level) and is not able to track taint propagation
for each table cell. Second, column-level STA cannot precisely
capture on which specific condition branch sinks are control-
dependent. Once the WHERE clause of a SELECT statement
contains multiple condition branches connected by the OR

operator, some records are fetched due to satisfaction of only
one condition branch. Column-level STA can hardly find that

1STA detects whether taint tags are propagated from sources to sinks by
static program analysis. Column-level STA refers to STA for SQL statements
by maintaining a taint tag for each column.



there is no implicit flow from other condition branches to these
records.

In contrast to column-level STA, dynamic taint analysis
(DTA)2 can in principle track fine-grained implicit flows for
SQL statements (i.e., each table cell is attached a taint tag),
but porting existing DTA approaches [9], [10] faces two
major challenges. (1) Native/unmanaged code challenge. It
is challenging to track implicit flows across runtime environ-
ments, which are often implemented in native or unmanaged
code. Database interaction APIs implemented in native or
unmanaged code [11] run outside of but interact with man-
aged runtimes. General-purpose DTA approaches in managed
runtimes handle such flows imprecisely. These approaches
discard all taint tags from sources, or just propagate these
tags to all sinks during execution of native or unmanaged
code. (2) DBMS complexity challenge. It is challenging to
track implicit flows in the underlying DBMS. Even when
the DBMS and its corresponding APIs are implemented
in managed code, its engine’s implementation tends to be
of high complexity [11]. Tracking implicit flows generally
requires code instrumentation to obtain the whole program
structure [12]. Once any character (even in a keyword such
as SELECT) in a SQL statement gets tainted, the taint tags
are widely propagated to all execution-reachable sinks due to
the sophisticated branch statements in the underlying code,
causing “taint explosion” [13].

To address these challenges, in this paper, we propose a
cell-level DTA framework named TaintSQL, including two
novel techniques (each of which can be independently selected
and used), namely MutaIF and MockIF, to propagate taint
tags during execution of SQL statements. MutaIF is suitable
for analysis tasks where users are expected to capture fine-
grained implicit flows (1) precisely (i.e., false positives are
not tolerated) or (2) for statements containing complicated
advanced features such as user-defined functions. MockIF
is suitable for analysis tasks where users are expected to
capture fine-grained implicit flows (1) comprehensively (i.e.,
false negatives are not tolerated) or (2) from all or many
inputs at once. Neither technique requires any modifications
to operating systems or language interpreters. TaintSQL users
can choose one of MutaIF and MockIF to meet their needs.

We design MutaIF based on our key insight of coun-
terfactual mutation. To address the native/unmanaged code
challenge, MutaIF adopts a mutation-based alternative rather
than code instrumentation. To address the DBMS complexity
challenge, MutaIF regards the underlying DBMS as a “black
box” and tracks implicit flows based on experimental obser-
vation. It infers taint propagation rules for implicit flows by
mutating sources, so it captures causal relationships between
values. In particular, in each implicit flow reported by MutaIF,
the source actually determines the value of the sink. MutaIF
makes use of the NULL value and the NOT operator to design
effective mutations.

2DTA uses real-time monitoring of variables during program execution to
determine whether taints are propagated from sources to sinks. Compared
with STA, DTA effectively reduces the number of false positives.

We design MockIF based on our key insight of taint twin.
To address the native/unmanaged code challenge, MockIF
redirects SQL statements to interact with a mock database and
tracks implicit flows in the mock database implementation. To
address the DBMS complexity challenge, MockIF replicates
the effect of operations over the back-end database by perform-
ing the same operations on the mock database (which has the
same functionality but is much simpler and less efficient). Taint
propagation rules for implicit flows through the mock database
are hard-coded in mock operations. Therefore, MockIF can
by construction track implicit flows for SQL statements at
runtime.

We conduct evaluations on a set of test subjects (including
200 SQL statements from five real-world database applications
and an open-source dataset) to assess the effectiveness and
efficiency of the MutaIF and MockIF techniques. The eval-
uation results show that the two techniques effectively track
fine-grained implicit flows for SQL statements with reasonable
runtime overhead. The F1 scores of MutaIF and MockIF are
96.2% and 97.9%, respectively. We also conduct an industrial
study of MutaIF in an international IT company (which serves
over 1 billion global users and 80 million merchants) because
MutaIF is lightweight and the company expects the reported
implicit flows to be highly precise. The positive feedback
from the software engineers working in this company also
demonstrates the practicability of the TaintSQL framework and
the MutaIF technique in industrial settings.

In summary, this paper makes the following main contribu-
tions:

• TaintSQL, the first cell-level DTA framework to track
fine-grained implicit flows for SQL statements.

• MutaIF and MockIF, two novel techniques to propagate
taint tags in implicit flows for SQL statements.

• Evaluations for demonstrating the effectiveness and ef-
ficiency of MutaIF and MockIF on a set of test subjects.
The industrial study also demonstrates the practicability
of the TaintSQL framework and the MutaIF technique in
industrial settings.

II. MOTIVATION

We are motivated to investigate the problem of tracking
implicit flows for SQL statements based on our experience
working in an international IT company (represented as Com-
pany A in the rest of this paper) which serves over 1 billion
global users and 80 million merchants. We believe that the
motivation is shared by many other companies with a similar
demand for tracking such implicit flows to address critical
software engineering tasks.

Company A maintains an online fund trading system (which
is a database application). In this system, hundreds and thou-
sands of services supporting the company’s businesses are
provided by interacting with the back-end database via SQL
statements. Every day the software engineers struggle to ad-
dress the following three typical types of software engineering
tasks.



• Security risk assessment. Safeguarding funds is ex-
tremely important to the fund trading system. If there
is an error during calculation of fund-related variables
in upstream services, and these erroneous variables are
used to form condition branches or column names in
SQL statements, incorrect results will be fetched or
database states will be modified. It may affect tens of
downstream services, resulting in serious financial losses.
Once such an error occurs, it is necessary to immediately
check which sources in upstream services are untrusted
and which sinks in downstream services are potentially
affected so as to rate the security risk.

• Software change government. A large number of soft-
ware change requests including feature adding, bug fix-
ing, and code refactoring are submitted every day. If
some change requests introduce new bugs that lead to
unexpected implicit flows for SQL statements, func-
tional correctness of some provided services will not be
guaranteed, resulting in unpredictable consequences. It
is necessary to check whether change requests are in
line with requirements and will not affect the functional
correctness of released services.

• Access control. In the fund trading system, confidential
user information and crucial financial values are contin-
uously fetched from or stored into its back-end database
by various groups (e.g., fund data analysts and marketing
teams) for different purposes. Some private values should
be accessed by only a certain team and other teams may
not be allowed to access them, otherwise causing privacy
leakage. It is necessary to check which illegal inputs
an unauthorized requester may use to form condition
branches or column names in SQL statements to access
the restricted data.

Tracking implicit flows for SQL statements is needed to
address these daily tasks. In Company A, the current practice to
address the software change government tasks is mainly based
on manual code review, whereas the current practice to address
the other two types of tasks is mainly based on column-
level/table-level STA (i.e., tracking coarse-grained implicit
flows for SQL statements by building control-dependency
graphs among columns/tables). When tracking implicit flows
for SQL statements, the current practice faces the limitation
of over-tainted results because once a source input is marked
as tainted, all columns/tables that are control-dependent on
the source’s column/table get tainted. In cases where coarse-
grained implicit flows report a high percentage of false posi-
tives, software engineers must conduct manual code review to
keep track of true implicit flows (e.g., manually determining
whether each sink is control-dependent on the tainted sources),
which typically takes hours or days. The current solutions
are labor-intensive and lack of effectiveness. Therefore, an
automated solution to track fine-grained implicit flows for SQL
statements is highly desirable.
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Fig. 1. Information flows for each clause in a SELECT statement.

III. PROBLEM FORMALIZATION

Although in practice there is a growing demand for tracking
fine-grained implicit flows for SQL statements, such implicit
flows are ill-defined for the following two main reasons. First,
unlike procedural programming language (e.g., C), SQL is a
high-level non-procedural programming language. Each SQL
statement conveys only what data to manipulate, not how
to manipulate the data, so the fine-grained implicit flows
are hidden behind each SQL statement during its execution.
Second, the underlying code of DBMS is of high complexity,
so using standard semantics for propagating taint tags results
in severe over-tainting. It is impractical to define implicit flows
for SQL statements in such a manner.

To propose an empirically reasonable definition of fine-
grained implicit flows for SQL statements, our insight is based
on the semantics of each clause. During execution of a SQL
statement, its clauses are executed in a determined order [14],
and they feed intermediate tables (which are unavailable to the
outside) between each other. There are information flows for
each clause from sources in its content and input intermediate
table to sinks in its output intermediate table. For example,
Figure 1 shows information flows for each clause in a SELECT
statement. On the basis of our industrial experience, we first
introduce the definition of fine-grained implicit flows for each
clause in a SQL statement.

Definition 1 (fine-grained implicit flows for a clause): A
fine-grained implicit flow for a clause is a fine-grained observ-
able information flow from the source in this clause’s inputs
to the sink in this clause’s outputs where the sink is control-
dependent on the source. The details are as follows3:

• During execution of a WHERE or HAVING clause, the rows
from the previous intermediate table where the condition
branches hold are filtered into the next intermediate
table. If the condition branches are formed with branch1

3Although some sinks may also be control-dependent on the sources like
table names in a FROM clause, these weak dependencies are ignored to avoid
over-tainting.



year
val tag

1979 τ1, τ2

Result set with taint tags

Captured implicit flows
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source sink

amount > 1000 1979

8580 1979

SELECT year
FROM Transactions
WHERE share > 100

AND amount > 1000

Transactions
id year amount share

2 1982 27 9

3 1979 48777 8580

7 1990 822 1522

9 1977 82057 NULL

Original SQL statement and 
database state

Data with taint tags

Transactions

id year amount share
val tag val tag val tag val tag

2 Ø 1982 Ø 27 Ø 9 Ø

3 Ø 1979 Ø 48777 Ø 8580 τ2

7 Ø 1990 Ø 822 Ø 1522 τ3

9 Ø 1977 Ø 82057 Ø NULL Ø

Attach 

taint tags

Propagate 

taint tags

Report 

implicit flows

SELECT year
FROM Transactions
WHERE share > 100

AND amount > 1000 (tag: τ1)

Fig. 2. TaintSQL workflow.

∧ · · · ∧ branchn, for each row that satisfies the condition
branches, there are implicit flows from each condition
branch to the values in the row, and there are also implicit
flows from the values whose columns appear in the
condition branches to the other values in the same row. If
the condition branches are formed with branch1 ∨ · · · ∨
branchn, for each row that satisfies branchi (1 ≤ i ≤ n)
but does not satisfies any other branch before branchi,
there are implicit flows from branchi to the values in
the row, and there are also implicit flows from the values
whose columns appear in branchi to the other values in
the same row.

• During execution of a SELECT clause, the specific
columns from the previous intermediate table are selected
into the next intermediate table. There are implicit flows
from each column name to the selected values in the
corresponding column. Note that if the SELECT clause
contains any aggregation function, there are explicit flows
or implicit flows from the table cells in the previous
intermediate table processed by this function to the ag-
gregation results in the next intermediate table according
to the semantics of this function.

• During execution of a SET or INTO clause, the specific
columns are selected to be updated and a new database
state is generated. There are implicit flows from each
column name to the updated or inserted values in the
corresponding column.

By nature an information flow for a SQL statement is
determined by the connection of information flows for each
clause4 (i.e., the sinks of the previously executed clause are
the sources of the next clause to be executed). We now
introduce the definition of fine-grained implicit flows for a
SQL statement.

Definition 2 (fine-grained implicit flows for a SQL state-

4The definition of fine-grained explicit flows for each clause in a SQL
statement can be found in previous work [6], [15].

ment): A fine-grained information flow for a SQL statement
is an implicit flow if and only if there exists at least one fine-
grained implicit flow in the connected information flows for
each clause.

IV. TAINTSQL FRAMEWORK

We propose TaintSQL, a cell-level taint analysis frame-
work to track fine-grained implicit flows for SQL statements.
TaintSQL does not require any modifications to operating
systems or language interpreters. The workflow of TaintSQL
is shown in Figure 2. During the execution of a database
application, TaintSQL takes each SQL statement and the
database state as inputs (e.g., the SELECT statement and the
Transactions table in Figure 2). To track implicit flows for
SQL statements, TaintSQL receives the taint tags (e.g., τ1, τ2,
and τ3 in Figure 2) of sources (which are located in the SQL
statement and/or the database state). These associated taint
tags may be attached by TaintSQL users manually, or derived
from the preceding taint propagation results. Then TaintSQL
dynamically propagates taint tags to the corresponding sinks
(which are located in the fetched result set or the new database
state). According to the taint tag of each sink, we can obtain
a complete picture of implicit flows for SQL statements (e.g.,
there are implicit flows from amount > 1000 and 8580 to
1979 in Figure 2).

A. Attaching Taint Tags

After receiving the inputs of a SQL statement and a database
state, TaintSQL first parses the SQL statement to analyze the
involved database tables and columns. In practice, tracking
implicit flows does not involve the whole database state at
once, so a large amount of irrelevant data can be reduced in
the test environment.

Then TaintSQL parses the schema of the SQL statement’s
back-end database and creates a new unit for each table cell to
store its associated taint tag in the database state. Generally,
there are two manners to maintain the mapping between each



value and its taint tags in the database state. First, each value
and its associated taint tag are stored in the same table cell.
The storage requires that the DBMS should support composite
data types (e.g., PostgreSQL [16]). Second, each value and its
associated taint tag are stored in different columns but in the
same row. The storage requires that additional columns should
be added to store taint tags.

The taint tag of each piece of data is initially empty,
so TaintSQL requires the sources to be marked as tainted
before taint tracking. These taint tags can be derived from
the preceding taint propagation results or manual marking.
Each taint tag not only reflects whether the associated data
gets tainted, but also makes it clear where the implicit flow
comes from. Compared with recording whether each table
cell gets tainted by only a single bit (i.e., false indicates
untainted and true indicates tainted), TaintSQL allows using
multiple distinct taint tags to mark different sources at once,
and thus can distinguish the taint propagation paths from
different sources.

B. Propagating Taint Tags

After monitoring the mapping between each source and its
associated taint tag, TaintSQL begins to use one of the two
different techniques (namely MutaIF and MockIF) chosen by
its users to propagate taint tags. MutaIF propagates taint tags
via each source’s mutants. It captures the causal relationships
between sources and sinks existing in implicit flows. MockIF
propagates taint tags in mock databases. It reduces database
manipulations to array operations in memory. The details are
elaborated in Section IV-C.

By observing the distribution of sinks’ taint tags, TaintSQL
users can know which sinks get tainted and which sources
these tainted sinks are control-dependent on. For SELECT

statements, TaintSQL retrieves pieces of data together with the
associated taint tags. For other statements such as UPDATE and
INSERT, TaintSQL updates database states with the associated
taint tags. Based on the taint propagation results, TaintSQL
users can intuitively detect the fine-grained implicit flows for
SQL statements. These captured implicit flows are able to help
software engineers address critical issues in time. TaintSQL
users can also take the taint propagation results as inputs for
subsequent taint analysis to track comprehensive information
flows for application code (e.g., Java or C#).

C. MutaIF and MockIF

TaintSQL includes two techniques to propagate taints in im-
plicit flows for SQL statements, namely MutaIF and MockIF.
They use different strategies to address the challenges of
taint propagation. MutaIF is suitable for analysis tasks where
users are expected to capture fine-grained implicit flows (1)
precisely (i.e., false positives are not tolerated) or (2) for
statements containing complicated advanced features such as
user-defined functions. MockIF is suitable for analysis tasks
where users are expected to capture fine-grained implicit flows
(1) comprehensively (i.e., false negatives are not tolerated) or

Algorithm 1 Propagating taint tags for a SELECT statement
Input: Q: a SELECT statement;
Input: D: the database state;
Input: TN : each column name in Q and its taint tag;
Input: TB : each condition branch in Q and its taint tag;
Input: TD: each table cell’s value in D and its taint tag;
Output: R: the fetched result set;
Output: TR: each table cell’s value in R and its taint tag.

1: R← Execute Q on D
2: for each tainted column name n in Q do
3: Tn ← Get n’s taint tag from TN

4: Rd ← Get all values in the column n from R
5: TR ← Propagate Tn to the values in Rd

6: end for
7: for each tainted condition branch b in Q do
8: Tb ← Get b’s taint tag from TB

9: Qm ← Mutate b to its negation
10: Rm ← Execute Qm on D
11: Rd ← Compare R with Rm

12: TR ← Propagate Tb to the values in Rd

13: end for
14: for each tainted table cell’s value v in D do
15: Tv ← Get v’s taint tag from TD

16: c← Get the column name of v
17: if c is in Q’s condition branches then
18: if v is not NULL then
19: Dm ← Mutate v to NULL

20: else
21: Dm ← Mutate v to a random value
22: end if
23: Rm ← Execute Q on Dm

24: Rd ← Compare R with Rm

25: TR ← Propagate Tv to the values in Rd

26: end if
27: end for
28: return ⟨R, TR⟩

(2) from all or many inputs at once. Neither technique requires
modifying the underlying environments.

1) MutaIF: MutaIF infers taint propagation paths from
each source by mutating its value to observe which sinks
get changed. We name this insight as counterfactual mutation
because it is inspired by counterfactual inference [17], the
theoretical basis of causal reasoning. Algorithm 1 gives details
about how to propagate taint tags for a SELECT statement via
MutaIF. Note that TD, TB , and TN can be derived from the
preceding taint propagation results or manual marking.

To infer taint propagation path for a SELECT statement,
MutaIF first needs to execute the original statement to get
the result set R (Line 1). To propagate taint tags from the
column names, MutaIF directly assigns each column name’s
taint tag to all the values belonging to this column (Lines 3-5).
To propagate taint tags from the condition branches, MutaIF
negates each tainted condition branch by adding the NOT

operator to this condition branch (Line 9). Then it executes



the mutated statement to retrieve the result set Rm (Line 10).
If some rows in R do not exist in Rm, MutaIF propagates the
condition branch’s taint tag to the values in these rows (Lines
11-12).

To propagate taint tags from the table cells in the database
state, MutaIF mutates each source’s value to NULL5 where
the original value is not NULL (Line 19). But if the original
value is NULL, MutaIF mutates it to a random value with the
same data type (Line 21). MutaIF leverages the NULL value
to mutate each tainted table cell because the processing of
NULL is different from other values in common DBMSs. The
comparison operators such as “>=” cannot be used to match
NULL. Mutating the source to NULL can ensure that it will
not satisfy the condition branches in common cases so that
the implicit flows can be identified with only one mutant.
Moreover, NULL is compatible with arbitrary data types.
Then MutaIF re-executes the original statement to retrieve the
result set Rm (Line 23). By comparing Rm with R, MutaIF
determines which rows in R get changed (Line 24). Thus,
MutaIF propagates the table cell’s taint tag to the values in
these rows (Line 25).

Now we illustrate how MutaIF propagates taint tags for
the example in Figure 2. First, MutaIF executes the original
statement and gets the year 1979. Then it mutates the tainted
condition branch to create a statement mutant. After executing
this mutant, the year 1990 instead of 1979 is fetched, so the
year 1979 is marked as τ1. Next, MutaIF mutates the value
8580 to NULL, and re-executes the original statement. The
empty result set indicates that the year 1979 gets tainted with
τ2. However, after mutating the value 1522 to NULL, the year
1979 is still fetched, so τ3 should not be propagated to it.
Finally, the taint propagation result is ⟨1979, {τ1, τ2}⟩.

MutaIF leverages similar strategies to propagate taint tags
for other types of statements via counterfactual mutation.
For INSERT and UPDATE statements, MutaIF propagates taint
tags from column names in INTO and SET clauses to the
corresponding table cells’ values. For UPDATE statements,
MutaIF constructs the corresponding SELECT statements to
retrieve data to be updated. MutaIF also mutates each source
in WHERE clauses and original database states to determine
which table cells’ values in the updated database states are
affected by each source.

2) MockIF: MockIF propagates taint tags by using ap-
plication code to simulate database states and operations,
i.e., reducing the core functionalities in real-world DBMSs
to basic operations on object arrays. It intercepts each SQL
statement forwarded by database interaction APIs and executes
mock operations on object arrays with equivalent semantics.
The taint tags of sources are propagated along with data
manipulation in memory. We name this insight as taint twin
because it performs the same operations on a mock database as
on a real-world database during execution of a SQL statement.
For example, when executing an INSERT statement, MockIF

5In the test environment, TaintSQL users can alter the database schema and
remove some inessential non-null constraints in advance.

parses the statement to extract the values to be inserted. Then
it inserts these values along with their associated taint tags
into the corresponding columns of a mock database.

To propagate taint tags during execution of a SQL statement,
MockIF first mocks the original database state. It uses a two-
dimensional array to represent a database table. Each column
of the array corresponds to a column in the real-world database
table (i.e., a field) or a column used to store taint tags of table
cells in a specific field. Each row of the array is equivalent to
a row in the real-world database table (i.e., a record).

Besides mocking database states, MockIF also mocks the
core operations for clause execution. For each SQL statement,
MockIF parses its clauses and maintains the mapping between
each source and its taint tag. Then it leverages semantically
equivalent but simplified operations to execute each clause on
the mock database. Although such operations do not support
advanced optimizers, the information flows for each clause
keep consistent. More importantly, the mock operations are
allowed to integrate hand-crafted taint propagation rules for
each clause. Thus, MockIF is able to execute each clause
along with taint propagation at runtime. For the operation
used to filter rows in the object array, MockIF analyzes each
condition branch recursively and gets intermediate tables for
each condition branch. For each row in an intermediate table
that satisfies a condition branch, MockIF propagates the taint
tags of that condition branch and the table cells’ values whose
columns appear in that condition branch to all values in
the row. If two condition branches are connected by AND,
MockIF intersects the data and unions the taint tags from two
intermediate tables. If two condition branches are connected
by OR, MockIF unions the data from two intermediate tables.
If a row satisfies both condition branches and is filtered into
both intermediate tables, MockIF selects the taint tags of
values in that row from the first intermediate table. For other
operations used to manipulate specific columns in the object
array, MockIF propagates the taint tags of each column name
to the table cells’ values in the corresponding column.

Now we illustrate how MutaIF propagates taint tags for the
example in Figure 2. First, MockIF stores all table cells’ values
of the Transactions table in an array. For each condition
branch, MockIF traverses each row in the mock database to
determine whether it satisfies the condition branch. Then it
generates an intermediate table for each condition branch and
assigns the condition branch’s taint tag to each value in the
intermediate table. For each row, the filtered table cells are
control-dependent on the value in the same row whose column
appears in the condition branch (i.e., amount or share), so the
value’s tag should also be propagated to the other values in the
same row. Therefore, the year 1979 is marked as {τ2} in the
first intermediate table, and is marked as {τ1} in the second
intermediate table. Since the first condition branch “share
> 100” and the second condition branch “amount > 1000”
are connected by AND, MockIF intersects the data and unions
the taint tags from two intermediate tables. Finally, the taint
propagation result is ⟨1979, {τ1, τ2}⟩.



V. EVALUATION

In our evaluations, we address the following three research
questions (RQs):

• RQ1: How effectively does TaintSQL (MutaIF and
MockIF, respectively) track implicit flows for SQL state-
ments compared with the baseline?

• RQ2: How much is the runtime overhead of TaintSQL
(MutaIF and MockIF, respectively)?

• RQ3: How practicably does TaintSQL perform in indus-
trial settings?

A. Evaluation Setup

1) Subjects: To the best of our knowledge, there is no
existing benchmark suite tailored for tracking fine-grained
implicit flows for SQL statements. We therefore collect SQL
statements from five real-world database applications and an
open-source text-to-SQL dataset to evaluate the effectiveness
and efficiency of TaintSQL. (1) iTRUST [18] is a class
project created at North Carolina State University for teach-
ing software engineering. It consists of functionalities that
cater to patients and the medical staff. (2) RiskIt [19] is an
insurance quote application that makes estimation based on
users’ personal information (e.g., zipcode and income). (3)
UnixUsage [20] is an application to obtain statistics about
how users interact with the Unix systems using different
commands. (4) Odyssey [21] is an open source library that
manages controls for WPF and ASP.NET. (5) JForum [22] is
a complete, powerful, robust, and multi-threaded discussion
board system. Its features include forums and messages, topic
watching, email notification, advanced permission schema, and
more. (6) Spider [23] is a semantic parsing and text-to-SQL
dataset consisting of complex SELECT statements covering
different domains. We choose these database applications and
datasets because they have been widely used as evaluation
subjects in previous work [24], [11], [6].

We finally construct a test subject suite including 200
randomly selected SQL statements in total because analyzing
taint propagation results for all queries requires unaccept-
able manual efforts. These statements are grouped into five
categories (i.e., Single-Branch-Select, Single-Branch-Update,
Multi-Branch-Select, Multi-Branch-Update, and Insert), each
of which is designed to evaluate a representative feature of
SQL (e.g., different types of SQL statements and different
numbers of branches)6.

We assign an initial database state to each SQL statement
in the test subject suite with the following criteria. If a SQL
statement is derived from Odyssey (which does not provide the
database state), we use a data generation tool named Fake [26]
to randomly generate an initial database state for this SQL
statement. Otherwise, we select the database state provided

6Nested statements are not included because previous work [25] has demon-
strated that most of them can be unnested into equivalent canonical statements
via transformation. In addition, DELETE statements are not included because
they delete the values along with their taint tags. Although the deletion
behavior may affect the subsequent data processing results, such hidden
implicit flows [8] are out of scope for TaintSQL.

by each database application or dataset as the initial database
state for each SQL statement.

2) Baseline: Note that there is no applicable baseline to
which we can compare our work because no existing work
focuses on tracking fine-grained implicit flows for SQL state-
ments and TaintSQL is the first cell-level DTA framework for
it. Therefore, We design a column-level STA approach as the
baseline. Once a table cell’s value in a column gets tainted,
the column-level STA regards that all values in that column
are tainted and share the same taint tag.

The code-instrumentation-based DTA approach is not appli-
cable as a baseline due to the challenges of native/unmanaged
code and DBMS complexity. Even if we use a state-of-the-art
dynamic taint tracking tool for JVM named PHOSPHOR [9],
[10] to track implicit flows through a simplified open-source
DBMS [27] that does not implement optimizers or any other
advanced feature, the taint propagation results still show that
this approach is not applicable because as long as any character
in a SELECT statement is tainted (and even any obtained token
after the parsing stage is tainted), all fetched values get tainted.

3) Methodology: Because there is no existing labeled
ground truth, we need to manually check all taint propagation
results to evaluate our approaches. However, it is impractical to
manually check fine-grained implicit flows from all sources to
all sinks to identify the complete set of true implicit flows.
Therefore, we limit the size of each database table to a
maximum of 10 records. In addition, we randomly pick up
to five table cells’ values, up to five condition branches, and
up to five column names as sources. We assign a distinct taint
tag to each source.

To make our evaluation results convincing, we use the
following cross-validation policy to check each reported im-
plicit flow. We first collect all implicit flows reported by
our proposed techniques and the baseline. We independently
classify all reported implicit flows to distinguish true from
false ones based on the definition of implicit flows for SQL
statements. We then discuss the disagreements for inconsistent
classifications, and finally all the implicit flows are classified
consistently. Based on all classified implicit flows, we count
the number of true positives (TP ), false positives (FP ), and
false negatives (FN ) for each approach, respectively.

4) Metrics: To measure the effectiveness and efficiency of
TaintSQL, we calculate the following four types of metrics:

• The precision rate (denoted as P ) is defined as the
proportion of true implicit flows in all reported implicit
flows: P = TP

TP+FP .
• The recall rate (denoted as R) is defined as the proportion

of reported implicit flows in all true implicit flows: R =
TP

TP+FN .
• The F1 score (denoted as F1) is defined as the harmonic

mean of the precision rate and the recall rate: F1 = 2PR
P+R .

• The increased runtime overhead (denoted as ∆T ) is
defined as the average cost per statement increased by
taint propagation.

5) Implementations and Environments: We implement the
MutaIF prototype in Java. It leverages JSqlParser [28] to



TABLE I
TAINT PROPAGATION RESULTS FOR COLUMN-LEVEL STA, MUTAIF, AND MOCKIF

Test Subject Category Column-Level STA MutaIF MockIF

Name Source P R F1 P R F1 ∆T (s) P R F1 ∆T (s)

Single-Branch-Select
Table Cell 42.7% 100.0% 59.8% 100.0% 84.3% 91.5% 0.18 91.9% 100.0% 95.8% 0.09
Condition Branch 93.8% 100.0% 96.8% 100.0% 90.2% 94.8% 0.09 93.8% 100.0% 96.8% 0.09
Column Name 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 0.03 100.0% 100.0% 100.0% 0.09

Single-Branch-Update
Table Cell 24.1% 100.0% 38.9% 100.0% 100.0% 100.0% 0.28 100.0% 100.0% 100.0% 0.08
Condition Branch 29.0% 100.0% 45.0% 100.0% 100.0% 100.0% 0.19 100.0% 100.0% 100.0% 0.08
Column Name 28.7% 100.0% 44.5% 100.0% 100.0% 100.0% 0.05 100.0% 100.0% 100.0% 0.08

Multi-Branch-Select
Table Cell 38.3% 100.0% 55.4% 100.0% 75.2% 85.8% 0.23 79.5% 100.0% 88.6% 0.16
Condition Branch 54.0% 100.0% 70.1% 100.0% 79.1% 88.3% 0.17 85.5% 100.0% 92.2% 0.16
Column Name 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 0.04 100.0% 100.0% 100.0% 0.16

Multi-Branch-Update
Table Cell 16.3% 100.0% 28.0% 100.0% 88.2% 93.7% 0.29 100.0% 100.0% 100.0% 0.15
Condition Branch 21.8% 100.0% 35.8% 100.0% 92.9% 96.3% 0.24 100.0% 100.0% 100.0% 0.15
Column Name 28.8% 100.0% 44.8% 100.0% 100.0% 100.0% 0.06 100.0% 100.0% 100.0% 0.15

Insert Column Name 13.6% 100.0% 24.0% 100.0% 100.0% 100.0% 0.04 100.0% 100.0% 100.0% 0.13

Average 45.5% 100.0% 57.2% 100.0% 93.1% 96.2% 0.15 96.2% 100.0% 97.9% 0.12

parse SQL statements. We implement the MockIF prototype
in C#. It leverages ANTLR [29] to parse SQL statements. It
mocks database states and operations in memory based on an
automated test generation tool for database applications named
MODA [24], which guarantees the semantic equivalence for
common SQL features. The prototype code, industrial study
cases, and supplementary materials such as supported SQL
features are publicly available [30].

To answer RQ1 and RQ2, the evaluations are conducted on
a Windows 11 laptop with Intel i7-8565U CPU and 16 GB
of memory. To answer RQ3, the evaluations are conducted on
a Linux server with 2.5 GHz Intel Xeon Platinum 8163 CPU
and 4 GB of memory.

B. RQ1: Effectiveness

We design and conduct the following evaluations on our test
subject suite to assess the effectiveness of TaintSQL.

1) Taint Propagation Results: We report the taint propaga-
tion results for our proposed techniques in TaintSQL and the
baseline in Table I. Note that to mitigate experimental biases,
we randomly pick 15% untainted sinks to check whether there
are unreported but true implicit flows from tainted sources
to these sinks. After such samplings are done twice and no
more false negatives are found, we believe that the results are
convincing.

The evaluation results in Table I show that the F1 scores of
both MutaIF and MockIF are higher than column-level STA.
Column-level STA achieves the lowest average precision rate
(45.5%) and F1 score (57.2%) because it cannot distinguish
taint tags of different values in the same column. MutaIF
achieves the highest precision rate (100.0%) because it pre-
cisely captures causal dependencies between data. MockIF
achieves the highest average recall rate (100.0%) and F1
score (97.9%) because it propagates taint tags along with
mock operations, reflecting the equivalent semantics of clause
execution. Therefore, both techniques in TaintSQL outperform
the baseline.

2) False Negatives Reported by MutaIF: In the evaluations,
we find that there are implicit flows that MutaIF does not
capture. We analyze the in-depth root causes as follows.

• MutaIF mutates a tainted condition branch but the same
results are returned because the records satisfy multiple
condition branches connected by OR at the same time.
Mutating the first condition branch will not affect the
records satisfying other condition branches. The fact is
that there are implicit flows from this condition branch
to the values in the results, but MutaIF mistakenly infers
that there is no implicit flow.

• MutaIF mutates a tainted condition branch but the same
results are returned because exactly the same values from
different table cells are fetched. Although the two results
are numerically identical, they come from different table
cells with different semantics. Besides the semantics,
their original taint tags may also be different. The fact
is that there are implicit flows from this condition branch
to the values in the results, but MutaIF mistakenly infers
that there is no implicit flow.

3) False Positives Reported by MockIF: In the evaluations,
we find that there are false implicit flows reported by MockIF.
We analyze the in-depth root causes as follows.

• MockIF guarantees the conservativeness of taint prop-
agation for different aggregation functions with diverse
semantics. In strict, some aggregation results are not
dependent on the original table cell’s values. For example,
if a table cell’s value is 0, it will not affect the aggregation
result by the SUM function. But MockIF conservatively
unions all taint tags and assigns these tags to the final
results, and thus reports false implicit flows.

• The current prototype of MockIF has not yet supported
some SQL features such as the LIKE operator and scalar
functions. When analyzing SQL statements containing
such features, MockIF leverages the same approach as
column-level STA to propagate taint tags. Therefore, it
may report some false implicit flows for these statements.
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Fig. 3. Impact of different numbers of tainted table cells.

C. RQ2: Efficiency

The evaluation results shown in Table I illustrate that
MutaIF costs an average of 0.15 seconds for taint propagation,
whereas MockIF costs an average of 0.12 seconds for taint
propagation. In practice, only relevant columns/tables and
records (which tend to be in the minority) are kept in the test
environment, so the increased runtime overhead is reasonable.

In addition, we conduct empirical evaluations on MutaIF
and MockIF to assess the impact of different numbers of
sources on runtime overhead. We randomly choose 10 SQL
statements in the test subject suite, and record the runtime
overhead of propagating taint tags under different factors by
MutaIF and MockIF, respectively.

1) Impact of Different Numbers of Tainted Table Cells:
The time costs for different numbers of tainted table cells
are shown in Figure 3. The results show that as the number
of tainted table cells increases, the taint propagation time of
MutaIF becomes longer, but the efficiency of MockIF is almost
unaffected. The reason is that MutaIF mutates once for each
tainted table cell, and then re-executes the SQL statement to
track implicit flows. Assuming that there are n tainted table
cells, the same SQL statement needs to be executed at least
n + 1 times. MockIF executes the SQL statement only once,
and all taint tags are propagated to sinks during execution of
mock operations. Therefore, the number of tainted table cells
has little impact on the cost of MockIF.

2) Impact of Different Numbers of Tainted Condition
Branches: The time costs for different numbers of tainted
condition branches are shown in Figure 4. The results show
that the runtime overhead of MutaIF rises slowly with increase
of the number of tainted condition branches. The reason is
that although more statement mutants are executed during taint
propagation by MutaIF, there is no need for SELECT statements
to backup and restore database states. The runtime overhead
of MockIF is basically not affected also because there is no
need for MockIF to re-execute the SQL statements.

3) Impact of Different Numbers of Tainted Column Names:
The time costs for different numbers of tainted column names
are shown in Figure 5. The results show that different numbers
of tainted column names hardly affect the runtime overhead
of MutaIF and MockIF. The reason is that there is no need for
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both MutaIF and MockIF to re-execute the SQL statements
when propagating taint tags from column names.

D. RQ3: Practicability

To assess the practicability of TaintSQL, we present an
industrial study conducted in the test environment of an online
fund trading system maintained by Company A. It adopts a
micro-service architecture and uses an open-source distributed
DBMS named OceanBase [31] as its underlying DBMS.
All evaluation subjects covering multiple fund businesses
are developed on an open-source financial-level distributed
architecture named SOFAStack [32] and use a self-developed
middleware to interact with back-end databases.

We choose the MutaIF technique to propagate taint tags
in industrial settings because MutaIF is lightweight and the
software engineers working in Company A expect the reported
implicit flows to be highly precise. We reproduce historically
captured implicit flows for SQL statements for addressing the
software engineering tasks (introduced in Section II) in eight
cases. After manual checking, the study results show that all
fine-grained implicit flows in these cases are captured and all
implicit flows reported by MutaIF are true positives (some
of which are the key to triggering severe risks). Compared
with the column-level/table-level STA approaches in current
practice, using MutaIF can eliminate more than half of the
implicit flows which are proved to be false positives.

Taking a SELECT statement shown in Figure 6 for example
(with millions of daily users, some values are anonymized



1 SELECT SUM(apply_amount)
2 FROM fund_trade_order_01
3 WHERE user_id = <user_id>
4 AND (scene_type = <scene_type_1>
5 OR scene_type = <scene_type_2>)
6 AND (order_type = <order_type_1>
7 OR order_type = <order_type_2>)
8 AND order_status = <order_status>

Fig. 6. Calculating the total amount of short-term investment in transit.

according to the company policy), it returns a wrong ag-
gregation result which affects the downstream services that
receive this result as an input. The current practice only
conservatively infers that there are implicit flows from all
condition branches to this result, making software engi-
neers take non-trivial efforts to check. But MutaIF suc-
cessfully detects that this result is control-dependent on
the “scene_type = <scene_type_2>” condition branch
instead of the “scene_type = <scene_type_1>” condition
branch. According to the combination of the fine-grained
implicit flows for SQL statements reported by MutaIF with
the information flows for application code captured by general-
purpose taint analysis approaches, the software engineers are
able to conduct traceability and impact analysis of erroneous
data and rate the security risk.

Based on the industrial study results, our TaintSQL frame-
work and the MutaIF technique receive positive feedback from
the software engineers working in Company A. They comment
that MutaIF “generates convincing results with acceptable
overhead” and TaintSQL “is able to address pain points in
their day-to-day work”.

E. Threats to Validity

Like any research of taint analysis, our evaluations are
subject to threats to validity.

1) External Validity: We are aware that the evaluation
results are preliminary and more extensive studies are needed
in future work. First, a threat includes the degree to which
the database states and SQL statements in our evaluations are
representative of true practice. Our results may not generalize
to arbitrary subjects. Second, our implementations perform
taint analysis for only relational database statements. Ad-
vanced transaction processing and NoSQL statements are not
yet supported. Third, our prototypes do not integrate taint
analysis approaches for application code. We assume that
TaintSQL users have the ability to use general-purpose taint
analysis tools to track complete information flows in real-
world services. Nevertheless, we believe that the benefits and
costs of TaintSQL are promising based on our evaluation
results.

2) Internal Validity: On internal validity, our evaluations
may subject to researcher biases. Bugs in our prototypes,
manual efforts for some not-yet-automated functionalities
(e.g., replacing database interaction APIs), and the underlying
integrated tools (e.g., JSqlParser [28] and MODA [24]) might

cause such effects. To reduce these threats, we manually
inspect sampled runtime traces of TaintSQL. The implicit
flows for SQL statements tracked by TaintSQL in Company
A have been confirmed by software engineers with years of
working experience.

VI. RELATED WORK

To the best of our knowledge, TaintSQL is the first cell-level
DTA framework to track fine-grained implicit flows for SQL
statements. There are two main categories of related work for
TaintSQL.

A. Taint Analysis for Application Code

A large number of academic and industrial studies focus on
tracking explicit flows or implicit flows for application code.
PHOSPHOR [9], [10] and ClearTrack [33] support DTA of
Java applications. TAINTART [34], TaintDroid [35], and MU-
TAFLOW [36] support DTA of Android applications. FLOW-
DROID [37], DroidSafe [38], and DroidInfer [39] support
STA of Android applications. TASEL [40], NEUTAINT [41],
DTA++ [42], TAINTINDUCE [43], and DYTAN [12] are feasi-
ble for propagating taint tags in C/C++ binaries. In recent
years, a number of approaches have made an attempt to
perform DTA in GraalVM [44], [45], [46] (a polyglot virtual
machine in which multi-language applications can be run [47])
or data-intensive scalable computing (DISC) systems [48],
[15]. In an industrial setting, ANTaint [49] developed by Al-
ibaba supports STA for service-oriented architecture (SOA) ap-
plications. These preceding approaches treat SQL statements,
which interact with back-end databases, as trivial embedded
strings in the application code. There is no in-depth semantic
information of SQL statements, so taint tags carried in these
statements cannot be correctly propagated to the corresponding
sinks. Different from these approaches, TaintSQL aims to
track implicit flows for SQL statements instead of application
code. However, due to the complexity of implicit flows, code
instrumentation of underlying DBMSs or manually specifying
complicated policies are impractical. Tracking fine-grained
implicit flows for SQL statements faces more challenges than
tracking explicit flows.

B. Taint Analysis for SQL Statements

DBTaint [6] supports cell-level DTA to track explicit
flows for SQL statements. It modifies database interfaces and
rewrites SQL statements so that both data and the associated
taint tags can be stored in or retrieved from back-end databases
at the same time. LABELFLOW [50] and SilverLine [51] sup-
port row-level DTA (maintaining a taint tag for each row) for
PHP-based web applications. RESIN [52] allows developers
to write application-specific code for the assertions that must
hold for each table cell. It keeps track of assertions as explicit
flows for SQL statements. Yang et al. [53] present faceted
databases for supporting policy-agnostic SQL statements, and
prove that the interoperation with faceted databases yields
strong guarantees. Schütte and Brost [3] propose a domain-
specific policy language in the model of controlling data usage



and track explicit flows to monitor the processing of individual
data. In an industrial setting, MaxCompute [54] (also called
ODPS), a big-data computing engine developed by Alibaba,
supports column-level/table-level STA for SQL statements.
These approaches lack TaintSQL’s ability to track fine-grained
implicit flows for SQL statements, and there is no need for
TaintSQL users to manually specify complicated policies.

VII. CONCLUSION

In this paper, we have presented a cell-level DTA frame-
work named TaintSQL, including two novel taint propagation
techniques, namely MutaIF and MockIF, to track fine-grained
implicit flows for SQL statements. We have implemented both
techniques and evaluated them on a set of test subjects. The
evaluation results show that the techniques effectively track
fine-grained implicit flows for SQL statements with reasonable
runtime overhead. The F1 scores of MutaIF and MockIF are
96.2% and 97.9%, respectively. We have also conducted an
industrial study of MutaIF on an online fund trading system
in an international IT company (which serves over 1 billion
global users and 80 million merchants). The positive feedback
from the software engineers also shows the practicability of the
TaintSQL framework and the MutaIF technique in industrial
settings.
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