
Automated Generation of Pointcut Mutants

for Testing Pointcuts in AspectJ Programs

Prasanth Anbalagan Tao Xie

Department of Computer Science, North Carolina State University, NC 27695, USA

panbala@ncsu.edu xie@csc.ncsu.edu

Abstract

Aspect-Oriented Programming (AOP) provides new

modularization of software systems by encapsulating cross-

cutting concerns. AspectJ, an AOP language, uses ab-

stractions such as pointcuts, advice, and aspects to achieve

AOP’s primary functionality. Faults in pointcuts can cause

aspects to fail to satisfy their requirements. Hence, test-

ing pointcuts is necessary in order to ensure correctness of

aspects. In mutation testing of pointcuts (a type of fault-

based pointcut testing), the number of mutants (i.e., varia-

tions) for pointcuts is usually large due to the usage of wild-

cards. It is tedious to manually identify effective mutants

that are of appropriate strength and resemble closely the

original pointcut expression, reflecting the kind of mistakes

that developers may make. To reduce developers’ effort in

this process, we have developed a new framework that au-

tomatically identifies the strength of each pointcut and gen-

erates pointcut mutants with different strengths. Develop-

ers can inspect the pointcut mutants and their join points

for pointcut correctness or choose the mutants for conduct-

ing mutation testing. We conducted an empirical study on

applying our framework on pointcuts from existing AspectJ

programs. The results show that our framework can pro-

vide valuable assistance in generating effective mutants that

are close to the original pointcuts and are of appropriate

strength.

1 Introduction

Aspect-Oriented Programming (AOP) [8] provides mod-

ular implementation for crosscutting behavior of a software

system. AspectJ [9] is a widely used AOP language and pro-

vides special constructs such as aspects, advice, join points,

and pointcuts. AspectJ uses join points to represent loca-

tions where a concern crosscuts a software system. Point-

cuts are constructs modeled using pointcut expressions to

capture join points. Advice contains the set of actions that

has to be applied at the identified join points. The type of

advice determines when the actions are to be applied when

a join point is triggered.

Pointcuts identify the type, scope, or context of a join

point where the crosscutting behavior applies. AspectJ

allows pointcuts to be designed with various designators,

wildcards, and their combinations with logical operators. A

pointcut consists of expressions that define the pattern of

the join points to be matched. Based on the pattern writ-

ten by a developer, the pointcut selects an appropriate set

of join points. It is likely that the pattern written by the

developer selects unintended join points or leaves out in-

tended join points. When unintended join points are se-

lected, the crosscutting behavior is applied at these unin-

tended join points. Application of the crosscutting behavior

at unintended join points would lead to erroneous behav-

ior of the system. When intended join points are left out,

the crosscutting behavior is not applied at these left-out in-

tended join points. In this case, the system fails to perform

its complete functionality. In either case, the system fails to

perform its intended functionality. Hence, there is a strong

need to test the strength of a pointcut.

The fundamental premise of mutation testing [4, 7] (a

type of fault-based testing) is that, in practice, if a program

contains a fault, there usually will be a set of mutants that

can be killed by only a test that also detects that fault. Mu-

tation testing measures how good our tests are by seeding

faults into the program under test. Each fault results in a

new program (called a mutant) that is slightly different from

the original program. The idea is that the tests are adequate

if they detect faults seeded in all or most mutants.

Mutation testing has many costs, including the genera-

tion of a possibly vast number of mutants and the detection

of equivalent mutants [12]. Equivalent mutants, by defini-

tion, are unkillable because these mutants are semantically

equivalent to the original program. Detecting such mutants

for a program is generally intractable [5] and has histori-

cally been done by hand [12].

Performing mutation testing to test the strength of a

pointcut requires generation of effective mutants, i.e., the

pointcut’s variations that resemble closely the original



pointcut, reflecting the kind of mistakes that developers may

make. In this paper, we propose a framework1 that serves

the following purposes: generating relevant mutants and de-

tecting equivalent mutants. Relevant mutants are those that

are relevant to the original pointcut and resemble closely

the original pointcut without being arbitrary strings. Equiv-

alent mutants are those that are pointcut mutants that match

the same set of join points as the original pointcut. Finally

the framework reduces the total number of mutants from the

large number of initial generated mutants. Our framework

also classifies the mutants and ranks them using a string

similarity measure to help the developer choose a mutant

that resembles closely the original one. Developers can in-

spect the output of the framework for pointcut correctness

or use these mutants along with test cases (for the woven

code produced by aspect weaving) to conduct mutation test-

ing. In the mutation testing, the test cases are executed on

the woven code with a pointcut mutant, and if at least one

test case fails, the mutant is killed (i.e., the seeded fault is

detected).

We conducted an empirical study on applying our frame-

work on pointcuts from existing AspectJ programs. The

results show that our framework can provide valuable as-

sistance in generating effective mutants that are close to the

original pointcuts and are of appropriate strength.

The rest of the paper is organized as follows. Section 2

presents our illustrative example. Section 3 illustrates our

framework. Section 4 provides the results of applying the

framework on selected subjects. Section 5 discusses issues

of our approach. Section 6 presents related work, and Sec-

tion 7 concludes with future work.

2 Example

In this section, we use an example to illustrate pointcuts

and potential issues with the strength of a pointcut. Figure 1

provides a partial implementation of an Account class.

The Account class consists of two crosscutting concerns:

AccessController.checkPermission(new

BankingPermission("accountOperation")) and

Account.updateAccount(amount). Figure 2 shows

an aspectAccount aspect for the Account class.

The aspectAccount aspect consists of the pointcuts

checkPermission() and updateAccount(). Figure 2

shows the pointcuts of the aspectAccount aspect along

with their matched join points2, which are the join points

identified from the Account class where the crosscutting

concerns occur.

1An earlier version of this work is described in a workshop position

paper presented at MUTATION 2006 [2].
2For simplicity of illustration, we omit the class name in each join

point; the class name in each join point is “Account”.

public class Account {
...

public int getAccountNumber() {
AccessController.checkPermission(

new BankingPermission("accountOperation"));

}
public void accessCreditAccount(float amount) {

Account.updateAccount(amount);

}
public void accessDebitAccount(float amount) {

Account.updateAccount(amount);

}
public void createNewAccount(float amount) {

Account.updateAccount(amount);

}
public float getAccountBalance() {

AccessController.checkPermission(

new BankingPermission("accountOperation"));

}
public float getGeneralInfo() { ... }

}

Figure 1. Partial implementation of an

Account class

Pointcut1 is used to match join

points for the crosscutting concern

AccessController.checkPermission(new

BankingPermission("accountOperation")).

The pointcut has been designed to match the execu-

tion of all methods (belonging to the Account class)

whose names start with “get” and have any num-

ber of arguments. The intention of the pointcut is

to match all methods that have the crosscutting con-

cern AccessController.checkPermission(new

BankingPermission("accountOperation")). But

from the list of the join point candidates, we find that

the pointcut matches an additional method public void

getGeneralInfo(). In such a case, the crosscutting

behavior AccessController.checkPermission(new

BankingPermission("accountOperation")) is

applied before the execution of this method. The actual

purpose of the method getGeneralInfo() is to obtain

general information about operations on a bank account.

This functionality does not require any permission check

because it is accessible to all users. Applying the crosscut-

ting behavior before the execution of this method makes it

unaccessible to general users, causing erroneous behavior.

In this case, we call the strength of Pointcut1 to be too

weak (i.e., too general), and it matches more join points

than expected.

Pointcut2 is used to match join points for the crosscut-

ting concern Account.updateAccount(). The pointcut

matches the execution of methods (in the Account class)

whose names start with “access”, end with “Account”,

and have “float” as the argument. The intention

of the pointcut is to match all methods that have the

crosscutting concern Account.updateAccount(). But



public aspect accountAspect {

pointcut checkPermission(): execution(* Account.get*(..))

before checkPermission() {
AccessController.checkPermission(

new BankingPermission("accountOperation"));

}

pointcut updateAccount():

execution(public void Account.access*Account(float))

after updateAccount() {
Account.updateAccount(amount);

}
}

Pointcut1

pointcut checkPermission(): execution(* Account.get*(..))

Join points

execution(public int getAccountNumber());

execution(public float getAccountBalance());

execution(public void getGeneralInfo());

Pointcut2

pointcut updateAccount():

execution(public void Account.access*Account(float))

Join points

execution(public void accessCreditAccount(float amount));

execution(public void accessDebitAccount(float amount));

Figure 2. Account aspect with pointcuts and

their matched join points

from the list of the matched join points, we can find

that the pointcut leaves out the method public void

createNewAccount(float amount). In such a case,

the crosscutting behavior Account.updateAccount() is

not applied after the execution of this method. The actual

purpose of the method createNewAccount is to create a

new account. When a new account is created, the account

is updated with an initial amount deposited by the user. If

the crosscutting behavior is not applied after the execution

of this method, then the account would not be updated with

the initial amount deposited by the user and the function-

ality of the method would be incomplete. In this case, we

call the strength of Pointcut2 to be too strong (i.e., too

specific), and it matches fewer join points than expected.

In either of the preceding cases, the incorrect strength

of pointcuts causes incorrect behavior of the woven target

code. Hence it is necessary for developers to verify the

strength of the original pointcuts and identify their mutants

with different strengths. One straightforward tool support

is to automatically identify a list of join points matched by

a pointcut and then developers can inspect and verify this

list. However, for a large system, it is tedious to inspect and

verify the identified list. Moreover, inspecting and verify-

ing only the matched list of join points may not easily help

discover intended join points not matched by the pointcut.

Given a software system and a pointcut defined for this

system, our framework automatically generates a small

number of pointcut mutants, which are similar to the given

pointcut in terms of its syntactic form or in terms of the

set of matched join points. For each pointcut mutant, the

framework also automatically produces the differences be-

tween the set of join points matched by the pointcut mutant

and the given pointcut; these differentiating join points can

be viewed as test inputs (for the pointcut) that kill the point-

cut mutant. Our framework proposes to use these pointcut

mutants and their differentiating join points to help detect

pointcut faults; such an application of mutation testing is

different from traditional applications of mutation testing

such as assessment of a test suite’s fault-detection capability

or quality in general. In particular, developers can inspect

and verify pointcut mutants and the differences of their

matched join points from the ones matched by the given

pointcut (rather than inspecting the join points matched by

the given pointcut).
For example, for Pointcut1, our framework automati-

cally generates one pointcut mutant and the join point dif-
ferences as below:

Pointcut mutant:

pointcut checkPermission():

execution(*Account.getAccount*(..))

Join point differences (-1)

-execution(public void getGeneralInfo());

The “(-1)” after “Join point differences” indicates that

one join point in the set of join points matched by

Pointcut1 is not matched by the pointcut mutant. This

number “1” is the value for downsize measure, which in-

dicates the number of join points matched by the original

pointcut but not matched by the pointcut mutant. The “–

” symbol before the listed join point indicates that the join

point is originally matched by the given pointcut but not by

the pointcut mutant.

By inspecting this pointcut mutant and the join point

differences, developers would think about whether this

getGeneralInfo() method should be matched. They

could find out that this method should not be matched

and then replace the pointcut expression in Pointcut1

with the pointcut mutant, which successfully excludes the

getGeneralInfo() method.
For Pointcut2, our framework automatically generates

one pointcut mutant and the join point differences as below:

Pointcut mutant:

pointcut updateAccount():

execution(public void Account.*Account(float))

Join point differences (+1)

+execution(public void createNewAccount(float amount));

The “(+1)” after “Join point differences” indicates that

one join point in the set of join points matched by the point-

cut mutant is not matched by Pointcut1. This number “1”

is the value for upsize measure, which indicates the num-

ber of join points matched by the pointcut mutant but not

matched by the original pointcut. The “+” symbol before

the listed join point indicates that the join point is matched

by the pointcut mutant but originally not matched by the

given pointcut. Note that when the pointcut mutant matches

additional join points (not matched by the original pointcut)

and does not match some join points matched by the orig-

inal pointcut, there will be two numbers after “Join point



differences” (one prefixed by “+” and the other prefixed by

“-”).

By inspecting this pointcut mutant and the join point dif-

ferences, developers would think about whether this

createNewAccount(float amount) method should be

matched. They could find out that this method should

be matched and then replace the pointcut expression in

Pointcut2 with the pointcut mutant, which success-

fully matches the createNewAccount(float amount)

method.

The preceding two example pointcut mutants show that

pointcut mutants with different strengths (from their origi-

nal pointcut) can help developers detect pointcut faults by

using the mutants. We next illustrate on the concept of

equivalent mutants.
For illustration purposes, let us now pretend that the

getGeneralInfo() method does not exist when develop-
ers verify the pointcuts in the system. Then for Pointcut1,
our framework automatically generates one pointcut mutant
and the join point differences as below:

Pointcut mutant:

pointcut checkPermission():

execution(*Account.getAccount*(..))

Join point differences (0)

Note that either the upsize or downsize measure for this

pointcut mutant is 0, which indicates that the set of join

points matched by the pointcut mutant is the same as the

one matched by the original pointcut. Pointcut mutants with

measure 0 are thus identified as equivalent mutants.

3 Framework

To reduce manual effort in identifying the strength of

a pointcut and generating pointcut mutants that resemble

closely the original pointcut, we develop an automated

framework to identify the strength of a pointcut, and gener-

ate pointcut mutants that match more join points, fewer join

points, or the same set of join points matched by the origi-

nal pointcut. The input to our framework is AspectJ source

code and Java bytecode of the base program (the software

system that the aspects are woven into). The output from

our framework is a ranked list of pointcut mutants for each

original pointcut in the AspectJ source code and the differ-

ences of the join points matched by the original pointcut and

the pointcut mutants.

In our framework, we identify pointcuts from AspectJ

source code and join point candidates from the Java byte-

code of the base program; join point candidates are pro-

gram locations that can potentially be join points. The join

point candidates are identified based on static analysis of the

bytecode. We verify join point candidates against the point-

cuts and identify the join points matched by each pointcut.

Then we generate pointcut mutants for the original point-

cut based on a candidate fault model [3] for pointcuts. The

Figure 3. Framework overview

join points for the mutants are identified in a similar way as

for the original pointcut. To facilitate developer inspection,

we classify and rank pointcut mutants based on a similarity

measure with the original pointcut. This ranking mecha-

nism helps developers to quickly identify pointcut mutants

that resemble closely the original pointcut.

Figure 3 provides an overview of our framework. The

framework consists of six components: pointcut parser, join

point candidate identifier, mutant generator, pointcut tester,

mutant classifier, and distance measurer. We next illustrate

the details of each of these six components.

3.1 Pointcut Parser

The pointcut parser identifies pointcuts in the given As-

pectJ source code. Pointcuts are specified by a structure

that consists of access type, name, designator, identifier,

and type. The access type and name specify the scope of

the pointcut in the aspect class and name of the pointcut.

The designator and type pattern define the pattern of the

join points to be matched. Each pointcut consists of one or

more pointcut expressions separated by logical operators.

The pointcut parser performs several functionalities: identi-

fying the pointcuts in the source code, pointcut expressions

in each pointcut, and the different structural components of

each pointcut expression in a pointcut.

Figure 2 shows the aspectAccount aspect with the

pointcuts checkPermission and updateAccount. In

this example, the pointcuts have been defined using the key-

word pointcut. Both the pointcuts checkPermission

and updateAccount consist of a single pointcut ex-

pression, the designator execution, and the methods to

be matched. The methods to be matched are specified

with the patterns “* Account.get*(..)” and “public

void Account.access*Account(float)”. The differ-

ent structural parts of the two patterns are the modifiers

(“*, public”), the return type (“*, void”), the class to

which the methods belong to (“Account”), the pattern for

the method names (“get*, access*Account”), and the

arguments (“(..), (float)”). The identified pointcuts



execution(public int Account.getAccountNumber())

execution(public void Account.accessCreditAccount(

float amount))

execution(public void Account.accessDebitAccount(

float amount))

execution(public void Account.createNewAccount(

float amount))

execution(public float Account.getAccountBalance())

execution(public float Account.getGeneralInfo())

Figure 4. Join point candidates for the

Account class
and the structural parts of each pointcut expression are fed

as input to the mutant generator.

3.2 Joint Point Candidate Identifier

The joint point candidate identifier identifies the join

point candidates from the the given Java bytecode for the

base program. The functionality of the candidate identifier

is to identify all well-defined execution points (in the Java

source code) by examining the Java bytecode. Our frame-

work currently does not support identifying join point can-

didates related to dynamic contexts like cflow; therefore,

our framework currently does not provide support to point-

cuts related to dynamic contexts. In our framework, we use

the pointcut tester (Section 3.4) to verify the join point can-

didates against the pointcuts. The pointcut tester requires

certain test inputs to perform testing without weaving the

aspects to the base program. In order to test pointcuts, the

test inputs would be join point candidates and the pointcut

tester would identify the join points for a pointcut from the

list of join point candidates.

The candidate identifier scans through the bytecode to

locate all identifiable points in the execution of a program.

Identifiable points could be a method call or execution, con-

structor call or execution, exception handler execution, read

or write access to a variable, and class or object initializa-

tion. Then we collect details that belong to these execution

points. The details include the different naming parts of the

candidate. For example, in the case of a method call or exe-

cution, the details include the different naming parts of the

method, i.e., the method name, modifiers, return type, argu-

ments, the class to which the method belongs, and the class

where the method is invoked (if the candidate is a method

call).

Figure 1 shows the Account class. The Account class

consists of several methods. The candidate identifier scans

the bytecode of the Account class, identifies the methods,

and collects the details of each method. The naming parts

of each method are combined along with the designator to

form a join point candidate. Figure 4 shows the join point

candidates generated from the Account class.

3.3 Mutant Generator

The mutant generator forms mutants for the pointcuts

identified by the pointcut parser. Pointcut mutants are

formed based on two mutation operators (pointcut strength-

ening and pointcut weakening). The idea behind the muta-

tion operators is to reduce or increase the number of join

points that a pointcut matches, by creating variations of the

original pointcut. The mutant generator generates point-

cut mutants by performing lexical variations of the original

pointcut, the join point candidates that the original pointcut

matches, and the unmatched join point candidates.

We next describe how we generate mutants for the orig-

inal pointcut and matched or unmatched join point candi-

dates (Section 3.3.1). The number of join point candidates

could be large for large systems, and varying all these join

point candidates is infeasible. Considering that only a small

subset of mutants generated from join point candidates may

be relevant, with short-distance measures from the original

pointcut, we select a subset of join point candidates for vari-

ations based on heuristics (Section 3.3.2).

3.3.1 Mutation of Pointcut and Join Point Candidates

Initially the mutant generator forms mutants for different

naming parts of the original pointcut and join point can-

didates such as join points matched by the original point-

cut and the join point candidates unmatched by the original

pointcut. The mutant generator then forms pointcut mu-

tants by combining mutants of different naming parts of the

pointcut.

Pointcuts allow the usage of wildcards within different

naming parts of an expression. Based on this characteris-

tic of pointcuts, we develop two techniques to form mu-

tants. In the first technique, there are three ways of in-

serting wildcards. First, a wildcard is inserted at the end

of the naming part. Then the wildcard is moved from the

right end to the left end. As the wildcard is moved to-

wards left, it replaces each character in the naming part.

For example, consider the join point get(static int

Blocks.curretnXPos). The mutants formed for the

naming part Blocks are Blocks*, Block*, Bloc*, Blo*,

Bl*, and B*. Second, the wildcard is inserted at the begin-

ning of the naming part. Then the wildcard is moved from

the left end to the right end. As the wildcard is moved right,

it replaces each character in the naming part. The mutants

formed for the naming part Blocks by this technique are

*Blocks, *locks, *ocks, *cks, *ks, and *s. Third, the

mutants are formed by starting with placing the wildcard

in the middle of the naming part while keeping only the

leftmost and rightmost characters, and then keeping adding

characters to either end incrementally one at a time. For ex-

ample, the mutants formed for Blocks in this fashion are

B*s, Bl*s, and Bl*ks. Although this way does not enu-

merate all possible mutants with a wildcard in the middle

(doing so would cause combinatorial explosion), mutants

generated by this way favors putting the wildcard around



the middle of the naming part, complementing the first two

ways.

The second technique is to split the naming part into por-

tions so that only the first character in each portion can be

in uppercase (except for the first portion where all charac-

ters could be in lowercase)3. The technique then substitutes

each portion with a wildcard. During each time of gener-

ating a different mutant, one or more different portions are

selected to be replaced with the wildcard; multiple wild-

cards can appear in the resulting mutants. For example,

consider the naming part typeToString of the join point

get(String Blocks.typeToString(String)). The

typeToString method is split into three portions: type,

To, and String. The mutants formed for typeToString

using the second technique are typeTo*, type*String,

*ToString, *To*, type*, and *String.

In the case of naming parts such as modifiers and

return types, mutants are formed only by just replacing

an entire modifier or return type with the wildcard. In

the case of arguments, AspectJ allows a special type of

wildcard “..”. The wildcard “..” denotes any number of

any type of arguments. Similar to forming mutants for

other naming parts with wildcards, we form mutants for

arguments with “..” . For example, consider the arguments

“(int,float,String)”. The mutants formed for this

argument will be (int,float,..), (int,..,String),

(..,float,String), (..,float,..), (int,..),

(..,String), and (..).

The pointcut mutants are also generated from the origi-

nal pointcut in a similar way as from the join point candi-

dates. The two techniques for generating pointcut mutants

from join point candidates are applied to the naming parts

of the original pointcut. Unlike join point candidates, the

original pointcut might include wildcards. All naming parts

of the original pointcut except for wildcards are changed to

form mutants. It is possible that the original pointcut in-

cludes only wildcards. In such a case, pointcut mutants are

formed only from the join point candidates.

3.3.2 Selection of Join Point Candidates for Mutation

Apart from generating pointcut mutants from the original

pointcut with the insertion of wildcards, our framework

generates mutants from matched and unmatched join points

of the original pointcut. Mutants generated from matched

join points have a higher probability of resembling the orig-

inal pointcut because their original join points are already

matched by the original pointcut. But mutants that are gen-

erated from unmatched join points are less likely to resem-

ble the original pointcut because their original join points

3Based on common Java naming conventions, each portion would rep-

resent a meaningful word and pointcuts written by developers are usually

formed by replacing these words with wildcards.

do not match the original pointcut. Because the usage of

wildcards in forming pointcut mutants can generate a large

number of mutants, it is desirable to reduce the space of un-

matched join points used for forming mutants. In our frame-

work, unmatched join points are compared to the original

pointcut based on a string similarity measure. Only those

unmatched join points that fall within a specific threshold

are selected for forming mutants. The threshold is defined

by the developers and is a numerical value that indicates the

number of characters that differ between an unmatched join

point and the original pointcut.

3.4 Pointcut Tester

The pointcut tester verifies the join point candidates

identified by the candidate identifier against a pointcut iden-

tified by the pointcut parser. In general, the pointcut tester,

developed based on an AspectJ unit testing framework [16],

can be used to verify pointcuts of an aspect class without

weaving the aspect code to the base program. Our pointcut

tester automatically feeds the unit testing framework with

input including the join point candidates generated by the

candidate identifier and the original pointcut identified by

the pointcut parser. Our pointcut tester verifies each join

point candidate against a pointcut (the original pointcut or

pointcut mutant). Based on the result, the matched and un-

matched join points are collected separately for the point-

cut. The matched and unmatched join points are fed to the

mutant classifier for classifying pointcut mutants.

3.5 Mutant Classifier

The functionality of the mutant classifier is to identify

the type of a pointcut mutant in comparison with the orig-

inal pointcut. Pointcut strengthening is to increase the

strength of a pointcut by reducing the set of join points that

it matches. Here the resulting pointcut mutant can be called

as a strong pointcut mutant. Pointcut weakening is to de-

crease the strength of a pointcut by expanding the set of join

points that it matches. Here the resulting pointcut can be

called as a weak pointcut mutant. We also introduce another

type of pointcut mutant called neutral pointcut mutants,

whose matched join points are the same as those matched

by the original pointcut. Neutral pointcut mutants are es-

pecially useful for refactoring pointcuts, whereas strong or

weak pointcut mutants are especially useful for detecting

and correcting pointcuts with incorrect strengths.

Note that a pointcut mutant may match only a subset of

the join points matched by the original pointcut and match

additional join points not matched by the original pointcut.

This type of pointcut mutant is still considered by the mu-

tant classifier as strong pointcut mutants, because this type

of pointcut mutants does not cover all the join points of the



original one, i.e., fewer join points from the perspective of

the original pointcut. For simplicity, we do not create a new

type specifically to characterize this type of pointcut mu-

tants but treat them as strong pointcut mutants, without af-

fecting the overall effectiveness of pointcut testing.

The original pointcut, its join points, the pointcut mu-

tants, and their join points are fed as input to the mutant

classifier. Let Set O be the set of join points for the original

pointcut and Set M be the set of join points for a pointcut

mutant. The two sets are then compared as follows.

• If Set O is a subset of Set M , which means that the

pointcut mutant matches more join points than the

original pointcut, the mutant is termed as weak point-

cut mutant.

• If set O and set M are equal, which means the origi-

nal pointcut and the mutant match the same set of join

points, the pointcut mutant is termed as neutral mutant.

• Otherwise, the mutant is termed as strong pointcut mu-

tant.

Note that more than one pointcut mutant may share the

same set of matched join points. In such cases, developers

can configure the framework to select the pointcut mutant

with the longest expression (in string length) as the repre-

sentative pointcut mutant for that set of matched join points.

Pointcuts with the same set of join points indicate that all

these pointcuts are semantically equivalent. The longest ex-

pression often indicates that this expression is more specific

in terms of the number of characters used in the expression.

More characters of a pointcut indicate that the pointcut is

designed to be closer (in naming) to the join points in the

base program. Fewer characters indicate that the pointcut is

generalized and has higher probability of being affected by

fragile pointcut problems [14]. Hence we select the longest

pointcut mutant to avoid potential fragile pointcut problems.

Note that when we calculate the length of each expression

for finding out the longest expression, we exclude charac-

ters of wildcards “*” (as well as “..” inside the argument

list, being used as wildcards by AspectJ for arguments), be-

cause including these wildcards could produce longer ex-

pressions, which however are more general.

Weak or strong pointcut mutants can help developers dis-

cover a pointcut with incorrect strength and fix the pointcut

by replacing it with a weak or strong pointcut mutant with

the correct strength. We call this type of activities as point-

cut correction.

Neutral pointcut mutants can help developers discover

refactoring opportunities for a pointcut and refactor the

pointcut by replacing it with a neutral pointcut mutant that

better reflects the developers’ expectation in matching fu-

ture new added join points. We call this type of activities as

pointcut refactoring.

3.6 Distance Measurer

Because the set of pointcut mutants in each of the three

types (strong, weak, and neutral ones) may be large, it is

often infeasible for developers to inspect each of them. In-

stead of inspecting all mutants, developers would be often

more interested in inspecting pointcut mutants that resem-

ble closely the original pointcut. To address this issue, the

distance measurer helps developers identify pointcut mu-

tants that resemble closely the original pointcut and focus

their inspection efforts on these pointcut mutants.

In particular, the original pointcut and the pointcut mu-

tants are fed as input to the distance measurer. For each

pointcut mutant, the distance measurer uses a syntactic sim-

ilarity measure to compute pointcut distance, which is the

lexical distance between the strings of the original point-

cut and the pointcut mutant. The pointcut distance reflects

the deviation extent of the pointcut mutant from the origi-

nal pointcut. In particular, the pointcut distance is defined

as the number of characters that need to be inserted, deleted,

or modified in the original pointcut to transform it into the

mutant. The mutants under each category are then ranked

based on their calculated pointcut distances: the smaller

pointcut distance a pointcut mutant has, the higher rank

the pointcut mutant is given. The classification of the mu-

tants helps developers identify similar pointcuts with differ-

ent strengths and the ranking of the mutants helps identify

mutants of the pointcuts that resemble closely the original

pointcut.

It is possible that the join points of the original pointcut

and the pointcut mutant could be similar in functionality

(reflected by their matched join points) but still have quite

different expressions. In such a case, the lexical distance

would be large, making such potentially useful pointcut mu-

tants ranked later in the ranked list. To address this issue,

we also intentionally promote the ranking of those pointcut

mutants with small differences of their matched join points

and the join points matched by the original pointcut.

In particular, we define a semantic downsize measure,

which indicates the number of join points matched by the

original pointcut but not matched by the pointcut mutant.

We also define semantic upsize measure, which indicates

the number of join points matched by the pointcut mutant

but not matched by the original pointcut. Then we define

the measure of join point distance, which is the sum of se-

mantic downsize measure and semantic upsize measure for

the pointcut mutant in contrast to the original pointcut. If

the join point distance for a pointcut mutant is smaller, we

adjust its original ranking (based on the syntactic similarity

measure) to be higher.

In addition, to facilitate developer inspection, we display

the differences of join points matched by pointcut mutants

and the original pointcut along with pointcut mutants in the



result. Developers could inspect the ranked list of pointcut

mutants together with the join point differences and select

a correct or better pointcut that fits the developers’ intended

purpose.

4 Empirical Study

This section presents an empirical study of our frame-

work. We obtained the empirical results by applying the im-

plementation of our framework on selected pointcuts from

the aspects Bean, NullCheck, Tetris, and Cona-sim

in AspectJ benchmark suites (available at http://www.

sable.mcgill.ca/benchmarks/).

Table 1 shows the empirical results obtained by apply-

ing our framework on the subjects. Columns 1 and 2 show

the AspectJ benchmarks and their individual pointcuts on

which our implementation has been applied, respectively.

Column 1 additionally shows the lines of code for these

benchmarks after their names. Column 3 shows the number

of join point candidates identified by our join point candi-

date identifier. Column 4 shows the number of join points

matched by each pointcut. Column 5 shows the number of

pointcut mutants generated for each pointcut. Columns 6-

8 show the number of strong, weak, and neutral mutants

identified from the pointcut mutants, respectively. Note that

in our results, from a set of pointcut mutants that share the

same set of matched join points, we configure our frame-

work to select the pointcut mutant with the longest expres-

sion (in string length) as the representative pointcut mutant

(as described in Section 3.5). Column 9 shows the total

number of pointcut mutants for developers to inspect. This

count indicates the number of meaningful pointcut mutants

identified from the large number of pointcut mutants ini-

tially generated (Column 5). Basically, Columns 5 and 9

show the initial number of generated pointcut mutants and

the number of pointcut mutants after our effective reduction

technique, which selects one representative pointcut mu-

tant from the set of pointcut mutants with the same set of

matched join points (Section 3.5). We observe that our re-

duction technique is effective in reducing a large number of

mutants to only a few representative mutants for inspection.

As is described in Section 3.6, two measures of pointcut

distance and join point distance have been provided to help

developers identify pointcut mutants that resemble closely

the original pointcut. Column 10 shows the average of all

pointcut distances. Column 11 shows the average of all join

point distances.

Table 2 shows the sample result for the Bean AspectJ

benchmark. Row 1 shows the original pointcut and its

matched join points. Columns 1 and 2 show the types of

pointcut mutants as well as the pointcut mutants. Column

3 shows the differences in the set of join points matched by

the pointcut mutant and the set of join points matched by

the original pointcut. Columns 4 and 5 show the calculated

pointcut and join point distances, respectively.

To illustrate the details in Table 2, let us con-

sider a strong pointcut mutant call(public void

Point.setY(..)). The pointcut mutant matches only one

join point, call(public void Point.setY(int)) and

therefore does not match two join points matched by the

original pointcut. The calculated pointcut distance of 3 indi-

cates that the lexical distance between the original pointcut

and the pointcut mutant is three characters, i.e., the origi-

nal pointcut requires transformation, insertion, or deletion

of three characters to change itself into the pointcut mutant.

The original pointcut matches three join points. The calcu-

lated join point distance of two indicates that the matched

join points of the mutant differs from the matched join point

of the original pointcut by two join points.

From Table 2, we observe that pointcut mutants gener-

ated by our framework are close to the original pointcut.

These mutants can be inspected for pointcut correctness or

used to verify if a test suite for the woven code kills these

mutants when they are used in place of the original pointcut.

In summary, from Table 1, we observe that the number

of pointcut mutants generated for each pointcut is large. It is

tedious to manually generate such a large number of point-

cut mutants, identify join points for each pointcut mutant,

compare its strength with the strength of the original point-

cut, and choose an alternative one when the original point-

cut does not serve the intended purpose. Our framework

has been shown useful here. The preceding steps including

identifying the strength of a pointcut and generating effec-

tive pointcut mutants have been completely automated in

our framework, reducing the manual effort of developers.

We observe that our framework generates meaningful point-

cut mutants. Our carefully designed mechanisms in mutant

generators allow meaningful and useful pointcut mutants to

be generated.

5 Discussion

Analysis cost. Our framework basically generates mu-

tants by lexical variation of a pointcut, its matched join

points, and its unmatched join point candidates, thereby

reducing or increasing the number of join points that the

pointcut matches. Hence the analysis cost of the framework

is dependent on the complexity (e.g., string length) of the

original pointcut and the size of the join point candidates

(which is proportional to the size of the program). More

join points for a pointcut indicate that there will be an in-

crease in the analysis cost.

Pointcut-fault detection. Although our framework is

originated from mutation testing, our framework can be

used for fault detection. From our empirical results, devel-

opers can inspect the pointcut mutants and their join points



Table 1. AspectJ benchmarks and results
AspectJ pointcut #join #join #pointcut #weak #neutral #strong #final #avg #avg

bench point points mutants pointcut pointcut pointcut pointcuts pointcut join point

cands mutants mutants mutants mutants distance distance

Bean (239) call(public void Point.set*(*)) 5 3 862 6 4 4 14 7 2

Tetris call(String Logic. 32 1 1454 9 6 0 15 4 4

(1475) Blocks.typeToString(int))

get(static int Logic. 34 1 782 3 2 0 5 6 1

Blocks.NUMBEROFTYPES)

call(* Logic.Blocks.deleteLine(..)) 32 1 2246 5 2 0 7 10 3

call(* TetrisImages.loadImage()) 32 1 2078 5 11 0 16 9 4

call(* AspectTetris.restartGame()) 32 1 2494 5 2 0 7 7 4

NullCheck call(Object+ *.*(..)) 50 1 446 3 2 0 5 18 1

(2926)

Cona-sim execution(public * Entity.getEntity*(..)) 72 1 1568 2 1 0 3 8 1

(2651)

Table 2. Sample results for the Bean benchmark
Pointcut : call(public void Point.set*(*))

Join points : call(public void Point.setX(int)), call(public void Point.setY(int)), call(public void Point.setRectangular(int,int))

Mutant type Pointcut mutant Join point differences Pointcut Join point

distance distance

Strong call(public void Point.set*(int)) - call(public void Point.setRectangular(int,int)) 3 1

call(public void Point.setY(..)) - call(public void Point.setX(int)) 3 2

-call(public void Point.setRectangular(int,int))

call(public void Point.setX(..)) - call(public void Point.setY(int)) 3 2

-call(public void Point.setRectangular(int,int))

call(public void Point.setRectangular(..)) - call(public void Point.setY(int)) 13 2

- call(public void Point.setX(int))

Neutral call(public void Point.set*(..,int)) None 6 0

Neutral call(public void Point.set*(int,..)) None 6 0

Weak call(public void Point*.*set*(int,..)) + call(public void Point.offset(int,int)) 10 1

to choose a pointcut mutant with the intended strength to

replace and fix a faulty pointcut.

Pointcut evolution. During the evolution of a base pro-

gram, new code may be added to the program, introduc-

ing potential join points that an existing pointcut can match.

Although sometimes an existing pointcut correctly matches

a right set of join points in a base program’s current ver-

sion, the pointcut may be too specific to match intended join

points added later in a future program version or too gen-

eral to leave out unintended join points added later. In such

cases, developers can use the identified equivalent pointcut

mutants for use in evolved programs. Note that in the pres-

ence of evolution of pointcuts or base programs, our current

framework needs to be reapplied on the new version even

when the framework had been applied on the old version. In

future work, we plan to improve our framework to perform

incremental analysis in the presence of software evolution.

6 Related Work

Lopes and Ngo [11] presented a unit testing framework

for testing aspectual behavior. The framework tests the as-

pect behavioral implemented in advice. Xie and Zhao [15]

presented Aspectra, an automatic test generation tool to test

aspectual behavior by leveraging existing Java test gener-

ation tools. Our new framework can be seen as a testing

approach for pointcuts, complementing these existing ap-

proaches for testing aspectual behavior.

Our previous work [1] presented an automated frame-

work that tests pointcuts in AspectJ programs with the help

of AJTE [16]. This framework identifies join points that

can be matched by a pointcut expression and a set of bound-

ary join points, which are join points that are not matched

by a pointcut but resemble closely the matched join points.

This framework does not generate variations of a pointcut,

whereas our new framework helps generate mutants that

resemble closely the original pointcut. These two frame-

works are complementary in helping assure the correctness

of pointcuts.

Baekken and Alexander [3] developed a candidate fault

model for pointcuts. The model provides a set of mutation

operators to find incorrect strengths in pointcut patterns and

thereby evaluate the effectiveness of a test suite. Fabiano et

al. [6] propose mutation operators based on generalization

of faults for AO programs and cost analysis based on eval-

uation of the mutation operators on real-world applications.

The idea behind the mutation operators has been leveraged

by our framework in generating pointcut mutants.

Lemos et al. [10] proposed a fault classification system to

help developers identify unintended join points and the in-



tended join points that were left out due to incorrect strength

in pointcuts. Listing the neglected join points or unintended

join points only informs developers the presence of faults.

Correcting the faults would be tedious since the develop-

ers have to manually write a new pointcut. This issue in

turn leads back to the problem of fragile pointcut problems

where developers are not confident about the strength of a

written pointcut. Our framework helps identify the strength

of pointcuts as well as generating pointcut mutants with dif-

ferent strengths.

Kouhei et al. [13] proposed an approach of test-based

pointcuts. They use automated unit test cases to identify

execution points in a program and validate them against the

program. Although this approach does not solve the frag-

ile pointcut problem, it can be seen as an effective pointcut

design approach. Our new framework complements their

approach by generating effective pointcut mutants for mu-

tation testing of pointcuts.

Ye and Volder [17] developed a tool for pointcut evalua-

tion in identifying nearly matched join points for a pointcut

as well as the reasons why a join point does not match a

pointcut. Our framework complements their tool in provid-

ing mutation testing support for pointcuts.

7 Conclusion

We have developed an automated framework to generate

pointcut mutants for a pointcut as well as the strength differ-

ences of the pointcut and pointcut mutants. The framework

also classifies the generated pointcut mutants and ranks

them based on a similarity measure, reflecting how simi-

lar they are to the original pointcut. Developers can inspect

the ranked list of pointcut mutants along with their strength

differences for pointcut correctness or choose the mutants

for conducting mutation testing. The empirical study con-

ducted using our framework shows that the framework can

provide valuable assistance in generating effective mutants

that are close to the original pointcut and are of appropriate

strength.

In future work, we plan to conduct more case studies

on applying our framework on various existing pointcuts.

We plan to expand the mutant generator to generate point-

cut mutants with more complex patterns of wildcards. We

plan to investigate tool support for generating pointcut mu-

tants related to dynamic contexts such as cflow. We plan to

evaluate the effectiveness of the generated mutants by con-

ducting user case studies.

Acknowledgments

This work is supported in part by NSF grant CCF-

0725190.

References

[1] P. Anbalagan and T. Xie. APTE: Automated pointcut testing

for AspectJ programs. In Proc. Workshop on Testing Aspect-

Oriented Programs, pages 27–32, 2006.
[2] P. Anbalagan and T. Xie. Efficient mutant generation for

mutation testing of pointcuts in aspect-oriented programs. In

Proc. Workshop on Mutation Analysis, pages 51–56, 2006.
[3] J. S. Baekken and R. T. Alexander. A candidate fault model

for AspectJ pointcuts. In Proc. International Symposium on

Software Reliability Engineering, pages 169–178, 2006.
[4] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test

data selection: Help for the practicing programmer. IEEE

Computer, 11(4):34–41, April 1978.
[5] R. A. DeMillo and A. J. Offutt. Constraint-based automatic

test data generation. IEEE Trans. Softw. Eng., 17(9):900–

910, 1991.
[6] F. C. Ferrari, J. C. Maldonado, and A. Rashid. Mutation

testing for aspect-oriented programs. In Proc. International

Conference on Software Testing, Verification, and Valida-

tion, pages 52–61, 2008.
[7] R. Geist, A. J. Offutt, and F. Harris. Estimation and en-

hancement of real-time software reliability through mutation

analysis. IEEE Transactions on Computers, 41(5):55–558,

1992.
[8] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,

C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented

programming. In Proc. European Conference on Object-

Oriented Programming, pages 220–242. 1997.
[9] R. Laddad. AspectJ in Action. Manning, 2003.

[10] O. A. L. Lemos, F. C. Ferrari, P. C. Masiero, and C. V. Lopes.

Testing aspect-oriented programming pointcut descriptors.

In Proc. Workshop on Testing Aspect-Oriented Programs,

pages 33–38, 2006.
[11] C. V. Lopes and T. Ngo. Unit testing aspectual behavior.

In Proc. Workshop on Testing Aspect-Oriented Programs,

2005.
[12] J. Offutt and R. H. Untch. Mutation 2000: Uniting the or-

thogonal. In Mutation 2000: Mutation Testing in the Twen-

tieth and the Twenty First Centuries, pages 45–55, 2000.
[13] K. Sakurai and H. Masuhara. Test-based pointcuts for ro-

bust and fine-grained join point specification. In Proc. Inter-

national Conference on Aspect-Oriented Software Develop-

ment, pages 96–107, 2008.
[14] M. Störzer and J. Graf. Using pointcut delta analysis to sup-

port evolution of aspect-oriented software. In Proc. Inter-

national Conference on Software Maintenance, pages 653–

656, 2005.
[15] T. Xie and J. Zhao. A framework and tool supports for

generating test inputs of AspectJ programs. In Proc. Inter-

national Conference on Aspect-Oriented Software Develop-

ment, pages 190–201, 2006.
[16] Y. Yamazaki, K. Sakurai, S. Matsuura, H. Masuhara,

H. Hashiura, and S. Komiya. A unit testing framework

for aspects without weaving. In Proc. Workshop on Testing

Aspect-Oriented Programs, 2005.
[17] L. Ye and K. D. Volder. Tool support for understand-

ing and diagnosing pointcut expressions. In Proc. Inter-

national Conference on Aspect-Oriented Software Develop-

ment, pages 144–155, 2008.


