
SQLUnitGen: SQL Injection Testing Using Static and Dynamic Analysis

Yonghee Shin Laurie Williams Tao Xie
Department of Computer Science, North Carolina State University, Raleigh, NC 27695

yonghee.shin@ncsu.edu williams@csc.ncsu.edu xie@csc.ncsu.edu

Abstract

This paper proposes an approach to facilitate the

identification of actual input manipulation
vulnerabilities via automated testing based on static
analysis. We implemented a prototype of a SQL
injection vulnerability detection tool, SQLUnitGen,
which we compared to a static analysis tool, FindBugs.
The evaluation results show that our approach can be
used to locate precise vulnerable locations of source
code and help to identify false positives that are
caused by static analysis tools.

1. Introduction

More than half of all of the cyber security
vulnerabilities reported in 2002-6 were input
manipulation vulnerabilities, such as SQL injection,
cross site scripting (XSS), and buffer overflows.
Among these vulnerabilities, a SQL injection
vulnerability allows attackers to access or modify
critical information in a database. SQL injection
attacks exploit SQL queries that can be constructed
from user input in a way such that the user input can
change the intended function of a SQL command in an
application.

Traditional approaches to deal with SQL injection
attacks include fortifying applications using black or
white list input filters, using special APIs, detecting
SQL injection vulnerabilities by using static analysis
tools, or detecting SQL injection attacks at runtime.
Testing is required to ensure that the filters are
properly implemented. However, manual test case
generation takes time and requires developers to
understand ever-evolving attack patterns. Static
analysis tools can detect vulnerabilities at an early
development phase. However, these tools cannot
detect the presence or the effectiveness of input filters
implemented in the code. As a result, static analysis
tools may have a high false positive rate. Also,
runtime detection does not provide information that

can be used to fix the vulnerable code in the early
development phase.

Our research objective is to facilitate the
identification of actual input manipulation
vulnerabilities via automated testing based on static
analysis and dynamic analysis. We have implemented
a prototype tool, SQLUnitGen v0.5, that can be used to
identify SQL injection vulnerabilities.

2. Approach

Our approach uses static analysis to trace the flow
of user input values and to obtain concrete attack input
for testing purposes. Our approach uses an existing
automatic test case generation tool, JCrasher [1], with
slight modifications. The modified JCrasher tool is
used to obtain the initial test cases whose executions
reach the SQL query processing APIs. The modified
JCrasher is also used to create attack test cases with
test input modified from the initial test cases. The test
input is modified with pre-defined attack patterns.
Attack patterns are assigned to the method arguments
in the system under test that are used to construct a
SQL query through a chain of method calls.

Static analysis is performed by using AMNESIA
[2], a SQL query model builder, and extending the
query model to include input flow information. Test
case generation is performed by using JCrasher [1].
To help programmers easily identify vulnerable
locations in the program, our approach generates a
colored call graph indicating secure and vulnerable
methods. Figure 1 shows an example application.
Figure 2 shows an initial test case generated by
JCrasher for the application. Figure 3 shows an attack
test case generated by SQLUnitGen. The test case in
Figure 3 tests if the variable id in the example in
Figure 1 is properly validated or not.

Although our approach is useful in testing for
SQL injection vulnerabilities, the current
implementation has some limitations. First, false
negatives can happen when the predefined attack
patterns are not sufficient to detect all the possible

attacks. Second, false negatives can be generated
when the initial test cases generated by JCrasher do not
include all the possible paths to SQL APIs in the
application. Third, SQLUnitGen generates test cases
only when user input is passed as a method argument
after the user input is read from input methods to be
used for a SQL query. Fourth, AMNESIA does not
account for non-local variables (fields in a class).
Finally, the current implementation of SQLUnitGen
has scalability problem due to the inefficient
modification of AMNESIA and JCrasher.
public boolean isRegistered(String id,
 String password) {
 …
 String sqlQuery = “SELECT userinfo
 FROM users
 WHERE id = ‘“ + id + “’ AND
 password = ‘“ + password + “’”;
 Statement stmt = dbConn.createStatement();
 ResultSet rs = stmt.executeQuery(sqlQuery);
 …
}

Figure 1. An example of a SQL query
public void test0() throws Throwable {
 java.lang.String s4 = “normal";
 java.lang.String s5 = “normal";
 SampleApp s2 = new SampleApp();
 boolean result = s2.isRegistered(s4,
s5);
}

Figure 2. An initial test case
public void test0() throws Throwable {
 java.lang.String s4 = “1' OR '1'=’1";
 java.lang.String s5 = “normal";
 SampleApp s2 = new SampleApp();
 boolean result = s2.isRegistered(s4, s5);
}

Figure 3. An attack test case

3. Evaluation

To investigate the effectiveness of the proposed
approach, we performed preliminary case studies with
SQLUnitGen v0.5 on two small web applications: a
class project, Cabinetstore, and an open source project,
Bookstore, from http://www.gotocode.com. Because
of the limitations described in Section 2, we examined
only the login module of these applications after some
modification of the source code. We modified the
source code so that the string fields in a class are
passed as string type arguments. We also modified the
source code so that all the user input is passed as
method arguments. We made three versions of each
application so that different versions have different
levels of input filters: no input filters, partial input
filters, and complete input filters. Thus, we used a
total of six versions of the two applications.

For the evaluation, the results were compared with
the results of a static analysis tool, FindBugs [3].
FindBugs detects various bug patterns in Java
programs, including SQL injection vulnerabilities.

SQLUnitGen generated 483 attack test cases. The
evaluation results show that SQLUnitGen generated no
false positives and two false negatives. However, due
to the current limitations of SQLUnitGen, a higher rate
of false negatives may happen for other applications.
On the other hand, FindBugs generated ten false
positives with no false negatives. Table 1 shows the
results of comparison between FindBugs and
SQLUnitGen. More detailed information about
implementation and evaluation can be obtained from
our technical report [4] . Our future work will focus on
dealing with the limitations revealed in the initial
implementation and evaluation.

Table 1: Comparison with static analysis tool.

Reference

[1] C. Csallner and Y. Smaragdakis, "JCrasher: An

Automatic Robustness Tester for Java," Software -
- Practice & Experience, vol. 34, pp. 1025-1050,
September 2004.

[2] W. G. J. Halfond and A. Orso, "AMNESIA:
Analysis and Monitoring for NEutralizing SQL-
Injection Attacks," in In Proceedings of 20th ACM
International Conference on Automated Software
Engineering (ASE'05), Long Beach, California,
U.S.A., 2005, pp. 174 - 183.

[3] D. Hovemeyer and W. Pugh, "Finding Bugs is
Easy," SIGPLAN Notices, vol. 39, 2004.

[4] Y. Shin, L. Williams, and T. Xie, "SQLUnitGen:
Test Case Generation for SQL Injection
Detection," North Carolina State University,
Raleigh Technical report, NCSU CSC TR 2006-
21, 2006.

App. Tools VH VF FP FN
SQLUnitGen 1 1 0 (0%) 0 B 1

 FindBugs 1 1 0 (0%) 0
SQLUnitGen 1 1 0 (0%) 0 B 2

 FindBugs 1 1 0 (0%) 0
SQLUnitGen 0 0 0 (0%) 0 B 3

 FindBugs 0 1 1 (100%) 0
SQLUnitGen 5 3 0 (0%) 2 C 1

 FindBugs 5 5 0 (0%) 0
SQLUnitGen 1 1 0 (0%) 0 C 2

 FindBugs 1 5 4 (80%) 0
SQLUnitGen 0 0 0 (0%) 0 C 3

 FindBugs 0 5 5 (100%) 0
B n: Bookstore version n C n: Cabinet store version n
VH: Vulnerable hotspots VF: Vulnerabilities found
FP: False positives FN: False negatives

	1. Introduction
	2. Approach
	3. Evaluation
	Reference

