
Automated Test Generation for Access Control Policies

Evan Martin
Department of Computer Science
North Carolina State University

Raleigh, NC 27695
eemartin@ncsu.edu

Tao Xie
Department of Computer Science
North Carolina State University

Raleigh, NC 27695
xie@csc.ncsu.edu

Abstract

Access control policies are increasingly written in spec-
ification languages such as XACML. A dedicated software
component called a Policy Decision Point (PDP) receives
access requests, evaluates requests against specified poli-
cies, and returns responses to inform whether access should
be granted. To increase confidence in the correctness of
specified policies, policy developers can conduct policy
testing to probe the PDP with some typical test inputs (in
the form of requests) and check test outputs (in the form of
responses) against expected ones. Unfortunately, manual
test generation is tedious and manually generated tests are
often not sufficient to exercise various policy behaviors. In
this paper we present an efficient test generation approach
and its supporting tool called Targen. We evaluate the ap-
proach on policies collected from various sources in terms
of structural coverage and fault-detection capability. Our
results show that Targen can effectively generate tests that
outperforms the existing random test generation in terms of
structural coverage and fault-detection capability.

1. Introduction

Access control mechanisms control which principals
such as users and processes have access to which resources
in a system. To facilitate managing access control, policy
languages such as XACML have been increasingly used to
specify access control policies for a system. Assuring the
correctness of policy specifications is becoming an impor-
tant and yet challenging task. Software testing aims at effi-
ciently detecting errors in software through dynamic execu-
tion. Errors in policy specifications may also be discovered
by leveraging existing techniques for software testing and
applying them to policy testing. In policy testing, test inputs
are access requests and test outputs are access responses.
The execution of test inputs occurs as requests are evalu-
ated by a Policy Decision Point (PDP) against the access

control policies under test. Policy authors may then inspect
request-response pairs to determine if the policy specifica-
tion is correct. Access control policies are often tested with
manually defined access requests so that policy authors may
check the PDP’s responses against expected ones. Unfortu-
nately, current policy testing practice tends to be a manual,
ad hoc process. With such a process, it is questionable that
high confidence can be gained in the correctness of access
control policies. To satisfy the need for generating high-
coverage tests for complex real-world policies, in this paper
we present an automatic test generation approach based on
combinatorial coverage [1], implement the approach, and
compare it with a random generation technique in terms of
structural coverage and fault-detection capability.

2. Target-Driven Request Generation

To automatically generate high-coverage tests for access
control policies, we develop a target driven approach (called
Targen) that considers each rule in isolation and attempts
to satisfy the constraints required for that rule to be ap-
plied. The policy under test is modeled as a hierarchy or
tree structure. Each leaf in the tree represents a rule and
each path from the root to the leaf contains a series of con-
straints. In particular, each target may have some number
of attribute id-value pairs found in the subject, resource,
and action sections of the target. We collect these attribute
id-value pairs in three sets; one for each section of the tar-
get. Once a leaf is reached, we use these sets to form a
predicatep out of s + r + a independent clauses where
s, r, anda correspond to the number of id-value pairs in
the subject, resource, and action set, respectively. Each
id-value pair maps to a specific clause in the predicatep.
Furthermore, the clauseswithin sets areor’ed and each of
the predicates formed by the sets areand’ed. For exam-
ple, let the subject, resource, and action set for a particular
rule be denoted byS = {s1, s2, s3}, R = {r1, r2, r3}, and
A = {a1, a2, a3}. The predicate corresponding to this rule
is p = (s1 ∨ s2 ∨ s3) ∧ (r1 ∨ r2 ∨ r3) ∧ (a1 ∨ a2 ∨ a3). A



Table 1. Structural coverage and mutant-killing ratios achieved by tests generated using the random
and Targen techniques.

random targen
policy pol % rule % cond % mut kill % pol % rule % cond % mut kill %
simple-policy 100 50 - 37.04 100 100 - 44.44
demo-26 100 50 0 42.86 100 100 50 78.57
demo-5 100 100 75 73.68 100 100 75 78.95
demo-11 100 100 75 77.78 100 100 75 77.78
mod-fedora 100 50 50 13.33 100 100 100 56.67
codeA 100 50 - 25.45 100 100 - 36.36
default-2 100 100 75 16.92 100 100 100 50
conference 0 0 - 0 100 100 - 95.45
pluto 0 0 - 0 100 100 - 97.75
continue 100 17 - 10 100 100 - 43.10

average 80 51.7 55 29.71 100 100 80 65.91

request set is generated that satisfies all possible combina-
tions of truth values for each independent clause. Therefore,
a predicate withn independent clauses has2n possible as-
signments and so at most2n requests are generated for each
rule.

3. Evaluation

We evaluate the effectiveness of our new Targen ap-
proach by comparing it to an existing random test genera-
tion technique [4] in terms of policy structural coverage and
fault-detection capability. We use a policy coverage mea-
surement tool [4] to obtain a measure of policy structural
coverage and an automated mutation testing framework [3]
to obtain a measure of fault-detection capability.

We use 10 XACML policies collected from four differ-
ent sources1 [2, 5] in our evaluation. The results summa-
rized in Table 1 show that Targen exhibits better or equiva-
lent performance for each coverage metric across all poli-
cies, where pol%, rule%, cond%, and mut kill% denote
three structural coverage [4] (policy coverage, rule cover-
age, condition coverage) and mutant killing ratios [3], re-
spectively. Although some of the simpler policies demon-
strate the improvement, the benefits of Targen are most ap-
parent on the more complex policies such as conference,
pluto, and continue. The random technique performs worse
when the set of attribute values is large, because the prob-
ability of randomly generating requests that cover existing
rules is much less. In terms of fault-detection capability
we observe that Targen has an average mutant-killing ratio
of 65.9% whereas the random technique has only an av-
erage mutant-killing ratio of28.71%. The results indicate

1http://archon.cs.odu.edu/,
http://www.fedora.info

that Targen can be used to generate tests with higher fault-
detection capability than the random technique. Unfortu-
nately the mutant-killing ratios are still low even for the
Targen-generated requests. One possible explanation is that
the results are skewed because of a large number of equiv-
alent mutants. Our current policy structural coverage corre-
sponds to statement or branch coverage in program testing.
We expect that we can achieve higher fault-detection ca-
pability when adopting stronger policy structural coverage
criteria such as one that corresponds to path coverage in
program testing. We plan to explore this direction in future
work.

References

[1] P. Ammann, J. Offutt, and H. Huang. Coverage criteria for
logical expressions. InProc. 14th International Symposium
on Software Reliability Engineering, pages 99–107, 2003.

[2] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C.
Tschantz. Verification and change-impact analysis of access-
control policies. InProc. 27th International Conference on
Software Engineering, pages 196–205, 2005.

[3] E. Martin and T. Xie. Automated mutation testing of ac-
cess control policies. Technical Report TR-2006-12, Depart-
ment of Computer Science, North Carolina State University,
Raleigh, North Carolina, 2006.

[4] E. Martin, T. Xie, and T. Yu. Defining and measuring policy
coverage in testing access control policies. InProc. 8th In-
ternational Conference on Information and Communications
Security, 2006.

[5] N. Zhang, M. Ryan, and D. P. Guelev. Synthesising veri-
fied access control systems in XACML. InProc. 2004 ACM
Workshop on Formal Methods in Security Engineering, pages
56–65, 2004.


