
Mining Interface Specifications for Generating Checkable Robustness Properties

Mithun Acharya, Tao Xie, Jun Xu

Department of Computer Science

North Carolina State University

Raleigh NC USA 27695

mpachary@ncsu.edu, {xie, junxu}@csc.ncsu.edu

Abstract

A software system interacts with its environment through

interfaces. Improper handling of exceptional returns from

system interfaces can cause robustness problems. Robust-

ness of software systems are governed by various tempo-

ral properties related to interfaces. Static verification has

been shown to be effective in checking these temporal prop-

erties. But manually specifying these properties is cum-

bersome and requires the knowledge of interface specifica-

tions, which are often either unavailable or undocumented.

In this paper, we propose a novel framework to automati-

cally infer system-specific interface specifications from pro-

gram source code. We use a model checker to generate

traces related to the interfaces. From these model check-

ing traces, we infer interface specification details such as

return value on success or failure. Based on these inferred

specifications, we translate generically specified interface

robustness rules to concrete robustness properties verifi-

able by static checking. Hence the generic rules can be

specified at an abstract level that needs no knowledge of

the source code, system, or interfaces. We implement our

framework for an existing static analyzer that employs push

down model checking and apply the analyzer to the well

known POSIX-API system interfaces. We found 28 robust-

ness violations in 10 open source packages using our frame-

work.

1 Introduction

As computers penetrate every aspect of our daily life,

robustness of software systems is becoming increasingly

critical for the dependable operation of computer systems.

The IEEE Standard Glossary of Software Engineering Ter-

minology (IEEE STD 610.12-1990) [1] defines robustness

as the “degree to which a system or a component can func-

tion correctly in the presence of invalid inputs or stressful

environment conditions.” Stressful environment conditions

may occur in forms such as high computation load, mem-

ory exhaustion, process related failures, network failures,

file system failures, and slow system response because of

the competition among applications for resources. These

problems, however rare, should be gracefully handled. Ro-

bustness violations often lead to system crashes, leakage of

sensitive information, and complete security compromises

when the stressful conditions or exceptional inputs are not

properly handled.

Stressful environment conditions often occur at inter-

faces where software systems interact with its environment.

It is well known that many robustness failures are due to in-

correct exception handling from system interfaces. The ex-

ceptional interface values create stressful environment and

they should be properly handled. Traditional software test-

ing focuses on correctness of functionality and is often in-

sufficient for assuring the absence of interface-level robust-

ness violations. Robustness testing has been especially con-

ducted to test the robustness of a system [12, 13, 15]. These

existing approaches consider the target applications or op-

erating systems as a black box, and send random or excep-

tional input values through their system input interfaces.

However, robustness testing approaches cannot easily

generate implicit return exceptions through system inter-

faces, which are an important type of sources for robust-

ness problems. To assure the absence of robustness prob-

lems related to system interfaces, we can specify robustness

properties for system interfaces and statically verify them

against a software system. But manually specifying a large

number of interface properties for static verification is cum-

bersome, and requires the knowledge of interface specifica-

tions, which are often unavailable or undocumented.

To address these issues, we propose a novel framework

to automatically infer the system specific details of inter-

face specifications from program source code. We use a

model checker to generate traces related to the interfaces.

From these model checking traces, we infer interface spec-

ification details such as return value on success or failure.

Based on these inferred specifications, which were origi-

nally manually specified, our previous work [2] translates

generically specified interface robustness rules to concrete

robustness properties verifiable by static checking. Hence

the generic rules can be specified at an abstract level that

needs no knowledge of the source code, system, or inter-

faces. We implement our framework for an existing static

analyzer that employs push down model checking and ap-

ply the analyzer to the well known POSIX-API system in-

terfaces.

This paper makes the following main contributions:

• We propose a framework for automatically inferring

the interface specifications directly from the program

source code and show how the inferred specifications

can be used in generating robustness properties for

static analysis.

• We implement the framework in an existing static an-

alyzer that employs push down model checking and

apply the analyzer to the well known POSIX-API sys-

tem interfaces. We analyzed 10 Redhat-9.0 packages

across 60 APIs. Our framework inferred specifications

for 22 of the 60 APIs and could detect 28 robustness

violations in the analyzed packages. These numbers

are expected to increase as we analyze more packages

that use these interfaces.

The rest of the paper is organized as follows. In Sec-

tion 2, we present a simple example to illustrate our frame-

work. Section 3 presents the background for the framework.

Section 4 explains the mechanism for generating interface

traces using model checking from which specifications can

be inferred. Evaluation results are presented in Section 5.

Section 6 reviews related work. Section 7 discusses issues

in the proposed approach and future work. Section 8 con-

cludes the paper.

2 Example

We present a simple example to illustrate our framework

using the opendir POSIX-API. The opendir POSIX-API

opens a directory stream corresponding to the directory

name and returns a pointer to the directory stream. On fail-

ure, the API returns a NULL pointer. The input argument for

opendir is of type const char*. If the program does not

have the permission to open the directory, opendir returns

NULL and the global variable errno is set to EACCES de-

noting a denied permission. Other error flags are EMFILE,

ENFILE, ENOENT, ENOMEM, and ENOTDIR depending on the

error type. These details are documented in the UNIX man-

ual. POSIX-API are widely used and well known. But most

interfaces are system or application specific and their spec-

ifications are often undocumented. For an application using

opendir interface to be robust, the opendir interface is

expected to adhere to certain robustness rules. These rules

can be formally specified and statically verified against a

software system. Manually specifying such rules for a large

E1

E5

E4

E3

E2

start

freed!NULL

NULL

!=cmp

==cmp

called
opendir

use

==NULL

!=NULL

FALSE

TRUE

FALSE

TRUE

use

free

free free

useE1: use before check

E2: NULL pointer deref

E3: NULL pointer free

E4: double free

E5: free pointer deref

check

…

p = opendir (“\cvs\root\”);

…

if (p == NULL){ // error path

…

if (errno == EACCES){

…

}

…

exit();

}

else {

…

}

…

(a) Example Code snippet for opendir
(b) Simplified concrete property opendir

interface

Figure 1. Example code and a concrete prop-

erty for opendir interface

number of interfaces is cumbersome (there are more than

300 POSIX-APIs and hence thousands of rules), and re-

quires the knowledge of interface specifications. Our frame-

work infers the interface details from the source code and

automates the generation of robustness properties.

Figure 1(a) shows an example code snippet using

opendir. For each opendir call in the program, we ex-

tract the return value checks (if (p == NULL)), and er-

ror flag checks (if (errno == EACCES)) associated

with the call from the program source code, and output them

as traces. For the trace generation, we adapt a compile-time

model checker with certain data flow extensions to correctly

associate these checks with the call to opendir. From the

check traces, we derive the majority member and infer spec-

ification details such as return values and error flags for the

opendir interface. For example, if comparison of the re-

turn value with NULL occurs most of the time, then we dis-

card other comparisons in the traces for the purpose of in-

ference. We use the gcc compiler to extract the interface

signature and deduce that the input parameter to opendir

is of type const char * and the return variable, p, is a

pointer type. The signature is used by our framework to

infer interface exception values. For example, if the return

value p is compared to 0, and if the return type is a pointer,

then the exception value is NULL and not integer 0. In our

inference algorithm, we use certain heuristics such as “fail-

ure checks are usually followed by a call to exit or similar

other abort routines” to identify the error paths in condi-

tional checks for a return value.

After the specification details are inferred from the

source code, users specify the robustness rules for APIs at

a high level using generic keywords such as check (return

value check), use (dereference the return pointer), and free

(deallocate memory). These keywords are free from inter-

face and source code details. Our framework instantiates

these generic rules into concrete properties verifiable by a

static analyzer. Figure 1(b) shows a highly simplified con-

crete property generated for the opendir interface. The

concrete property governs the correct usage of pointer re-

patternDB

specDB

propertyEngine

api status

check

result

use

called checked

error

start
api status

check

result

use

called checked

error

start

called checked

error

start
p=malloc()

p != null

!p

p == null

*p
p[]

p->x

called checked

error

start
p=malloc()

p != null

!p

p == null

*p
p[]

p->x

called checked

error

start
p=malloc()

p != null

!p

p == null

*p
p[]

p->x

called checked

error

start
p=malloc()

p != null

!p

p == null

*p
p[]

p->x

called checked

error

start
p=malloc()

p != null

!p

p == null

*p
p[]

p->x

called checked

error

start
p=malloc()

p != null

!p

p == null

*p
p[]

p->x

Generic Property

Generated

Concrete Properties

API specs

AST patterns

To Static Analyzer

Figure 2. Approach for generation and verifi-

cation of concrete properties

turn variables. Simplified details (shown in the box) are

shown only for one keyword, check, which is split into mul-

tiple edges and states using return value information from

the inferred specification database. The concrete properties

for error flags and input parameter checks can be similarly

generated for the opendir interface. These concrete prop-

erties can be used by a static analyzer for statically verifying

the robustness of software packages that use the opendir

interface.

3 Background

In our previous work [2], we proposed an approach

that effectively generates interface robustness properties for

static verification. The goal was to allow developers to spec-

ify robustness rules generically without the knowledge of

the system, language, and interface so that these rules can

be verified against the system under analysis. To abstract

away these details from developers, we make use of two

key observations about interfaces and their robustness rules.

The first observation is that related interfaces have similar

structural elements when specified at a certain abstract level.

The second observation is that most interface robustness vi-

olations are temporal orderings of certain actions that could

be performed on an interface or its elements.

The high-level overview of our approach is shown in Fig-

ure 2. Developers define generic rules at a high level over

interface elements and actions, without the details of inter-

faces and source code. The details of interfaces are stored

in a specification database (specDB) and the source-code

details of interface elements and actions are stored in a pat-

tern database (patternDB). The generic rules are translated

into concrete properties by a propertyEngine that queries

specDB for interface-level information and patternDB for

source-code level, programming-language specific informa-

tion. Using this approach, we found around 200 robust-

ness problems in 10 Redhat-9.0 packages. Specifying the

interface specification requires much human effort and in-

terface knowledge. In this paper, we present our framework

to automatically infer the specification database, which was

originally specified manually. We next formally define an

interface specification in Section 3.1. Section 3.2 describes

the specification database (especially for the POSIX-APIs),

which was manually specified in our previous approach [2]

and will be inferred by our new framework. We also briefly

describe the pattern database used by our approach. In Sec-

tion 3.3, we provide a simple example and illustration of a

generic rule and its corresponding concrete property.

3.1 Interface Characterization

A set of interfaces (such as functions to be invoked) im-

plemented for a specific purpose has similar structural de-

tails at a high level. We characterize an interface with its

structural elements (such as function parameters and re-

turns) and actions that can be performed on them (such as

checking a function’s return for failure). The characteriza-

tion allows us to systematically store the interface and lan-

guage patterns for these interfaces in a database. For a given

interface, the propertyEngine can query the database on

the keywords of elements or actions to get low-level details.

For any interface i ∈ I, where I is a related fam-

ily of interfaces, we define an interface specification as

spec(i) = {is(i), rs(i), ss(i),R,S,Z}, where is(i) is the

set of input parameters passed to the invocation of i, rs(i) is

the result set, the set of variables that store the return values

of interface execution and ss(i) is the status set, the set of

variables that store the failure status or type of failures of the

interface. Any variable v ∈ is(i)
⋃

rs(i)
⋃

ss(i) is called

the element of i. R is a mapping from rs(i) to Z , while

S is a mapping from ss(i) to Z , where Z holds the values

that members of rs(i) and ss(i) would assume on success

or failure of interface execution. For a related family of in-

terfaces, I, we define an action set as a set of actions that

can be performed on the interface itself or its elements.

For example, I could be POSIX-API interfaces and

i ∈ I could be malloc. Before a statement such as p =

malloc(x) is executed in a program, is(malloc) is {x},

rs(malloc) is ∅ and ss(malloc) is ∅. After the statement

execution, rs(malloc) is {p} and ss(malloc) is {p}. For

malloc, the return and the failure/success indicator are the

same. If the malloc call succeeds, p is a memory pointer

(say, mptr) and then (p, mptr) ∈ R. If it fails, p assumes

value NULL and (p, NULL) ∈ R. Because the result set and

status set are the same for malloc, we have S = R. The

set Z = {mptr, NULL} holds the success/failure indicators

for the malloc API. Some example actions that could be

performed on malloc interface elements are check (which

checks the return against NULL) and use (which derefer-

ences the return pointer). The interface specification does

not have any system or language specific details. We next

describe the specDB and the patternDB and show how

concrete interface robustness properties can be generated

from generic rules defined over elements and actions.

Table 1. Selected entries from the specDB for
POSIX-APIs (simplified for presentation)

return value
API parameter list

return

type on success on failure
errno

chmod const char * path , … int 0 -1 EPERM, …

open const char * pathname, … int fd -1 EEXIST, …

malloc size_t size void * pointer null pointer

fsetpos FILE * stream , … int 0 -1 EBADF, …

remove const char * pathname int 0 -1 EFAULT, …

3.2 Specification and Pattern Database

The Specification Database (specDB) defines the type of

all v ∈ spec(i), the mappings R and S, the set Z for all

i ∈ I, and the action set for I. The rows of the specDB

are interface names and the columns represent the specifica-

tion details of an interface. The set of column names forms

the abstraction that characterizes all the interfaces in that

family. As an example, the entry for setuid in the POSIX-

API specDB lists the type of its input parameters as int,

the return values to be 1 on success and -1 on failure, and

the error flag to be set as EPERM on failure. Table 1 shows

several typical interface specifications for POSIX-APIs in a

simplified form.

In our previous work [2], we inspected 280 POSIX-APIs

to arrive at a common abstraction to characterize all the in-

terfaces. We defined the types for the variables in the sets

of is(i), rs(i) and ss(i). We established the mappings R
and S and the set Z for each of the 280 interfaces. For an

interface i that sets error flags on failure, the global vari-

able errno ∈ ss(i). The corresponding error status re-

sides in Z . For example, if the API setuid fails, then

errno ∈ ss(setuid) is set to EPERM ∈ Z .

The Pattern Database (patternDB) contains language-

specific details of the elements for all i ∈ I and actions in

the action set of I. We use the Abstract Syntax Tree (AST)

notation for storing patterns. The patterns for the use action

depend on the data type of the return and the patterns for the

check action depend both on the data type of the return and

the success/failure indicator/type. The patternDB stores

patterns for all members of the action set for each data type,

success/failure indicators, etc. As an example, the check

action against the zero patterns for an integer variable p

would be (p==0), (p!=0), (p), (!p), and so on. The call

patterns for the malloc API would be i=malloc(...),

if(i=malloc(...))!=NULL, and so on. The content in

the patternDB is manually specified but the manual effort

is one time; the content of the patternDB can be reused

as long as the software packages to be checked are written

in the same programming langauge. In the current imple-

mentation of the framework, we specify the content in the

patternDB for the C language but patterns for other lan-

guages can also be similarly specified.

called checked

error

start
p=malloc()

p != null

!p

p == null

*p
p[]

p->x

call check

use

called checked

error

start

(a) check should always precede use

generic property

(b) Concrete UseBeforeCheck property

for the malloc API call

Figure 3. Generic UseBeforeCheck property
and the corresponding concrete property for
malloc API

3.3 Robustness Property Generation and
Verification

Generic rules for an interface i ∈ I are defined over the

members of the action set of I. A generic rule is some

ordering constraints on the members of the action set.

We use a Finite State Machine (FSM) to graphically rep-

resent a generic rule. The FSM has a start state and an error

state as well as other user-defined states. A sequence of

actions that violates the robustness property represented by

the FSM takes the FSM to the error state. The edges of

the FSM are members from the action set. For example,

for the malloc interface, the use action should always be

preceded by the check action. The FSM for such a rule is

shown in Figure 3(a). Generic robustness rules are currently

manually specified.

To generate the concrete property for malloc,

propertyEngine queries the specDB to obtain de-

tails about malloc and learns that the return type of

malloc is a pointer on success and NULL on failure. Based

on this information, the propertyEngine constructs

a query to the patternDB that comprises the keyword

check, the data type of the return variable, and values on

success and failure (being a pointer in this case). The

patternDB processes this query and returns patterns

for all the possible ways that a pointer variable can be

checked against NULL (or not NULL) (if(p==NULL),

if(p), if(!p), etc.). The propertyEngine expands the

generic keyword check to language and interface specific

patterns. The same procedure applies to the keyword

call (if(p=malloc(...))!=NULL, p=malloc(...),

etc.) and use (p->x, *p, p[x], etc.). The generated

concrete property is shown in Figure 3(b). These concrete

properties can be used by static analyzers [4–6,14] to detect

robustness violations in software packages.

4 Framework

This section presents our framework for inferring inter-

face specifications from program source code. For our pre-

liminary experiments and results [2], we manually gener-

patternDB

propertyEngine

called checked

error

start
p=malloc()

p != null

!p

p == null

*p
p[]

p->x

called checked

error

start
p=malloc()

p != null

!p

p == null

*p
p[]

p->x

called checked

error

start
p=malloc()

p != null

!p

p == null

*p
p[]

p->x

called checked

error

start
p=malloc()

p != null

!p

p == null

*p
p[]

p->x

Generic Trigger

Generated

Concrete Triggers

AST patterns

gcc

return value
API parameter list

return

type on success on failure
errno

chmod const char * path , … int 0 -1 EPERM, …

open const char * pathname, … int fd -1 EEXIST, …

malloc size_t size void * pointer null pointer

fsetpos FILE * stream , … int 0 -1 EBADF, …

remove const char * pathname int 0 -1 EFAULT, …

program

Model Checker

+

Inference

specDB

call
check

errFlag

called

error

start checked called

error

start
p=malloc()

p != *

!p

p == *

errno==*

checked

I

II

I : Trace Generation

II : Inference

Figure 4. Framework for Inferring Interface Specifications

ated the specification database for more than 280 POSIX-

APIs. Table 1 shows several typical interface specifications

for POSIX-APIs in a simplified form. Informally stated, the

specDB characterizes the input, output, and error specifica-

tions for all the POSIX-APIs. The entries in the database

show the input parameters for API calls, return value types,

status on success/failure, and the different error flags set on

failures. We built the specDB database for 280 POSIX-

APIs manually by inspecting the UNIX manual pages. The

database can be used by our framework as well as other re-

search projects.

Databases similar to that for POSIX-APIs can be built

for different families of interfaces. Although it is a one time

effort, it is a tedious process. POSIX-APIs are widely used

and well known. Their specifications can be found in the

UNIX manual pages. But most interfaces are system or ap-

plication specific and their specifications are often undocu-

mented. Interfaces have different return values on success

and failure, error flag values, proper checking routines, and

correct usage rules. Table 2, for instance, classifies the 280

POSIX-APIs into 11 classes based on their return values.

For example, closedir belongs to the class 0 : −1, which

means it returns 0 on success and −1 on failure. malloc

belongs to the class p : np, which means it returns a pointer

(p) on success and a NULL pointer (np) on failure. By manu-

ally inspecting source code, we cannot easily infer these in-

terface details. In this section, we describe our framework

to derive these specifications automatically from the pro-

gram source code by using inference techniques on model

checking traces.

The high-level overview of our framework is shown in

Figure 4. There are two main components in our framework

as shown in the figure. Section 4.1 describes the generation

of traces using push-down model checking. Section 4.2 de-

Table 2. API classification based on return
values

No. API class Sub-classes Examples

0:-1 closedir

x, 0:-1 mblen

I 0:-1

fd, flag, fd_owner, signal, 0:-1 fcntl

-1, 1, 0:-1 sysconf II 0, 1, -1:-1

1, 0:-1 readdir

0:EOF fflush

x, 0:EOF scanf

III 0:EOF

0:EOF, undefined fclose

0:x ttyname_r

x, 0:0 strftime

x, 0:: isupper

0:0 sem_wait

0:any_number setvbuf

0, non_zero : 0, non_zero setjmp

second, 0:: alarm

IV 0:x

x, p, 0:-x, 0 strtod

V 1,0:: 1, 0:: isatty

VI np, -1, 0, x:np, -1, 0, x np, -1, 0, x:np, -1, 0, x wctomb

p:np malloc

p, np:p, np strtok

VII p:np

p, np:np realloc

x:-1 ftell

::-1 feof

no_return:-1 execve

VIII x:-1

x, -1:-1 pathconf

IX x:EOF x:EOF putchar

X x, EOF:np x, EOF:np getchar

XI x:negative x:negative printf

scribes how the specification database can be inferred from

the generated traces.

4.1 Trace Generation

In this section, we describe how model checking can be

used for generating traces. The key idea is to force the

model checker to output interface action traces along each

execution sequence in the program. Trigger automata (de-

scribed in Section 4.1.2 and 4.1.3) are used for this purpose

and can be generically specified by the users. The program

statements in these traces contain interface actions that are

necessary for specDB inference.

4.1.1 Generation of Traces with Model Checking

Push-down model checking [11] has been used for verifying

programs against a certain class of temporal properties [6].

The temporal properties are specified as a Finite State Ma-

chine (FSM) with start and error states. The edges of the

FSM are program statements. The FSM captures all se-

quences of program statements that take it from the start

state to one of the error states. In other words, sequences

of program statements that cause property violations take

the FSM from the start state to one of the error states. This

FSM is composed with the Push Down Automata (PDA)

constructed for the C program from its Control Flow Graph

(CFG) to form a new PDA. The new PDA is model checked

to see if there are any paths in the program that take the new

PDA to an error configuration.

The model checking procedure systematically explores

different execution sequences in the program to verify the

property specified by the FSM. Since the PDA transition

happens on a program statement, the push-down model

checking procedure encounters different program state-

ments during this exploration. The property FSM deter-

mines what execution sequences and corresponding pro-

gram statements need to be reported by the model check-

ing procedure. Hence by manipulating the property FSM,

and instrumenting the model checker, we force the model

checking procedure to selectively and conservatively output

different program traces related to interface actions. In the

next section, we show how trigger automata can be used

to force the push-down model checking to output interface

action traces.

4.1.2 Specification of Generic Triggers

Interface actions are often temporally ordered. For exam-

ple, after interface call, check should precede use. Viola-

tions of these temporal orderings lead to robustness prob-

lems. When generic rules are converted to concrete proper-

ties, the patterns for these interface actions can be queried

from the patternDB. The FSM representing the concrete

property has details about the return exceptions, error flags,

called

error

start
p=malloc()

p != *

!p

p == *

errno==*

call check

errFlag

called

error

start checked

(a) Generic Trigger Automata– Causes the model

checker to output check and errFlag traces

(b) Concrete Trigger Automata for malloc – Causes the model

Checker to output check and errFlag traces for malloc API

checked

Figure 5. Trigger Automata - Forces the
model checker to ouput interface action

traces along each execution path

and so on. The propertyEngine queries the specDB to

gather these details. The goal of our framework is to infer

the specDB directly from the program source code.

Formally, trigger automata are Finite State Machines in

which the transition to the final state happens on an interface

action. Unlike the FSMs representing generic properties,

these automata do not define any robustness rules. Instead,

the trigger FSM cause the push-down model checking pro-

cedure to output interface action traces. For example, Fig-

ure 5(a) defines a generic trigger automata used for forcing

the model checker to output the check and errF lag (errno

compared with error flags) traces for the given API.

4.1.3 Generation of Concrete Triggers

Figure 5(b) shows the corresponding concrete trigger for

the malloc interface automatically generated for trigger

automata shown in Figure 5(a), which can be specified

by users generically. The propertyEngine queries the

patternDB to convert a given generic trigger to a con-

crete trigger. However, unlike the translation of generic

rule to concrete property, this translation does not use the

specDB to get the interface details such as exceptional val-

ues and error flags. Instead, these details are replaced by

wild cards. For example, in Figure 5(b), any comparison of

the return value of the malloc API takes the automata to its

final state. These concrete triggers force the model checking

procedure to output interface actions along each execution

sequence in the program. For example, the concrete trig-

ger in Figure 5(b) forces the model checker to output check

and errF lag traces for the malloc API. We illustrate how

check traces are generated using the concrete trigger shown

in Figure 5(b). Any execution sequence having a call to the

malloc interface followed by a check on malloc return

value causes the concrete trigger automata to transit to the

final state. The model checker outputs program statements

for each such execution sequence. check traces can be gen-

erated from these execution sequences as described in the

next section. The generation of errF lag traces is similar.

4.2 Inference of Specification Database
from Traces

The push-down model checking process generates se-

quences of program statements that take the concrete trig-

ger automata from the start state to the final state. For

inferring interface specifications, we are interested in the

last statement that caused the transition to the final state

in each sequence of program statements generated by the

model checking procedure. The program statement that

causes the FSM to transit to the final state is some action

performed on the interface. The set of last program state-

ments of each execution sequence constitutes the traces gen-

erated by the model checker. An inference algorithm is

used on these traces to infer the specification details of a

given interface. For example, while generating the check

trace for the malloc API, the execution sequences that take

the trigger automata from the initial state to the final state

are those in which the malloc interface is invoked and

its return value is checked. Each program statement that

checks the return value of the malloc API (for example,

if(p=malloc()==NULL)) constitutes the check trace for

malloc. Our inference algorithm runs on these traces and

has the following steps:

• For each conditional construct in the trace that checks

the return value, we determine the success path and the

failure path. For example, after p = malloc(...),

the TRUE branch of the conditional check, if (p ==

NULL), is the failure path. Failure checks are usually

followed by a call to exit or similar other abort rou-

tines.

• When we cannot determine the success path and the

failure path using the preceding abort routine heuristic,

we use other heuristics to distinguish return values on

success and failures. One heuristic is that failure-value

checks occur more often than success-value checks.

For example, setuid returns 0 on success and −1
on failure. Then likely checks in a program would be

either if(setuid(0)==-1) or if(setuid(0)!=0)

instead of if(setuid(0)==0). Another heuristic is

that failure values are mostly negative numbers (or

NULL) while success values are mostly non-negative

numbers.

• We use the gcc compiler to obtain the interface signa-

ture for a given interface. The interface signature com-

prises the input parameter types and the return type.

We use the return type to infer the values on interface

success and failure. For example, if the return value p

is compared to 0 on the failure path, and if the return

type is a pointer, then exception value is NULL and not

integer 0. In addition, we can deduce that the interface

should return a pointer on success.

• Each conditional construct in the trace is now replaced

by a triplet (x, y, z), where x ∈ {! =,=, <,>,<=
, >=}, y is a constant and z is either PASS or

FAIL. For example, the conditional construct if(

(p=malloc(...)) == NULL){...exit();} is

replaced by (=, NULL, FAIL)

• We pick the majority members in the triplets to deter-

mine the return values on success and failure. We use a

similar algorithm to infer error flags from the errF lag

traces. In particular, we observe what values are com-

pared with errno most of the times after the interface

is invoked. For the errF lag traces, we assume that

no system or function call exists between the interface

call and errno check with error flags.

Specification details are inferred from the traces gener-

ated for each interface used in the source code. The trace

size is reduced by missing checks for return values (robust-

ness violation) and sparse usage of interfaces in a package.

Aliasing and improper checking due to programmer errors

lead to noise in the trace. By analyzing more packages that

use these interfaces, we can address the problem of noise

and reduced trace size.

5 Evaluation

We have applied our framework for inferring the specDB

for the POSIX APIs. We used our framework to analyze

open source packages written in C mostly from the Redhat-

9.0 distribution. In our experiments, we used a Pentium IV

machine with 2.8GHz processor speed and 1GB RAM run-

ning on the Fedora Core 3 2.6.9-1.667smp kernel. In the

experiments, we selected 10 widely used open source pack-

ages from the Redhat-9.0 distribution; these 10 packages

include near 100K lines of C code. For push-down model

checking, we used a publicly available static analyzer called

MOPS [5, 6], which detects control-flow errors at compile

time. It constructs a Push Down Automaton (PDA) for a C

program from its Control Flow Graph (CFG). It then gen-

erates a new PDA by composing the property FSM to be

checked and the program PDA. The new PDA is model

checked [11] to see if there is any path in the program that

takes the new PDA to an error configuration. If there ex-

ists such a path in the program, the static checker reports

Table 3. Inference results for 7 APIs with largest trace size across 10 open source packages

 fopen fdopen getenv getpwnam malloc open opendir

ftp-0.17-17

ncompress-4.2.4-33

routed-0.17-14

rsh-0.17-14

sysklogd-1.3.31-3

sysstat-4.0.7-3

SysVinit-2.84-13

tftp-0.32-4

traceroute-1.4a12-9

zlib-1.1.3-3

Inferred

Trace Size 100 13 15 6 70 116 8

 : Specification inferred

 : Specification not inferred

the path as the error trace that violates the concrete robust-

ness property. We write extensions to the push down model

checking procedure enabling it to output interface action

traces determined by the triggers.

The generic triggers can also be data-flow sensitive, i.e.,

they are dependent on the value of the return variable along

different execution paths. Because the basic MOPS static

checker is data-flow insensitive, it assumes that a given vari-

able might take any value. Therefore, it assumes that both

branches of a conditional statement may be taken and that

a loop may execute anywhere between zero to infinite iter-

ations. Because exception handling procedures are usually

characterized by conditional constructs that check the return

value of an API call, we write extensions to the static anal-

ysis procedure to make it track the value of variables that

take the return status of an API call along different branches

of conditional constructs. For each possible execution se-

quence, our extensions associate a value to the variable that

is being tracked using pattern matching. The concrete trig-

gers (in the form of FSMs) generated by our framework are

given to the static analyzer enhanced with our trace genera-

tion capabilities and data flow extensions.

Effectiveness: A user only needs to specify a small set of

generic triggers at a high level. The propertyEngine au-

tomatically generates hundreds of concrete triggers for 280

POSIX APIs. For specDB inference, we selected 60 criti-

cal API calls that are mainly used for memory management,

file and string I/O, permission management, setting privi-

leges, and spawning processes. We then generated concrete

triggers for them using our specDB inference framework.

For these 60 APIs, more than 100 concrete triggers were

automatically generated by the propertyEngine and they

were used against 10 Redhat-9.0 open source packages for

specification inference.

Usefulness: Table 3 presents the inference results for 7

APIs across 10 packages. We selected 7 APIs that gave

largest total trace size with the 10 selected packages. The

Table 4. Analysis results for the rsh-0.17-14

package

API #errors Inferred

fgets 1

malloc 1

setuid 1

strchr 1

write 5

“Inferred” row in the table specifies if the property could be

inferred from the 10 packages. An API specification is said

to be inferred from the analysis of a set of packages, if it

can be inferred from at least one package in the set. The last

row in table shows the trace size for the 7 APIs across 10

analyzed packages. Of the 60 APIs, we could successfully

infer the specifications for 22 APIs. Hence just by analyzing

10 packages, we could infer more than a third of the criti-

cal APIs used in these packages. We expect the number of

APIs with inferred specifications to increase as we analyze

more packages. check traces are required to infer the return

values on success and failure for a given interface. Missing

interface return checks (robustness violation) decrease the

precision of the inference because of the reduction in the

trace size. Sparse usage of a given interface in a package

also leads to reduced inference precision.

False negatives and positives: Table 4 presents the to-

tal number of robustness violations that our tool found for

the rsh-0.17-14 package employing the approach shown

in Figure 2, along with inference results. Of the 60 ana-

lyzed APIs, 5 APIs gave violations with this package lead-

ing to 9 robustness bugs. Detailed results were reported

elsewhere [2]. After analyzing the 10 packages, specifica-

tions could be inferred only for 4 of the 5 APIs that caused

robustness problems. Hence 8 out of 9 robustness bugs in

rsh-0.17-14 can be detected with 4 API specifications

inferred from all the 10 packages. The false negative ratio

can be decreased by analyzing more packages and inferring

more specifications.

False positives can occur because of wrong inference.

For instance, if a programmer compares the return value of

an interface against a wrong value in the program most of

the times, incorrect return values can be inferred for that in-

terface. The resulting incorrect concrete properties lead to

false positives during static verification. In the 10 packages

we analyzed, we did not find any instances of false posi-

tives.

Efficiency: We restricted the model-checking-trace gen-

eration to be intra-procedural. We believe that such a de-

sign choice can still lead to high inference precision be-

cause most of the interface actions do not cut across pro-

cedural boundaries. Of the 60 analyzed APIs across 10

open source packages, a maximum 19 APIs gave violations

with the SysVinit-2.84-13 package when analyzed with

the approach [2] shown in Figure 2. It took less than

150 seconds to generate the traces across 19 APIs for the

SysVinit-2.84-13 package and infer their specifications

from the traces.

6 Related Work

Engler et al. [9] infer bugs by statically identifying in-

consistencies from commonly observed behavior. Being

motivated by their approach, we statically infer interface

specifications from program source code through inference.

In addition, our inferred specifications are combined with

generic robustness rules to produce concrete robustness

properties for static verification.

Various approaches have been developed to dynamically

infer properties for a program and statically or dynamically

check the program against the inferred properties. For ex-

ample, Ernst et al. [10] developed the Daikon tool to infer

operational abstractions from test executions. Nimmer and

Ernst [16] then feed these inferred operational abstractions

to a static verification tool in order to filter out inferred op-

erational abstractions that are not universally true. Xie and

Notkin [18] feed the inferred operational abstractions to a

test generation tool for finding their violations dynamically;

generated tests that cause the violations are selected for in-

spection. Yang et al. [19] infers temporal properties from

program executions and then feed the inferred properties to

a static verification tool in order to detect their violations for

finding bugs. All the preceding approaches use dynamic in-

ference techniques and then check inferred properties with

static or dynamic verification whereas our approach uses

static inference techniques and verify inferred properties

with static verification.

Static compiler analysis has been widely used to find

bugs and security holes in source code. The Meta-

Compilation (MC) Project uses programmer written com-

piler extensions to statically find bugs in operating sys-

tems [3, 8] and cache protocols. MOPS [6] is a control

flow sensitive static checker that checks for certain vulnera-

ble system-call sequences in the program. MOPS, however

is data flow insensitive. Tools like SLAM [4] and BLAST

[14] are static analysis tools based on theorem proving and

model checking boolean abstractions of the program with

iterative refinements. These tools do not hide the interface

and source code level details from the user. Our proposed

framework and its implementation could be easily adapted

to effectively generate interface robustness properties for

these tools.

Dwyer et al. [7] proposed a pattern-based approach to the

representation of property specifications for finite state ver-

ification that can accommodate properties typically speci-

fied with temporal logic or regular expressions. Developers

can use this representation to write generic interface robust-

ness rules. We address the problem of effectively translat-

ing these generic rules into concrete properties across many

system specific interfaces, hiding the interface and source

code level details from the user.

7 Discussion and Future Work

We restricted the model-checking trace generation to be

intra-procedural. We believe that such a design choice can

still lead to high inference precision as most of the inter-

face actions do not cut across procedural boundaries. Our

analysis does not handle aliasing. Aliasing, missing return

checks, buggy usage of interfaces can lead to noise in the

generated traces. We can address these shortcomings by

analyzing more packages thereby increasing the trace size

and inference precision. When we analyzed the 10 open

source packages using the manually specified specDB with

the approach [2] shown in Figure 2, we found 188 robust-

ness violations. Using the specification database inference

framework proposed in this paper on these 10 packages,

we could detect 28 out of 188 robustness violations auto-

matically. The number of bugs detected would increase as

the number of packages analyzed increases. We selected

the POSIX-APIs for our experiments as their specifications

were already documented and available. Using these spec-

ifications, we could measure the inference precision of our

framework. We plan to analyze more packages and inter-

faces in the future using our framework.

We inferred specifications from static traces generated

by push-down model checking. Dynamic traces generated

during execution time can also be used by our inference al-

gorithm. However, test cases are required for generating

dynamic traces and they might not exercise all the execu-

tion sequences in the source code.

We can extend the framework proposed in this paper to

infer properties from the source code. Many application-

specific correctness rules govern robust and secure opera-

tions of software systems; but these rules are often not doc-

umented by the developers. While robustness properties are

defined over interfaces, security properties involve multi-

ple system calls. An important class of security properties

dictate how a system call or a set of system calls can be

used in the program. For example, if the execl system

function is called to execute a user program with an imme-

diately preceding setuid(0), the user program might get

a root privilege to the system. Like robustness properties,

most security properties can be defined by certain temporal

orderings of system calls.

Intra-procedural analysis is sufficient to extract most ro-

bustness properties from source code. But many security

properties that dictate the ordering of system calls cut across

procedural boundaries. For a given set of system calls, we

could use the inter-procedural push down model checking

procedure of our static analyzer to generate program traces.

Security properties could be mined from these traces. We

plan to extend our framework to infer these new types of

properties. Program slicing techniques [17] can be used

to reduce the trace size. Program slicing causes the model

checker to output only the program statements that are rele-

vant to the set of interfaces or system calls under consider-

ation. The application of program slicing reduces the trace

size and increases the precision of property inference. Mul-

tiple packages can be analyzed to increase the trace size if

system calls under consideration are sparsely used in the

package being analyzed.

8 Conclusions

We have proposed a novel framework to automatically

infer system specific interface specifications from program

source code. We used a model checker to generate traces

related to the interfaces. We inferred interface specification

details such as return value on success or failure from these

model checking traces. These specifications were used for

translating generically specified interface robustness rules

to concrete robustness properties verifiable by static check-

ing. Hence the generic rules can be specified at an abstract

level that needs no knowledge of the source code, system

or interfaces. We implemented our framework for an exist-

ing static analyzer that employs push down model checking

and applied it to the well known POSIX-API system inter-

faces. We found 28 robustness violations in 10 open source

packages using our framework.

References

[1] IEEE Computer Society, IEEE Standard Glossary of Soft-

ware Engineering Terminology, IEEE STD 610.12-1990.

December 1990.
[2] M. Acharya, T. Sharma, J. Xu, and T. Xie. Effective gen-

eration of interface robustness properties for static analysis.

In Proc. IEEE/ACM International Conference on Automated

Software Engineering, 2006.

[3] K. Ashcraft and D. Engler. Using programmer-written com-

piler extensions to catch security holes. In Proc. IEEE Sym-

posium on Security and Privacy, pages 143–159, 2002.
[4] T. Ball and S. Rajamani. Automatically validating temporal

safety properties of interfaces. In Proc. Workshop on Model

Checking Software, pages 103–122, 2001.
[5] H. Chen, D. Dean, and D. Wagner. Model checking one

million lines of C code. In Proc. Network and Distributed

System Security Symposium, pages 171– 185, 2004.
[6] H. Chen and D. Wagner. MOPS: an infrastructure for ex-

amining security properties of software. In Proc. ACM Con-

ference on Computer and Communications Security, pages

235–244, 2002.
[7] M. Dwyer, G. Avrunin, and J. Corbett. Patterns in property

specifications for finite-state verification. In Proc. Interna-

tional Conference on Software Engineering, pages 411–420,

1999.
[8] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking sys-

tem rules using system-specific, programmer-written com-

piler extensions. In Proc. USENIX Symposium on Operating

Systems Design, pages 1–16, 2000.
[9] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.

Bugs as deviant behavior: A general approach to inferring

errors in systems code. In Proc. ACM Symposium on Oper-

ating Systems Principles, pages 57–72, 2001.
[10] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.

Dynamically discovering likely program invariants to sup-

port program evolution. IEEE Trans. Softw. Eng., 27(2):99–

123, 2001.
[11] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Ef-

ficient algorithms for model checking push down systems.

In Proc. International Conference on Computer Aided Veri-

fication, pages 232–247, 2000.
[12] J. Forrester and B. P. Miller. An empirical study of the ro-

bustness of Windows NT applications using random testing.

In Proc. USENIX Windows Systems Symposium, pages 69–

78, 2000.
[13] J. Haddox, G. Kapfhammer, C. Michael, and M. Schatz.

Testing commercial-off-the-shelf software components. In

Proc. International Conference and Exposition on Testing

Computer Software, 2001.
[14] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Soft-

ware verification with BLAST. In Proc. Workshop on Model

Checking Software, pages 235–239, 2003.
[15] P. Koopman and J. DeVale. The exception handling effec-

tiveness of POSIX operating systems. IEEE Trans. Softw.

Eng., 26(9):837–848, 2000.
[16] J. W. Nimmer and M. D. Ernst. Static verification of dy-

namically detected program invariants: Integrating Daikon

and ESC/Java. In Proc. Workshop on Runtime Verification,

2001.
[17] M. Weiser. Program slicing. In Proc. International Confer-

ence on Software Engineering, pages 439–449, 1981.
[18] T. Xie and D. Notkin. Tool-assisted unit test selection based

on operational violations. In Proc. IEEE International Con-

ference on Automated Software Engineering, pages 40–48,

2003.
[19] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das. Per-

racotta: Mining temporal API rules from imperfect traces.

In Proc. International Conference on Software Engineering,

pages 282–291, 2006.

