
Automatically Identifying Special and Common Unit Tests
for Object-Oriented Programs

Tao Xie
Department of Computer Science
North Carolina State University

Raleigh, NC 27695
xie@csc.ncsu.edu

David Notkin
Department of Computer Science & Engineering

University of Washington
Seattle, WA 98195

notkin@cs.washington.edu

Abstract

Developers often create common tests and special tests,
which exercise common behaviors and special behaviors
of the class under test, respectively. Although manually
created tests are valuable, developers often overlook some
special or even common tests. We have developed a new
approach for automatically identifying special and com-
mon unit tests for a class without requiring any specifica-
tion. Given a class, we automatically generate test inputs
and identify common and special tests among the gener-
ated tests. Developers can inspect these identified tests and
use them to augment existing tests. Our approach is based
on statistical algebraic abstractions, program properties (in
the form of algebraic specifications) dynamically inferred
based on a set of predefined abstraction templates. We use
statistical algebraic abstractions to characterize program
behaviors and identify special and common tests. Our ini-
tial experience has shown that a relatively small number of
common and special tests can be identified among a large
number of generated tests and these identified tests expose
common and special behaviors that deserve developers’ at-
tention.

1 Introduction

In unit testing of object-oriented programs, the class un-
der test might exhibit special or common program behav-
iors when it is exercised by different tests. For example,
intuitively a bounded-stack class exhibits common behav-
iors when the stack is neither empty nor full, but might ex-
hibit some special behaviors when the stack is empty or full.
Special and common tests can be created to exercise some
special and common behaviors of the class under test, re-
spectively. Although manually written unit tests for classes
play an important role in software development, they are

often insufficient to exercise some important common or
special behaviors of the class: developers often overlook
some special or boundary values and sometimes even fail
to include some common cases. The main complementary
approach is to use one of the automatic unit test generation
tools to generate a large number of tests to exercise a va-
riety of behaviors of the class. If the class’s specifications
exist, the execution of these tests can be automatically ver-
ified against the specifications. In addition, among gener-
ated tests, special or common tests can be identified based
on specifications and then these identified tests can be used
to augment existing manually created tests. For example,
UML use cases [23] can describe high level behaviors with
conditionals. Generated tests that exercise conditional be-
haviors can be identified as special tests. However, in prac-
tice, specifications often do not exist. Without specifica-
tions, it is impractical for developers to manually inspect
and verify the outputs of such a large number of test exe-
cutions. Consequently developers do not have an efficient
way to identify common or special tests.

In this paper, we present a new approach for automat-
ically identifying special and common unit tests from au-
tomatically generated tests without requiring specifications.
Developers can inspect these identified tests for verifying
their correctness and understanding program behavior. De-
velopers can also use these identified tests to augment ex-
isting tests.

Our new approach is based on dynamically inferred pro-
gram properties, calledstatistical algebraic abstractions.
An algebraic abstractionis an equation that abstracts the
program’s runtime behaviors (usually describing interac-
tions among method calls); the equation is syntactically
identical to an axiom in algebraic specifications [14]. An
instanceof an abstraction is a test that instantiates the left-
hand side (LHS) and right-hand side (RHS) of the abstrac-
tion. A satisfying instanceis an instance that satisfies the
equality relationship between LHS and RHS defined by the

abstraction. Aviolating instanceis an instance that violates
the equality relationship. Astatistical algebraic abstraction
is associated with the counts of its satisfying and violating
instances during test executions. We characterize acom-
mon propertywith a statistical algebraic abstraction whose
instances are mostly satisfying instances and characterize
a universal propertywith a statistical algebraic abstraction
whose instances are all satisfying instances. Aconditional
universal propertyis a universal property whose LHS is as-
sociated with a condition. Acommon testis a satisfying
instance of a common or universal property. Aspecial test
is a violating instance of a common property or a satisfy-
ing instance of a conditional universal property. For each
common property, the first encountered violating instance
is selected as a representative of the property’s special tests.
For each conditional universal property, the first encoun-
tered satisfying instance is selected as a representative of
the property’s special tests. For each common or universal
property, the first encountered satisfying instance is selected
as a representative of the property’s common tests.

In previous work, Ernst et al. developed Daikon [12]
to infer operational abstractions that describe the program
states at method entry and exit points of a class. In con-
trast, our approach infers algebraic abstractions, which re-
veal no internal details of the object representation. Henkel
and Diwan’s approach [17] also infers algebraic abstrac-
tions but their abstractions are universally true among all
test executions (so are the operational abstractions inferred
by Daikon [12]). Our approach infersstatistical abstrac-
tions, which are not necessarily universally true among all
test executions.

The rest of this paper is organized as follows. Section 2
presents a illustrating example. Section 3 illustrates ournew
approach for identifying special and common tests based on
statistical algebraic abstractions. Section 4 presents our ini-
tial experience on applying the approach. Section 5 reviews
related work, and Section 6 concludes.

2 Example

As an illustrating example, we use a data structure: a
LinkedList class, which is the implementation of linked
lists in the Java Collections Framework, being a part of
the standard Java libraries [25]. Figure 1 shows declara-
tions of LinkedList’s public methods. LinkedList has 25
public methods, 321 noncomment, non-blank lines of code,
and 708 lines of code including comments and blank lines.
Given the bytecode of LinkedList, our approach automati-
cally generates a large set of tests (6777 tests); among these
generated tests, our approach identifies 37 special tests and
96 common tests.

public class LinkedList {
public LinkedList() {...}
public void add(int index, Object element) {...}
public boolean add(Object o) {...}
public boolean addAll(int index, Collection c) {...}
public void addFirst(Object o) {...}
public void addLast(Object o) {...}
public void clear() {...}
public Object remove(int index) {...}
public boolean remove(Object o) {...}
public Object removeFirst() {...}
public Object removeLast() {...}
public Object set(int index, Object element) {...}
public Object get(int index) {...}
public ListIterator listIterator(intindex) {...}
public Object getFirst() {...}
...

}

Figure 1. A LinkedList implementation

Test
generation

Common or
universal
properties

Class
bytecode Method-call

composition
Statistical
inference

Abstraction
templates

Test
identification

Special
tests

Common
tests

Figure 2. An overview of special and common
test identification

3 Approach

Figure 2 shows the overview of our approach for identi-
fying special and common tests. The input to our approach
is the bytecode of the (Java) class under test. Our approach
relies on a set of algebraic-abstraction templates pre-defined
by us; these templates encode common forms of axioms in
algebraic specifications: equality relationships among two
neighboring method calls (two method calls invoked on the
same receiver object in a row) and single method calls.
The outputs of the approach are a set of common and spe-
cial tests and their corresponding properties. The approach
comprises four steps: test generation, method-call com-
position, statistical inference, and test identification.All
these four steps are automated. The step of test genera-
tion first generates different representative argument values
for each public method of the class (based on JCrasher [7],
a third-party test generation tool), and then dynamically
and iteratively invokes different method arguments on each

nonequivalent receiver-object state (our previous work [27]
develops techniques for determining object-state equiva-
lence). The step of method-call composition monitors and
collects method executions to compose two method callsm1

andm2 forming a method-call pair ifm1’s receiver-object
stateafter invokingm1 is equivalent tom2’s receiver-object
statebeforeinvokingm2. The composed method-call pair is
used in the step of statistical inference as if the two method
calls in the pair were invoked in a row on the same receiver.
The step of statistical inference uses method-call pairs and
single method calls to instantiate and check against the ab-
straction templates. This step produces a set of common
or universal properties. The step of test identification iden-
tifies common and special tests based on these properties.
In the next section, we first describe predefined abstraction
templates and then illustrate these four steps in details.

3.1 Abstraction Templates

Dwyer et al.’s work [10] and Ernst et al.’s work [12] de-
velop a set of patterns and grammars for temporal properties
and operational abstractions, respectively. Inspired by their
work, we have developed a set of abstraction templates for
algebraic abstractions. We have looked into a non-trivial set
of manually written algebraic specifications from the web
and found that a majority of manually written axioms are
usually equations whose right-hand side (RHS) contains a
constant or information related to the left-hand side (LHS).
Usually an axiom’s LHS or RHS involves method-call pairs
besides individual method calls.

We use f(S, args).state and f(S,

args).retval to represent the receiver state and
method return after invoking a methodf on a receiver
with argumentargs, where the receiver state of a method
call is treated as the first method argument (but a con-
structor does not have a receiver state). The.state

and.retval expressions denote the state of the receiver
(calledmethod-exit state) after the invocation and the result
of the invocation, respectively. We adopt the notation
following Henkel and Diwan [17].

Definition 1 A method-call pair〈 f(S, args1), g(S’,

args2)〉, represented as g(f(S, args1).state,

args2), is a pair of a method callf(S, args1) and
a method callg(S’, args2), where these two method
calls are invoked in a row on the same receiver, withf(S,

args1) being invoked first.

Figure 3 shows the algebraic-abstraction templates (s0
- s11) for the method-exit state of a method-call pair or
method call. We can derive the algebraic-abstraction tem-
plates (r1 - r11) for the return of a method-call pair or
method call by replacing the.state postfix of s1 - s11
with .retval (but s0’ and s5’ do not have correspond-
ing templates for the method return). Except for Template

s0: f(S, args1).state == S
s0’: f(S, args1).state != S
s1: f(S, args1).state == const
s2: g(f(S, args1).state, args2).state == args1.i
s3: g(f(S, args1).state, args2).state == args2.i
s4: g(f(S, args1).state, args2).state == f(S, args1).state
s5: g(f(S, args1).state, args2).state == const
s5’: g(f(S, args1).state, args2).state== S
s6: g(f(S, args1).state, args2).state == g(S, args2).state
s7: g(f(S, args1).state, args2).state == f(g(S, args2).state, args1).state
s8: g(f(S, args1).state, args2).state == f(S, args2).state
s9:g(f(S, args1).state, args2).state == g(S, args1).state
s10:g(f(S, args1).state, args2).state== g(f(S, args2).state, args1).state
s11:g(f(S, args1).state, args2).state== f(g(S, args1).state, args2).state

Figure 3. Algebraic-abstraction templates for
method-exit states

s0’, all templates are equations. For the sake of brevity,
we call these templates as equations without discriminating
Template s0’. Basically Template s0 showsf is a state-
preserving method, which does not modify the receiver’s
object state, and Template s0’ showsf is astate-modifying
method, which modifies the receiver’s object state. In each
of Templates r1, s0, s0’ and s1, the LHS of the equation is a
single method call. In each of the remaining templates, the
LHS of the equation is a method-call pair. The RHS of an
equation can be in the following forms:
• the method-entry state of the first method call in the

LHS, represented asS, such as in Templates s0, s0’
and s5’. For example, an instantiation of Template s0’
is removeFirst(S).state != S in the LinkedList
example.

• a constant, represented asconst, such as in Templates
r1, s1, r5, and s5. A constant can beException,
indicating throwing an uncaught exception. For ex-
ample, an instantiation of Template r1 isadd(S,
m0).retval == true.

• an argument of the first or second method call, rep-
resented asargs1.i or args2.i (where i indi-
cates theith argument), such as in Templates r2, s2,
r3, and s3. For example, an instantiation of Tem-
plate r2 isindexOf(add(S, i0 1, m1 1).state,

m0 2).retval == i0 1, where a method parameter
is represented as the combination of the first letter of
its runtime type name and its parameter order (starting
from 0) followed by “ 1” if the method is the first one
in the method pair or followed by “2” if the method is
the second one.

• a method-exit state or return value of a method-call
pair or method call derived from the entities of the
LHS, such as the remaining templates.

There are two extensions to abstraction templates: con-
ditional extension and difference extension. The condi-
tional extension adds a condition for the LHS of a tem-

plate. The existing implementation of our approach con-
siders only conditions that describe the equality relation-
ship among arguments from the first and second method
calls in the LHS. The implemented conditional extensions
for method-exit state are represented as:

sc1: g(f(S, args1).state, args2).state
== RHS where (args1.i == args2.j)

We similarly derive conditional extensions for method re-
turns. For example, one instantiation of conditional exten-
sions is

contains(add(S, m01).state, m02).retval
== true [where (m01==m0 2)].

In future work, we plan to support the following conditional
extensions:

sc2: g(f(S, args1).state, args2).state== if (h(S)) RHS
where h is aboolean observer, which is a public state-
preserving boolean method of the class under test. In pre-
vious work, we had used the return values of observers to
abstract object states during the construction of state transi-
tion diagrams [30].

A difference extension is applicable for those templates
whose LHS is a return value with a numeric type, such as
int. The difference extension that we have implemented
are represented as :

rd1: g(f(S, args1).retval, args2).retval == RHS + const
For example, one instantiation of conditional extensions is

size(add(S, m01).state).retval == (size(S).retval + 1)

Henkel and Diwan’s inference tool [17] infers 146 ax-
ioms for java.util.ArrayList [18]. Our abstrac-
tion templates are sufficient to be instantiated to form
all of these 146 axioms except for two axioms that de-
scribe the equivalence relationships between two meth-
ods: add(Object o) and add(int index, Object

element) whereindex is 0.

3.2 Test Generation

In previous work [27], we have proposed Rostra, a for-
mal framework for detecting equivalent object states and re-
dundant tests. We have developed five techniques within
Rostra. In this paper, we focus on the WholeState tech-
nique. TheWholeStatetechnique represents an object state
by using the whole concrete state, which comprises the val-
ues of object fields that are reachable from the object. The
technique compares object states to determine equivalence
by performing a graph isomorphism algorithm on the repre-
sentations. The “==” in the equations shown in Section 3.1
denotes the equivalence for object states instead of object
identities (the object state of a primitive-type variable are
considered as its primitive value in the string form). Our
previous experience [27, 28] showed that the performance
is reasonably acceptable when storing and comparing com-

pressed explicit state information for a single class exer-
cised by relatively short method sequences. Because some-
times two non-isomorphic object states could be equivalent
as data structure instances, we can use another two tech-
niques in Rostra that are based on user-definedequals

methods [20] or use more expensive checking of observa-
tional equivalence [3,9,17].

A method argument listfor a method call is characterized
by the method signature and the arguments for the method.
Two argument lists are nonequivalent iff their method sig-
natures are different or some of their corresponding argu-
ments are nonequivalent. A method call has two types of
inputs: the method-entry state and the method argument list.
A method call has two types of outputs: the normal return
value and method-exit state.

We perform combinatorial test generation on the two
types of inputs. We first use a third-party test genera-
tion tool, called JCrasher [7], to generate nonequivalent
method argument lists. For example, JCrasher generates
-1, 0, and 1 for arguments with the integer type and
it can generate method sequences creating values for
those arguments with non-primitive types. We provide
a MyInput class as a helper class for JCrasher to gen-
erate values for those arguments with theObject type.
The MyInput class contains an integer fieldv, whose
value is set through the argument of its constructor.
For example, for add(Object o), three arguments
can be generated: MyInput.<init>(-1).state,
MyInput.<init>(0).state, and
MyInput.<init>(1).state, where <init> repre-
sents a constructor method call.

We then generate tests to exercise each possible combi-
nation of encountered nonequivalent object states and non-
equivalent method argument lists starting from the states af-
ter invoking constructors. In particular, we at first generate
and execute tests to exercise the states after invoking con-
structors (the first iteration). After having executed these
tests, we collect some more new nonequivalent object states
that are not equivalent to any state exercised before the
present iteration. Then we start the next iteration to generate
more tests to exercise these new nonequivalent object states.
The iterations continue until there are no new nonequivalent
object states in the present iteration or we have reached the
maximum iteration number. In the illustrating LinkedList
example, we choose the maximum iteration number as five.
The details of the test-generation algorithm have been pre-
sented in our previous work [26].

3.3 Method-Call Composition

To instantiate the LHS or RHS of most abstractions tem-
plates, we need to generate a large number of method-call
pairs besides individual method calls. Traditional algebraic-

specification-based testing techniques [3,6,9,13,20] gener-
ate neighboring method calls (invoked in a row) on the same
receiver as method-call pairs for the LHS or RHS of an alge-
braic abstraction. For example, the following is a generated
test called Test 1 whose line number is marked:
Test 1:

1 LinkedList s = new LinkedList();

2 MyInput m = new MyInput(1);

3 s.add(m);

4 s.get(0);

5 s.size();

6 s.clear();

Traditional techniques generate this test to exercise four
method-call pairs (each of which may be relevant to the
LHS or RHS of an algebraic abstraction):< 1, 3 >,
< 3, 4 >, < 4, 5 >, and< 5, 6 >, where the line num-
ber is used to represent the method call in the line. To re-
duce the analysis cost, we compose method calls to gener-
ate a larger number of synthesized method-call pairs from
the same tests; a synthesized method-call pair exhibits the
same behavior as their corresponding actual method-call
pair even if the two method calls in the synthesized method-
call pair are not invoked on the same receiver, or not in a row
on the same receiver. We can use a synthesized method-call
pair to instantiate an abstract template in the same way as
an actual method-call pair.

Before we illustrate the technique of composing method
calls to form synthesized method-call pairs, we first intro-
duce the definition of a method execution, which has been
informally referred to previously in the paper. We view the
method calls on an object as a sequence of object states
and state transitions among them. A method call transforms
the receiver from the method-entry state to the method-exit
state. We use amethod executionto characterize the run-
time information of a method call without considering the
receiver’s identity.

Definition 2 A method execution〈 m, s,Sentry, a, Sexit, r
〉 is a tuple of a method namem, a method signatures, a
method-entry stateSentry, method argumentsa, a method-
exit stateSexit, and a return valuer. The method execution
is produced by a method call m(Sentry, a).

For example, Test 1 produces the following method exe-
cutions:
1 〈 <init>, (), ∅, (), S0, υ 〉

2 〈 MyInput.<init>, (int), ∅, (1),Sm0, υ 〉

3 〈 add, (Object),S0, (Sm1), S1, true〉
4 〈 get, (int),S1, (0),S2, Sm2 〉

5 〈 size, (),S2, (), S3, 1 〉

6 〈 clear, (),S3, (5),S4, υ 〉

where we use∅ andυ to represent an empty state and avoid

return value, respectively. We useS0, S1, S2, S3, andS4 to
represent object states ofLinkedList, andSm0, Sm1, and

Sm2 to represent object states ofMyInput, A constructor
name is shown as<init>. We display the class names
before method names (e.g.MyInput in Line 2) unless the
method is of the class under test. We then generate a syn-
thesized method-call pair based on the method-entry states
and method-exit states of two method executions.

Definition 3 A synthesized method-call pair〈 f(S,

args1), g(S’, args2)〉, represented as g(f(S,

args1).state, args2) is a pair of a method callf(S,
args1) and a method callg(S’, args2), where these
two method calls produce two method executions〈 f, s1, S,
args1,Sexit1, r1〉 and 〈 g, s2, S’, args2,Sexit2, r2〉, and
Sexit1 and S’ are equivalent.

From the method executions of Test 1, we can produce
four synthesized method-call pairs in the same form of those
four method-call pairs actually produced at runtime. In ad-
dition, we can use the WholeState technique [26] described
in Section 3.2 to determine three sets of equivalent object
states:{S0, S4} and{S1, S2, S3}. Based on the equiv-
alence among object states, we can produce the following
three additional synthesized method-call pairs from Test 1:
< 3, 5 >, < 3, 6 >, < 4, 6 >, and< 6, 3 >. Note that
if a method execution throws an uncaught exception, we do
not put it as the first method call in a synthesized method-
call pair because the method-exit state might be corrupted
already.

In algebraic abstractions, the first method call in a
method-call pair is usually a method call used to construct
or modify the receiver’s object state. Therefore for ab-
straction inference we do not produce synthesized method-
call pairs whose first method call is of a state-preserving
method. For example, from Test 1, we do not produce<4,
6> for abstraction inference. We dynamically determine
whether a method is a state-modifying method. A method
is a state-modifying method, if at least one of its previously
observed invocations modifies the receiver’s object state.

3.4 Statistical Inference

After we collect a method execution, we instantiate the
template variablesf andargs1 in the LHS of r1, s0, s0’,
and s1 using the method execution’s method name and sig-
nature. After we generate a synthesized method-call pair,
we instantiate the template variablesf, args1, g, args2 in
the LHS of r2-11 and s2-11 using the method names and
signatures in the synthesized method-call pair. Since the
RHS of a template is either a constant or a combination
of some variables from the LHS, we instantiate the RHS
of a template using a constant or the information from the
instantiated LHS. After we have instantiated the LHS and
RHS of an abstraction template, we get an algebraic ab-
straction.

We next use the actual variable values and state repre-
sentations in the method execution or synthesized method-
call pair to evaluate each generated algebraic abstraction
to determine whether they satisfy or violate the abstrac-
tion. Unless the RHS of an abstraction is anException

constant, an exception-throwing method execution or syn-
thesized method-call pair in the LHS always violates the
abstraction. We consider the method call or method-call
pairs instantiating the LHS of an abstraction (calledLHS
instance) as aninstanceof the abstraction1. A satisfying
instanceis an instance that satisfies the equality relation-
ship between LHS and RHS defined by the abstraction. A
violating instanceis an instance that violates the equality
relationship. We record the statistics of the abstraction sat-
isfactions and violations by instances of the abstraction.In
particular, we maintain two counters, a satisfaction counter
and a violation counter, for each algebraic abstraction.

Definition 4 A statistical algebraic abstraction〈 a, sa, va 〉
is a tuple of of an algebraic abstractiona, a count of satis-
fying instancessa, and a count of violating instancesva.

In addition, we associate two abstraction instances with
each statistical abstraction: the first-encountered satisfying
instance and the first-encountered violating instance. We
use these instances in test selection, which is described in
the next section.

A conditional abstractionis an abstraction instantiated
from a conditional extension of a template. We enumerate
all possible conditional abstractions with different combi-
nations of same-type arguments from two method calls in
a synthesized method-call pair. Adifference abstractionis
an abstraction instantiated from a difference extension ofa
template. We transform a difference abstraction to the form
of LHS - RHS == const, args1.i or args2.i.

To reduce overhead, if we have not encountered any in-
stance that satisfies an abstraction, we do not create or store
the entry of the abstraction in the memory. Therefore when
the test generation and execution terminates, each abstrac-
tion in memory has at least one satisfying instance.

3.5 Identification of Special and Common Tests

After the test generation and execution terminates, we
produce a list of statistical algebraic abstractions.

Definition 5 A universal propertyis a statistical algebraic
abstraction〈 a, sa, va 〉 without any violating instance, that
is, va is 0. Aconditional universal propertyis a universal
property whose underlying abstraction is a conditional ab-
straction.

1We can additionally consider the method call or method-call pairs in-
stantiating the RHS of an abstraction (calledRHS instance) as a part of the
abstraction instance, but we can always derive the RHS instance given an
LHS instance and the abstraction.

Definition 6 A common propertyis a statistical algebraic
abstraction with a minority of violating instances. More
formally, a common property is a statistical algebraic ab-
straction〈 a, sa, va 〉, where sa

sa+va

≥ t (50% < t < 100%,
andt is a user-defined threshold value close to100%).

We choose80% threshold value by default in our approach.

Definition 7 A special testis a violating instance of a com-
mon property, or a satisfying instance of a conditional uni-
versal property.

Definition 8 A common testis a satisfying instance of a
common or universal property.

We consider a satisfying instance of a conditional universal
property to be a special test instead of a common test be-
cause the instance satisfies the condition where there exists
an equality relationship between two arguments. We do not
select a conditional universal property’s violating instances
(method call pairs where two argument values are different)
as special or common tests because these instances do not
exhibit behavior on the RHS of an abstraction template.

For each common property, we select the first-
encountered violating instance as a representative of the
property’s special tests. For each conditional universal
property, we select the first-encountered satisfying instance
as a representative of the property’s special tests. For
each common or universal property, we select the first-
encountered satisfying instance as a representative of the
property’s common tests. Since a selected test for one prop-
erty might be the same as another selected test for another
property, we also group those properties associated with the
same test together. Developers can inspect these selected
tests and their associated satisfied or violated properties.

4 Experience

We have developed a tool, called Sabicu, to prototype
our approach and applied the tool on different types of ap-
plications, especially those complex data structures. We de-
scribe our initial experience on several benchmarks of com-
plex data structures in this section. The full details of the
results have been posted on our project web2. The first and
second columns of Table 1 show the names of the bench-
mark programs and the number of public methods used
for test generation and test identification. Most of these
classes are complex data structures that are used to evalu-
ate Korat [4] and later used to evaluate our previous work
on redundant-test detection [27].

We ran Sabicu on a Linux machine with a Pentium IV
2.8 GHz processor with 1 GB of RAM running Sun’s JDK

2http://www.csc.ncsu.edu/faculty/xie/sabicu/

Table 1. Quantitative results for identifying special and c ommon tests

potential axioms time properties tests
benchmark meth axioms iter consd (sec) univ c-univ common generated special common both
BinSearchTree 4 240 3 75 0.93 6 10 7 91 6 14 3

4 75 1.29 6 10 6 136 5 14 3
5 75 1.30 6 10 6 136 5 14 3

BinomialHeap 12 2364 3 505 44.37 22 6 56 5272 45 63 1
4 505 115.25 21 5 53 12440 45 61 1
5 506 392.97 21 5 51 21456 42 59 1

FibonacciHeap 9 1242 3 290 2.06 15 6 72 173 51 59 8
4 290 3.67 13 6 81 341 55 63 9
5 290 7.17 12 6 80 677 52 62 7

HashMap 13 2022 3 381 15.33 81 9 19 2213 15 88 5
4 381 61.28 81 9 18 7533 14 92 9
5 381 163.21 81 9 19 15345 15 92 10

HashSet 8 792 3 211 1.78 43 15 18 157 15 48 7
4 211 2.61 43 15 16 235 14 49 9
5 211 2.91 43 15 16 261 14 50 10

LinkedList 21 6048 3 848 6.82 56 20 24 729 22 81 5
4 848 21.62 55 18 43 2241 39 96 8
5 848 74.01 55 18 39 6777 37 96 8

SortedList 24 7827 3 939 10.41 56 14 28 820 23 84 6
4 939 32.61 55 14 35 2521 30 88 4
5 939 108.35 55 14 44 7624 33 95 4

TreeMap 15 1968 3 411 20.21 84 9 20 2911 16 92 6
4 411 82.85 84 9 18 9421 14 95 9
5 411 295.86 84 9 17 16291 13 95 9

IntStack 4 252 3 35 0.53 5 0 2 66 2 4 2
4 35 1.06 5 0 5 201 4 6 3
5 35 2.29 5 0 5 606 4 6 3

UBStack 9 942 3 80 0.75 10 2 7 169 7 17 1
4 80 0.97 10 2 7 253 7 17 3
5 80 1.18 10 2 6 337 6 16 1

1.4.2. In particular, we ran Sabicu on the benchmarks with
three different maximum iteration numbers: 3, 4, and 5
(test-generation iterations are described in Section 3.2). To
avoid taking too long during one iteration, we set a time-
out of five minutes for each iteration; if within five minutes
Sabicu could not finish generating and running tests to fully
exercise the new nonequivalent object states, we terminate
the test generation. The fourth column shows the maxi-
mum iteration number where the data in the same row are
produced. We compute the size of potential axioms to be
explored (all possible instantiations of the abstraction tem-
plates by the public methods), which is shown in the third
column of Table 1. The fifth column shows the number
of axiom candidates (statistical abstractions) that our proto-
type considered and kept in memory during test generation
and execution.

We have observed that the number of axiom candidates is
not very large and they often remain stable across iterations.

The sixth column shows the real time (in seconds) spent on
test generation, execution, and identification. We have ob-
served that for relatively large programs the real time grows
by a factor of three to five when increasing the maximum
iteration by one. Columns 7, 8, and 9 show the number of
universal properties, conditional universal properties,and
common properties, respectively. The last four columns
show the number of all generated tests, identified special
tests, identified common tests, and tests identified to be both
special and common with respect to different properties, re-
spectively. We have observed that a higher maximum iter-
ation number (more tests) can falsify universal properties
inferred from earlier iterations but usually cannot produce
more universal properties because the maximum iteration
number of three shall be able to instantiate all possible uni-
versal properties (described by our abstraction templates).
However, the number of conditional universal properties or
common properties can be increased or decreased when we

increase the maximum iteration number. On one hand, a
universal property can be demoted to be common proper-
ties or conditional universal properties3. On the other hand,
a property does not have a high enough number of satisfying
instances can be promoted to be a common property when
more satisfying instances are generated in a higher itera-
tion. Although the number of all generated tests increases
over iterations, the number of identified special and com-
mon tests remains relatively manageable; although the ab-
solute number of identified tests is relatively high for large
benchmarks, the average number of identified tests for each
method is not high.

We manually inspect identified tests and their associated
properties; we especially focus on special tests. Because of
space limit, we will describe only several identified tests in
this section. One common property for LinkedList has 117
satisfying count and 3 violating count (instantiated from
Template s7):

removeLast(addFirst(S, m01).state).state
== addFirst(removeLast(S).state, m01).state

In the common test of this property, the LinkedList state
S in the abstraction holds at least one element. But in the
special test,S holds no element.

Another common property for LinkedList has 408 satis-
fying count and 42 violating count (instantiated from Tem-
plate s7):

remove(removeLast(S).state, m02).state ==
removeLast(remove(S, m02).state).state

In the common test of this property, the LinkedList stateS

in the abstraction holds only one element (beingm0 2). But
in the special test,S holds two elements (the last element
beingm0 2).

To investigate whether the inferred axioms are complete
and consistent, we can compare them with algebraic spec-
ifications that a developer would generate. Among the 10
benchmarks, the last two benchmarks are equipped with
algebraic specifications specified or inferred by other re-
searchers. All the three axioms inferred by Henkel and Di-
wan [17] for IntStack (an unbounded stack storing integer
elements) are also inferred by Sabicu as universal axioms.
Stotts et al. [24] wrote 12 axioms for UBStack (a bounded
stack storing unique integer elements)4, eight of which are
universal axioms and four of which are conditional axioms.
Sabicu successfully infers all the manually written univer-
sal axioms and infers two common axioms that correspond
to two of the four manually written conditional axioms.

One of the inferred common axiom for UBStack has 47
satisfying count and 6 violating count (instantiated from

3A universal property can be demoted to a conditional one because we
do not infer or report a conditional universal property thatis inferred by a
universal property

4Although UBStack is one of the programs used by Stotts et al. [24],
Stotts et al. wrote axioms for a bounded integer stack, which does not
necessarily have the feature of storing unique elements

Template r2):
top(push(S, i01).state).retval == i01

This property shows the bounded feature of the stack im-
plementation; if a stack is unbounded, this property would
be a universal property. In the special test for this property,
the UBStack stateS is already full; pushing an element on a
full stack does not change the stack state. Invokingtop sub-
sequently does not return the element that was just pushed.
The corresponding manually written conditional axiom is
the following:

top(push(S, i01).state).retval ==
if isFull(S) then top(S) else i01

Another inferred common axiom for UBStack has 42
satisfying count and 11 violating count (instantiated from
Template r6):

isFull(push(S, i01).state).retval == isFull(S).retval
This property also shows the bounded feature of the stack
implementation. In the special test for this property, the UB-
Stack stateS is almost full; pushing one more element on
it could produce a full stack. The corresponding manually
written conditional axiom is the following:

isFull(push(S, i01).state).retval ==
if getSize(B)>= maxSize(B)-1 then true else false

However, we cannot infer common axioms correspond-
ing to two manually written axioms:

pop(push(S, i01).state).retval ==
if isFull(S) then pop(S) else S

and
getSize(push(S, i01).state).retval ==

if (getSize(S)== maxSize(S)) then maxSize(S)
else getSize(S) + 1

because the corresponding statistical abstractions couldnot
get overwhelming satisfying count to be surfaced as com-
mon axioms.

Overall we have found that conditional universal proper-
ties are not too many but often indicate important interac-
tions between two methods. For example, the uniqueness
of the UBStack’s elements is reflected by a conditional uni-
versal property:

push(push(S, i01).state, i02).state == push(S, i02).state
[where (i01==i0 2)]

This property shows that pushing the same element twice
in a row has the same effect of pushing the element once;
this property is missing among the axioms written by Stotts
et al. [24], because Stotts et al. wrote these axioms for a
bounded stack in general instead of a bounded stack that
stores unique elements.

We also found that some universal properties are not re-
ally universally satisfiable because the generated tests are
not sufficient enough to violate them. However, we cannot
afford to generate exhaustive tests with higher bound [27,
28] (reflected by the maximum iteration number). In future
work, we plan to use universal properties or conditional uni-

versal properties to guide generating a focused set of tests
for these properties instead of a bounded exhaustive set.

Although we manually inspected identified tests and
found that they can expose different common and special
behaviors that we have not noticed before, it is still unclear
whether developers (code owners) would like to invest ef-
fort in inspecting these identified tests for inclusion in their
existing test suite. In future work, we plan to conduct case
studies to gather feedback on how developers assess the
identified tests. In addition, more experiments are needed
to assess the fault detection capability of identified tests
comparing to all the generated tests or those tests selected
using other test selection techniques. Finally, we primar-
ily applied our approach on data structures and we plan to
investigate how generalizable our approach is beyond data
structures.

5 Related Work

Our work is mainly related to three lines of research:
abstraction generation (also called specification inference),
statistical program analysis, and test selection.

Abstraction Generation. Ernst et al. [12] developed the
Daikon tool to infer operational abstractions from test ex-
ecutions. Our abstraction template technique is inspired
by their use of grammars in abstraction inference. Their
abstractions are universal properties, whereas statistical al-
gebraic abstractions in our approach include both univer-
sal and common properties. During the inference process,
Daikon immediately throws out falsified abstractions to re-
duce the candidate space but our approach cannot do so be-
cause falsified abstractions may become common proper-
ties if most of all the encountered instances (including later-
encountered ones) are satisfying ones. Our approach does
not eliminate a potential axiom if the so-far observed weight
of evidence is against it (having far more violating instances
than satisfying instances), because further-generated tests
may yield enough satisfying instances to make it a com-
mon property. Keeping track of statistical algebraic abstrac-
tions is more tractable than keeping track of statistical oper-
ational abstractions, because the candidate space of opera-
tional abstractions is much larger. In addition, the inference
of algebraic abstractions is less sensitive to the actual values
that are put and stored in a container object; therefore, our
approach would not infer some less meaningful properties
such as one saying that an integer of 0 is inserted into a data
structure all the time or most of the time.

Henkel and Diwan developed a tool to infer algebraic
specifications for a Java class [17]. Their tool generates a
large number of terms, which are method sequences, and
evaluates these terms to find equations, which are then gen-
eralized to axioms. Since their technique does not rely on
abstraction templates, their technique is able to infer more

types of abstractions than the ones predefined in our ap-
proach. For example, their technique can infer an abstrac-
tion whose RHS contains a method call that is not present
in the LHS. However, their inferred abstractions are all uni-
versal properties, containing no common properties. Their
tool does not support conditional abstractions. Their later
work [19] developed an interpreter for the algebraic specifi-
cations of a Java class, and this interpreter acts like a proto-
type implementation for the class. The abstractions inferred
by either their earlier tool or our tool can be fed into this
interpreter for debugging algebraic specifications.

Statistical Program Analysis. Different from the preced-
ing abstraction inference techniques, Ammons et al. infer
protocol specifications for a C application program inter-
face by observing frequent interaction patterns of method
calls [1]. Their inferred protocol specifications are either
common or universal properties. They identify those exe-
cutions that violate the inferred protocol specifications for
inspection. Both their and our approaches use statistical
techniques to infer frequent behavior. Their approach op-
erates on protocol specifications, whereas our approach op-
erates on algebraic specifications. Their later work [2] uses
concept analysis to automatically group the violating execu-
tions into highly similar clusters. They found that by exam-
ining clusters instead of individual executions, developers
can debug a specification with less work. Our approach se-
lects one representative test from each subdomain defined
by statistical algebraic abstractions, instead of presenting
all violating or satisfying tests to developers. This can also
reduce the inspection effort for a similar reason.

Engler et al. [11] infer bugs by statically identifying in-
consistencies from commonly observed behavior. We dy-
namically identify special tests, which might expose bugs,
based on deviations from common properties. Liblit et al.
[21] use remote program sampling to collect dynamic infor-
mation of a program from executions experienced by end
users. They use statistical regression techniques to identify
predicates that are highly correlated with program failures.
In our approach, we use statistical inference to identify spe-
cial tests and common tests.

Test Selection. In partition testing [22], a test input do-
main is divided into subdomains based on some criteria, and
then we can select one or more representative inputs from
each subdomain. Our approach is basically a type of parti-
tion testing. We divide test input domain for a method-call
pair or method call into subdomains based on each inferred
statistical algebraic abstraction: satisfying tests and violat-
ing tests.

When a priori specifications are provided for a program,
Chang and Richardson use specification coverage criteria to
select a candidate set of test cases that exercise new aspects
of the specification [5]. Given algebraic specifications a pri-
ori, several testing tools [3, 6, 9, 13, 20] generate and select

a set of tests to exercise these specifications. Unlike these
black-box approaches, our approach does not require spec-
ifications a priori. Indeed, after specifications are written,
a specification-based testing approach can be fully auto-
mated, whereas our approach involves human inspection of
the selected tests. We plan to investigate investment trade-
offs of these approaches and the combination of two ap-
proaches, because human-written specifications might not
be complete to capture different behaviors of a program.

Harder et al.’s operational difference approach [16],
Hangal and Lam’s DIDUCE tool [15], and the operational
violation approach in our previous work [29] select tests
based on a common rationale: selecting a test if the test
exercises a certain program behavior that is not exhibited
by previously executed tests. The approach in this paper
is based on a different rationale: selecting a test as a spe-
cial test if the test exercises a certain program behavior that
is not exhibited by most other tests; selecting a test as a
common test if the test exercises a certain program behav-
ior that is exhibited by all or most other tests. Our approach
is less sensitive to the order of the executed tests than these
previous approaches. In addition, these three previous ap-
proaches operates on inferred operational abstractions [12],
whereas our approach operates on inferred algebraic speci-
fications.

Dickinson et al. [8] use clustering analysis to partition
executions based on structural profiles, and use sampling
techniques to select executions from clusters for observa-
tions. Their experimental results show that failures often
have unusual profiles that are revealed by cluster analysis.
Although our approach shares a similar rationale with their
approach, our approach operates on black-box algebraic ab-
stractions instead of structural behavior.

6 Conclusion

We have proposed a new approach for automatically
identifying special or common tests out of a large number
of automatically generated tests. The approach is based on
statistically true (not necessarily universally true) program
properties, called statistical algebraic abstractions. We have
developed a set of abstraction templates, which we can in-
stantiate to form commonly seen axioms in algebraic speci-
fications. Based on the predefined abstraction templates, we
perform a statistical inference on collected method calls and
method-call pairs to obtain statistical algebraic abstractions.
We have developed a way to characterize special or com-
mon tests based on statistical algebraic abstractions. We
sample and select special tests and common tests together
with their associated abstractions for inspection. Our initial
experience has shown that those tests and properties iden-
tified by our approach exposed many common and special
behaviors that deserve developers’ attention.

Acknowledgments

We thank Darko Marinov and the anonymous review-
ers for their valuable feedback on an earlier version of this
paper. This work was supported in part by the National
Science Foundation under grant ITR 0086003 and the High
Dependability Computing Program from NASA Ames co-
operative agreement NCC-2-1298.

References

[1] G. Ammons, R. Bodik, and J. R. Larus. Mining specifica-
tions. InProc. 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 4–16, 2002.

[2] G. Ammons, D. Mandelin, R. Bodik, and J. R. Larus. De-
bugging temporal specifications with concept analysis. In
Proc. ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 182–195, 2003.

[3] G. Bernot, M. C. Gaudel, and B. Marre. Software testing
based on formal specifications: a theory and a tool.Softw.
Eng. J., 6(6):387–405, 1991.

[4] C. Boyapati, S. Khurshid, and D. Marinov. Korat: auto-
mated testing based on Java predicates. InProc. Interna-
tional Symposium on Software Testing and Analysis, pages
123–133, 2002.

[5] J. Chang and D. J. Richardson. Structural specification-
based testing: automated support and experimental evalu-
ation. InProc. 7th ESEC/FSE, pages 285–302, 1999.

[6] H. Y. Chen, T. H. Tse, F. T. Chan, and T. Y. Chen. In
black and white: an integrated approach to class-level test-
ing of object-oriented programs.ACM Trans. Softw. Eng.
Methodol., 7(3):250–295, 1998.

[7] C. Csallner and Y. Smaragdakis. JCrasher: an automatic ro-
bustness tester for Java.Software: Practice and Experience,
34:1025–1050, 2004.

[8] W. Dickinson, D. Leon, and A. Podgurski. Pursuing failure:
the distribution of program failures in a profile space. In
Proc. 8th ESEC/FSE, pages 246–255, 2001.

[9] R.-K. Doong and P. G. Frankl. The ASTOOT approach to
testing object-oriented programs.ACM Trans. Softw. Eng.
Methodol., 3(2):101–130, 1994.

[10] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns
in property specifications for finite-state verification. In
Proc. 21st International Conference on Software Engineer-
ing, pages 411–420, 1999.

[11] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: a general approach to inferring
errors in systems code. InProc. 18th ACM symposium on
Operating Systems Principles, pages 57–72, 2001.

[12] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to sup-
port program evolution.IEEE Trans. Softw. Eng., 27(2):99–
123, 2001.

[13] J. Gannon, P. McMullin, and R. Hamlet. Data abstraction,
implementation, specification, and testing.ACM Trans. Pro-
gram. Lang. Syst., 3(3):211–223, 1981.

[14] J. V. Guttag and J. J. Horning. The algebraic specification of
abstract data types.Acta Informatica, 10:27–52, 1978.

[15] S. Hangal and M. S. Lam. Tracking down software bugs
using automatic anomaly detection. InProc. 24th Interna-
tional Conference on Software Engineering, pages 291–301,
2002.

[16] M. Harder, J. Mellen, and M. D. Ernst. Improving test suites
via operational abstraction. InProc. 25th International Con-
ference on Software Engineering, pages 60–71, 2003.

[17] J. Henkel and A. Diwan. Discovering algebraic specifica-
tions from Java classes. InProc. 17th European Conference
on Object-Oriented Programming, pages 431–456, 2003.

[18] J. Henkel and A. Diwan. Case study: Debugging a discov-
ered specification for java.util.ArrayList by using algebraic
interpretation. Technical Report CU-CS-970-04, University
of Colorado at Boulder, 2004.

[19] J. Henkel and A. Diwan. A tool for writing and debugging
algebraic specifications. InProc. 26th International Confer-
ence on Software Engineering, pages 449–458, 2004.

[20] M. Hughes and D. Stotts. Daistish: systematic algebraic
testing for oo programs in the presence of side-effects. In
Proc. International Symposium on Software Testing and
Analysis, pages 53–61, 1996.

[21] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug
isolation via remote program sampling. InProc. ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, pages 141–154, 2003.

[22] G. J. Myers.Art of Software Testing. John Wiley & Sons,
Inc., 1979.

[23] OMG. Unified Modeling Language Specification (v1.5),
2003.

[24] D. Stotts, M. Lindsey, and A. Antley. An informal formal
method for systematic JUnit test case generation. InProc.
2002 XP/Agile Universe, pages 131–143, 2002.

[25] Sun Microsystems. Java 2 Platform, Standard Edi-
tion, v 1.4.2, API Specification. Online documentation,
Nov. 2003. http://java.sun.com/j2se/1.4.2/
docs/api/.

[26] T. Xie, D. Marinov, and D. Notkin. Improving generation of
object-oriented test suites by avoiding redundant tests. Tech-
nical Report UW-CSE-04-01-05, University of Washington
Department of Computer Science and Engineering, Seattle,
WA, Jan. 2004.

[27] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework
for detecting redundant object-oriented unit tests. InProc.
19th IEEE International Conference on Automated Software
Engineering, pages 196–205, Sept. 2004.

[28] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra:
A framework for generating object-oriented unit tests using
symbolic execution. InProc. 11th International Conference
on Tools and Algorithms for the Construction and Analysis
of Systems, pages 365–381, April 2005.

[29] T. Xie and D. Notkin. Tool-assisted unit test selection based
on operational violations. InProc. 18th IEEE International
Conference on Automated Software Engineering, pages 40–
48, 2003.

[30] T. Xie and D. Notkin. Automatic extraction of object-
oriented observer abstractions from unit-test executions. In
Proc. 6th International Conference on Formal Engineering
Methods, Nov. 2004.

