Automatically Identifying Special and Common Unit Tests
for Object-Oriented Programs

Tao Xie David Notkin
Department of Computer Science Department of Computer Science & Engineering
North Carolina State University University of Washington
Raleigh, NC 27695 Seattle, WA 98195
xie@csc.ncsu.edu notkin@cs.washington.edu
Abstract often insufficient to exercise some important common or

special behaviors of the class: developers often overlook

Developers often create common tests and special testssome special or boundary values and sometimes even fail
which exercise common behaviors and special behaviorsto include some common cases. The main complementary
of the class under test, respectively. Although manually approach is to use one of the automatic unit test generation
created tests are valuable, developers often overlook soméools to generate a large number of tests to exercise a va-
special or even common tests. We have developed a newiety of behaviors of the class. If the class’s specificagion
approach for automatically identifying special and com- exist, the execution of these tests can be automaticalty ver
mon unit tests for a class without requiring any specifica- ified against the specifications. In addition, among gener-
tion. Given a class, we automatically generate test inputs ated tests, special or common tests can be identified based
and identify common and special tests among the gener-on specifications and then these identified tests can be used
ated tests. Developers can inspect these identified tedts anto augment existing manually created tests. For example,
use them to augment existing tests. Our approach is basedJML use cases [23] can describe high level behaviors with
on statistical algebraic abstractions, program propest{@& conditionals. Generated tests that exercise conditiogal b
the form of algebraic specifications) dynamically inferred haviors can be identified as special tests. However, in prac-
based on a set of predefined abstraction templates. We uséice, specifications often do not exist. Without specifica-
statistical algebraic abstractions to characterize pragr tions, it is impractical for developers to manually inspect
behaviors and identify special and common tests. Our ini- and verify the outputs of such a large number of test exe-
tial experience has shown that a relatively small number of cutions. Consequently developers do not have an efficient
common and special tests can be identified among a largeway to identify common or special tests.
number of generated tests and these identified tests expose |, this paper, we present a new approach for automat-

common and special behaviors that deserve developers atically identifying special and common unit tests from au-

tention. tomatically generated tests without requiring specifarai
Developers can inspect these identified tests for verifying
their correctness and understanding program behavior. De-

1 Introduction velopers can also use these identified tests to augment ex-

isting tests.

In unit testing of object-oriented programs, the class un- Our new approach is based on dynamically inferred pro-
der test might exhibit special or common program behav- gram properties, calledtatistical algebraic abstractions
iors when it is exercised by different tests. For example, An algebraic abstractions an equation that abstracts the
intuitively a bounded-stack class exhibits common behav- program’s runtime behaviors (usually describing interac-
iors when the stack is neither empty nor full, but might ex- tions among method calls); the equation is syntactically
hibit some special behaviors when the stack is empty or full. identical to an axiom in algebraic specifications [14]. An
Special and common tests can be created to exercise somiastanceof an abstraction is a test that instantiates the left-
special and common behaviors of the class under test, rehand side (LHS) and right-hand side (RHS) of the abstrac-
spectively. Although manually written unit tests for class tion. A satisfying instancés an instance that satisfies the
play an important role in software development, they are equality relationship between LHS and RHS defined by the

public class LinkedList {

abstraction. Aviolating instances an instance that violates ™.\ & 7 veatist () ...}

the equality relationship. Atatistical algebraic abstraction public void add(int index, Obi{ect}el ement) {...}
; B : ; : : : : public bool ean add(bject o) {...
is associated with the counts of its satisfying and vio@tin |51 ¢ pool ean addAl I (int index. Collection c) Lo

instances during test executions. We characterizern- public void addFirst(Cbject o) {...}

. ‘g . : public void addLast(Cbject o) {...}
mon propertywith a statistical algebraic abstraction whose [i ¢ void clear() {...}
instances are mostly satisfying instances and charagteriz public Object remove(int index) {...}

: : P : : public bool ean renpve(Cbhject o) {...}
auniversal propertywith a statistical algebraic abstraction ;i ¢ mject remverirst() {...}

whose instances are all satisfying instancesoAditional public Object renovelast() {...}
; ; ; ; _ public Object set(int index, Object element) {...}
universal propertys a universal property whose LHS is as public Cbject get(int index) {...}

sociated with a condition. Aommon tesis a satisfying public Listliterator listlterator(intindex) {...}
instance of a common or universal propertyspecial test public Coject getFirst() {...}

is a violating instance of a common property or a satisfy- }

ing instance of a conditional universal property. For each
common property, the first encountered violating instance

is selected as a representative of the property’s spesial te

For each conditional universal property, the first encoun-
tered satisfying instance is selected as a representdtive o

the property’s special tests. For each common or universal ¢jass
property, the first encountered satisfying instance icsetie bytecode Test Method-call | | Statistical
as a representative of the property’s common tests. () generation composition inference

In previous work, Ernst et al. developed Daikon [12] @
Common or
universal

to infer operational abstractions that describe the pragra
states at method entry and exit points of a class. In con-
properties

Figure 1. A LinkedList implementation

Test
trast, our approach infers algebraic abstractions, whieh r :> identification
veal no internal details of the object representation. léenk @ @
and Diwan’s approach [17] also infers algebraic abstrac- = : E
tions but their abstractions are universally true among all @ .@gﬂﬂ Cc;g]Srgon
test executions (so are the operational abstractions@uafer .“,ﬁ ST
by Daikon [12]). Our approach infergtatistical abstrac-
tions, which are not necessarily universally true among all
test executions.

Figure 2. An overview of special and common
test identification
The rest of this paper is organized as follows. Section 2
presents aillustrating example. Section 3 illustratesewr
approach for identifying special and common tests based on
statistical algebraic abstractions. Section 4 presentscu 3 Approach
tial experience on applying the approach. Section 5 reviews
related work, and Section 6 concludes. Figure 2 shows the overview of our approach for identi-
fying special and common tests. The input to our approach
is the bytecode of the (Java) class under test. Our approach
2 Example relies on a set of algebraic-abstraction templates prexekkfi
by us; these templates encode common forms of axioms in
algebraic specifications: equality relationships among tw
As an illustrating example, we use a data structure: aneighboring method calls (two method calls invoked on the
LinkedList class, which is the implementation of linked same receiver object in a row) and single method calls.
lists in the Java Collections Framework, being a part of The outputs of the approach are a set of common and spe-
the standard Java libraries [25]. Figure 1 shows declara-cial tests and their corresponding properties. The approac
tions of LinkedList's public methods. LinkedList has 25 comprises four steps: test generation, method-call com-
public methods, 321 noncomment, non-blank lines of code, position, statistical inference, and test identificatioAll
and 708 lines of code including comments and blank lines. these four steps are automated. The step of test genera-
Given the bytecode of LinkedList, our approach automati- tion first generates different representative argumentegl
cally generates a large set of tests (6777 tests); among thesfor each public method of the class (based on JCrasher [7],
generated tests, our approach identifies 37 special tedts ana third-party test generation tool), and then dynamically
96 common tests. and iteratively invokes different method arguments on each

nonequivalent receiver-object state (our previous wor [2 sO: f(S, args1ljtate ==
develops techniques for determining object-state equiva- SO f(S, argslptate =S
sl: f(S, argslgtate ==const

lence). The step of method-call composition monitors and
collects method executions to compose two method otlls
andn2 forming a method-call pair ifrl’s receiver-object
stateafter invoking i is equivalent tax2’s receiver-object
statebeforeinvokingn2. The composed method-call pair is
used in the step of statistical inference as if the two method
calls in the pair were invoked in a row on the same receiver.
The step of statistical inference uses method-call paigs an
single method calls to instantiate and check against the ab-
straction templates. This step produces a set of common s10:g(f(S, args13tate args2)state==g(f(S, args2}tate argsl)state
or universal properties. The step of test identificatiomide ~ s11:9(f(S, args13tate args2)state==f(g(S, args1}tate args2)state
tifies common z_ind spec_ial tests pased on f[hese proper'Fies. Figure 3. Algebraic-abstraction templates for

In the next section, we first describe predefined abstraction
templates and then illustrate these four steps in details.

. g(f(S, argsl3tate args2)state == argsl.i

. g(f(S, argsl3tate args2)state == args2.i

s4: g(f(S, argsljtate args2)state ==f(S, argslptate

s5: g(f(S, args13tate args2)state == const

s5": g(f(S, argslktate args2)state==S

s6: g(f(S, argsl3tate args2)state ==g(S, args2itate

s7: g(f(S, args13tate args2)state ==f(g(S, args2xtate argsl)state
s8: g(f(S, argsl¥tate args2)state ==1(S, args2)tate

s9:9(f(S, argsljtate args2)state ==g(S, argslitate

method-exit states

sQ’, all templates are equations. For the sake of brevity,
we call these templates as equations without discrimigatin
Template sO'. Basically Template sO shofvss a state-
Dwyer et al.'s work [10] and Ernst et al.'s work [12] de- preserving methadwhich does not modify the receiver’s

velop a set of patterns and grammars for temporal propertiesbject state, and Template sO’ showis astate-modifying
and operational abstractions, respectively. Inspirechbirt ~ method which modifies the receiver’s object state. In each
work, we have developed a set of abstraction templates forof Templates ri, sO, sO’ and s1, the LHS of the equation is a
algebraic abstractions. We have looked into a non-trial s single method call. In each of the remaining templates, the
of manually written algebraic specifications from the web LHS of the equation is a method-call pair. The RHS of an

3.1 Abstraction Templates

and found that a majority of manually written axioms are equation can be in the following forms:

usually equations whose right-hand side (RHS) contains a
constant or information related to the left-hand side (LHS)
Usually an axiom’s LHS or RHS involves method-call pairs
besides individual method calls.

We use f(S, args).state and (S,
args).retval to represent the receiver state and
method return after invoking a methdd on a receiver
with argumentar gs, where the receiver state of a method
call is treated as the first method argument (but a con-
structor does not have a receiver state). Theate
and. retval expressions denote the state of the receiver
(calledmethod-exit stadeafter the invocation and the result
of the invocation, respectively. We adopt the notation
following Henkel and Diwan [17].

Definition 1 A method-call pair f (S, argsl), g(S,
args2)), represented asg(f(S, argsl).state,
args2), is a pair of a method calf (S, argsl) and
a method callg(S', args2), where these two method
calls are invoked in a row on the same receiver, Vifls,

ar gs1) being invoked first.

Figure 3 shows the algebraic-abstraction templates (sO
- s11) for the method-exit state of a method-call pair or
method call. We can derive the algebraic-abstraction tem-
plates (r1 - r11) for the return of a method-call pair or
method call by replacing thest at e postfix of s1 - s11

with . retval (but sO’ and s5’ do not have correspond- ditional extension and difference extension.

e the method-entry state of the first method call in the
LHS, represented &S, such as in Templates s0, sO’
and s5’. For example, an instantiation of Template sO’
isrenmoveFirst(S).state !'= Sin the LinkedList
example.

e aconstant, representedasst , such as in Templates
rl, si, r5, and s5. A constant can Becepti on,
indicating throwing an uncaught exception. For ex-
ample, an instantiation of Template rl &ld(S,
nD).retval == true.

e an argument of the first or second method call, rep-
resented asargsl.i or args2.i (wherei indi-
cates tha th argument), such as in Templates r2, s2,
r3, and s3. For example, an instantiation of Tem-
plate r2 isi ndexCf (add(S, 0.1, nil.1).state,
n0_2). retval i 0_1, where a method parameter
is represented as the combination of the first letter of
its runtime type name and its parameter order (starting
from 0) followed by “1” if the method is the first one
in the method pair or followed by 2" if the method is
the second one.

e a method-exit state or return value of a method-call
pair or method call derived from the entities of the
LHS, such as the remaining templates.

There are two extensions to abstraction templates: con-

The condi-

ing templates for the method return). Except for Template tional extension adds a condition for the LHS of a tem-

plate. The existing implementation of our approach con- pressed explicit state information for a single class exer-
siders only conditions that describe the equality relation cised by relatively short method sequences. Because some-
ship among arguments from the first and second methodtimes two non-isomorphic object states could be equivalent
calls in the LHS. The implemented conditional extensions as data structure instances, we can use another two tech-
for method-exit state are represented as: nigues in Rostra that are based on user-defingaal s

scl: g(f(S, argsitate args2)state methods [20] or use more expensive checking of observa-

== RHS where (argsl.i == args2.j) tional equivalence [3,9,17].

We similarly derive conditional extensions for method re- A method argument ligor a method call is characterized
turns. For example, one instantiation of conditional exten by the method signature and the arguments for the method.

sions is Two argument lists are nonequivalent iff their method sig-

contains(add(S, mQ@).state, m@®).retval natures are different or some of their corresponding argu-

==true [where (m01==mQ.2)]. ments are nonequivalent. A method call has two types of

In future work, we plan to support the following conditional inputs: the method-entry state and the method argument list

extensions: A method call has two types of outputs: the normal return
sc2: g(f(S, argsidtate args2)state== if (n(S)) RHS value and method-exit state.

where h is aboolean observerwhich is a public state- We perform combinatorial test generation on the two

preserving boolean method of the class under test. In pretypes of inputs. We first use a third-party test genera-

vious work, we had used the return values of observers totion tool, called JCrasher [7], to generate nonequivalent

abstract object states during the construction of statsitra method argument lists. For example, JCrasher generates

tion diagrams [30]. -1, 0, and 1 for arguments with the integer type and
A difference extension is applicable for those templates it can generate method sequences creating values for

whose LHS is a return value with a numeric type, such asthose arguments with non-primitive types. We provide

i nt. The difference extension that we have implemented a Myl nput class as a helper class for JCrasher to gen-

are represented as : erate values for those arguments with g ect type.
rd1: g(f(S, argsljetval, args2)etval== RHS + const The Myl nput class contains an integer fied whose
For example, one instantiation of conditional extensiensi value is set through the argument of its constructor.
size(add(S, mQ).state).retval == (size(S).retval + 1) For example, foradd(oject o), three arguments
can be generated: Mylnput.<init>(-1).state,
Henkel and Diwan’s inference tool [17] infers 146 ax- Myl nput.<init>(0).state, and

ioms for java.util.ArrayList [18]. Our abstrac- Mlnput.<init>(1).state, where <init> repre-

tion templates are sufficient to be instantiated to form sents a constructor method call.

all of these 146 axioms except for two axioms that de- We then generate tests to exercise each possible combi-
scribe the equivalence relationships between two meth-nation of encountered nonequivalent object states and non-

ods: add(Ooject o) and add(int index, Qbject equivalent method argument lists starting from the stdtes a

el ement) wherei ndex is 0. ter invoking constructors. In particular, we at first gemera
and execute tests to exercise the states after invoking con-

3.2 Test Generation structors (the first iteration). After having executed thes

tests, we collect some more new nonequivalent object states
that are not equivalent to any state exercised before the
present iteration. Then we start the next iteration to geeer
more tests to exercise these new nonequivalent objecs state
The iterations continue until there are no new nonequivalen
object states in the present iteration or we have reached the

In previous work [27], we have proposed Rostra, a for-
mal framework for detecting equivalent object states and re
dundant tests. We have developed five techniques within
Rostra. In this paper, we focus on the WholeState tech-

nigue. TheWholeStateechnique represents an object state) : . . : . .
. . . maximum iteration number. In the illustrating LinkedList
by using the whole concrete state, which comprises the val- . . : .
example, we choose the maximum iteration number as five.

ues of object fields that are reachable from the object. TheThe details of the test-generation alaorithm have been pre-
technique compares object states to determine equivalence 9 9 P

by performing a graph isomorphism algorithm on the repre- sented in our previous work [26].

sentations. The “=="in the equations shown in Section 3.1 .

denotes the equivalence for object states instead of objec8-3 Method-Call Composition

identities (the object state of a primitive-type variabte a

considered as its primitive value in the string form). Our To instantiate the LHS or RHS of most abstractions tem-
previous experience [27, 28] showed that the performanceplates, we need to generate a large number of method-call
is reasonably acceptable when storing and comparing com-pairs besides individual method calls. Traditional algébr

specification-based testing techniques [3,6,9, 13, 20dgen
ate neighboring method calls (invoked in a row) on the same
receiver as method-call pairs for the LHS or RHS of an alge-
braic abstraction. For example, the following is a generate
test called Test 1 whose line number is marked:

Test 1:

Li nkedLi st s new Li nkedList();

M/l nput m = new Myl nput (1);

s.add(m;

s.get(0);

s.size();

s.clear();

o0k wN B

Smo to represent object states &1 nput , A constructor
name is shown asi ni t >. We display the class names
before method names (e.§y! nput in Line 2) unless the
method is of the class under test. We then generate a syn-
thesized method-call pair based on the method-entry states
and method-exit states of two method executions.

Definition 3 A synthesized method-call paif f(S,
argsl), g(S, args2)), represented asg(f(S,
argsl).state, args2) is a pair of a method caf (S,
argsl) and a method calh(S , args2), where these
two method calls produce two method executiphss, S,

Traditional techniques generate this test to exercise fourd981, Sezit1, 71) @nd (g, s, S, ArgS2,Sepirz, 72), and

method-call pairs (each of which may be relevant to the
LHS or RHS of an algebraic abstractionk 1,3 >,
< 3,4 >, < 4,5 >, and< 5,6 >, where the line num-

Sezit1 @nd S’ are equivalent.

From the method executions of Test 1, we can produce
four synthesized method-call pairs in the same form of those

ber is used to represent the method call in the line. To re-¢, - method-call pairs actually produced at runtime. In ad-
duce the analysis cost, we compose method calls to genery;io \ve can use the WholeState technique [26] described

ate a larger number of synthesized method-call pairs from

the same tests; a synthesized method-call pair exhibits they; . (So, S4} and {S1, Su, Ss
same behavior as their corresponding actual method-call ’ .

pair even if the two method calls in the synthesized method-

in Section 3.2 to determine three sets of equivalent object
}. Based on the equiv-
alence among object states, we can produce the following
three additional synthesized method-call pairs from Test 1

call pair are not invoked on the same receiver, or notinarow _ 3,5 >, < 3,6> < 4,6 > and< 6,3 >. Note that

on the same receiver. We can use a synthesized method—ca”

a method execution throws an uncaught exception, we do

pair to instantiate an abstract template in the same way a4t ¢ it as the first method call in a synthesized method-

an actual method-call pair.

Before we illustrate the technique of composing method
calls to form synthesized method-call pairs, we first intro-
duce the definition of a method execution, which has been
informally referred to previously in the paper. We view the

call pair because the method-exit state might be corrupted
already.

In algebraic abstractions, the first method call in a
method-call pair is usually a method call used to construct
or modify the receiver's object state. Therefore for ab-

method calls on an object as a sequence of object state§action inference we do not produce synthesized method-

and state transitions among them. A method call transforms

the receiver from the method-entry state to the method-exit
state. We use aethod executioto characterize the run-
time information of a method call without considering the
receiver’s identity.

Definition 2 A method executio m, S,Scniry, &, Segit, I

) is a tuple of a method name, a method signaturs, a
method-entry stat®.,.,,, method arguments, a method-
exit stateS...;;, and a return value. The method execution
is produced by a method call $i(,¢,,, a).

For example, Test 1 produces the following method exe-
cutions:
(<init>, (), 0, (), So,v)
MyInput.<init>, (int), @, (1), Smo, v)
add, (Object)So, (Sm1), S1, true)
get, (int),Sl, (0), S2, Sm2 >
size, (),52, (), S3, 1)
(clear, (),Ss, (5),S4,v)
where we us@ andv to represent an empty state ancbad
return value, respectively. We usg, S, S», S3, and.Sy to
represent object stateslafnkedLi st , andsS,,q, Sy.1, and

1
2
3
4 |
5
6

call pairs whose first method call is of a state-preserving
method. For example, from Test 1, we do not produde

6> for abstraction inference. We dynamically determine
whether a method is a state-modifying method. A method
is a state-modifying method, if at least one of its previgusl
observed invocations modifies the receiver’s object state.

3.4 Statistical Inference

After we collect a method execution, we instantiate the
template variables andar gs1 in the LHS of r1, s0, sO’,
and s1 using the method execution’s method name and sig-
nature. After we generate a synthesized method-call pair,
we instantiate the template variabfesar gs1, g, args2 in
the LHS of r2-11 and s2-11 using the method names and
signatures in the synthesized method-call pair. Since the
RHS of a template is either a constant or a combination
of some variables from the LHS, we instantiate the RHS
of a template using a constant or the information from the
instantiated LHS. After we have instantiated the LHS and
RHS of an abstraction template, we get an algebraic ab-
straction.

We next use the actual variable values and state repre-Definition 6 A common propertys a statistical algebraic
sentations in the method execution or synthesized method-abstraction with a minority of violating instances. More
call pair to evaluate each generated algebraic abstractiorformally, a common property is a statistical algebraic ab-
to determine whether they satisfy or violate the abstrac- straction(a, s, v,), wheresajfva >t (50% < t < 100%,
tion. Unless the RHS of an abstraction isBttepti on andt is a user-defined threshold value close €9%).
constant, an exception-throwing method execution or syn-
thesized method-call pair in the LHS always violates the We choose30% threshold value by default in our approach.
abstraction. We consider the method call or method-call
pairs instantiating the LHS of an abstraction (calledS Definition 7 A special tesis a violating instance of a com-
instance as aninstanceof the abstractioh A satisfying mon property, or a satisfying instance of a conditional uni-
instanceis an instance that satisfies the equality relation- Versal property.
ship between LHS and RHS defined by the abstraction. A
violating instances an instance that violates the equality
relationship. We record the statistics of the abstractain s
isfactions and violations by instances of the abstraction.
particular, we maintain two counters, a satisfaction ceunt
and a violation counter, for each algebraic abstraction.

Definition 8 A common tesis a satisfying instance of a
common or universal property.

We consider a satisfying instance of a conditional universa
property to be a special test instead of a common test be-
cause the instance satisfies the condition where theresexist

Definition 4 A statistical algebraic abstractigm, s,, v,) an equality relationship between two arguments. We do not
is a tuple of of an algebraic abstractian a count of satis- select a conditional universal property’s violating imstas
fying instances,,, and a count of violating instances. (method call pairs where two argument values are different)

N) o _as special or common tests because these instances do not

In addition, we associate two abstraction instances with gyt pehavior on the RHS of an abstraction template.
each statistical abstraction: the first-encounteredfgaiis For each common property, we select the first-
instance and the first-encountered violating instance. Wegncountered violating instance as a representative of the
use these instances in test selection, which is described iNhroperty’s special tests. For each conditional universal
the next section. o o _ property, we select the first-encountered satisfying ircsta

A conditional abstractioris an abstraction instantiated 55 5 representative of the property’s special tests. For
from a conditional extension of a template. We enumerate ag3ch common or universal property, we select the first-

all possible conditional abstractions with different ccimb_ encountered satisfying instance as a representative of the
nations of same-type arguments from two method calls in 5yoperty’s common tests. Since a selected test for one prop-
a synthesized method-call pair. difference abstractiors erty might be the same as another selected test for another
an abstraction instantiated from a difference extensiom of property, we also group those properties associated wéth th
template. We transform a difference abstraction to the form g5 me test together. Developers can inspect these selected

Of LHS - RHS == const, argsl.i or args2.i. ~ tests and their associated satisfied or violated properties
To reduce overhead, if we have not encountered any in-

stance that satisfies an abstraction, we do not create er stor 4 E .
the entry of the abstraction in the memory. Therefore when Xperience
the test generation and execution terminates, each abstrac

tion in memory has at least one satisfying instance. We have developed a tool, called Sabicu, to prototype
our approach and applied the tool on different types of ap-
3.5 lIdentification of Special and Common Tests plications, especially those complex data structures. &e d

scribe our initial experience on several benchmarks of com-
After the test generation and execution terminates, we Plex data structures in this section. The full details of the
produce a list of statistical algebraic abstractions. results have been posted on our project twdthe first and
second columns of Table 1 show the names of the bench-
Definition 5 A universal propertys a statistical algebraic mark programs and the number of public methods used
abstraction(a, s, v,) Without any violating instance, that for test generation and test identification. Most of these
is, v, is 0. Aconditional universal propertis a universal classes are complex data structures that are used to evalu-
property whose underlying abstraction is a conditional ab- ate Korat [4] and later used to evaluate our previous work
straction. on redundant-test detection [27].
1We can additionally consider the method call or method-catkpa- We ran Sabicu on a Linux machine with a Pentium IV

stantiating the RHS of an abstraction (calRES instanckas a part of the 2.8 GHz processor with 1 GB of RAM running Sun’s JDK
abstraction instance, but we can always derive the RHSriostgiven an
LHS instance and the abstraction. 2http://www.csc.ncsu.edu/faculty/xie/sabicu/

Table 1. Quantitative results for identifying special and c ommon tests

potential axioms | time properties tests
benchmark meth | axioms | iter | consd | (sec) | univ | c-univ | common | generated| special| common | both
BinSearchTree 4 240 3 75 0.93 6 10 7 91 6 14 3
4 75 1.29 6 10 6 136 5 14 3
5 75 1.30 6 10 6 136 5 14 3
BinomialHeap 12 2364 3 505 | 44.37| 22 6 56 5272 45 63 1
4 505 | 115.25| 21 5 53 12440 45 61 1
5 506 | 392.97| 21 5 51 21456 42 59 1
FibonacciHeap 9 1242 3 290 2.06 15 6 72 173 51 59 8
4 290 3.67 13 6 81 341 55 63 9
5 290 7.17 12 6 80 677 52 62 7
HashMap 13 2022 3 381 | 15.33| 81 9 19 2213 15 88 5
4 381 | 61.28| 81 9 18 7533 14 92 9
5 381 | 163.21| 81 9 19 15345 15 92 10
HashSet 8 792 3 211 1.78 | 43 15 18 157 15 48 7
4 211 261 | 43 15 16 235 14 49 9
5 211 291 | 43 15 16 261 14 50 10
LinkedList 21 6048 3 848 6.82 56 20 24 729 22 81 5
4 848 | 21.62| 55 18 43 2241 39 96 8
5 848 | 74.01| 55 18 39 6777 37 96 8
SortedList 24 7827 3 939 | 1041| 56 14 28 820 23 84 6
4 939 | 32.61| 55 14 35 2521 30 88 4
5 939 | 108.35| 55 14 44 7624 33 95 4
TreeMap 15 1968 3 411 | 20.21| 84 9 20 2911 16 92 6
4 411 | 82.85| 84 9 18 9421 14 95 9
5 411 | 295.86| 84 9 17 16291 13 95 9
IntStack 4 252 3 35 0.53 5 0 2 66 2 4 2
4 35 1.06 5 0 5 201 4 6 3
5 35 2.29 5 0 5 606 4 6 3
UBStack 9 942 3 80 0.75 10 2 7 169 7 17 1
4 80 0.97 10 2 7 253 7 17 3
5 80 1.18 10 2 6 337 6 16 1

1.4.2. In particular, we ran Sabicu on the benchmarks with The sixth column shows the real time (in seconds) spent on
three different maximum iteration numbers: 3, 4, and 5 test generation, execution, and identification. We have ob-
(test-generation iterations are described in Section 3@) served that for relatively large programs the real time grow
avoid taking too long during one iteration, we set a time- by a factor of three to five when increasing the maximum
out of five minutes for each iteration; if within five minutes iteration by one. Columns 7, 8, and 9 show the number of
Sabicu could not finish generating and running tests to fully universal properties, conditional universal propertiasd
exercise the new nonequivalent object states, we terminat&common properties, respectively. The last four columns
the test generation. The fourth column shows the maxi- show the number of all generated tests, identified special
mum iteration number where the data in the same row aretests, identified common tests, and tests identified to be bot
produced. We compute the size of potential axioms to bespecial and common with respect to different properties, re
explored (all possible instantiations of the abstractem-t spectively. We have observed that a higher maximum iter-
plates by the public methods), which is shown in the third ation number (more tests) can falsify universal properties
column of Table 1. The fifth column shows the number inferred from earlier iterations but usually cannot pragluc
of axiom candidates (statistical abstractions) that oatger ~ more universal properties because the maximum iteration
type considered and kept in memory during test generationnumber of three shall be able to instantiate all possible uni
and execution. versal properties (described by our abstraction templates

We have observed that the number of axiom candidates isHowever, the number of conditional universal properties or
not very large and they often remain stable across itermtion common properties can be increased or decreased when we

increase the maximum iteration number. On one hand, aTemplate r2):
universal property can be demoted to be common proper- top(push(S, i0L).state).retval == il
ties or conditional universal propertie$On the other hand, This property shows the bounded feature of the stack im-
a property does not have a high enough number of satisfyingplementation; if a stack is unbounded, this property would
instances can be promoted to be a common property wherbe a universal property. In the special test for this prgpert
more satisfying instances are generated in a higher iterathe UBStack staté is already full; pushing an element on a
tion. Although the number of all generated tests increasesfull stack does not change the stack state. Invokisygsub-
over iterations, the number of identified special and com- sequently does not return the element that was just pushed.
mon tests remains relatively manageable; although the ab-The corresponding manually written conditional axiom is
solute number of identified tests is relatively high for lrg the following:
benchmarks, the average number of identified tests for each top(push(S, i01).state).retval ==
method is not high. if isFull(S) then top(S) else iQ

We manually inspect identified tests and their associated Another inferred common axiom for UBStack has 42
properties; we especially focus on special tests. Becduse 0satisfying count and 11 violating count (instantiated from
space limit, we will describe only several identified testsi Template r6):
this section. One common property for LinkedList has 117 isFull(push(S, i01).state).retval == isFull(S).retval
satisfying count and 3 violating count (instantiated from This property also shows the bounded feature of the stack

Template s7): implementation. In the special test for this property, tige U
removeLast(addFirst(S, mbD).state).state Stack states is almost full; pushing one more element on
== addFirst(removeLast(S).state, rhfstate it could produce a full stack. The corresponding manually

In the common test of this property, the LinkedList state written conditional axiom is the following:
S in the abstraction holds at least one element. Butin the isFull(push(S, i01).state).retval ==
special test5 holds no element. if getSize(B)>= maxSize(B)-1 then true else false

Another common property for LinkedList has 408 satis- However, we cannot infer common axioms correspond-
fying count and 42 violating count (instantiated from Tem- ing to two manually written axioms:

plate s7): pop(push(S, idL).state).retval ==
remove(removelast(S).state, AP state == if isFull(S) then pop(S) else S
removelLast(remove(S, mP).state).state and
In the common test of this property, the LinkedList stéte getSize(push(S, iQ).state).retval ==
in the abstraction holds only one element (bein@ 2). But if (getSize(S)=—= maxSize(S)) then maxSize(S)
in the special testS holds two elements (the last element else getSize(S) + 1
beingm0-2). because the corresponding statistical abstractions cmild

To investigate whether the inferred axioms are complete get gverwhelming satisfying count to be surfaced as com-
and consistent, we can compare them with algebraic specon axioms.

ifications that a developer would generate. Among the 10
benchmarks, the last two benchmarks are equipped with
algebraic specifications specified or inferred by other re-
searchers. All the three axioms inferred by Henkel and Di- o i ygstack's elements is reflected by a conditional uni-
wan [17] for IntStack (an unbounded stack storing integer versal property:

elements) are also inferred py Sabicu as universal axioms. push(push(S, i1) state, i02).state == push(S, ia).state

Stotts et al. [24] wrote 12 axioms for UBStack (a bounded [where (i0.1==i0.2)]

StaCk storing unique integer ele_mef‘ltsaight O_f_WhiCh are This property shows that pushing the same element twice
umv_ersal axioms and_ four of which are cond|t|qnal axioms. i, a3 row has the same effect of pushing the element once;
Sablcg successfully infers all the maqually WIILeN UMMVer ;¢ property is missing among the axioms written by Stotts
sal axioms and infers two common axioms that correspondet al. [24], because Stotts et al. wrote these axioms for a

to t(v)vo of ;hﬁ fqufr magually written _con(:ItloLr]gISaxmlinhs. 47 bounded stack in general instead of a bounded stack that
ne of the inferred common axiom for tack has 47 o .o unique elements.

satisfying count and 6 violating count (instantiated from . .
fying g (We also found that some universal properties are not re-

3A universal property can be demoted to a conditional one tsecee ally universally satisfiable because the generated tests ar
do_not inlfer or report a conditional universal property tisanferred by a not sufficient enough to violate them. However, we cannot
universal property ; ; ;

4Although UBStack is one of the programs used by Stotts et 4], [2 ;‘gord ;:) geget:ateh eXhau.Stlve t.eStS Wlth hlgger bTU?d [27,
Stotts et al. wrote axioms for a bounded integer stack, whimdschot] (reflected by the maximum iteration number). In future

necessarily have the feature of storing unique elements work, we plan to use universal properties or conditional uni

Overall we have found that conditional universal proper-
ties are not too many but often indicate important interac-
tions between two methods. For example, the uniqueness

versal properties to guide generating a focused set of testdgypes of abstractions than the ones predefined in our ap-
for these properties instead of a bounded exhaustive set. proach. For example, their technique can infer an abstrac-

Although we manually inspected identified tests and tion whose RHS contains a method call that is not present
found that they can expose different common and specialin the LHS. However, their inferred abstractions are alt uni
behaviors that we have not noticed before, it is still unclea versal properties, containing no common properties. Their
whether developers (code owners) would like to invest ef- tool does not support conditional abstractions. Theirrlate
fort in inspecting these identified tests for inclusion irith ~ work [19] developed an interpreter for the algebraic specifi
existing test suite. In future work, we plan to conduct case cations of a Java class, and this interpreter acts like @prot
studies to gather feedback on how developers assess thigpe implementation for the class. The abstractions iaterr
identified tests. In addition, more experiments are neededby either their earlier tool or our tool can be fed into this
to assess the fault detection capability of identified testsinterpreter for debugging algebraic specifications.

comparing to all the generated tests or those tests selected;iistical Program Analysis. Different from the preced-

using other test selection techniques. Finally, we primar- jny apstraction inference techniques, Ammons et al. infer
ily applied our approach on data structures and we plan t0p4t0co| specifications for a C application program inter-

investigate how generalizable our approach is beyond datgace py observing frequent interaction patterns of method

structures. calls [1]. Their inferred protocol specifications are eithe
common or universal properties. They identify those exe-
5 Related Work cutions that violate the inferred protocol specificatioos f

inspection. Both their and our approaches use statistical

Our work is mainly related to three lines of research: techniques to infer frequent behavior. Their approach op-
abstraction generation (also called specification infegn erates on protocol specifications, whereas our approach op-
statistical program analysis, and test selection. erates on algebraic specifications. Their later work [2kuse
Abstraction Generation. Ernst et al. [12] developed the ~COnceptanalysis to automatically group the violating exec
Daikon tool to infer operational abstractions from test ex- 10ns into highly similar clusters. They found that by exam-
ecutions. Our abstraction template technique is inspiredNng clusters instead of individual executions, devefspe
by their use of grammars in abstraction inference. Their €N debug a specification with less work. Our approach se-
abstractions are universal properties, whereas stafisic ~ |€CtS One representative test from each subdomain defined
gebraic abstractions in our approach include both univer-PY Statistical algebraic abstractions, instead of présgnt
sal and common properties. During the inference process 2!l Violating or satisfying tests to developers. This casoal
Daikon immediately throws out falsified abstractions to re- "€duce the inspection effort for a similarreason.
duce the candidate space but our approach cannot do so be- Engler et al. [11] infer bugs by statically identifying in-
cause falsified abstractions may become common proper£onsistencies from commonly observed behavior. We dy-
ties if most of all the encountered instances (includingriat n@mically identify special tests, which might expose bugs,
encountered ones) are satisfying ones. Our approach doelased on deviations from common properties. L|b!|t et al.
not eliminate a potential axiom if the so-far observed weigh [21] use remote program sampling to collect dynamic infor-
of evidence is against it (having far more violating insesc ~ Mation of a program from executions experienced by end
than satisfying instances), because further-generagas te USErs- They use statl_st|cal regression t_echnlques toni_ylent
may yield enough satisfying instances to make it a com- predicates that are highly co_rrglatgd with program fe_uiure
mon property. Keeping track of statistical algebraic astr Ir_1 our approach, we use statistical inference to identisp
tions is more tractable than keeping track of statisticarop ~ Cial tests and common tests.
ational abstractions, because the candidate space of-operdest Selection. In partition testing [22], a test input do-
tional abstractions is much larger. In addition, the infieee main is divided into subdomains based on some criteria, and
of algebraic abstractions is less sensitive to the actlaésa then we can select one or more representative inputs from
that are put and stored in a container object; therefore, oureach subdomain. Our approach is basically a type of parti-
approach would not infer some less meaningful propertiestion testing. We divide test input domain for a method-call
such as one saying that an integer of 0 is inserted into a datgair or method call into subdomains based on each inferred
structure all the time or most of the time. statistical algebraic abstraction: satisfying tests aiotht

Henkel and Diwan developed a tool to infer algebraic ing tests.
specifications for a Java class [17]. Their tool generates a When a priori specifications are provided for a program,
large number of terms, which are method sequences, andChang and Richardson use specification coverage criteria to
evaluates these terms to find equations, which are then genselect a candidate set of test cases that exercise newsaspect
eralized to axioms. Since their technique does not rely onof the specification [5]. Given algebraic specificationsia pr
abstraction templates, their technique is able to inferemor ori, several testing tools [3, 6,9, 13, 20] generate andcsele

a set of tests to exercise these specifications. Unlike theséAcknowledgments

black-box approaches, our approach does not require spec-

ifications a priori. Indeed, after specifications are wnifte We thank Darko Marinov and the anonymous review-

a specification-based testing approach can be fully auto-ers for their valuable feedback on an earlier version of this
mated, whereas our approach involves human inspection obaper. This work was supported in part by the National

the selected tests. We plan to investigate investment-trade Science Foundation under grant ITR 0086003 and the High

offs of these approaches and the combination of two ap-Dependability Computing Program from NASA Ames co-
proaches, because human-written specifications might nofoperative agreement NCC-2-1298.

be complete to capture different behaviors of a program.
Harder et al’s operational difference approach [16], References
Hangal and Lam’s DIDUCE tool [15], and the operational
violation approach in our previous work [29] select tests [1] G. Ammons, R. Bodik, and J. R. Larus. Mining specifica-
based on a common rationale: selecting a test if the test tions. InProc. 29th ACM SIGPLAN-SIGACT Symposium on

exercises a certain program behavior that is not exhibited Principles of Programming Languagegsages 4-16, 2002.

by previously executed tests. The approach in this paper [2] G. Ammons, D. Mandelin, R. Bodik, and J. R. Larus. De-
is based on a different rationale: selecting a test as a spe- bugging temporal specifications with concept analysis. In
cial test if the test exercises a certain program behavair th Proc. ACM SIGPLAN Conference on Programming Lan-

is not exhibited by most other tests; selecting a test as a __ guage Design and Implementatiqgrages 182-195, 2003.
common test if the test exercises a certain program behav- 131 S' BZmOt'fM' Cll Gaugfl_el,t{:\nd B. l\t/Iharre. S?jftw?(rse;jmtmg
ior that is exhibited by all or most other tests. Our approach ased on format specriications. a theory and a '

. i, Eng. J, 6(6):387—-405, 1991.
is less sensitive to the order of the executed tests thar thes 4] C. Boyapati, S. Khurshid, and D. Marinov. Korat: auto-

previous approaches. In addition, these three previous ap- = mated testing based on Java predicatesPre. Interna-

proaches operates on inferred operational abstracti@js [1 tional Symposium on Software Testing and Anajysigies

whereas our approach operates on inferred algebraic speci- 123-133, 2002.

fications. [5] J. Chang and D. J. Richardson. Structural specification-
Dickinson et al. [8] use clustering analysis to partition based testing: automated support and experimental evalu-

executions based on structural profiles, and use sampling g“o;‘-é”hproci_nu E‘?EC/ESED%IES 285‘d39|_2’¢99C% |
techniques to select executions from clusters for observa- (6] H- Y. Chen, T. H. Tse, F. T. Chan, and T. Y. Chen. " In
tions. Their experimental results show that failures often black and white: an integrated approach to class-level tes-

h | fi h led by cl vsi ing of object-oriented programsACM Trans. Softw. Eng.
ave unusual profiles that are revealed by cluster analysis. Methodol, 7(3):250-295, 1998,

Although our approach shares a similar rationale with their 7] c. Csallner and Y. Smaragdakis. JCrasher: an automatic ro-
approach, our approach operates on black-box algebraic ab- bustness tester for Jav&oftware: Practice and Experience
stractions instead of structural behavior. 34:1025-1050, 2004.
[8] W. Dickinson, D. Leon, and A. Podgurski. Pursuing failure:
the distribution of program failures in a profile space. In

6 Conclusion Proc. 8th ESEC/FSEages 246255, 2001.
[9] R.-K. Doong and P. G. Frankl. The ASTOOT approach to
We have proposed a new approach for automatically testing object-oriented program#CM Trans. Softw. Eng.
identifying special or common tests out of a large number Methodol, 3(2):101-130, 1994.

M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns

of automatically generated tests. The approach is based orft0l . o - o
in property specifications for finite-state verification. In

statistically true (not necessarily universally true) gram Proc. 21st International Conference on Software Engineer-
properties, called statistical algebraic abstractions.haie ing bages 411-420. 1999
developed a set of abstraction templates, which we can in-119] p. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelr.

stantiate to form commonly seen axioms in algebraic speci- Bugs as deviant behavior: a general approach to inferring
fications. Based on the predefined abstraction templates, we errors in systems code. Proc. 18th ACM symposium on
perform a statistical inference on collected method caits a Operating Systems Principlgsages 57—72, 2001.
method-call pairs to obtain statistical algebraic absivas. [12] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
We have developed a way to characterize special or com- Dynamically discovering likely program invariants to sup-

port program evolutionlEEE Trans. Softw. Eng27(2):99—

mon tests based on statistical algebraic abstractions. We
123, 2001.

sample and select special tests and common tests togethe[rlg] J. Gannon, P. McMullin, and R. Hamlet. Data abstraction

with their associated abstractions for inspection. Ouiahi implement;ition, specific,ation, and testingCM Trans. Pro- ’
experience has shown that those tests and properties iden- gram. Lang. Syst3(3):211-223, 1981.

tified by our approach exposed many common and special[14] J. V. Guttag and J. J. Horning. The algebraic specification of
behaviors that deserve developers’ attention. abstract data typedé\cta Informatica 10:27-52, 1978.

(15]

(16]

(17]

(18]

(19]

[20]

(21]

[22]

(23]

(24]

(25]

[26]

[27]

(28]

[29]

(30]

S. Hangal and M. S. Lam. Tracking down software bugs
using automatic anomaly detection. Pnoc. 24th Interna-
tional Conference on Software Engineeripgges 291-301,
2002.

M. Harder, J. Mellen, and M. D. Ernst. Improving test suites
via operational abstraction. Proc. 25th International Con-
ference on Software Engineerimgages 60-71, 2003.

J. Henkel and A. Diwan. Discovering algebraic specifica-
tions from Java classes. Rroc. 17th European Conference
on Object-Oriented Programmingages 431-456, 2003.

J. Henkel and A. Diwan. Case study: Debugging a discov-
ered specification for java.util. ArrayList by using algebraic
interpretation. Technical Report CU-CS-970-04, University
of Colorado at Boulder, 2004.

J. Henkel and A. Diwan. A tool for writing and debugging
algebraic specifications. Proc. 26th International Confer-
ence on Software Engineeringages 449-458, 2004.

M. Hughes and D. Stotts. Daistish: systematic algebraic
testing for oo programs in the presence of side-effects. In
Proc. International Symposium on Software Testing and
Analysis pages 53—-61, 1996.

B. Liblit, A. Aiken, A. X. Zheng, and M. I|. Jordan. Bug
isolation via remote program sampling. Pmoc. ACM SIG-
PLAN Conference on Programming Language Design and
Implementationpages 141-154, 2003.

G. J. Myers. Art of Software TestingJohn Wiley & Sons,
Inc., 1979.

OMG. Unified Modeling Language Specification (v1.5),
2003.

D. Stotts, M. Lindsey, and A. Antley. An informal formal
method for systematic JUnit test case generationPrbr.
2002 XP/Agile Universgages 131-143, 2002.

Sun Microsystems. Java 2 Platform, Standard Edi-
tion, v 1.4.2, API Specification. Online documentation,
Nov. 2003. http://java. sun.conlj 2se/ 1. 4. 2/
docs/ api /.

T. Xie, D. Marinov, and D. Notkin. Improving generation of
object-oriented test suites by avoiding redundant tests. Tech-
nical Report UW-CSE-04-01-05, University of Washington
Department of Computer Science and Engineering, Seattle,
WA, Jan. 2004.

T. Xie, D. Marinov, and D. Notkin. Rostra: A framework
for detecting redundant object-oriented unit tests Ptac.
19th IEEE International Conference on Automated Software
Engineering pages 196—-205, Sept. 2004.

T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra:
A framework for generating object-oriented unit tests using
symbolic execution. IfProc. 11th International Conference
on Tools and Algorithms for the Construction and Analysis
of Systemgpages 365-381, April 2005.

T. Xie and D. Notkin. Tool-assisted unit test selection based
on operational violations. IRroc. 18th IEEE International
Conference on Automated Software Engineerpages 40—
48, 2003.

T. Xie and D. Notkin. Automatic extraction of object-
oriented observer abstractions from unit-test executions. In
Proc. 6th International Conference on Formal Engineering
Methods Nov. 2004.

