Automatically Identifying
Special and Common Unit Tests
for Object-Oriented Programs

Tao Xie David Notkin

North Carolina State University University of Washington
Raleigh, NC Seattle, WA



Automated Testing in the Absence of Specs

1 Specifications help improve automated testing but they
often don’t exist in practice
JML+JUnit [CL ECOOP 02], Korat [BKM ISSTA 02], ...

1 Without specs, test oracles are not generated for
correctness checking
iInfeasible to manually inspect
Insufficient to rely only on uncaught exceptions

1 Solution: infer specs from test executions and select
tests against inferred specs
select tests that violate inferred specs [ASE 03]
Identify special and common tests



Automated Testing in the Absence of Specs

1 Specifications help improve automated testing but they
often don’t exist in practice
JML+JUnit [CL ECOOP 02], Korat [BKM ISSTA 02], ...

1 Without specs, test oracles are not generated for
correctness checking
iInfeasible to manually inspect
Insufficient to rely only on uncaught exceptions

1 Solution: infer specs from test executions and select
tests against inferred specs

Benefits of spec-based testing can be obtained without
the pain of writing the specifications!



Synopsis

1 Common and special tests

common tests & common behavior
e.g., hon-full and non-empty bounded stack

special tests a special behavior
e.g., full or empty bounded stack
1 Characterize common/special behavior with
Inferred statistical algebraic abstractions



Synopsis

1 Common and special tests

common tests & common behavior
e.g., hon-full and non-empty bounded stack

special tests a special behavior
e.g., full or empty bounded stack
1 Characterize common/special behavior with
Inferred statistical algebraic abstractions

algebraic abstractions: in the form of axioms e.g.,
top(push(S, e).state).retval == e

r:;ﬁ"av‘;; Oglsﬁt receiver object
P state of t op

(after push)

return value
of t op




Synopsis

1 Common and special tests

common tests & common behavior
e.g., hon-full and non-empty bounded stack

special tests a special behavior
e.g., full or empty bounded stack
1 Characterize common/special behavior with
Inferred statistical algebraic abstractions

algebraic abstractions: in the form of axioms e.g.,
top(push(S, e).state).retval == e

statistical abstractions: e.g., 6 violating tests and 47
satisfying tests,
1 universal abstractions [HD ECOOP 03][ECGN TSE 01]



Special and Common Test

ldentification

Class === ———=
|
bytecode > Test | M ethod-call
(a] o . —|’_—> ..
‘ \ generation | | composition

___________

Statistical >
properties

Abstraction
templates

=

—_——— — — — — — — —

Statistical
Inference

Test
identification

8 8

L/ g Special Common
x | tests tests
-



Sample Abstraction Templates

1 (S, argsl).state 1= S
renoveFirst(S).state =S Li nkedLi st
exanpl e

1 (S, argsl).retval == const
add(S, e).retval == true

1 g(f(S, argsl).state, args2).retval == argsl.|
| ndexOf (add(S, 1, el).state, e2).retval == i



Statistics of Abstraction Templates

13 templates for method-exit states
e.g., f(S, argsl).state I= S
11 templates for method returns
e.g., f(S, argsl).retval == const
Conditional extension to 20 templates
e.g.,contains(add(S, el).state, e2).retval ==
true where (el == e2)
Difference extension to 11 templates

e.g., sl ze(add(S, e).state).retval ==
(size(S).retval + 1)

Our templates instantiate all 146 but 2 axioms inferred
by Henkel&Diwan [EcooP 03] for Ar rayLi st



Special and Common Test

ldentification

Class === ———=
|
bytecode > Test | M ethod-call
(a] o . —|’_—> ..
‘ \ generation | | composition

___________

Statistical >
properties

Abstraction
templates

=

—_——— — — — — — — —

Statistical
Inference

Test
identification

8 8

L/ g Special Common
x | tests tests
-



Test Generation

1 Generate method arguments with JCrasher [cs
SPE 04]

1 Breadth-first exploration of receiver-object

states with method calls with Rostra [ASE 04]
new Li nkedLi st ()

-

renoveFirst ()
addFirst (1)
addFirst (2)



Test Generation

1 Generate method arguments with JCrasher [cs
SPE 04]

1 Breadth-first exploration of receiver-object

states with method calls with Rostra [ASE 04]
new Li nkedLi st ()

<:::i::jgi:>rennveFirst()
addFirsiS;y/// addFi rst (2)

Ilteration 1

renoveFirst ()
addFirst (1)
addFi rst (2)



Test Generation

1 Generate method arguments with JCrasher [cs
SPE 04]

1 Breadth-first exploration of receiver-object

states with method calls with Rostra [ASE 04]
teration 2 new Li nkedLi st ()

/:::>rennveFirst()
renoveFirst ()
addFirsiS;y/// addFi rst (2)
renoveFirst ()

@_@ - addFlrSt(l)
addFi rst (2)

addFirst (2)

addFirst (1)



Special and Common Test

ldentification

Class === ———=
|
bytecode > Test | M ethod-call
(a] o . —|’_—> . .
‘ \ generation | | composition

___________

Statistical >
properties

Abstraction
templates

=

—_——— — — — — — — —

Statistical
Inference

Test
identification

8 8

L/ g Special Common
x | tests tests
-



Method-Call Composition

1 Goal: compose method-call pair to instantiate

LHS or RHS of an abstraction template
1 template LHS:
g(f(S, argsl).state, args2).state

1 abstraction LHS:
renoveFirst (addFirst(S, e).state).state

1 abstraction instance LHS:

removeFi r st (addFi rst (new Li nkedList(), 1).state).state

new Li nkedLi st ()
renmoveFi rst ()

addFirst (1



Special and Common Test

ldentification

Class === ———=
|
bytecode > Test | M ethod-call
(a] o . —|’_—> ..
‘ \ generation | | composition

___________

Statistical >
properties

Abstraction
templates

=

—_——— — — — — — — —

Statistical
Inference

Test
identification

8 8

L/ g Special Common
x | tests tests
-



Statistical Inference

1 Each statistical abstraction i1s associated with
#satisfying instances and #violating instances

template: g(f(S, argsl).state, args2).state == f(g(S, args2).state, argsl).state

abstraction:

renovelast (addFirst(S, e).state).state
== addFirst(renovelLast(S).state, e).state

117 satisfying instances
3 violating instances

new Li nkedLi st ()

renovelast () Q removelast ()
addFi riy/

When S is an empty Li nkedLi st,
the abstraction is violated.



Special and Common Test

ldentification

Class === ———=
|
bytecode > Test | M ethod-call
(a] o . —|’_—> ..
‘ \ generation | | composition

___________

Statistical >
properties

Abstraction
templates

=

—_——— — — — — — — —

Statistical
Inference

Test
identification

8 8

L/ g Special Common
x | tests tests
-



Test Identification

1 Universal property
no violating instances

1 Common property
a minority of violating instances (<20% by default)

1 Special test
a violating instance of a common property
a satisfying instance of a conditional universal property

unigue bounded stack

push(push(S, el).state, e2).state = push(S, e2).state
where (el ==e2)

1 Common test
a satisfying instance of a common property or universal property



Experience

1 Developed the Sabicu tool for the approach

1 Applied it on 10 ADT (data structures) with test
generation of 5 iterations

1 Inferred 3 axioms for int stack (inferred by
Henkel&Diwan [EcooP 03))

1 Inferred 10 of 12 manually written axioms for
unique bounded stack [SLA XP 02]

all 8 universal axioms
2 of 4 conditional axioms

one Iinferred conditional axiom is missing from
manually written ones.




Some Statistics

properties tests
class M ' univ | cond- |comm | gen |special | comm
univ

BinarySearchTree | 4 6 10 6 136 5 14
BinomialHeap 12 21 5 51| 21456 42 59
FibonacciHeap 9 12 6 80 677 52 62
HashMap 13 81 9 19| 15345 15 92
HashSet 8 43 15 16 261 14 50
LinkedList 21 55 18 39| 6777 37 96
SortedList 24 55 14 44| 7624 33 95
TreeMap 15 84 9 17| 16291 13 95
IntStack 4 5 0 5 606 4 6
UBStack 9 10 2 6 337 6 16




Related Work

1 Daikon by Ernst et al [TSE 01]
Infer axiomatic specs (universal properties)

1 Tool by Henkel&Diwan [EcooP 03]
Infer axioms (universal properties)
1 Strauss by Ammons et al. [poPL 02]
Infer probabilistic FSMs from call sequences

1 Static analysis tool by Engler et al. [sospP 01]

Infer common call sequence patterns and deviations
from them.

1 Test selection based on specs, structural info...



Conclusion

Specs help improve automated testing but they
often don’t exist in practice

Automatically generated test inputs don’t have
test oracles

Our new approach infers statistical properties and
uses them to identify special and common tests

In future work, we plan to investigate
fault detection capabillity of selected tests

static/dynamic verification tools to refute inferred
properties



Questions?



One Common Property

renove(renovelLast(S).state, nl).state
= renovelLast (renove(S, nl).state).state

408 satisfying instances
42 violating instances

reaneLast()

renove( 2)

renovelast ( <::::::>

renove( 2)



