
Automatically Identifying
Special and Common Unit Tests

for Object-Oriented Programs

Tao Xie David Notkin

North Carolina State University
Raleigh, NC

University of Washington
Seattle, WA

Automated Testing in the Absence of Specs

l Specifications help improve automated testing but they
often don’t exist in practice
l JML+JUnit [CL ECOOP 02], Korat [BKM ISSTA 02], …

l Without specs, test oracles are not generated for
correctness checking
l infeasible to manually inspect
l Insufficient to rely only on uncaught exceptions

l Solution: infer specs from test executions and select
tests against inferred specs
l select tests that violate inferred specs [ASE 03]
l identify special and common tests

Automated Testing in the Absence of Specs

l Specifications help improve automated testing but they
often don’t exist in practice
l JML+JUnit [CL ECOOP 02], Korat [BKM ISSTA 02], …

l Without specs, test oracles are not generated for
correctness checking
l infeasible to manually inspect
l Insufficient to rely only on uncaught exceptions

l Solution: infer specs from test executions and select
tests against inferred specs
l select tests that violate inferred specs [ASE 03]
l identify special and common tests
Benefits of spec-based testing can be obtained without

the pain of writing the specifications!

Synopsis
l Common and special tests
l common tests à common behavior

e.g., non-full and non-empty bounded stack

l special tests à special behavior
e.g., full or empty bounded stack

l Characterize common/special behavior with
inferred statistical algebraic abstractions

Synopsis
l Common and special tests
l common tests à common behavior

e.g., non-full and non-empty bounded stack

l special tests à special behavior
e.g., full or empty bounded stack

l Characterize common/special behavior with
inferred statistical algebraic abstractions
l algebraic abstractions: in the form of axioms e.g.,
top(push(S, e).state).retval == e

receiver object
state of push receiver object

state of top
(after push)

return value
of top

Synopsis
l Common and special tests
l common tests à common behavior

e.g., non-full and non-empty bounded stack

l special tests à special behavior
e.g., full or empty bounded stack

l Characterize common/special behavior with
inferred statistical algebraic abstractions
l algebraic abstractions: in the form of axioms e.g.,
top(push(S, e).state).retval == e

l statistical abstractions: e.g., 6 violating tests and 47
satisfying tests,
l ≠ universal abstractions [HD ECOOP 03][ECGN TSE 01]

Special and Common Test
Identification

Test
generation

Statistical
properties

Class
bytecode Method-call

composition
Statistical
inference

Abstraction
templates

Test
identification

Special
tests

Common
tests

Sample Abstraction Templates

l f(S, args1).state != S
l removeFirst(S).state != S

l f(S, args1).retval == const
l add(S, e).retval == true

l g(f(S, args1).state, args2).retval == args1.i
l indexOf(add(S, i, e1).state, e2).retval == i

LinkedList
example

Statistics of Abstraction Templates

l 13 templates for method-exit states
l e.g., f(S, args1).state != S

l 11 templates for method returns
l e.g., f(S, args1).retval == const

l Conditional extension to 20 templates
l e.g., contains(add(S, e1).state, e2).retval ==

true where (e1 == e2)
l Difference extension to 11 templates
l e.g., size(add(S, e).state).retval ==

(size(S).retval + 1)

l Our templates instantiate all 146 but 2 axioms inferred
by Henkel&Diwan [ECOOP 03] for ArrayList

Special and Common Test
Identification

Test
generation

Statistical
properties

Class
bytecode Method-call

composition
Statistical
inference

Abstraction
templates

Test
identification

Special
tests

Common
tests

Test Generation
l Generate method arguments with JCrasher [CS

SPE 04]

l Breadth-first exploration of receiver-object
states with method calls with Rostra [ASE 04]

new LinkedList()

removeFirst()
addFirst(1)
addFirst(2)

Test Generation
l Generate method arguments with JCrasher [CS

SPE 04]

l Breadth-first exploration of receiver-object
states with method calls with Rostra [ASE 04]

1 2

addFirst(1) addFirst(2)

new LinkedList()
removeFirst()

removeFirst()

Iteration 1

addFirst(1)
addFirst(2)

Test Generation
l Generate method arguments with JCrasher [CS

SPE 04]

l Breadth-first exploration of receiver-object
states with method calls with Rostra [ASE 04]

1 2

new LinkedList()
removeFirst()

removeFirst()

addFirst(2)

2 1

addFirst(1)

1 1
…

removeFirst()

Iteration 2

addFirst(1)
addFirst(2)

addFirst(1) addFirst(2)

Special and Common Test
Identification

Test
generation

Statistical
properties

Class
bytecode Method-call

composition
Statistical
inference

Abstraction
templates

Test
identification

Special
tests

Common
tests

Method-Call Composition
l Goal: compose method-call pair to instantiate

LHS or RHS of an abstraction template
l template LHS:

g(f(S, args1).state, args2).state
l abstraction LHS:

removeFirst(addFirst(S, e).state).state
l abstraction instance LHS:
removeFirst(addFirst(new LinkedList(), 1).state).state

1

addFirst(1)

new LinkedList()
removeFirst()

Special and Common Test
Identification

Test
generation

Statistical
properties

Class
bytecode Method-call

composition
Statistical
inference

Abstraction
templates

Test
identification

Special
tests

Common
tests

Statistical Inference
l Each statistical abstraction is associated with

#satisfying instances and #violating instances
l template: g(f(S, args1).state, args2).state == f(g(S, args2).state, args1).state
l abstraction:

removeLast(addFirst(S, e).state).state
== addFirst(removeLast(S).state, e).state

117 satisfying instances
3 violating instances

1

addFirst(1)

new LinkedList()
removeLast()removeLast()

When S is an empty LinkedList,
the abstraction is violated.

Special and Common Test
Identification

Test
generation

Statistical
properties

Class
bytecode Method-call

composition
Statistical
inference

Abstraction
templates

Test
identification

Special
tests

Common
tests

Test Identification

l Universal property
l no violating instances

l Common property
l a minority of violating instances (<20% by default)

l Special test
l a violating instance of a common property
l a satisfying instance of a conditional universal property

unique bounded stack
push(push(S, e1).state, e2).state = push(S, e2).state

where (e1 ==e2)
l Common test
l a satisfying instance of a common property or universal property

Experience
l Developed the Sabicu tool for the approach
l Applied it on 10 ADT (data structures) with test

generation of 5 iterations
l Inferred 3 axioms for int stack (inferred by

Henkel&Diwan [ECOOP 03])
l Inferred 10 of 12 manually written axioms for

unique bounded stack [SLA XP 02]
l all 8 universal axioms
l 2 of 4 conditional axioms
l one inferred conditional axiom is missing from

manually written ones.

Some Statistics

646065054IntStack

FibonacciHeap

HashSet

UBStack

TreeMap

LinkedList

BinomialHeap

16633762109

9513162911798415
9533762444145524SortedList
9637677739185521
50142611615438
9215153451998113HashMap
6252677806129
5942214565152112
14513661064BinarySearchTree

commspecialgencommcond-
univ

univmclass
testsproperties

Related Work

l Daikon by Ernst et al [TSE 01]

l infer axiomatic specs (universal properties)
l Tool by Henkel&Diwan [ECOOP 03]

l infer axioms (universal properties)
l Strauss by Ammons et al. [POPL 02]

l infer probabilistic FSMs from call sequences
l Static analysis tool by Engler et al. [SOSP 01]

l infer common call sequence patterns and deviations
from them.

l Test selection based on specs, structural info…

Conclusion
l Specs help improve automated testing but they

often don’t exist in practice
l Automatically generated test inputs don’t have

test oracles
l Our new approach infers statistical properties and

uses them to identify special and common tests

l In future work, we plan to investigate
l fault detection capability of selected tests
l static/dynamic verification tools to refute inferred

properties

Questions?

One Common Property

remove(removeLast(S).state, m1).state
= removeLast(remove(S, m1).state).state

408 satisfying instances
42 violating instances

1

removeLast()
1 2

remove(2)
remove(2)

removeLast()

