Information Sciences 302 (2015) 70-82

Contents lists available at ScienceDirect
INFORMATION

SCIENCES

s ad Comprr
ko

Information Sciences

journal homepage: www.elsevier.com/locate/ins o

Detecting high-quality posts in community question answering

sites

@ CrossMark

Yuan Yao?, Hanghang Tong", Tao Xie€, Leman Akoglu ¢, Feng Xu®*, Jian Lu*®

AState Key Laboratory for Novel Software Technology, Nanjing University, China

b Arizona State University, USA

€ University of Illinois at Urbana-Champaign, USA

dStony Brook University, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 3 August 2014

Received in revised form 15 November 2014
Accepted 9 December 2014

Available online 12 January 2015

Keywords:

CQA

Question and answer
Voting correlation
Voting prediction

Community question answering (CQA) has become a new paradigm for seeking and shar-
ing information. In CQA sites, users can ask and answer questions, and provide feedback
(e.g., by voting or commenting) to these questions/answers. In this article, we propose
the early detection of high-quality CQA questions/answers. Such detection can help dis-
cover a high-impact question that would be widely recognized by the users in these CQA
sites, as well as identify a useful answer that would gain much positive feedback from site
users. In particular, we view the post quality from the perspective of the voting outcome.
First, our key intuition is that the voting score of an answer is strongly positively correlated
with that of its question, and we verify such correlation in two real CQA data sets. Second,
armed with the verified correlation, we propose a family of algorithms to jointly detecting
the high-quality questions and answers soon after they are posted in the CQA sites. We
conduct extensive experimental evaluations to demonstrate the effectiveness and effi-
ciency of our approaches. Overall, our algorithms can outperform the best competitor in
prediction performance, while enjoying linear scalability with respect to the total number
of posts.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Community question answering (CQA) has become a new paradigm for seeking and sharing information. For example,
millions of users now use CQA sites to search for solutions for their problems [15,19]. Example CQA sites include those gen-
eral ones such as Yahoo! Answers' and Baidu Knows,? and those domain-specific ones like Stack Overflow® and Mathematics

Stack Exchange.”

One major difference between CQA and traditional QA is from the volunteer efforts of site users. In addition to posting
questions/answers, most of the existing CQA sites allow the site users to vote (e.g., upvote and downvote in Stack Overflow)
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Fig. 1. The strong voting correlation between questions and their best answers in SO dataset. Pearson correlation coefficient r=0.6665 with
p-value < 0.0001. See Fig. 2 for more results.

for these questions/answers. On one hand, the voting mechanism as well as its reputation system provides the main incen-
tives for tight involvement and productive competition of the whole community. On the other hand, the outcome of such
voting, e.g., the difference between the number of the upvotes and downvotes that a question/answer receives from the site
users (referred to as ‘voting score’), provides a good indicator of the intrinsic value of a question/answer. To some extent, the
voting score of a question/answer resembles the number of the citations that a research paper receives in the scientific pub-
lication domain. It reflects the net number of users who have a positive attitude toward the paper.

In this article, we view the post quality from the perspective of the voting outcome, and propose the early detection of
high-quality CQA questions/answers. To date, a lot of efforts have been made to study the quality prediction problem in
CQA sites. However, most of them treat questions and answers separately (see Section 6 for a review).

We conjecture that there exists correlation between the voting score of a question and that of its associated answer. Intu-
itively, an interesting question might obtain more attention from potential answerers and thus has a better chance to receive
high-score answers. On the other hand, it might be very difficult for a low-score question to attract a high-score answer due
to, e.g., its poor expression in language, or lack of interestingness in topic. Starting from this conjecture, we study two real
CQA sites, i.e., Stack Overflow (SO), and Mathematics Stack Exchange (Math). Our key finding is that the voting score of an
answer is indeed strongly positively correlated with that of its question (see Fig. 1). Such correlation structure consistently
exists on both sites.

Armed with this observation, we propose a family of co-prediction algorithms (CoPs) to jointly predict the voting scores of
questions and answers. In particular, we aim at identifying the potentially high-score posts soon after they are posted in the
CQA sites. We conduct extensive experimental evaluations to demonstrate the effectiveness and efficiency of our
approaches. Overall, our joint prediction approaches achieve up to 15.2% net precision improvement for answer prediction
over the best competitor in one of the data sets we studied. In addition, the proposed CoPs algorithms enable us to predict the
voting outcome of an answer before it actually appears on the site. Finally, our approaches scale linearly wrt the total number
of questions and answers.

The main contributions of this paper include:

e Empirical Findings. We empirically study the voting scores of posts in CQA sites. To the best of our knowledge, we are the
first to quantitatively validate the correlation between the voting scores of questions and those of their associated answers
on two independent real data sets.

o Algorithms and Evaluations. We propose a family of co-prediction algorithms (CoPs) to jointly predict the voting scores of
questions and answers. We further perform extensive experimental evaluations on two real data sets to demonstrate the
effectiveness and efficiency of our approaches.

The rest of the paper is organized as follows. Section 2 presents the empirical studies about the voting scores of questions/
answers. Sections 3 and 4 present the problem definitions and the proposed algorithms for the joint voting prediction problem,
respectively. Section 5 presents the experimental results. Section 6 reviews related work, and Section 7 concludes the paper.

2. Empirical study

In this section, we perform an empirical study of the voting scores of questions and answers in SO (Stack Overflow) and
Math (Mathematics Stack Exchange) data sets. They are popular CQA sites for programming and math, respectively. For both
data sets, they are officially published and publicly available.” The statistics of the two data sets are summarized in Table 1.

We first study the overall correlation between the voting scores of questions and those of their answers. For a given ques-
tion, there might be multiple answers. Thus, we report both the highest (i.e., the best answer) and the average voting scores

5 http://blog.stackoverflow.com/category/cc-wiki-dump/.
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Table 1
The statistics of SO and Math datasets.
Data Questions Answers Users Votes
SO 1,966,272 4,282,570 756,695 14,056,000
Math 16,638 32,876 12,526 202,932
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Fig. 2. The strong voting correlation between questions and their answers in SO and Math. r stands for the Pearson correlation coefficient. The maximum
answer score vs. question score for SO data is in Fig. 1.

of its answers. The results are shown in Figs. 1 and 2, where the Pearson correlation coefficient r is also computed. As we can
see from the figures, the scores of questions and those of their answers are strongly correlated in both data sets.

Next, we study the voting correlation between questions and their answers over time. Here, we compute the correlation
between the scores of questions and the average scores of their answers, and show the result over several time snapshots on
SO data in Fig. 3. As we can see, the strong positive voting correlation consistently exists across all the time snapshots - even
at the very early stage (e.g., r > 0.5). This result indicates that it is doable to employ the early voting correlation to predict the
future voting scores of questions/answers.

To gain a deeper understanding of the voting correlation, we further divide questions and answers into several bins based
on their scores. For example, questions and answers in SO are divided into 11 bins (i.e., Q1,Q2,...,Q11, and A1,A2,...,A11)
where the score s in each bin is in the range of s < 0,5=0,s=1,5s=2,5=3,5=4,5=5,6<5<10,11 <5 <50,51 <s<
100, s > 100, respectively. Based on the divided bins, we next study the distribution of answers over each question bin. That
is, for questions in bin Qi, we show the percentage of associated answers over the 11 answer bins in Fig. 4.

Several interesting observations can be found from the figures. First, we can see that the heat-maps of the two data sets
exhibit a very similar pattern, despite the fact that they are about two totally different subjects (programming language vs.
math). Second (Zone-1), the majority of questions and answers are in the vicinity of the diagonal, which indicates the posi-
tive correlation between question scores and answer scores. Third (Zone-2), the color in the bottom-right corner is very dark,
which verifies that it is rare to have high-score answers when the question is of low score. Fourth (Zone-3), in the top-left
corner, some high-score questions may have low-score answers. This is probably due to the implicit competition among dif-
ferent answers, i.e., one of the multiple answers for a question attracts most of the community attention (e.g., 96.6% of the
questions in this zone have at least one answer whose score is larger than 5 in SO data). Finally (Zone-4), most high-score
answers are in the top-right corner of the figure, indicating that their questions are also of high score.

Based on these results, we conclude that a strong positive correlation of voting scores between questions and their
answers does exist in both SO and Math data sets.

3. Joint voting prediction: problem definitions

In this section, we present the problem definition for voting prediction of questions/answers in CQA sites.

Let us first introduce the notations that we use throughout the paper in Table 2. Following conventions, we use bold cap-
ital letters for matrices, and bold lower case letters for vectors. For example, we use X, to denote the feature matrix for ques-
tions where each row contains the feature vector for the corresponding question. In this work, we adopt some commonly
used features for CQA sites such as the number of comments and the length of the post (See the experiment section for
details on feature extraction). We use the ny x n, matrix M to denote the association matrix of questions and answers where
M(i,j) = 1 indicates that the jth answer belongs to the ith question. Similar to Matlab, we also denote the ith row of matrix M
as M(i,:), and the transpose of a matrix with a prime (i.e, M' = M").

Based on the above notations, the prediction problem for questions could be defined as:
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Fig. 3. The voting correlation between questions and their answers over time. The y-axis represents the Pearson correlation coefficient r, and the x-axis
represents the time after the question is posted. For all r, p-value < 0.0001.
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Fig. 4. The heat-maps of voting score distribution over the divided bins (best view in color). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 2

Symbols.
Symbol Definition and description
Xq, Xa The feature matrix for questions and answers
Xz, Xa The feature matrix with transferred features
Vg Va The final voting score of questions and answers
Bq: Ba The coefficients for the features
M The association matrix of questions and answers
M The row-normalized matrix of M
M The transpose of matrix M
M(i, j) The element at the ith row and jth column of M
M(i,:) The ith row of matrix M
g, Na The number of questions and answers
m The maximum iteration number
14 The threshold to terminate the iteration

Problem 1 (The voting prediction of questions).

Given: the question feature matrix X,, and the vector of question voting scores y,;
Find: the final voting score of a new question.

An analogous definition for answer voting prediction can be defined, and we omit the definition for brevity. For a given
question/answer, its final voting score is defined as the difference between the number of the upvotes and downvotes that a
question/answer receives from the site users. Yet, the individual upvote/downvote could span a long period. For instance,
some questions/answers might still receive upvotes/downvotes one year after they were posted on the site. Our goal is to
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predict the final voting scores of questions/answers in a short period after they were posted. Therefore, we can only use the
available information in this short period. For example, if we need to predict the final voting in one hour, the feature matrices
X, and X, should contain only the information that is available in the first hour after the question is posted.

One of our key findings in the previous section is the strong positive voting correlation between questions and their
answers. To leverage such correlation, we take the association matrix M into account, and jointly predict the voting scores
of questions/answers as:

Problem 2 (The joint voting prediction of question and answer).
Given: the question feature matrix X, the answer feature matrix Xg, the vector of question voting scores y,, the vector of

answer voting scores y,, and the association matrix M;
Find: the final voting scores of a new question and its answers.

4. Joint voting prediction: proposed approaches

In this section, we present our algorithms to solve Problem 2. That is, we want to jointly predict the final voting scores for
questions and answers. After we introduce some preliminaries, we start with the intuitions and basic strategies behind our
algorithms. Then, we present and analyze our co-prediction algorithms (CoPs).

4.1. Preliminaries: separate methods

Here, we first introduce the separate method that could be used for the question voting prediction in Problem 1. Similar
method can be applied for answer prediction. Specially, the problem can be formulated as the optimization problem:

. n . , . 2
Lo=min " g(Xy(i,:)Bq, ¥o(0) + 2181 (1)
q N —
question prediction regularization

where g indicates the loss function, and 2||/}q|\§ is used to avoid over-fitting. In this formulation, various loss functions could
be used. For example, if we choose square loss for g, the problem becomes the standard ridge regression problem. Then, the
formulation can be solved by the closed-form solution: g, = (XX, + AI)’lxqu. Once the coefficient vector g, is learnt, it can

be used to predict the voting score for a new question. For example, in the above case, the predicted voting score for a new
question is simply the inner product between its feature vector and the coefficient vector g,.

4.2. Intuitions and basic strategies

Next, we present the basic strategies that we explore to leverage the observed voting correlation. There are two basic
strategies behind our CoPs algorithms. We summarize them together with the intuitions behind each strategy as follows.

S1 Feature expansion: The first strategy considers to expand the feature space. Because the scores of questions and those
of their answers are correlated, the features for question prediction are potentially useful for answer prediction. As a result,
we transfer the question features to M'X; and add these features for answer voting prediction. Namely, we use
Xa = [Xa, M'X] to represent the new feature matrix for answers. Similarly, we transfer the answer features to MX, and incor-
porate these features with X, as X; = [Xq, MX,]. We use the row-normalized M matrix in the latter case. In other words, for a
question with multiple answers, we take the average of the features from these answers.

S2 Voting consistency: The second strategy takes into account the consistency in the label space. That is, for a pair of
question and answer, we could directly maximize the voting correlation or minimize the voting difference between them.
In this work, we try to minimize the difference between the predicted score of a question and that of its answer. For instance,
we can require that y, ~ My,, where we constrain that the predicted question score is close to the predicted average score of
its answers.

4.3. The general procedure
Based on the above two strategies (i.e., feature expansion and voting consistency), we propose a new optimization for-

mulation for the joint voting prediction problem (i.e., Problem 2). That is, after transferring the features, we add an additional
voting consistency constraint into the following optimization formulation:

.1 ng . . 1 ng . . ng . co
£ = min— S g(Xq (i, ). Yo () + - .zlg(Xa(L:)ﬁmya(l))JrnQE " R(Xq (i, ) By M, ) XaBe) + 21182 + 118l 2)
q Nt e’

Bo.ba g 0

" T . - N regularization
question prediction answer prediction voting consistency

(2)
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where h indicates the loss function of the additional voting consistency term, and # is a parameter to control the importance
of this term. We also normalize the three terms (question prediction, answer prediction, and voting consistency) in the
objective function so that the contribution of each question/answer is balanced.

The optimization framework in Eq. (2) is pretty general and many loss functions for g and h can be plugged in. In this
work, we consider square loss, sigmoid loss, and logistic loss. Three loss functions are shown in Eq. (3).

gsquare(xvy) = (X _y)Z
1

1
Slogistic (X, Y) = _yIOgH-Tp(—x)_ (1-y)log(1 - 11 exp(—x))
1
Esigmoid (X, Y) = T+ exp(xy) (3)

The rationality of these loss functions is as follows. Since our goal is to identify high-score posts, the difference between the
real voting score and the estimated voting score (square loss), and the consistency between the real voting label and the esti-
mated label (logistic loss and sigmoid loss) are both important for our task. To be specific, we divide the question/answer
posts into two classes: high-score posts (labeled as +1) and low-score posts (labeled as 0 for logistic loss, and —1 for square
loss and sigmoid loss).

We have five variants from Eq. (2) by setting g and h based on the three loss functions, as shown in Table 3.

Algorithm 1. Algorithm skeleton for CoPs

Input: X;, X4,¥,, Y, and M
Output: g, and g,

1: X « [Xq. MX];
: Xg — [XG,M’Xq};
: initialize g, and f,;
: while not convergent do
Bq — B — 755 by Eq. (2);
Ba — Ba _’)}g_/ﬁ by Eq. (2);
: end while
: return f; and f,;

In order to solve the optimization problem in Eq. (2), our key observation is that for each of five cases in Table 3, the gra-
dient for each term in Eq. (2) exists. This naturally leads to a gradient-descent type of iterative procedure to solve Eq. (2), as
shown in Algorithm 1. As we can see, after initializing g, and g,, we alternatively update these two coefficient vectors iter-
atively. We stop the iteration when the L, norm between successive estimates of both g, and g, is below the threshold ¢, or
when the maximum iteration number m is reached. For steps 5-6, we can adopt either the batch gradient descent method
with a learning step 7y, or the Newton’s method by substituting y with the Hessian matrix of Eq. (2). The details of steps 5-6
with various loss functions are presented in the appendix for completeness.

4.4. A special case: CoPs-QQ

For the optimization problem in Eq. (2), if we set both g and h as square loss, we can have the closed-form solution for
CoPs-QQ:

n+1 y/ 1 W' N\ -1 1
<ﬂq>: %Xng]—l-),l —équXa <n]qquq>

(4)
IXMX: LX.X- -+ LX. M MX- iy
Ba —LXMXg  LXX; + 2L XM MX + /1 LX.Y,
Table 3
The five variants derived from Eq. (2).
Algorithm g h
CoPs-QQ Square loss Square loss
CoPs-QG Square loss Sigmoid loss
CoPs-GG Sigmoid loss Sigmoid loss
CoPs-GQ Sigmoid loss Square loss

CoPs-LQ Logistic loss Square loss
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4.5. Algorithm analysis

Here, we briefly analyze the effectiveness and efficiency of our algorithms for the optimization problem in Eq. (2).
The effectiveness of the proposed algorithms can be summarized in Lemma 1, which states that both Algorithm 1 and Eq.
(4) can find a local minimum solution.

Lemma 1 (Effectiveness of CoPs). Algorithm 1 finds a local minimum for the optimization problem in Eq. (2). In the special case,
Eq. (4) also finds a local minimum.

Proof. See the appendix. O
The time complexity and space complexity of the proposed CoPs are summarized in Lemmas 2 and 3, respectively. Basi-
cally, the lemmas state that CoPs scales linearly wrt the total number of questions and answers in both time and space.

Lemma 2 (Time efficiency of CoPs). By storing matrix M in sparse matrix format, Algorithm 1 requires O((ng + ng)dm) time
with gradient descend method and O((ngq + nq)dm + d>m) time with Newton’s method, where d is the total number of features for

questions and answers, and m is the maximum iteration number. Specifically, the algorithm in Eq. (4) requires O((nq + na)d2 + d3)
time.

Proof. See the appendix. O

Lemma 3 (Space efficiency of CoPs). By storing matrix M in sparse matrix format, Algorithm 1 requires O((n, + n,)d) space with
gradient descend method and O((ng + ng)d + dz) space with Newton’s method, where d is the total number of features for questions
and answers. Specifically, the algorithm in Eq. (4) requires O((ng + nq)d + d?) space.

Proof. See the appendix. O

5. Experiments

In this section, we present the experimental evaluations. The experiments are designed to answer the following
questions:

e Effectiveness: How accurate are the proposed approaches for identifying the potentially high-score questions/answers?
o Efficiency: How do the proposed approaches scale?

5.1. Experimental setup

Here, our primary goal is to evaluate to what extent the voting correlation between questions and their answers could
improve the prediction performance. We adopt some commonly used features in the literature, which are summarized in
Table 4. For example, we use questioners’/answerers’ reputation because it could reflect their ability of posting/answering
a high-score question; we use the number of previous questions/answers because it relates to the experiences of the corre-
sponding questioner/answerer; we also use the length of question/answer body and that of question title. For these features,
we can extract them at the moment when the question/answer is posted. For others, we need to choose a short time window
by the end of which the voting score is predicted. For example, we use the number of answers received in the time window
for question voting prediction, and the number of comments received in the time window for both question and answer pre-
diction. In this work, we fix the time window as one hour. Notice that in this paper, we have deliberately focused on these
contextual features and bypassed the content of questions/answers. This is mainly due to the following two reasons. First, as
we will show in the next subsection, these contextual features already give a reasonably high precision (e.g., near 88% pre-
cision for identifying high-score questions on SO data). Second, according to the complexity analysis (Lemma 2), both the
existing and the proposed prediction algorithms could be cubic in the dimensionality of the features (e.g., the close-form
solution for CoPs-QQ and the separate linear regression, Algorithm 1 and separate logistic regression with Newton’s method,
etc). Thus, bypassing the content-based features also helps to keep the algorithms scalable.

We formulate the task of quality prediction as a binary classification task, where we want to identify the small amount of
high-quality questions/answers. As mentioned in introduction, we use the voting score of questions and answers as the qual-
ity indicator. When such voting results are not available, we can use other metrics such as question utility [25] and long-
lasting value [3] as the quality indicator; or we may even require some human annotators to manually label the quality
of posts (see Section 6 for more details). In this work, we define the posts whose score is no less than 10 as high-score posts
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Table 4
Selected features for the voting prediction of questions/answers.

Feature description for questions

Questioner’s reputation at question creation time

# of questioner’s previous questions at question creation time
The length of the question body

The length of the question title

# of answers received in one hour after question creation

# of comments received in one hour after question creation

Feature description for answers

Answerer’s reputation at answer creation time

# of answerer’s previous answers at answer creation time
The length of the question answer

# of comments received in one hour after question creation

in both SO and Math data sets. This results in 3.4% and 8.7% high-score posts in SO and Math, respectively. In other words,
both data sets are highly skewed in terms of high-score posts vs. low-score ones. We report the precision of successfully
identified high-score posts as the evaluation metric. For the readers who are interested in other evaluation metrics (e.g., clas-
sification accuracy in a balanced setting), please refer to our tech-report [31]. For each data set, we randomly choose 10%
questions and their associated answers as the training set, and use the rest as the test set. Unless otherwise stated, for all

the results reported here, we fix m = 2000, ¢ = 10°%, and y = 0.1. For the two parameters # and /. in our methods, we exper-
imentally found that our methods are robust with these two parameters in a large range. For the results that we report in this

paper, we fix = 0.1 and 2 =107,
5.2. Effectiveness results

(A) The Effectiveness Comparisons of CoPs. For effectiveness, we first compare our methods with several existing methods,
including the separate Linear regression method, the separate Logistic regression method, the CQA-MR method [5], and the
CoCQA method [13]. The results on SO and Math are shown in Figs. 5 and 6, respectively. In the figures, we report the pre-
cision at 100 as well as the average precision over 10, 50, 100, 150, ..., 400. Since we randomly select the training data, we
repeat the random selection 5 times and report the average results of these 5 experiments.

As we can see, overall, our CoPs methods outperform all the compared methods on both data sets. For example, the aver-
age precision of answer prediction by CoPs-QQ is 15.2% and 1.0% higher than the best competitor on SO and Math, respec-
tively. For question prediction, all the methods can achieve more than 80% average precision on SO; on Math, CoPs-QQ is
1.9% higher than the best competitor wrt average prediction precision. Notice that all the improvements are reported in
terms of the absolute precision scores. In general, these results confirm that our joint prediction method is effective to predict
the voting scores of questions/answers. Specially, our method is better than CoCQA. The reason is that CoCQA trains two clas-
sifiers for both question and answer prediction, but still ignores the correlation between question scores and answer scores.
Our method is also better than the CQA-MR method, although both CQA-MR and our method aim to improve classification
performance by joint prediction. There might be two major reasons that contribute to such a performance gap between CoPs
and CQA-MR. First, while CQA-MR employs voting correlation through the label space (by propagating the labels through
user-question-answer graph), our CoPs does so through both label space and feature space. Second, our CoPs finds a local
minimum for Eq. (2); in contrast, CQA-MR alternates between propagating labels and maximizing the corresponding condi-
tional likelihood, and therefore it is not clear what overall cost function CQA-MR aims to optimize and whether or not the
overall procedure converges.

0.7 T T 1 0.9
Linear Il Linear
0.6k CoPs | mllLogistic | CoPs | gl Logistic
{—1—\ I CQA-MR 0.88 {—k—\ [ CQA-MR
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{—A—\ [JcCoPs-QQ CoPs [ coPs-QQ
0.4l [ JCoPs-QGf| 086 [ 1CoPs-QG
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Fig. 5. The prediction results (precision) of CoPs on the SO data. Overall, our methods are better than the compared methods especially for answer
prediction.
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Fig. 6. The prediction results (precision) of CoPs on the Math data. For both question and answer prediction, most of our methods outperform the compared
methods.

(B) The Effectiveness of CoPs at Creation Time. Next, it would be useful if we can predict the voting of the upcoming answers
immediately after the questions are posted. For example, we could provide feedback for the questioner if his/her question is
unlikely to attract good answers. Our method can enable such prediction by employing the voting correlation over the fea-
tures that are available at the question’s creation time (i.e., before any answers actually show up). The result is shown in
Fig. 7. The separate method cannot work as there are no answers available at the question’s creation time. Therefore, we
use random guess as the baseline method here. As we can see from the figures, our methods can achieve much higher pre-
cision scores (up to 16.2% average precision) than the baseline method for predicting the voting of upcoming answers.

5.3. Efficiency results

Finally, we study the efficiency of CoPs by recording the wall-clock time in the training step. We vary the size of the train-
ing set, and plot the training time against the total number of questions and answers in the training set. The results of our
five variants (i.e., CoPs-QQ, CoPs-QG,CoPs-GG, CoPs-GQ, and CoPs-LQ) are shown in Fig. 8. As we can see, all our five methods
scale linearly wrt the size of the training set, which is consistent to the algorithm analysis in Lemma 2. Notice that the CoPs-
QQ method is much faster than the other four methods because we could derive the closed-form solution for it. Based on
these efficiency results, together with the effectiveness results, we recommend CoPs-QQ in practice.

6. Related work

In this section, we briefly review related work.

Measurement of Questions/Answers: There are several types of measurement for questions and answers in CQA. The
first one focuses on the quality [11,9,27] of question/answer posts. In this branch of work, human annotators are usually
needed to manually label the quality of posts. The second type of measurement is the so-called questioner satisfaction
[16,23,1,29]. This measurement is defined on answers, and it reflects which answer the questioner will probably choose
as the accepted answer. The third measurement question utility [25] is for questions, and it is defined as the likelihood that
a question is repeatedly asked by people. Recently, Anderson et al. propose to predict the long-lasting value (i.e., the page-
views) [3] of a question and its answers. This measurement views question and its associated answers as an unit.
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0.25 Cops | HE I
Emcops-qa|| %%° [ CoPs-QG
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Average Precision Precision@100 Average Precision Precision@100
(a) SO data (b) Math data

Fig. 7. The prediction results (precision) of CoPs for upcoming answers at the creation time of questions. The Baseline method stands for the random guess.
Our methods are much better than the Baseline method.
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Fig. 8. The wall-clock time of our methods. Our methods scale linearly wrt the total number of questions and answers (ng + ng).

Although closely related, the voting score studied in this paper bears some subtle differences from the above measures.
Compared to the quality measure, voting score directly measures how many users find the post beneficial to them. Com-
pared to question utility and questioner satisfaction, voting score can measure both questions and answers. Let us use sci-
entific publication as an analogy to illustrate the difference between voting score and long-lasting value. The number of
pageviews of a post can be seen as the number of views/downloads of a research paper, while the voting score can be seen
as the number of citations of a paper. Voting score is also studied by several other researchers. For instance, Ravi et al. [21]
combine voting score and pageviews to define question quality, Nasehi et al. [18] investigate the high-score code examples
in Stack Overflow, and Saha et al. [22] study the causes of the unanswered questions.

Prediction Methods: Here, we review the methods used for predicting a certain type of measurement. Most of existing
work treats the prediction of questions or answers as two separate problems. For example, Li et al. [12] explore the inter-
action of users and topics to predict question quality, which is defined as the combination of user attention, answer attempts
and the arrival speed of the best answer. Jeon et al. [11] and Suryanto et al. [27] evaluate the usefulness of answer quality and
incorporate it to improve retrieval performance. Our work is different from the above work at the methodology level: instead
of treating the prediction as two separate problems, we observe the positive voting correlation between questions and their
answers, and propose to jointly predict the voting scores of questions/answers by leveraging such correlation.

Some existing work focuses on the quality prediction of both questions and answers. For example, Agichtein et al. [2]
develop a graph-based model to capture the relationships among users; Li et al. [13] adopt the co-training approach to
employ both question features and answer features. However, at the methodology level, these two methods still treat ques-
tion prediction and answer prediction as separate problems. Bian et al. [5] propose to propagate the labels through a user-
question-answer graph, so as to tackle the sparsity problem where only a small number of questions/answers are labeled. In
contrast, we formulate an optimization problem to penalize the differences between question labels and answer labels.

Empirical Studies: There are many empirical studies on CQA sites. For example, Treude et al. [30] investigate Stack Over-
flow to identify which types of questions are frequently asked and answered by the programmers. Tausczik and Pennebaker
[28] study the correlation between user reputation and post score in MathOverflow. Parnin et al. [20] study whether Stack
Overflow can be used as a substitute of APl documentation. Barua et al. [4] analyze the text content of the posts in Stack
Overflow to discover the current hot topics that software developers are discussing. Mamykina et al. [17] study the success-
ful design choices of Stack Overflow so that the lessons can be reused for other applications. Different from the existing
empirical studies, our focus is to quantitatively verify the voting correlation between questions and answers, and we further
leverage such correlation to boost the prediction performance.

Other Related Work: There are several pieces of interesting work that are remotely related to our work. Gottipati et al.
[8] focus on how to find relevant answers in a software forum when there could be many answers for a single question. Liu
et al. [15] propose the problem of CQA site searcher satisfaction, i.e., whether or not the answer in a CQA site satisfies the
information searcher using the search engines. Shtok et al. [24] attempt to answer certain new questions by existing
answers. Correa and Sureka [6,7] study the closed questions in Stack Overflow. Sung et al. [26] aim to detect the potentially
contributive users from recently-joined users. The question routing problem (e.g., how to route the right question to the right
answerer) is also an active research area [32,14,10].

7. Conclusions
In this paper, we study the relationship between the voting scores of questions and answers in CQA sites. We start with an

empirical study on two CQA datasets where we observe a strong positive voting correlation between questions and their
associated answers. Armed with this observation, we next propose a family of algorithms to jointly predict the voting scores
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of questions and answers. We conduct extensive experimental evaluations to demonstrate the effectiveness and efficiency.
To be specific, our joint prediction approaches achieve up to 15.2% net precision improvement over the best competitor in
one of the data sets we studied. In addition, the proposed CoPs algorithms enable us to predict the voting outcome of an
answer before it actually appears on the site. Finally, our approaches scale linearly wrt the total number of questions and
answers. Future work includes investigating the impact of the question/answer content on such correlation structure as well
as its dynamics.
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Appendix A. Algorithm details

Here, we present the detailed steps in Algorithm 1.
The core of the algorithm is to iteratively update the coefficient vectors (steps 5-6):

oL
ﬂq - ﬁquaiﬁq
oL
Ba — ﬁa_ya_ (1)

a

where 7 is the learning step size, and the partial derivatives can be generally computed as:
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Notice that we have five variants based on the combination of loss functions, and the partial derivatives for each variants
can be computed as follows:

{ e — 2(Xq(i,:)By — Vg (i) Xq(i,2)’
P 2(Xa(j,:)Ba — Yali))Xal, )

OB logistic __ 1 N
(/’;qt - 1+exp( yq( )>Xq( )
O logistic __ 1 . N7V
0I§ut - 1+exp( Gk ya0)>xu07 )

Bsigmoid _ exp(Xg (i.:) Bg¥q (i) ’
{ 9By T (1 exp(X (i) BV () qu() ai:?)

O8sigmoid __ ____ exp(Xa(i:)Ba¥Ya (i)
A AU UDY

%T= Xy ), — M0, ) XaBo) Xy i, o)
dh;?;;are = 2(Xg(i,:)B, — M(i,:)XaBo) X;M(i, )

Mgmoia _ DXy (1)hgMiXaba) 0
%q T (rexp(Xq (1) M(i)Xafa) M )Xo Xa 0,:)

Slg'mﬂld _ exp(X; ( ;)M ( )Xaba) ( )ﬁ ( )/
q

9%a T (1 rexp(Xq (198 M(i)Xafa))



Y. Yao et al./Information Sciences 302 (2015) 70-82 81

As mentioned before, we could also adopt the Newton’s method to solve Eq. (2). In this method, we only need to substi-
tute y with the inverse of the second-order partial derivatives. We give the computations of the second-order partial deriv-
atives for each variant as follows:
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A.1. Proofs for lemmas
Next, we present the proofs for the lemmas.

Proof Sketch for Lemma 1. In each iteration, the algorithm takes steps to the negative of the gradient. Based on the
alternating procedure, we have that Algorithm 1 finds a local minimum for the optimization problem in Eq. (2).

For the special case of CoPs-QQ, Eq. (4) can be derived by setting the first-order partial derivatives as zeros. .

Proof of Lemma 2. In Algorithm 1, the time cost for steps 1-2 is O((nq + n,)d) because we store M in its sparse format and
there are totally n, non-zero elements in M. Step 3 needs O(d) time. For steps 5-6, we first compute MX, which needs O(n,d)
time. By doing so, we can compute each equation in Eq. (.3) in O(d) time, and thus computing Eq. (.2) with gradient method
requires O((nq + ng)d) time. If we use Newton’s method to update Eq. (.1), we further need to compute the inverse of the
second-order partial derivatives in Eq. (.4). This would cost us O(d3) time. Overall, computing steps 5-6 requires
O((ng + ng)d) time with gradient method, and O((nq + ng)d + d®) time with Newton’s method. Therefore, Algorithm 1

requires O((nq + ng)dm) time with gradient descend method and O((ng + ny)dm + d®m) time with Newton’s method, which
completes the proof. O

Proof of Lemma 3. In Algorithm 1, we need O((nq + nq)d) space for input. The space cost for steps 1-2 is also O((ngq + nq)d).
We need O(d) space for step 3. For steps 5-6, we need O(n,d) space to store MX;. Then, each equation in Eq. (.3) requires O(d)

space. For the Newton’s method in Eq. (.4), we need additional O(dz) space to store the Hessian matrix. Among the different
iterations of the algorithm, we can reuse the space from the previous iteration. Therefore, the overall space cost is

0((n, + n,)d) with gradient descend method and O((n, + n,)d + d*) with Newton’s method, which completes the proof. O
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