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To survive and stand out from the fierce market competition nowadays, it is critical for app developers to know (desirably

ahead of time) whether, how well, and why their apps would be adopted by users. Ideally, the adoption of an app could be

predicted by factors that can be controlled by app developers in the development process, and factors that app developers

are able to take actions on and improve according to the predictions. To this end, this paper proposes PRADO, an approach

to measuring various aspects of user adoption, including app download and installation, uninstallation, and user ratings.

PRADO employs advanced machine learning algorithms to predict user adoption based on how these metrics correlate to a

comprehensive taxonomy of 108 developer-controllable features of the app. To evaluate PRADO, we use 9,824 free apps along

with their behavioral data from 12.57 million Android users, demonstrating that user adoption of a new app can be accurately

predicted. We also derive insights on which factors are statistically significant to user adoption, and suggest what kinds of

actions can be possibly performed by developers in practice.
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1 INTRODUCTION

In the past few years, the fast growing “app economy” has been a major phenomenon in the ubiquitous and
mobile computing community. It was reported that the yearly revenue from the Apple AppStore has reached
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over 20 billion USD as of 20151, and the aggregated revenue from all app stores is expected to reach 70 billion by
2017 [53]. These app stores continuously attract millions of developers to release and distribute their apps. Many
industry leaders have either started or revived from an app.

Some “Killer Apps,” such as Facebook, Snapchat, and WhatsApp, are inherently more popular than others partly
because they were born and published on the app stores. However, not every single app is fortunate enough to
be a successful one in such an app-centric software-distribution model. Due to the extremely fierce competitions,
very few apps are fortunate enough to obtain a large volume of users, receive many positive reviews, or be ranked
highly out of similar apps. Indeed, the success of an app may be assessed differently from the perspectives of
business owners, product managers, domain experts, and end users [17, 18]. But, for most app developers, the
preceding metrics are the very ones that indicate the extent to which an app is appreciated by its users, or how
the app is “adopted” by the users. Intuitively, a well-adopted app is expected to own more downloads/users, win
higher ratings/rankings, or attract more use rather than being uninstalled. Developers are eager to know how
their apps perform in terms of these metrics, or in other words, whether, how well, and even why their apps
are being adopted by users. More importantly, they desire to know such information ahead of time – as early as
possible in the app’s lifecycle, or even before the app is released – so that they can address potential risks or
flaws and thus win better user adoption.
Such a desire points to the need of predicting the potential adoption of apps as early as possible, even before

the app is actually released and distributed; the purpose of the work in this paper aims to satisfy such need.
On one hand, there are indeed too many factors to affect the adoption of innovations along with factors that
mix technical, economic, social, psychological, and political dimensions [45], making the prediction task very
challenging. On the other hand, not all factors are practical to app developers: there are only certain dimensions
that can be controllable by developers. Our goal is to find these predictive and actionable factors and thus to help
developers with informative suggestions.

In this paper, we propose a novel approach, namely PRADO, to predicting Android apps’ adoption. The core
of the PRADO approach is to establish a prediction model by learning the correlations between various “developer-
controllable” properties extracted from app information (including code-level metrics, textual descriptions, and so
on, as elaborated in Section 5) and the adoption behavior collected from large-scale real Android users, including
the activities of download and installation, uninstallation, and user rating of apps. For a new app that is to be
released or is just released in app stores, this model can predict how well it is going to be adopted by users. In
addition, PRADO can identify app properties that are statistically significant to influence user adoption, and thus
provide insights on what to improve in the app-development process.
PRADO is practically useful for at least two purposes:

• Efficient Release Planning. Based on the predicted user adoption of their apps, developers can better
organize and schedule release-planning activities in advance. For example, knowing the potential number
of downloads, developers can efficiently estimate the possible workloads and thus better allocate their
server-side resources. Such knowledge could be particularly useful for small teams or individual developers
who have very limited budget to maintain cloud resources. Meanwhile, developers can optimize manpower
and/or marketing resources such as ads investments to increase revenue. Combining the predicted and
the observed feedback from the users, developers can more efficiently prioritize their schedule of release
planning.
• Improved App Quality and Ranking. The prediction of user ratings or abandonment can help app
developers to identify potential problems/bugs of their apps, and to suggest some insights on how to
make their apps more successful. As a result, developers can pay more attention to those properties that
are highly correlated to user adoption and take some possible actions in advance. For example, they can

1http://www.computerworld.com/article/3019716/apple-ios/apples-cut-of-2015-app-store-revenue-tops-6b.html.
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prioritize or better allocate resources to perform A/B tests to validate whether these features really matter.
By doing so, developers can make their apps win higher ranks in app stores and obtain more users as well
as revenue. Additionally, developers can also learn more knowledge about advantages and shortcomings of
their competitors.

To evaluate PRADO, we use a large-scale data set that includes the collected download and installation,
uninstallation, and rating behaviors of 12.57 million Android users over 9,824 free Android apps. To the best of
our knowledge, our work is the first to study the real user behavioral data at such a large scale and to be able
to understand how app adoption is affected by developer-controllable properties. Empirical results confirm the
effectiveness of PRADO for predicting app adoption.
It is important to state that PRADO does not claim necessary causal relationship between the app properties

and the adoption of apps. Instead, it identifies those developer-controllable features that are only statistically
correlated with the success of an app. Indeed, correlation analysis is the first step to derive the reasonable casual
association. Some of PRADO-identified features may be exactly causal to an app’s success, and the developers
could perform A/B tests to validate which of them are, before the developers can actually increase user adoption
by optimizing these features.
This paper makes the following major contributions:

• The app-adoption measurement model that consists of three indicators derived from actual user behaviors,
i.e., the number of downloads, user ratings, and uninstallation ratio. In particular, our new uninstallation-
ratio indicator is complementary to the other two and enables a more comprehensive measurement of the
app adoption.
• The prediction model that is built upon advanced machine learning algorithms to identify the correlation
between extensive app properties and user behavioral data at scale. Such a model can accurately predict the
adoption of a new app/version before it is released in app stores and identify some statistically significant
properties that can affect app adoption.
• The empirical study that is conducted over thousands of apps along with millions of actual users of these
apps. To the best of our knowledge, such a scale is the largest to date and thus can well preserve the
effectiveness and confidence of our proposed approach.

The rest of this paper is organized as follows. Section 2 presents related work. Section 3 illustrates the
overall workflow of the PRADO approach. Section 4 introduces the data set and formulates the user adoption
indicators. Section 5 presents the taxonomy of selected features from various dimensions. Section 6 presents
how PRADO predicts user adoption of a new app by learning the correlations between selected features and
user behaviors. Section 7 illustrates the statistically significant features that can possibly affect user adoption.
Section 8 demonstrates the performance of PRADO on one particular app category in comparison to that on all
apps. Section 9 presents the limitations and threats to validity. Section 10 concludes the paper.

2 RELATED WORK

In the community of software engineering, determining the factors that influence the successful development
and deployment outcomes of software systems has been a major research focus for years. There have been many
factors reported to have an effect on the success of software development [17, 18, 22, 27, 36, 37]. Such factors can
be traced and leveraged to help predict app success [8]. In this paper, we measure the success of an Android app
by how it is liked or disliked by users. More specifically, we focus on how the users adopt an app, i.e., whether
the users decide to download or abandon an app, or give high rating of this app.

Undoubtedly, from the perspective of developers, software quality is always the major factor to determine the
success of software systems and applications. Researchers have already developed various metrics to measure
software quality. As an Android app essentially complies to Object-Oriented programming paradigms, the
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traditional OO metrics [9, 14] can be applied. Considering the variety of app-centric ecosystem, numerous efforts
have been proposed from different perspectives for evaluating app success [10, 13, 16, 23, 24]. Bavota et al. [10]
investigated how the fault- and change-proneness of APIs used by Android apps are related to their success,
which is estimated as the average rating of those apps provided by their users. Coulton et al. [16] conducted
a case study on game apps created for the WidSets platform and found that popular features such as chatting
can increase the popularity of an app. Guerrouj et al. [23] studied the impact of app churn on the user ratings
of 154 free apps and found that a higher app churn can lead to lower user ratings. Chen et al. [12] proposed
the AR-Miner to discover information from raw user reviews that are the most “informative” for developers to
improve their apps. Tian et al. [51] examined the relationships between various features of an app and its ratings.
They used only 28 factors to characterize the differences between high-rated apps and low-rated apps.

Learning the lessons from these preceding results, in this paper we also investigate app information from the
app developers’ perspective, the information that characterizes how they implement and release their apps. In
practice, PRADO can substantially improve the state-of-the-art research in two folds.
First, there are various indicators of more successful app adoption, such as a higher number of downloads

and higher user ratings. However, these two metrics inherently have some limitations. Users may download
an app without using or uninstalling it. In addition, “fake” downloads can be performed by some automatic
programs [30, 34]. On the other hand, user ratings may suffer from significant biases, e.g., ratings for some
apps are largely sparse [30, 32]. To complement these indicators for more comprehensive measurement of app
adoption, PRADO introduces a new signal from a uniquely different perspective: the actual user management
behaviors of apps, i.e., uninstallation ratio of apps. Such a signal exactly indicates the users’ positive/negative
attitudes towards an app, and can be quite complementary to the number of downloads and user ratings. In fact,
the uninstallation information is typically quite private and cannot be publicly accessed. In collaboration with a
leading Android app store in China, called Wandoujia,2 our research has gained the access to such actual user
behavioral data [30] to advance the state of the art in this valuable direction.
Second, PRADO enables us to derive the correlations between every single indicator and an extensive set

of features extracted from app information, including the size of apps, complexity of apps, dependency of
system/third-party libraries, complexity of user interfaces, requirements of user/device, etc. Based on advanced
machine learning algorithms, PRADO can accurately predict the user adoption of a new app, and thus can make
it possible for app developers to estimate their release-planning efforts. In addition, PRADO identifies some
statistically significant features that can possibly affect user adoption. Although these correlation-analysis results
do not necessarily reflect the underlying causality, they are still meaningful to provide valuable insights and
guidelines for developers, who can gain deeper understanding on improving their apps.

Indeed, predicting the user adoption of apps is quite crucial for the success on the app-store centric ecosystem.
Similar to the search-engine optimization (SEO), various industrial solutions focus on the app-store optimization
(ASO), which aims to improve the visibility of an app on app stores. For example, AppAnnie [8] provides analytics
services to estimate the downloads, usage, user distribution, and user retention of apps, so as to inform the
developers in terms of product, marketing, and investment strategies. The core idea of AppAnnie is to trace the
user-behavior data by deploying a stand-alone app. Similar to AppAnnie, PRADO derives the estimation of user
adoption based on learning the correlations between behaviors from large-scale actual user behavioral data and
developer-controllable properties. However, other than estimation and prediction, PRADO also aims to infer
some insights that can help developers understand the factors impacting the user adoption and further optimize
their apps.

2Wandoujia now owns over 300 million users and 1 million apps.
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Fig. 1. Approach overview of PRADO.

3 PRADO: IN A NUTSHELL

To address the urgent needs of predicting user adoption of apps, PRADO is proposed to predict apps’ adoption
based on the factors that are related to the implementation and releasing activities of the apps. The essential goal
of PRADO is to learn and infer the correlation between various indicators of user adoption and features that can be

controlled by developers.
The general workflow of PRADO is illustrated in Figure 1. In general, PRADO consists of four major phases:

• User-Behavior Data Collection. In PRADO, the user adoption of an app is measured by three indicators
of user behaviors, including the user rating, the number of downloads, and the uninstallation ratio. Such
behavioral data can reflect the users’ attitude towards an app. The first two indicators can be publicly
collected from app stores, while the uninstallation ratio is quite private and has not been well studied. As
introduced later, we are fortunate to collect uninstallation information from the leading Wandoujia app
store in China, and thus able to measure the user adoption in a more comprehensive way.
• Feature Formulation from App Properties. PRADO aims to correlate the user adoption with the
“developer-controllable” properties of an app. To this end, we establish a taxonomy that comprehensively
conveys extensive features (described in Section 5) about the implementation and releasing of an app.
• Model Derivation by Correlation Analysis. PRADO then derives a model that correlates the developer-
controllable features with the indicators that are computed from the user behavioral data. Such a model is
trained using various state-of-the-art machine learning algorithms (i.e., Ridge, Lasso, and Random Forest),
which can also discover features that have significant influences on specific indicators.
• User Adoption Prediction. Finally, for a new app or a new app version that will be released on the
app store, PRADO extracts the features of this app and runs the derived model to predict the preceding
user-adoption indicators of the app/version.

In a sense, PRADO relies on two inputs at scale: (1) the user behavioral data indicating an app’s adoption; (2)
the features derived from app properties that can be controlled by the app’s developers. PRADO performs the
correlation analysis with machine learning algorithms offline, and generates two outputs: (1) the predicted model
for user adoption; (2) the statistically significant features that can possibly affect the user adoption. We then
introduce these two outputs in Sections 4 and 5, respectively.
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4 INDICATORS OF USER-ADOPTION

Usually, whether a user adopts an app can be simply determined by whether or not he/she has downloaded the
app, or he/she shows positive/negative attitudes towards this app. Therefore, how well an app is adopted in
general can be simply measured by the Number of Downloads or the Rating of this app. In practice, these two
indicators can be crawled from the public app stores. However, it is argued that these two indicators can have
some inherent limitations. Downloading an app does not necessarily indicate that a user really needs, likes, or
dislikes the app, as the user is likely to leave the app on device but never launches it any longer. The rating of an
app can indeed indicate the users’ positive or negative attitudes towards the app. However, it was reported that
the rating of some apps can be quite sparse and even unavailable. In addition, similar to other online systems,
app stores can also possibly experience some fake ratings that are not reliable for being used.

Hence, in addition to these two indicators, we introduce a new indicator, namely the Uninstallation-Installation
ratio (abbreviated as the U-I Ratio), indicating the extent that the user “exactly” abandons the app. Although the
U-I Ratio is not a perfect indicator, it indicates the information about users abandoning an app; such information
cannot be inferred from the Number of Downloads or Rating. Additionally, such an indicator is not as sparse as the
Rating. It captures the users’ downloading and uninstalling behaviors and reflects their possible attitudes towards
the app. Hence, we can synthesize these indicators to more comprehensively understand the user adoption of the
app.
Indeed, the uninstallation behavior is usually unavailable on most app stores. However, we are fortunate to

access such data to enable the study. We next describe the data set.

4.1 Data Set

In our previous work [31, 35], we have presented the user behavioral data from Wandoujia, a leading Android
app store that had over 300 million users and hosted over 1 million free apps as of 20143. This behavioral data
contain the management activities of downloading, updating, and uninstalling an app.
In this paper, we use a 5-month data set (May 1st to September 30th, 2014) of app-management activities

recorded by Wandoujia.4 To make sure that our analysis result is robust enough, we select only the apps that
have at least 50 unique active users (identified by the “anonymized” device IDs). The selected 32,141 apps with
user management logs constitute the original data set. We then crawl these apps’ corresponding .apk files and
webpage profiles from the Wandoujia website, decompile the APK files, and extract the features and indicators of
the apps. Finally, we successfully obtain the complete information of 9,824 apps, which we denote as the final
data set. Indeed, one concern is whether this pre-processing can introduce some potential bias. To this end, we
validate the distribution of app categories before and after the pre-processing steps. As shown in Figure 2, we
can find that there is no obvious bias between the two distributions; thus, the pre-processing process may not
compromise the results.

4.2 Ethical Consideration

Indeed, any data collected from real users need to be carefully processed. We take a series of steps to preserve the
privacy of involved users in our data set. First, all raw data collected for this study are kept on the Wandoujia data-
warehouse servers (which live behind a company firewall). Second, our data-collection logic and analysis pipelines
were governed by Wandoujia employees, who supervised the process of data collection and de-identification, to
ensure compliance with the commitments of Wandoujia’s privacy policy stated in the Term-of-Use statements.
Third and the most significantly, Wandoujia employees anonymized the user identifiers before any data analysis.

3See http://techcrunch.com/2014/01/12/wandoujia-120m/ for more details.
4Part of the data set has been publicly released along with our published ICSE 2016 work [35].
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Fig. 2. Distribution of app categories before/after pre-processing.

Only aggregated statistics are produced for the users covered in our study period. Finally, we obtain the IRB
approval from the authors’ institute to conduct this research.

4.3 Indicator Formulation

We next describe the indicators of how Android apps are adopted by actual users, which can be inferred from our
user behavioral data set.
We can immediately obtain the Number of Downloads during the time span of our data set. For user ratings,

since Wandoujia employs a simple binary rating model (“like” or “dislike”) rather than the 5-star model used by
Google Play, we measure app ratings by the “Like Ratio” indicator that is simply computed as follows:
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Like Ratio =
number of likes

number of likes + number of dislikes
(1)

Intuitively, a higher Like Ratio indicates that the app is probably more appreciated by the users.
However, as mentioned earlier, these two indicators have possible limitations. To derive more comprehensive

knowledge about user adoption, this paper introduces a new indicator, namely the U-I Ratio, which is computed
as follows:

U-I Ratio =
number of uninstallations

number of installations
(2)

Compared to the preceding two indicators, the U-I Ratio essentially reflects the “actual” (negative) attitude
towards an app, i.e., a higher U-I Ratio indicates that this app is more probably abandoned by its users. Such a
metric can be complementary to the number of downloads and the user ratings, and thus makes us have more
comprehensive knowledge of user adoption of an app.

5 FEATURE FORMULATION

PRADO aims to correlate the user adoption with the properties of an app. To comprehensively describe various
perspectives of an app, we establish a taxonomy of features related to the implementation and releasing of an app,
mainly from a software-engineering perspective. All selected features can be controlled by the app developers.
We then describe each dimension as well as the selected features in that dimension. The definition and description
of all individual features can also be found in Table 5.

5.1 App Size (D1)

The first dimension is the size of the released app’s installable file, i.e., the .apk file, which includes the code and
the resources. Intuitively, a larger app can contain more features and functionalities, and possibly introduces
more bugs [57]. Such dual characteristics may affect the user adoption in two opposite directions.

The feature size_apk (measured in kilo byte) is the overall measurement of the app size. At a finer granularity, we
use two features, the number of all classes (num_class) and the number of all methods (num_method) in the
app. Since the influence of third-party libraries in app quality is quite complex, careful consideration is needed in
determining whether to remove third-party libraries in app analytics or not [33]. Therefore, we decide to consider
both the total code and project code (i.e., code without third-party libraries), with two features, the number of

project classes (num_proClass) and thenumber of projectmethods (num_proMethod). Additionally, although
researchers often leverage Lines of Code (LOC) to represent the size of code, we choose to quantify the byte code
instructions by decompiling the .apk file, because the source code is not always available. The corresponding
features are defined as num_byteCodeIns for byte code instructions in the app, and num_proByteCodeIns for
byte code instructions in the project code.

To further characterize the functionality richness of an app, we introduce num_activity indicating the number

of activities (in the Android programming model, an Activity represents a single screen with a user interface [6]),
and num_service indicating the number of services (in the Android programming model, a Service is a compo-
nent that runs at the background to perform long-running operations without user interactions, and it can keep
working even if the app is destroyed [7]).

Intuitively, more resources used in an app may introduce richer user experiences. Despite the dynamically
loaded resources, we consider only the number and volume of pictures (num_resPic and size_resPic) in the
resources file.
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5.2 Code Complexity (D2)

We then measure the code complexity metrics, which are demonstrated to be important in determining software
defects [49]. For example, the increase of class size is associated with a high number of defects, which can be
related to user experience and further influence user adoption.

Since the Android-app development usually employs C/C++ and Java as programming languages, most features
in this dimension are essentially object-oriented (OO) metrics. This paper leverages the six well-known OO
metrics proposed by Chidamber and Kemerer (i.e., CK metrics) [14], as illustrated below.
•Weighted methods per class (WMC) is originally defined as the sum of complexity of all methods in the
class under measurement. Consider a class C1 with methodsM1, ...,Mn defined in the class, and c1, ..., cn describe
the complexity of the methods, respectively. Then,

WMC =
n∑

i=1

ci (3)

We assign the complexity value as 1 to each method, and therefore the value of theWMC is equal to the
number of methods in the class.
• Depth of inheritance tree (DIT ) is the depth of inheritance of the class under measurement. When multiple
inheritances exist, the DIT is the maximum length from the node (for the class) to the root of the inheritance tree.
• Number of children (NOC) is the number of immediate subclasses subordinated to the class under measure-
ment in the class hierarchy.
•Coupling between object classes (CBO) is the number of other classes to which the class under measurement
is coupled. Two classes are coupled when methods declared in one class use methods or instance variables defined
by the other class.
• Response for a class (RFC) measures the size of RS, a set of methods that can potentially be executed in
response to a message received by an object of the class under measurement. Theoretically, RS can be expressed
as

RS = {M }
⋃

all i

{Ri } (4)

where {Ri } is the set of methods called by method i and {M } is the set of methods in the class.
• Lack of cohesion in methods (LCOM) is the number of method pairs whose similarity is zero minus the
number of method pairs whose similarity is not zero. The similarity of two methods is measured by their shared
instance variables.

Consider a class C1 with n methodsM1, ...,Mn . Let {Ii } be the set of instance variables used by methodMi . In
addition, let P = {(Ii , Ij ) |Ii ⋂ Ij = ∅} and Q = {(Ii , Ij ) |Ii ⋂ Ij � ∅}. If all {Ii } are ∅ then let P = ∅.

LCOM = |P | − |Q | (i f |P | > |Q |) or 0 (otherwise ) (5)

In addition to the CK metrics, we employ the metric of afferent couplings (CA) [40], which is defined as the
number of classes (outside a category of classes) that depend upon classes within this category, and the number

of public methods (NPM) [9], which refers to the number of public methods in the class under measurement.
Data access can possibly impact the performance of an app. We take into account the percent of public and

protected fields (pubVarDe f Per ) to all the fields defined in the class under measurement, and the percent of
access to public and protected fields (pubVarAccPer ), regarding that a lower such metric is desirable [9]. We
also consider the total number of parameters of all the methods (para) in the class under measurement, and
the average number of parameters of a method (paraPerMethod) in the class under measurement.
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The preceding features are all defined at the class level. To evaluate the complexity of an app instead of the
class, we leverage the maximum, mean, and standard deviation of the features extracted from all classes. For
example, the features corresponding to WMC should containmean_wmc ,max_wmx , and std_wmc .
In addition, we consider the number of byte code instructions per method (IPM) (num_ipm) and the

cyclomatic complexity [41] (num_exePath). The cyclomatic complexity measures the program complexity
based on possible paths of execution. It can be calculated by counting the number of regions in the program
graph.

5.3 CodeQuality (D3)

In the dimension of code quality, we focus on two kinds of metrics that could result in app crash or unresponsive-
ness. Users would possibly uninstall such apps or submit a low rating. Similarly, we still consider all the code
from the .apk file, including the project code and the library code.
• Exception handling. Indeed, exception handling is one of the most important features affecting the code
quality. As proposed by Kechagia and Spinellis [29], the most common reason for app crash is programming
errors (i.e., NullPointerException), and the top-10 methods that frequently throw exceptions are dismiss,
show, setContentView, createScaledBitmap, onKeyDown, isPlaying, unregisterReceiver, onBackPressed,
showDialog, and create. Using these methods without a try-catch block would possibly result in exceptions
and thus lead to app crash. Therefore, we count the number of calls that include thementioned 10methods

but without explicit try-catch blocks, denoted as num_ucDismiss , num_show , and so on.
Handling exceptions with a try-catch block can imply the developers’ carefulness. However, a try-catch

block without correct action can be also problematic. We then count the number of try-catch blocks
(num_catchBlock), the number of empty blocks (num_noAction), and the number of blocks with only log-

ging instructions (num_loдOnly).
•ANR issues. From the official Android developers’ guide [2], an “Application Not Responding” (ANR) dialog
will be displayed if there is no response to the input event (such as key press or screen touch events) within
5 seconds, or a BroadcastReceiver is not finished within 10 seconds. As Android apps run in a single-thread
model by default, a UI thread and the main thread are inherently the same one. Hence, anything happening in the
UI thread and requiring a long time to complete can trigger the ANR dialog because the app is not giving itself a
chance to handle the input event or intent broadcasts. As proposed by Yang et al. [55], we take into account four
types of API calls in the UI thread as the common causes of ANR, as explained as follows. We count the number of
occurrences of each category, respectively.
Network access (num_networkU IThread). Network operations performed in the UI thread can cause the

perception of sluggishness. An exception called NetworkOnMainThreadException has been added to the Android
APIs since level 115, but the network access performed in the UI thread is still allowed in apps targeting earlier
SDK versions although it is heavily discouraged.
Flash storage access (num_f ileIOU IThtread). Even simple disk operations could exhibit significant and

unexpected latencies, and should be avoided in the UI thread [20].
Database access (num_SQLiteU IThread). Android apps often access the on-device SQLite database, which

can generate a substantial number of expensive write operations to the flash storage, and thus can make the
response sluggish.
Bitmap processing (num_bitmapU IThread). Processing large bitmaps could be too computationally expen-

sive to be adopted in the UI thread [2].

5https://developer.android.com/reference/android/os/NetworkOnMainThreadException.html.
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5.4 Libraries (D4)

Android apps heavily depend on libraries including the Android’s base libraries and third-party libraries. Such
dependency can impact the quality of an app, e.g., API usage adaptation code is more defect-prone than the one
without API usage adaptation [42]. Hence, we extract the dependence of libraries as follows.
• Android API. We first compute the dependency on Android’s base libraries (dep_AndroidLib) as the
number of libraries starting with “android.” that are called [51]. In practice, app developers cannot always adapt
to the fast-evolving APIs [42] on time, and such a mismatch can result in the app’s inconsistencies, bugs, or
even errors and/or failures. Therefore, we calculate the average of update frequencies of involved Android

APIs (mean_AndroidUpdateFre) by mining the source code on the Git repositories of Android6. In particular,
we calculate the average number of bug-fixing actions (mean_AndroidBuд) by mining all the updating logs.
• Third-party libraries. In addition to Android APIs, many third-party open-source libraries are available
and can be simply reused to enrich the functionalities and user experiences. We focus on popular libraries in
the 10 categories (i.e., advertisement, social network, mobile analytics, development aid, app market, payment, UI
component, game engine, utility, and map) that are defined in LibRadar [38]. We count the dependency on all

third-party libraries (dep_thirdPartyLib) by counting the total number of called libraries and the dependency
on libraries in every single category (dep_adLib, dep_socialNetworkLib, etc.) by counting the number of
called libraries in every single category. We assume that the popularity may relate to the functionality and
quality of the library, and thus include the average popularity of the libraries (mean_thirdPartyLibPopu) by
calculating the average of popularities of each called library. The popularity values are defined by LibRadar and
they are trained from 1 million apps from Google Play.

5.5 Requirements on Devices/Users (D5)

We next move forward to the features that require users to meet some constraints. For example, when a user
installs an app, he/she will be informed of hardware, OS versions, and permissions required by the app. We
categorize them into two aspects.
•Device-specific and SDK requirements.We count the device-specific features (num_deviceFeature). Usu-
ally, requiring too many device-specific features can narrow the functionalities or user experiences on some
specific devices, e.g., some game apps require powerful graphics processing and cannot run smoothly on low-end
devices.

We also obtain the minimum SDK version required for the app to run (minSDK ) and the targeted SDK

of the app (tarдetSDK ). These two fields declared in the manifest file express an app’s compatibility with one
or more versions of the Android platform (OS version), by means of an API level integer [1]. An app can only be
installed on a device when the API Level of the given Android system on the device is no lower thanminSDK .
Compatibility features will be disabled if the API Level of the device is higher than tarдetSDK . Such two fields
can reflect the potential compatibility risks for an app, as the fragmentation is significant for both devices and OS
versions [35, 54].
• Permissions. The permission requirements are very significant of an app. Users may be sensitive to permissions
accessing private data such as contact, SMS, and camera. Android controls the access to system resources with
install-time permissions [19]. Google has officially defined the protectionLevel7 to characterize the potential
risk implied by a specific permission. All Android permissions are categorized to three threat levels [19] (i.e.,
normal, dangerous, and signature/system). We count the total number of permissions (num_userPermission)
and the number of permissions at the three levels (num_normalPermission, num_danдerousPermission, and
num_ssPermission), respectively.

6https://android.googlesource.com/.
7https://developer.android.com/reference/android/R.attr.html#protectionLevel.
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5.6 Energy Drain (D6)

The energy drain is a significant concern for Android users, and thus apps requiring much battery drain may
not be appreciated [47]. In this dimension, we take into account factors that tend to drain battery fast, such
as those proposed by Sharkey [46]. First, a WakeLock is used to keep the screen from turning off after a given
period of time, which can be manually set by developers. We count the number of WakeLocks without time-

out (num_noTimeoutWakeLock), which will increase battery consumption. Second, we count the number of

LocationListeneruses (num_LocationListener ) andnumber ofGPS uses (num_GPS), which are inevitably en-
ergy consuming. Third, it was reported that event-based parsers are more efficient than tree-based parsers (usually
the DOM parser) [46], and hence we count the number of uses of DOMParser (num_DOMPaser ) and the ag-

gregate number of uses of two common event-based parsers, i.e., theXMLPullParser (num_XMLPullParser )
and the SAXParser (num_SAXParser ) [47]. Finally, we consider thenumber of connection timeouts (num_connectionTimeout )
and the number of socket timeouts (num_socketTimeout ). These two kinds of timeouts are set to limit the
time length that the app can establish a TCP connection and to keep the connection open without receiving any
data, respectively.

5.7 Complexity of Graphical User Interface (D7)

The graphical user interface (GUI), where users interact with the app, is significant to the users’ adoption of the
app. The layout, styling, color, and smoothness can significantly impact the success of apps. The complexity of
GUI reflects the usability and user friendliness, and thus potentially influences users’ attitudes. For example, too
many input or output elements displayed at the same time can be confusing and frustrating to users [26, 28].

In app design, the layout defines the visual structure for a user interface, such as the GUI of an activity or app
widget [3]. We count the number of input/output elements in a layout (num_inputU I and num_outputU I ).
A view object draws elements on the screen that the user can interact with [4], and a large number (usually over
80) of views in a layout is considered to have more side effects for app performance [5]. We then calculate the
maximum number of views in a layout declared in XML files (max_viewsInAnXML). To evaluate the GUI
complexity on the whole, we also include the number of layouts (num_layout ) and the volume size of the

files (size_layout ).
Another concern about the view is where it is defined. Android development is based on the classical

Model-View-Controller (MVC) design pattern, and thus the views should not be defined in controllers; these
controllers are realized by activities in Android. We count the number of views defined in controllers

(num_viewsInController ), and the percent of views defined in controllers (per_viewsInController ). These
two metrics can help indicate the compliance of the MVC pattern.

5.8 Marketing Effort (D8)

In the app-centric ecosystem, developers should upload and release their apps for users to download. Hence, they
need some marketing efforts. Such efforts are usually reflected in the app’s profile page where users can view
and download the app. Although developers can promote their apps through various ways to gain revenue, in
this dimension we limit the consideration of marketing efforts to only the Wandoujia app store.
The profile page of an app includes the functionalities and the most impressive information, which shall be

useful in persuading users to download and use the app. Among all the elements on the profile page, we choose
the length of textual description (len_description), number of promotion images (num_imд), and number

of categorization tags8 (num_taд) of the app.

8Wandoujia annotates apps to indicate various attributes such as category, usage, and other user-defined tags.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 3, Article 79. Publication date:

September 2017.



PRADO • 79:13

Fig. 3. Correlation between the developer-controllable features. 12 of the 108 features with constant values do not ap-

ply in the training set. The other 17 features, i.e., 5 features in D1 (num_proByteCodeIns , num_proMethod , num_byteCodeIns ,
num_class , num_method ), 7 in D2 (max_ca, max_noc , std_pubVarAccPer , std_pubVarDe f Per , max_wmc , mean_npm,

mean_lcom), 1 in D3 (num_catchBlock), 1 in D4 (mean_AndroidBuд), 2 in D5 (nun_normalPermission, num_socketTimeout ),
and 1 in D7 (size_layout ), are filtered out.

5.9 App Store Evaluation (D9)

Serving as the bridge between developers and users, some app stores also make evaluations before the app is
released on the market, e.g., anti-virus check, and official-version confirmation. Such a step provides the end users
more information and confidence about the app. Indeed, the evaluations are performed by app store operators, but
reflect some aspects that are controlled by the developers, e.g., whether the app contains developer-customized
features such as ads. These features can possibly affect the user adoption.
According to the Wandoujia data set, we take into account two features. The first one is has_ad , indicating

whether the app contains in-app ads. The second one is o f f icial , indicating whether the app is an officially
authorized version released by the original developers, as it is possible in Android that third-party developers
can customize and repackage an app before they release the app on an app store. Such apps are more likely to be
infected as malicious code or libraries [56]. These two metrics are both assigned as binary values (0 or 1).

6 PREDICTING USER ADOPTION

After formulating the indicators and the features, we now manage to build machine learning models to predict
user adoption of an app using these features. If such a prediction is effective, the developers may use PRADO to
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predict user adoption of the app even it is newly developed or added in an app store. The developers may also
learn from the prediction and understand which features could play an important role on the success of their app.
The goal of PRADO is not only to predict user adoption of apps as accurately as possible, but also to provide
interpretable explanations of which features have a significant correlation with the adoption.
To perform the prediction task, we randomly divide the data set into three subsets, i.e., a training set with

9,000 apps, a test set with 500 apps, and a validation set with the remaining 324 apps.

6.1 Feature Correlation Analysis

We begin with a correlation analysis of the features. A straightforward practice is to include all the features
described in Section 5 into a prediction model. However, in practice some features are likely to be highly correlated
with one another, leading to problems such as collinearity and can seriously affect the robustness of the model
and the interpretation of individual features. Therefore, we conduct a feature correlation analysis and carefully
select candidate covariates before training the prediction model.

By obtaining the feature values from the training set, we calculate the pair-wise Spearman coefficient between
every single pair of features, and cluster the features according to the coefficient values. The clustering dendrogram
is shown in Figure 3. It is observed that some features are indeed highly correlated and clustered. Most of the highly-
correlated features are from the same category. For example, one cluster consists of the features num_proClass ,
num_proByteCodeIns , and num_proMethod , where all features belong to D1, i.e., the size of the app. Another
noticeable cluster consists of the features num_class , num_method , and num_byteCodeIns inD1, and surprisingly
the feature num_callAndroidLib in D4. One probable reason is that the implementation of functionalities relies
on Android APIs, and can somehow explain why num_callAndroidLib appears in this cluster. Interestingly,
the metrics about the total code base (num_class , num_method , and num_byteCodeIns) and those about the
project code base (num_proClass , num_proByteCodeIns , and num_proMethod) are placed into different clusters,
demonstrating the necessity of including both perspectives of code size. Another interesting finding is from the
clustering of D2 metrics measuring code complexity. Not all the maximum, mean, and standard deviation of
a class-level metric are highly-correlated with one another. For example,max_ca and std_ca are in the same
cluster whilemean_ca is in another, andmax_lcom is in the same cluster withmax_wmc instead of std_lcom.
Such results demonstrate the advantage of comprehensively measuring the class-level metrics in contrast to
simply using the mean value of the metrics. Some indications can also be derived from other clustered features.
For example, the cluster of num_catchBlock and num_noAction indicates that developers tend to be passive in
exception handling after claiming try-catch blocks.
We then cut the dendrogram using a coefficient threshold of 0.8, resulting in 79 clusters of highly-correlated

features (every pair of features in the same cluster has a correlation coefficient of at least 0.8). We preserve only
one feature in each cluster, assuming that such a feature represents the whole cluster. Note that a high threshold
of correlation is used here to balance the independence and expressive power of the features. As a result, 79 of
the 108 features are preserved, none of which has a correlation above 0.8 with any other feature. Accordingly, we
use these 79 features (also labeled in Table 5) for validation and testing.

6.2 Regressions

With the selected features and indicators, we explore state-of-the-art machine learning algorithms for the
prediction task, i.e., to predict the user adoption of a new app with certain features. In addition to the prediction
accuracy, we are also concerned about the interpretability of the model, i.e., how much a feature contributes
to the prediction of user adoption. Since the indicators are numerical, the prediction task is naturally cast as a
regression problem.
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We choose two standard linear-regression models, i.e., Ridge Regression (Ridge) [25] and Lasso Regression
(Lasso) [52]. The two regression models use the same loss function but different regularization terms, where
Ridge uses L2 regularization and Lasso uses L1. λ is a parameter that controls the overall level (intensity) of
regularization.
Intuitively, the coefficients of variables learned by either of the regression models indicate the importance of

the corresponding features. These coefficients, however, have to be interpreted with caution. First, both linear
regression models may suffer from the problem of collinearity, which compromises the stability of the learned
coefficients. We aim to alleviate this problem by filtering highly correlated features (Section 6.1). Second, Lasso is
able to eliminate some input variables (as a type of feature selection) while Ridge is not. As a result, the coefficients
learned by Lasso and Ridge are usually not identical. Moreover, different scales of the same variables also affect
the numerical values of the coefficient. Compared to the numerical values, the signs of the coefficients are more
reliable, which should be mostly consistent in Lasso and Ridge. To deal with the scaling issue, we first standardize
every variable of regression following

x ′ = x − x̄
σ
, (6)

where x ′ is the transformed value of the variable, x is the original value of the variable, and x̄ and σ are the
mean and standard deviation of the variable in training set, respectively.

Finally, not all features are linearly correlated with the output variable (indicators of user adoption); some may
present a non-linear relation and would probably be eliminated by Lasso. We include an additional regression
model, the Random Forest [11] (abbreviated as RF in the rest of this paper), which is able to handle non-linear
regressions while the importance of each variable is still interpretable. Note that we decide not to include deep
neural networks: although they may perform even better in prediction tasks, the models are less interpretable
and are normally considered as black boxes.
• Evaluation metrics. Treating the observed indicators as the ground truth, we use the Mean Squared Error

(MSE) to measure the accuracy of the predicted results. Hyperparameters of the learning algorithms (e.g., λ
in Lasso and Ridge) are selected by minimizing the Mean Squared Error on the validation set. The prediction
algorithms are then trained using these parameters on the training set. The effectiveness of each algorithm is
measured by making prediction on the test set.

In many real scenarios, a ranking is more practical than absolute values: predicting which apps are more likely
to be adopted than others is more important than predicting the actual adoption rate. In addition to MSE, we
may also rank the apps in the test set by the predicted outcomes, and measure how much it differs from the
ground-truth ranking (by observed adoption rates). Statistically, this difference can be measured by a metric called
Kendall’s Tau (τ ), which is widely used to compare two ranking lists [39]. It measures the difference between
the number of concordant pairs in two ranked lists and the number of discordant pairs, normalized by the total
number of ordered pairs:

τ =

∑
i, j (I[(xi − x j ) · (yi − yj ) > 0] − I[(xi − x j ) · (yi − yj ) < 0])
∑
i, j (I[(xi − x j ) · (yi − yj ) > 0] + I[(xi − x j ) · (yi − yj ) < 0])

, (7)

where i, j are two apps, xi ,yi are the orders of the two apps in two ranking lists, and I[·] is an indicator function
whose value equals to 1 if the expression is true and 0 otherwise. The value of τ is 1 if the two rankings are
identical, -1 if one is completely opposite of the other, and 0 if they are independent.

Compared to other ranking-based metrics such as mean average precision and NDCG, Kendall’s τ considers the
entire ranking list equally while others typically focus on the top-ranked items. Such characteristic is particularly
useful in situations where underrepresented or new apps are considered to be important [30]. Note that the
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Table 1. Model effectiveness.MSE: the lower the better; τ : the higher the better.

Model
U-I Ratio Like Ratio Download Percentile

τ MSE τ MSE τ MSE

Lasso 0.280 0.028 0.150 0.054 0.236 0.080

Ridge 0.314 0.027 0.135 0.061 0.220 0.084

RF 0.331 0.025 0.252 0.047 0.316 0.070

Baseline -0.016 0.075 0.010 0.075 -0.011 0.091

numerical values of the τ metric may appear rather small in practice. Indeed, having 20% items completely out of
order may have reduced τ to somewhere below 0.3 instead of 0.8.

For comparison purposes, there are also naive baselines to consider such as uniform guesses. For example, we
may simply guess the U-I Ratio as 0 for each app in the test set and calculate the MSE. We also guess it as 0.5
and 1, respectively, and choose the lowest MSE in the three conditions as the baseline result. For the ranking
effectiveness, we adopt random ranking of apps in the test set, and calculate τ with comparison to the ground
truth. The results are shown in Table 1.

6.3 Results

We next report the prediction results for three indicators of user adoption, U-I Ratio, Rating, and Number of

Downloads, respectively.

6.3.1 U-I Ratio. To predict U-I Ratio for a new app, we first use the validation set of 324 apps to tune the
hyperparameter λ of the Lasso model through cross validation (using R package cv.glmnet). We choose the
λ.min as 0.012, which minimizes the out-of-fold deviance. We then train the Lasso model with the generated λ
using the training set of 9,000 apps. On the test set, we calculate τ andMSE of the predicted result of the trained
model. As shown in Table 1, Lasso achieves a τ of 0.280 and anMSE of 0.028.
Training Ridge is similar, and the effectiveness turns out to be better: τ = 0.314 and MSE = 0.027. The τ of

RF is 0.331 and the MSE is 0.025, which is the best among the three regressors. Such result indicates that the
correlation between the features and U-I Ratio may not be linear, and it is beneficial to use a non-linear regression
model.
All three regression models trained with our selected features outperform the baseline results for both τ and

MSE. The lowerMSE means that our models yield more accurate predictions than the uniform guess baseline.
The higher τ indicates that the app list ranked by Lasso/Ridge/RF predicted U-I Ratio is more consistent with the
ground-truth ranking, compared to the random ranking.

6.3.2 Rating. Compared to Google Play, which uses a starring model for app rating, the Wandoujia app store
employs a simple binary model, i.e., “Like” or “Dislike”. In this way we employ the metric of Like Ratio, which is
calculated as the number of likes divided by the number of (likes+dislikes) as the indicator of app rating. Such a
metric has been shown to be consistent with ratings in Google Play [30].
It was reported that using ratings to evaluate overall user attitude toward an app can lead to biases [35, 43].

Some researchers leverage the criteria of no fewer than 10 raters [43] to address such a bias. However, even
when an app has enough ratings, bias can still exist. Consider when the positive and negative ratings have no
significant difference, one single rating would have flipped the sign of the gold standard, even when there are an
enormous number of raters. Thus threshold criteria cannot well address such a problem.
To avoid possible bias, we filter the apps in the validation set and test set with a statistical test as we have

done to the whole data set in our previous work [30]. We use a two-tail proportion test with confidence level of
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Table 2. Significant features for user-adoption indicators.1

U-I Ratio Number of Downloads (Download Percentile)

rank feature rank feature

1 **len_description(D8)+ 1 **official(D9)+

2 num_proClass(D1) 2 **num_callAndroidLib(D4)+

3 num_noAction(D3) 3 **num_service(D1)+

4 size_apk(D1) 4 len_description(D8)

5 max_lcom(D2) 5 **num_layout(D7)+

6 **official(D9)− 6 **num_noAction(D3)+

7 num_resPic(D1) 7 **num_userPermission(D5)+

8 num_callAndroidLib(D4) 8 **num_tag(D8)+

9 **num_img(D8)+ 9 **size_apk(D1)+

10 num_layout(D7) 10 targetSDK(D5)

11 max_rfc(D2) 11 **max_cbo(D2)+

12 num_userPermission(D5) 12 num_resPic(D1)

13 max_npm(D2) 13 max_rfc(D2)

14 max_cbo(D2) 14 **num_proClass(D1)+

15 max_paraPerMethod(D2) 15 mean_AndroidUpdateFre(D4)

16 std_ca(D2) 16 num_activity(D1)

17 std_lcom(D2)

18 mean_thirdPartyLibPopu(D4)

19 max_para(D2)

Rating (Like Ratio)

rank feature rank feature

1 **num_resPic(D1)+ 21 num_dangerousPermission(D5)

2 **num_layout(D7)+ 22 **max_viewsInAnXML(D7)+

3 **len_description(D8)+ 23 max_rfc(D2)

4 **num_callAndroidLib(D4)+ 24 mean_thirdPartyLibPopu(D4)

5 **mean_AndroidUpdateFre(D4)− 25 std_rfc(D2)

6 num_noAction(D3) 26 mean_pubVarDefPer(D2)

7 std_ca(D2) 27 mean_rfc(D2)

8 num_activity(D1) 28 num_outputUI(D7)

9 size_resPic(D1) 29 num_viewsInController(D7)

10 num_proClass(D1) 30 std_lcom(D2)

11 size_apk(D1) 31 std_wmc(D2)

12 num_userPermission(D5) 32 max_lcom(D2)

13 **targetSDK(D5)+ 33 std_npm(D2)

14 mean_cbo(D2) 34 num_exePath(D2)

15 mean_ca(D2) 35 max_paraPerMethod(D2)

16 std_noc(D2) 36 num_connectionTimeout(D6)

17 mean_noc(D2) 37 mean_para(D2)

18 mean_pubVarAccPer(D2) 38 max_para(D2)

19 std_cbo(D2) 39 std_dit(D2)

20 max_npm(D2)
1 Each of the listed features is with a %IncMSE value larger than 10−3, which is generated by rf$importance instruction in
R. Features in bold are also selected by Lasso and the +/- indicates the sign of correlation.
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0.05. Apps that pass such a test have abundant ratings and a significant difference between positive and negative
ratings. Finally, we have 131 apps remaining in the validation set and 178 apps in the test set.
Similarly to U-I Ratio, we train the Lasso, Ridge, and RF models for the Like Ratio prediction. The τ andMSE

values are shown in Table 1. Consistently, all three models outperform the baselines, and RF performs the best
among the three models. Lasso outperforms Ridge this time, yielding a higher τ and a lowerMSE.

6.3.3 Number of Downloads. We then investigate the indicator Number of Downloads, which is traditionally the
most adopted indicator for app popularity. As reported in our previous work [30], the distribution of # downloads
follows a Power Law. The long tail distribution suggests that the model evaluation is challenging, asMSE uses
a normal assumption and is not applicable. To address this issue, we transform the Number of Downloads into
Download Percentile against Rankings and use the latter as the target of prediction. That is, we rank the apps
according to their number of downloads and calculate the percentile position that each app holds against the
least downloaded app. For example, in a set of n apps, the Download Percentile value of the app with the least
downloads (ranks n) is (n − n)/n = 0, and the value of the app with the most downloads (ranks 1) is (n − 1)/n. A
higher Download Percentile indicates more downloads. The evaluation metrics are shown in Table 1. Conclusions
are similar to those of Like Ratio.

7 INTERPRETATIONS

So far, we have performed the regression models and demonstrated their validity and effectiveness. As mentioned
earlier, another important goal of our work is to interpret the learned models, or to identify the influences of
individual features on every indicator.

7.1 Approach

As introduced earlier, the coefficients learned by Lasso and Ridge after variable standardization can be interpreted
as the importance of the corresponding features. Lasso further eliminates unimportant features. Interpreting
feature importance learned by RF is less straightforward. In Table 2, we rank the importance of features ranked
by the %IncMSE values generated by the instruction rf$importance after RF regression, which measures the
increase rate of MSE if a feature is permuted in the model, with the threshold of 10−3 to obtain statistical
significance. A higher %IncMSE indicates that the variable is more significant to the outcome (i.e., the indicator)
of the model.

One limitation of this approach is that it can select only the statistically significant features, but does not report
whether such a feature is positively or negatively correlated with the outcome. Based on the significant features
ranked by RF, we further check whether the features are also selected by Lasso and the signs of these features.
Such features in Table 2 are labeled bold and tagged with the sign +/−. Note that some features are significant in
RF but not in Lasso, since Lasso is a linear model, and variables that are not linearly correlated with the indicators
can be filtered out. Such a synthesis can improve the interpretability of results.

7.2 Results

Interestingly, we first find that the significant features are quite different for the three indicators. Specifically, RF
selects 19 features for U-I Ratio, 39 features for Rating, and 16 features for Number of Downloads. There are 44
features as the union set for all the three indicators. Such a finding indicates that developers should have more
comprehensive considerations rather than relying on the features that are indicator-specific.

As mentioned earlier, the features selected by RF cannot explicitly indicate the positive/negative correlations
to the indicators. To better interpret the results, we focus on the significant features selected by Lasso, and make
pair-wise comparisons accordingly.
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For the indicator Rating, Lasso selects 6 features as positive and 1 feature as negative. In other words, apps in
our data set, which have more resource pictures (num_resPic), layout elements (num_layout , implying richer UI),
and longer textual description (len_description, implying more informative description), rely on more Android
APIs (num_callAndroidLib) but less-frequently changed APIs (mean_AndroidUpdateFre), require higher version
of SDK (tarдetSDK), more views in an XML file (max_viewsInAnXML), are more likely to gain higher ratings.
Similarly, apps that are official (o f f icial = 1), rely on more Android APIs (num_callAndroidLib), require more
permissions (num_userPermission), and have more services (num_service), layout elements (num_layout ), empty
try-catch blocks (num_noAction), more tags (num_taд), larger size of .apk files (size_apk), more classes in
project code (num_proClass), and more coupling (max_cbo), are more likely to gain more downloads.

Indeed, some of the preceding features can be interpreted and also quite actionable by developers in practice.
For example, a higher number of images (num_imд) displayed at app stores can imply that users’ first impression
is significant; longer textual descriptions (len_description) and more descriptive information (num_taд) can
make an app more informative, and thus may lead to users’ higher interest in downloading the app. In this
way, developers can use more images and enrich the descriptions to illustrate/translate the app’s functionalities
and features. Other positive examples are the number of calls to Android APIs (number_callAndroidLib) and
the version of target SDK (tarдetSDK ), encouraging developers to more rely on Android native APIs and build
their apps over a newer version of Android SDK. Additionally, using those frequently updated Android APIs
(mean_AndroidUpdateFre) indicates the negative correlation, since these APIs may not be stable enough and
even lead to failures. As a result, developers shall pay more attention when using such APIs.
Note that some features could be interpreted, but may not be immediately or simply addressed. For example,

the feature size_apk seems to be positive to those more-downloaded apps. Indeed, the larger size of an app usually
implies more functionalities and features. However, it does not mean that the developers should intentionally
increase the size of their apps. A similar observation is also held for the feature num_proClass .

Interestingly, some results even seem to be a bit counter-intuitive. For example, the highermax_cbo seems
to be a positive feature to the downloads; such result is a bit contradictory to the suggested “lower-coupling-
between-class” principle in traditional software engineering practice. Although we currently cannot derive
the underlying reasons, such observations could be very interesting to software engineering researchers and
practitioners, and even make them rethink some specific characteristics to app development.
Some features are important to more than one indicator. For example, o f f icial is negatively correlated with

U-I Ratio and positively correlated with Download Percentile. In other words, authentication can help the app to
reach more users and to be less likely uninstalled. The feature num_layout , as shown in Figure 4, is positively
correlated with both Download Percentile and Like Ratio. This result is within expectations because more layout
files may indicate more functionalities and features, and thus may gain more downloads and higher rating.
Interestingly, we also find some contradictory features for different indicators. For the indicator U-I Ratio,

we can find that apps with non-official versions (i.e., o f f icial=0), longer textual descriptions (len_description),
and more promotional images (num_imд) are more likely to be uninstalled. The first selected feature (o f f icial )
complies with common knowledge, since the quality of non-official apps may not be assured, and the infection
rate of non-official apps is reported to be higher than official apps [56]. However, it is a bit surprising to find that
an app having longer textual description can possibly lead to higher U-I Ratio. In contrast, for the indicator Like
Ratio, the feature len_description is positively correlated with it, indicating that apps with longer descriptions may
have higher ratings. We further investigate how this feature is correlated with the two indicators. We employ the
bin-bin plot to illustrate such a correlation (we set 20 bins for each plot and fit the data with 5-degree polynomial
regression), as shown in Figure 5. We find that the increase of U-I Ratio is quite flat when the description is shorter
than the average length. Hence, it is possible to find an equilibrium where the U-I Ratio is relatively low and
the Like Ratio is relatively high, i.e., the length of textual description is not necessarily too long. The underlying
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(a) Rating with number of layout files. (b) Download percentile with number of layout
files.

Fig. 4. Consistence between different indicators.

(a) U-I Ratio with length of textual description. (b) Rating with length of textual description.

Fig. 5. Divergence between different indicators.

reason could be that too long descriptions may require more time and more scroll-down actions, but users may
feel impatient to read them through.

7.3 Correlation, NOT Causality

Although the preceding machine learning process identifies some statistically significant features, we should
clarify that the current main goal of our PRADO approach is to explore whether there are tangible features
for possibly affecting the user adoption of an app. PRADO currently performs only correlation analysis by
employing machine learning algorithms. Although we synthesize various features and user-adoption indicators,
the findings derived from our correlation analysis may not be fully generalized to imply the underlying causality.
Indeed, such a limitation also exists in previous studies that analyze relationships between app characteristics
and success (or popularity) by mining code, software repositories, and app stores [10, 12, 21, 23, 50, 51]. These
existing studies along with PRADO indeed identify the possible significant features of these successful apps. The
derived features may not be thoroughly interpreted or actionable, but can still provide suggestions to developers.
In future work, we plan to combine advanced causality analysis techniques [48] and developer interviews [53] to
validate the findings. In practice, our findings provide guidance for the developers to design and prioritize A/B
tests to validate the causal effect of particular features.
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Table 3. Model effectiveness on GAME apps.MSE: the lower the better; τ : the higher the better.

Model U-I Ratio Like Ratio Download Percentile
τ MSE τ MSE τ MSE

Game Model
Lasso 0.455 0.035 – 0.059 0.363 0.094
Ridge 0.410 0.039 0.085 0.053 0.293 0.095
RF 0.510 0.030 0.183 0.047 0.429 0.061

General Model
Lasso 0.437 0.040 0.147 0.048 0.305 0.087
Ridge 0.450 0.039 0.108 0.048 0.273 0.093
RF 0.491 0.032 0.242 0.046 0.415 0.068

8 APPLYING PRADO ON SPECIFIC APPS: A CASE STUDY

In the aforementioned demonstration of PRADO, apps in all categories are mixed together. However, it is possible
that some factors may work only on some certain types of apps. For example, apps with different functionalities,
such as a game app and a financial app, can have different user groups that have potentially different user
preferences. To validate whether the preceding results of PRADO are generalizable and robust across categories,
we narrow the scope of the apps to a specific domain, i.e., GAME, and explore the effectiveness of PRADO on this
particular category of apps.
In our data set, the GAME domain includes 2,658 apps, which constitute the data set in the category-specific

validation. The data set is divided into three subsets, i.e., a training set (2,438 apps), a validation set (84 apps),
and a test set (136 apps). The partition of the sets is consistent with that described in Section 6. In particular, the
2,438 GAME apps in the training set are also part of the training set in Section 6. The situation is similar to the
validation set and the test set.

8.1 Regressions

Similarly, we train the Ridge, Lasso, and RF models on the GAME set (abbreviated as Game Model) to predict the
three adoption indicators. The evaluation metrics, τ and MSE, are calculated and shown in Table 3. As shown in
the table, RF outperforms Lasso and Ridge with a higher τ and a lower MSE for each indicator. Note that we fail
to generate τ of Lasso for Like Ratio because the predicted Like Ratios are a constant.

To conclude the effectiveness of the Game Model of PRADO in comparison to the models trained on the entire
set (abbreviated as General Model), we need to perform the General Model on the same test set of games. The
values of the adoption indicators are also shown in Table 3. Again, RF outperforms the two linear models.

For U-I Ratio and Download Percentile, the Game Model and General Model have quite similar performance, with
slightly higher τ and lower MSE of the Game Model using RF. However, the General Model outperforms the Game

Model in Like Ratio. In particular, Lasso in Game Model fails to generate a τ because of constant outputs, and the
value of τ for RF in the Game Model is 0.183 while that in the General Model is as high as 0.242. As observed, the
General Model is more robust and is generalizable to a specific category of apps.

8.2 Interpretations

Given that theGameModel achieves satisfactory results for theU-I Ratio and theDownload Percentile in comparison
to those of the General Model, it is motivated that the important features selected by the Game Model have quite
similar prediction power while being more specific to those GAME apps. The RF-selected features are shown in
Table 4, and the Lasso-selected features are labeled bold and tagged with the sign +/−. Note that Lasso fails to
select any feature for Like Ratio because the output coefficients of the features are all 0.

We interpret only from the two perspectives of U-I Ratio and Download Percentile. In comparison to Table 2, the
number of important features is reduced. For U-I Ratio, 4 out of the 7 features are also selected by theGeneral Model,
and the signs are consistent. The other 3 features, i.e., num_exePath,max_paraPerMethod , and num_adLib, are
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Table 4. Significant features for user-adoption indicators in GAME apps.1

U-I Ratio Number of Downloads (Download Percentile)
rank feature rank feature
1 **len_description(D8)+ 1 **num_tag(D8)+
2 **official(D9)− 2 **official(D9)+
3 num_exePath(D2) 3 len_description(D8)
4 **num_img(D8)+ 4 num_noAction(D3)
5 **max_paraPerMethod(D2)+ 5 size_apk(D1)
6 num_callAndroidLib(D4) 6 std_ca(D2)
7 **num_adLib(D4)+ 7 max_viewsInAnXML(D7)

8 num_userPermission(D5)
9 num_callAndroidLib(D4)

Rating (Like Ratio)
rank feature rank feature
1 size_apk(D1) 15 num_outputUI(D7)
2 num_callAndroidLib(D4) 16 num_dangerousPermission(D5)
3 len_description(D8) 17 mean_pubVarDefPer(D2)
4 mean_AndroidUpdateFre(D4) 18 std_dit(D2)
5 std_noc(D2) 19 max_cbo(D2)
6 num_resPic(D1) 20 size_resPic(D1)
7 mean_thirdPartyLibPopu(D4) 21 mean_rfc(D2)
8 mean_noc(D2) 22 mean_cbo(D2)
9 std_ca(D2) 23 mean_wmc(D2)
10 num_noAction(D3) 24 std_para(D2)
11 mean_ca(D2) 25 max_npm(D2)
12 num_userPermission(D5) 26 num_thirdPartyLib(D4)
13 max_rfc(D2) 27 mean_para(D2)
14 mean_pubVarAccPer(D2) 28 max_para(D2)

1 Each of the listed features is with a %IncMSE value larger than 10−3, which is generated by rf$importance instruction
in R. Features in bold are also selected by Lasso and the +/- indicates the sign of correlation.

considered to be more important for the GAME apps than for all the apps. Such a result is reasonable because
num_exePath andmax_paraPerMethod can be related to the fluency of running a game app, and num_adLib
can influence user experiences when using a game app. A higher num_adLib is correlated with a higher U-I Ratio,
which indicates a higher tendency to uninstall an app. For Download Percentile, most of the selected features are
also selected by the General Model.

8.3 Discussion

By performing the different models on the test set of GAME apps, we find that the General Model trained with all
apps can achieve competitive results with the Game Model for two indicators (U-I Ratio and Download Percentile),
and is observed to outperform in Like Ratio. One potential reason for the unsatisfactory results of the Game Model

(by the Like Ratio) may be the reduction of the size of the data set, which would be more serious for smaller app
categories (see Figure 2). In summary, we believe that the General Model of PRADO is robust enough and can be
generalized to specific categories of apps.

9 LIMITATIONS AND DISCUSSION

As a measurement and correlation-analysis study, considerable care and attention should be given to ensure the
rigor. However, as with any chosen research methodology, it is unlikely free of limitations. We next discuss some
limitations or threats to validity in our evaluations.
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Generalization of findings. A major threat to validity is using apps from only Wandoujia (primarily in the
China market). All apps along with their user behaviors, including installation, uninstallation, and ratings, are
collected from Wandoujia. The large scale of user-behavioral data (from over 12 million users) could make
the results statistically meaningful and thus help developers when they publish their apps on Wandoujia, in
terms of optimizing release planning, app development, and ranking. We believe that the current results are
informative, since there are more than 1 million apps and 300 million users on Wandoujia. It is worth mentioning
that developers who publish their apps on other stores such as Google Play may not be able to immediately
generalize all knowledge derived in this paper as reference to predict their app adoption, or identify those features
that are potentially significant. However, the idea and correlation-analysis process of PRADO are quite general
and can be applied to all apps. On one hand, most of the extracted features such as app size, code complexity,
employed libraries, marketing efforts, are standard and general to all Android apps, no matter where they are
published. On the other hand, the user behaviors such as the number of downloads, ratings, and uninstallation
(despite not always available) are also not specific to any app store. With similar data collected by other app stores,
we believe that one can easily reproduce PRADO and derive the desired results. In future work, we plan to apply
PRADO on the apps published on Google Play along with their public user-adoption information. It would be in-
teresting to validate whether the results and significant features are consistent with the ones inferred in this paper.

Practical applicability. PRADO is principally designed for two goals: helping app developers predict the pos-
sible user adoption and identifying the possible significant features. In other words, PRADO aims to provide
some insightful references to developers for them to better allocate their resources and optimize their apps. The
features in the feature taxonomy are selected from various aspects, but are general to all Android apps and can
be fully controlled by their developers. Some of the selected features (such as those in D8) can be immediately
actionable by developers while others can be performed only in a long-term way. In practice, developers are able
to perform A/B tests to validate whether their apps can win better adoption with these PRADO-selected features
addressed.

Feature taxonomy. All the features in PRADO are defined by classical software engineering metrics and ex-
tracted based on static analysis. However, the static-analysis tool used in this work may be insufficient to evaluate
the behavior and performance of apps at runtime. For example, the results indicate that the energy drain features
are not sensitive to U-I Ratio. Such a finding is a bit surprising since energy drain is considered to be a significant
factor affecting the experience of smartphone users [15]. To further explain such observations, we plan to adopt
more comprehensive measurements, such as more advanced static analysis or dynamic analysis techniques, or
even human-intervention cooperative analysis, in future work.

Time and app versions. Another threat to validity in our evaluations is the time and the versions of apps. We
evaluate PRADO with a five-month-long data set and the first-released version of apps during this time span.
However, the data set does not record the detailed information of management activities performed against a
specific app version. In practice, developers can frequently update and release their apps. If a user downloads
an older app version released before the starting time of our data set, and uninstalls or rates the app during the
five months, there can be mismatches. In the future, the Wandoujia app store will consider recording the precise
version of an app in the management activities. In addition, it would be an interesting topic to explore the change
of user adoption along with the evolution of app versions.

Free apps vs. paid apps. The apps on Wandoujia are all free. Certainly, it is possible that user behaviors on paid
apps are different [44]. Such inclusion of only free apps is an inherent limitation of our data set. Given that free
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apps account for a large percentage of apps, our results are still meaningful.

Feature extraction tools. Indeed, PRADO relies on existing tools such as Dex2Jar and CKJM to extract features.
These tools failed on some apps (such as certain anonymized apps like WeChat and QQ), which are excluded
from the study, and thus our evaluations contain only 9,000+ apps. To alleviate such a limitation, we need to
explore alternative effective tools in future work.

Cross-platform issues. The features used in this paper are quite standard for all OO applications, but extracted
from Android apps that are implemented in the Java language. These features may require different measurement
tools and metrics in iOS and Windows Mobile applications. However, the idea of PRADO is still generalizable if
these features are available.

10 CONCLUSION AND FUTURE WORK

We have presented the PRADO approach, which predicts user adoption of an Android app using app information
and large-scale user behaviors. Based on a well-established feature taxonomy, we apply advanced machine
learning algorithms to derive the correlations between the features and the adoption behaviors from large-scale
users. The derived models of PRADO can accurately predict how a new app would be managed, rated, and
downloaded by users. We are also able to synthesize and suggest those potentially influential features for affecting
user adoption. In future work, we plan to focus on causality analysis of the suggested features and the user
adoption. Such insightful knowledge can be used to help Android developers take direct actions for improving
user adoption of their apps.

APPENDIX

In this appendix, we summarize the developer-controllable features used in this paper, so that the readers can fast
trace and understand them. Features in bold and Italic are those preserved after the feature correlation analysis
(see Section 6.1).

Table 5. Summary of features.

Feature Name Description

App Size (D1), 11 features

size_apk The size of .apk file, measured in kilo byte (KB). A larger size can
imply richer functionalities.

num_class The number of all classes in the app. More classes can imply more
functionalities.

num_proClass The number of classes in the project code (code excluding libraries).

num_method The number of all methods in the app.

num_proMethod The number of methods in the project code.

num_byteCodeIns The number of byte code instructions decompiled from the .apk file,
which implies the volume of source code.

num_proByteCodeIns The number of byte code instructions in the project code, decompiled
from the .apk file.

num_activity The number of activities. Each activity represents a single screen with
a user interface.

num_service The number of services. A service runs at the background and keeps
working even if the app is destroyed [7].
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num_resPic The number of pictures in the resource file, implying the richness of UI.

size_resPic The volume of pictures in the resource file.

Code Complexity (D2), 38 features

mean_wmc
max_wmc
std_wmc

The weighted methods per class, originally defined as the sum of
complexity of all methods in the class [49].

mean_dit
max_dit
std_dit

The depth of inheritance tree. A larger depth implies greater
complexity [49].

mean_noc
max_noc
std_noc

The number of children: the number of immediate subclasses
subordinated to a class in the class hierarchy [49].

mean_cbo
max_cbo
std_cbo

The degree of coupling between object classes. A less degree is
encouraged [49].

mean_rfc
max_rfc
std_rfc

The response for a class: a set of methods potentially executable in
response to a message received by an object of that class [49].

mean_lcom
max_lcom
std_lcom

The lack of cohesion in methods: the number of method pairs whose
similarity is zero minus the number of method pairs whose similarity
is not zero [49].

mean_ca
max_ca
std_ca

The afferent coupling: the number of classes (outside a category of
classes) that depend upon classes within this category [49].

mean_npm
max_npm
std_npm

The number of public methods in a class [9]. A lower number is
desired.

mean_pubVarDefPer
max_pubVarDefPer
std_pubVarDefPer

The percentage of public/protected fields to all the fields defined in a
class. A lower number is desired [9].

mean_pubVarAccPer
max_pubVarAccPer
std_pubVarAccPer

The percentage of access to public/protected fields.

mean_para
max_para
std_para

The number of parameters of methods per class. A lower number is
desired [9].

mean_paraPerMethod
max_paraPerMethod
std_paraPerMethod

The number of parameters per method.

num_ipm The number of byte-code instructions per method.

num_exePath Cyclomatic complexity, or possible paths of execution, counted as the
number of conditional statements plus one.

Code Quality (D3), 17 features
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num_catchBlock The number of try-catch blocks. A larger number indicates better
consideration of exception handling.

num_logOnly The number of try-catch blocks with only logging instructions.

num_noAction The number of empty try-catch blocks without explicit exception
handling. Intuitively, such a programming style is not encouraged.

num_networkUIThread The number of API calls that were reported to be possibly leading to
Application-Not-Responding (ANR) [55] issues, i.e., network access,
flash storage access, database access, and bitmap processing in a UI
thread.

num_fileIOUIThread
num_SQLiteUIThread
num_bitmapUIThread

per_ucDimiss

The number of the top-10 methods reported by Kechagia and
Spinellis [29], i.e., the methods dismiss, show, setContentView,
createScaledBitmap, onKeyDown, isPlaying, unregisterReceiver,
onBackPressed, showDialog, and create. Here, we compute the
percentage of calls to such a method without explicit try-catch
blocks relative to total calls to the method. Intuitively, a higher
percentage can imply more probability to lead to exceptions.

per_ucShow
per_ucSetContentView
per_ucCreateScaleBitmap
per_ucOnKeyDown
per_ucIsPlaying
per_ucUnregisterReceiver
per_ucOnBackPressed
per_ucShowDialog
per_ucCreate

Libraries (D4), 15 features

num_callAndroidLib The number of calls to Android APIs in libraries starting with
“android”. Intuitively, using Android APIs is encouraged.

mean_AndroidUpdateFre The average of update frequencies of involved Android APIs. The
more-frequently changed APIs imply more error-proneness, and is
discouraged [42].

mean_AndroidBug The average number of bug-fixing actions of involved Android APIs by
mining the updating logs. The more bug-fixing actions of an API can
indicate more error-proneness.

num_thirdPartyLib The number of third-party libraries identified with the LibRadar
tool [38]. More usage of third-party libraries is reported to enrich
functionalities [51].

num_adLib

The number of imported libraries in the top-10 popular categories
defined by Ma et al. [38], i.e., advertisement, social network, mobile

analytics, development aid, app market, payment, UI component, game

engine, utility, and map.

num_socialNetworkLib
num_mobileAnalyticLib
num_devAidLib
num_appMarketLib
num_paymentLib
num_UIComponentLib
num_gameEngineLib
num_utilityLib
num_mapLib

mean_thirdPartyLibPopu The average popularity of third-party libraries used. A higher value
indicates better usage of third-party libraries.

Requirements on Devices/Users (D5), 7 features
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num_deviceFeature The number of required device features. A larger value can narrow the
functionality or user experiences, and is discouraged.

minSDK The minimum SDK level required for the app to run.

targetSDK The target SDK level. Intuitively, a higher SDK version is encouraged.

num_userPermission The number of required permissions. More permissions required
indicate not only more functionalities but also more threats [19].

num_normalPermission The number of required permissions at the normal level.

num_dangerousPermission The number of required permissions at the dangerous level. Intuitively,
such permissions should be avoided [19].

num_ssPermission The number of required permissions at the signature or
signatureOrSystem level.

Energy Drain (D6), 8 features

num_noTimeoutWakeLock The number of WakeLocks without timeout. A larger number indicates
more battery consumption [46].

num_LocationListener The number of LocationListener uses. A larger number indicates
more battery consumption [46].

num_GPS The number of GPS uses. A larger number indicates more battery
consumption [46].

num_DOMParser The number of DOMParsers. A larger number indicates better
performance and less battery consumption [46].

num_XMLPullParser The number of XMLPullParsers. A larger number indicates better
performance and less battery consumption [46].

num_SAXParser The number of SAXParsers. A larger number indicates better
performance and less battery consumption [46].

num_connectionTimeout The number of connection timeouts. A larger number indicates more
carefulness in preventing network hanging, and maybe less battery
consumption [46].

num_socketTimeout The number of socket timeouts. A larger number indicates less battery
consumption [46].

Complexity of Graphical User Interface (D7), 7 features

num_inputUI The number of input elements per layout. A larger number indicates
more confusion and frustration of users for too many input elements
displayed at the same time [26, 28].

num_outputUI The number of output elements per layout. Users are likely to be
confused and frustrated with a large number of output elements
displayed at the same time [26, 28].

max_viewsInAnXML The maximum number of views in a layout. A large number (usually
over 80) of views in a layout is considered to be negative for app
performance [5].

num_layout The number of layout files. A larger number may indicate more
functionalities and more complex GUI.

size_layout The size of layout files. A larger number may indicate more
functionalities and more complex GUI.
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num_viewsInController The number of views defined in controllers. A larger number indicates
further deviation from the MVC pattern.

per_viewsInController Percent of views defined in controllers. A larger number indicates
further deviation from MVC pattern.

Marketing Effort (D8), 3 features

len_description Length of textual description on the profile page. A longer description
indicates more adequate introduction to the app.

num_img The number of promotion images on the profile page. A larger number
indicates more adequate introduction to the app.

num_tag The number of categorization tags on the profile page. A larger
number indicates more adequate introduction of the app, and more
functionalities.

App Store Evaluation (D9), 2 features

has_ad Whether the app has ads, assigned as a binary value (0 or 1). Having
adds may disturb users.

official Whether the app is official: “1” means official and “0” otherwise. An
official version is less likely to be infected or malicious [56].
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